
ALGEBRAIC K-THEORY AS GENERALIZED SHEAF COHOMOLOGY 

Kenneth S. Brown I and Stephen M. Gersten 

Let X be a topological space. IN [2] it was shown how one 

could define "generalized sheaf cohomology" of X; this generalizes 

ordinary sheaf cohomology, as well as generalized cohomology in the 

sense of [Ii]. In case X = Spec A, where A is a regular commuta- 

tive ring, it was announced in [5] that the (Karoubi-Villamayor) 

K-groups of A could be obtained as generalized sheaf cohomology 

groups of X. As a consequence, one obtains a "local to global" 

(or "Atiyah-Hirzebruch") spectral sequence 

E~q= KP(×,~_q)~ K_(p+q)(A), 

where ~ -q is the (abelian) sheaf of local K-groups of A. 

[Note: In the Karoubi-Villamayor notation, one would write ~q 

and K p+q instead of ~ -q and K_(p+q).] 

This application of the results of [2] to K-theory requires an 

improvement of those results. In particular, one needs to eliminate 

a boundedness assumption on the coefficient sheaves for generalized 

sheaf cohomology; this can be done provided X is a Noetherian space 

of finite Krull dimension. It is the purpose of the present paper to 

present this improvement and to give the application to K-theory. 

Since the improvement vastly simplifies the generalized sheaf 

cohomology theory, we give in Sections i and 2 an account of that 

theory independent of [2]. 
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Specifically, Section I develops the homotopy theory of 

simplicial sheaves on a Noetherian space X in which the irreducible 

closed subsets satisfy the ascending chain condition. Section 2 uses 

this homotopy theory to define generalized sheaf cohomology and to 

derive the local to global spectral sequence, in case X has finite 

Krull dimension. Finally, in Section 3 we show that the groups 

Gi(X) defined in [8, §5] for a Noetherian scheme X are generalized 

sheaf cohomology groups, and we obtain as a corollary a spectral 

sequence in G-theory which generalizes the K-theory spectral sequence 

referred to above. 
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i. The,,, homotopy theory of simplicial sheaves. 

Let X be a topological space. By a simplicial sheaf on X we 

mean a sheaf on X with values in the category of simplicial sets, 

or, equivalently, a simplicial object in the category of sheaves of 

sets on X. If K is a simplicial sheaf we will denote by F(U,K) 

the simplicial set of sections over the open set U. 

A map of simplicial sheaves will be called a weak equivalence if 

it induces a stalkwise weak equivalence of simplicial sets at each 

point of X, where a map of simplicial sets is called a weak equi- 

valence if its geometric realization is a homotopy equivalence. A 

map p:E -> B of simplicial sheaves will be called a global fibration 

if, for any inclusion U a V of open sets, the map 

F(V,E) -i(r(V'p)'res) > F(V,B) × F(U,E) 
r(u,B) 

is a fibration in the sense of Kan, where Nres" denotes restriction 

of sections. Taking U = @ and noting that F(@,E) = F(@,B) = * 

(the simplicial set with exactly one simplex in each dimension), we 

see in particular that r(V,p):r(V,E) ~ F(V,B) is a fibration. 

Finally, a simplicial sheaf K is called flasque if the unique 

map K ~ * is a global fibration, where * here denotes the 

simplicial sheaf defined by F(U,*) = *. In other words, K is 

flasque if each restriction map F(V,K) ~ F(U,K) is a fibration. 

Taking U = @ we see in particular that F(V,K) is a Kan complex. 

Recall that X is called Noetherian if the open sets satisfy the 

ascending chain condition. We can now state the main result on which 

the homotopy theory and the cohomology theory of sheaves will be based. 

THEOREM i. Let X be a Noetherian space in which the irreducible 

closed sets satisfy the ascending chain condition. If K is a flasque 

simplicial sheaf o_~n X such that the map K ~ * is a weak equi- 
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valence, then for any U, T(U,K) is non-empty and ~.F(U,K) = 0. 

[Hence T(U,K), being a Kan complex, is contractible.] 

This theorem applies in particular tQ X = Spec A for A an 

arbitrary commutative Noetherian ring, since Noetherian local rings 

have finite Krull dimension. 

Proof: Let us first observe that it suffices to prove that if 

T(U,K) / ~ then ~.F(U,K) = O. In fact, if this is proved then we 

can prove the theorem as follows. Since X is Noetherian, there is 

a maximal open set U such that F(U,K) 6 @. If U = X then we are 

done. Otherwise, note that the hypothesis on K implies that the 

stalks of K are non-empty, so we can find an open set V ¢ U with 

T(V,K) 6 ~. Consider now the cartesian square of fibrations 

(1) 

r (u  u v,x) > r(u,K) 

i 1 
r(V,K) > r(U n V,K) 

Now the complex in the lower right-hand corner is known to be 

contractible (hence, in particular, connected), since we are assuming 

that the theorem has been proved under the a~sumption of non-emptiness. 

But then all the maps in the square are surjective; thus 

F(U U V,K) / ~, which contradicts the maximality of U and establishes 

our assertion. 

We may assume, then, after replacing X by U if necessary, 

that r(X,K) / ~. We choose a basepoint in T(X,K), which gives us by 

restriction a basepoint in all T(U,K). For any open sets U, V of 

X, the square (I) gives rise to a Mayer-Vietoris sequence in homotopy, 

from which we isolate exact sequences 

(2) Tq+l(U a V) ~ > Tq(U U V) ~ Tq(U) x Tq(V), 
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where we have set Tq(--) = ~qF(--,K). The theorem follows now from 

THEOREM I'. With the same hypotheses on X, let [Tq] be a family 

of ~resheaves of pointed sets to~ether with exazt sequences (2), where 

is assumed to be natural in the sense that if V' c V then 

Tq+l(~ n V) ~ > Tq(~ U V) 

res~ \Lres 

Tq+l(U n v') > Tq(U U V') 

commutes. Assume further that Tq(~) = * for all q. If all stalks 

of all T are trivial then T is trivial for all q, i.e., q q 

Tq(U) = * for all U. 

Proof: Let Y be an arbitrary open subset of X, let 

y ~ Tq(Y) for some q, and let U be a maximal open subset of Y 

such that YlU = *. A closed irreducible set C in X will be 

called bad if for some such Y, y, q, and U, C meets Y but misses 

U. If there are no bad sets then Tq(Y) = * and we are done, since 

if U ~ Y we can take C to be the closure in X of an irreducible 

component of Y-U. If there are bad sets then by the hypothesis on 

X we can let C be a maximal one, and we let Y, y, q, U be as in 

the definition of "bad". Since the stalk of T is trivial at any 
q 

point of C n y, we can find an open set V c y such that V meets 

C and YlV = *. Then the exact sequence (2) implies that 

YlU U V = ~z for some z c Tq+I(U n V). 

Now let W be a maximal open subset of U n V such that 

zlW = *. [Note that we need here the hypothesis that Tq+l(~) = *, 

since even if we only consider non-empty Y above, it may happen 

that U n V = ~.] We claim that C is an irreducible component of 

X-W. In fact, if C is properly contained in a closed irreducible 
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subset D of X-W, then the maximalit¥ of C implies that D is not 

bad, so D meets U. On the other hand D meets V, since C does; 

being irreducible, D must meet U n V. Applying the definition of 

"bad" with Y, y, q, and U replaced by U A V, z, q+l, and W, we 

see that either D meets W or D is bad. But we have already 

noted that D is not bad; since D c X-W, we have obtained a contra- 

diction, thus proving the claim. 

We now let F be the union of the irreducible components of X-W 

other than C, and we let V' = V-F. Then V' still meets C, and 

U N V' c W because U A V' N (X-W) c U A C = ~. Therefore zlUNV'=*, 

so YIU U V' = ~(zIU n V') = *, which contradicts the maximality of 

U and completes the proof. 

We now develop homotopy theory in the category J (X) of 

simplicial sheaves on X. 

THEOREM 2. With the same hypotheses o__mn X as in Theorem i, the 

category J(X), together with the notions of weak equivalence and 

(global) fibration, is ~ closed model category in the sense of [9]- 

Before beginning the proof we explain what the statement of 

Theorem 2 means. Consider a commutative square 

(3) 

K ........... ) E 

i 
L > B 

in ~(X). By a lifting in the square we man a map L ~ E such that 

the resulting diagram still commutes. We call a map i:K ~ L a 

cofibration if a lifting exists in every square (3) in which p is a 

global fibration and a weak equivalence. We can now state the 

properties of ~ (XI which we will prove. I 

1 .................... 
We are listing the axioms for closed model categories labelled CM 4 

(ii) and CM 5 in [i0, p.233]. The other axioms are trivially true in 
the present case. 
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Liftin~ property. A lifting exists in every square (3) in which i 

is a cofibration and a weak equivalence and p is a global fibration. 

Factorizations. Any map f in ~ (X) can be factored f = pi 

where i is a cofibration, p is a global fibration, and either i 

or p can be taken to be a weak equivalence. 

We now begin the proof by reformulating the definition of 

"global fibration'! in terms of lifting properties. Let A n be the 

(semi-simplicial) n-simplex and let A n'k be the subcomplex 

generated by all faces of the boundary except the k-th. Then from 

the definition of "global fibration" and the defimition of "fibration" 

for simplicial sets, we see that a map p:E ~ B in J (X) is a 

global fibration if and only if a lifting exists in every square of 

the form 

A n ' k  > r(V,E) 

A n > F(V, B) x 

r(u,B) 
r ( U , E )  . 

If A is any simplicial set and W is any open subset of X, let us 

denote by AW the simplicial sheaf which is constant with stalk A 

on W and which has empty stalks outside of W. With this notation, 

(4) can be rewritten as a square in ~ (X) 

@' ) 

A_~, k A 'k ] 

A_V- > B , 
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and we see then that p is a global fibration if and only if every 

square (#') has a lifting. 

In this type of situation, there is a standard way of factoring 

a map f as pi, where p is a global fihration and where i is the 

composite of a countable sequence of inclusions, each of which is a 

pushout of a disjoint union of inclusions 

An, k 
~U 

(See, for example, [4, Ch. Vi, 5.5] or [9, Ch. II, p.3.4]. I) 

Such a map i is a weak equivalence because each inclusion (5) is 

stalkwise either an identity map or a map whose geometric realization 

is an elementary expansion. Furthermore i is a cofibration, 

because it even satisfies a stronger lifting property than required 

in the definition of "cofibration", namely, a lifting exists in every 

square (3) such that p is a global fibration. This completes the 

proof of the existence of one of the factorizations. 

Turning now to the lifting property, let i:K ~ L be a cofibra- 

tion and a weak equivalence, and write i = pj, where p is a global 

fibration and j is a cofibration and weak equivalence as just 

constructed. Then p must also be a weak equivalence; thus (since i 

is a cofibration) there is a lifting in 

i 
The construction just referred to seems to require that the sheaves 

n ,, 
AV k U A U be small !' , and, in fact, they are, as one can see using 

An, k 
U 

the quasi-compactness of X. The smallness is not really essential, 
however, since a transfinite analogue of the construction works for 
any X. 
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K J . . . . . . . . .  % K' 

i 
i d  ............. > n 

In other words, i is a retract of j, and it is therefore sufficient 

to check the lifting property with i replaced by j. But we already 

remarked at the end of the previous paragraph that j has the required 

lifting property. 

Finally, the construction of the second factorization is similar 

to that of the first, in view of the following. 

LEMMA. A map P:E ~ B i_~n ~ (X) is a global flbration and a weak 

equivalence i_!f and onl_~y i_~f S lifting exists in every square of the 

form 

( 6 ' )  

S •  U n 
~_~ ~-u > ~ 

A v > B  

Proof: We first reformulate the statement of the lemma. 

square (6') can be rewritten as a square in the category of 

simplicial sets 

(6) 

i n ......... > r (v, E ) 

~n . . . . . . .  > r ( v , s )  × 
r ( u , s )  

r(u,r,) 

The 
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and it is well known (see, for example, [9, Ch. II, §2,3]) that all 

squares (6) will have a lifting if and only if 

(7) r(V,E) * r (v ,B)  × r(U,~) 
r(U,B) 

is a fibration and a weak equivalence. Thus we must prove that p 

is a global fibration and a weak equivalence if and only if, for every 

inclusion of open sets U a V, the map (7) is a fibration and a weak 

equivalence. 

Suppose, then, that p is a global fibration and a weak equi- 

valence. Then (7) is a fibration, and to check that it is a weak 

equivalence, we must show that every fibre is non-empty and contract- 

ible. Thus let * be an arbitrary basepoint in the target of (7). 

The first component of * is a basepoint in F(V,B), which gives us 

(by restriction) a basepoint in F(W,B) for W a V. Relative to 

this basepoint we can define a simplicial sheaf F on V by letting 

F(W,F) be the fibre of r(W,E) ÷ r(W,B). The second component of * 

can now be regarded as a basepoint in F(U,F). 

Cartesian square 

r(V, P) r (v,,,,,,,i) > F(V, E) 

r(u,F) (* , r (u , i ) )  > r(v,3) 

Consider now the 

× r(u,E) 
r(~,  B) 

where i:F ~ E is the inclusion. Since the bottom horizontal map is 

basepoint preserving, the fibre of (7) is the same as the fibre of 

F(V,F) ~ F(U,F); the contractibility of this fibre will follow from 

the fact that F(V,F) and F(U,F) are both contractible by Theorem I. 

In fact, in order to apply Theorem i, we need only verify that the 

stalks of F are contractible. But this follows from the fact that 

the stalk F x is the ffibre of Px:Ex ~ Bx, which is a fibration since 
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it is a filtered direct limit of fibrations r(W,E) ~ F(W,B), and 

which is a weak equivalence by hypothesis. 

Conversely, if each map 7) is a fibration and a weak equivalence, 

then trivially p is a global fibration. Furthermore, taking 

U = ~, we see that F(V,E) ~ F(V,B) is a weak equivalence; by passage 

to the directlimitover theopen neighborhoods of a point, we deduce 

that p is stalkwise a weak equivalence, hence p is a weak equi- 

valence. This completes the proof of the lemma and of Theorem 2. 

It will be convenient to have at our disposal the homotop~ 

category ~ (X) associated to ~(X) [9, Ch. I, p.l.12]. Recall 

that ~ (X) is characterized by the following properties: 

(i) ~ (X) has the same objects as ~ (X). 

(2) There is a functor ¥:~(X) ~ ~(X) which is the identity on 

objects and which satisfies 

(3) ¥(s) is an isomorphism if s is a weak equivalence, and ~(X) 

is the universal target of a functor on ~(X) with this property. 

REMARK. Using Theorem 2 it is easy to give a simple concrete 

descrip$ion of ~(X). One first shows that every object in ~ (X) 

is isomorphic to one which is both flasque and cofibrant. I Next one 

shows that, for such objects, maps in ~(X) are the same as 

simplicial homotopy classes of maps in ~(X). More precisely, if 

K is cofibrant and L is flasque, then ¥ induces 

~(K,L) > ~K, LI, 

where ~(-,-) denotes simplicial homotopy classes of maps and [-,-] 

denotes maps in ~(X). (Part of the assertion is that simplicial 

~An object K ms cofibrant if the map ~ ~ K is a cofibration. 
Here ~ is the empty sheaf, but in general the same definition applies 
with ~ being the initial object of whatever category is being 
discussed. 
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homotopy is an equivalence relation for such K, L.) These assertions 

are immediate consequences of the results of [9, Ch.l, §I]. One only 

needs to verify that, if L is flasque, then the simplicial path 

space L I (defined by r(U,L I) = F(U,L) I) is a path space for L 

in the sense of [9,Ch.l, p.l.5]. 

We will denote by J and ~ the category of simplicial sets 

and its homotopy category, respectively. 

PROPOSITION i. For any open set U there is a functor 

RF(U,--): ~(X) ~ ~ , such that if K is flasque there is a natural 

isomorphism of Rr(U,K) with r(U,K). 

The naturality here is with respect to maps in ~ (X), since 

r(U,--) is not a functor on ~ (X). 

Proof (cf. [9,§4]): According to the universal property of 

~(X) we need only define a functor ~(X) ÷ ~ (still to be 

denoted Rr(u,--)) and check that it preserves weak equivalences. For 

each K we choose a flasque resolution i:K ~ K', i.e., K' is 

flasque and i is a cofibration and a weak equivalence. (For the 

existence of i, apply the appropriate factorization to the map 

K ~ *.) We now define Rr(U,K) to be F(U,K'). In order to make 

this functorial in K (and to prove independence of the choice of 

resolution) we need only note that, as an easy consequence of the 

lifting property, if i:K ~ K' and j:L ~ L' are flasque resolutions 

and f:K ~ L is a map in ~ (X), then there is a unique homotopy 

class of maps g:K' ÷ L' such that jf = gi. To see uniqueness, for 

example, let go' gl be two such maps. A homotopy between them is 

obtained by choosing a lifting in 
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K[ . . . . . . . . . . .  ~ L 'I 

K' ..... (g0'gl) ) L'XL' 

where the unlabelled map is the constant homotopy of jf and where 

p is the canonical map "evaluation at the endpoints". 

The reader should observe that what we have done so far requires 

only the trivial part of the proof of Theorem 2, but in order to 

prove that Rr(U,--) preserves weak equivalences, we need the hard 

part of Theorem 2. We must, in fact, show that r(U,--) preserves 

weak equivalences between flasque sheaves. Let then f:K ~ L be a 

weak equivalence, with K and L flasque. By factoring f, we may 

assume that f is either a cofibration or a global fibration. [Note 

that the intermediate sheaf K' that is obtained when f is factored 

is still flasque, because the composite K' ~ L ~ * is a global 

fibration.] In case f is a cofibration, we choose a lifting 

r:L ~ K in the square 

K id > K 

L > * ; 

r is actually a homotopy inverse for f 

can be obtained by lifting in 

since a homotopy fr -- id L 

K -5 v,I 

. . . . . . . .  ( , fr ,  i d )  > ~×L , 
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where the unlabelled horizontal map is the constant homotopy of f. 

But then r(u,r) is a homotopy inverse for r(u,f), so r(u,f) is a 

homotopy equivalence. Finally, in case f is a global fibration, we 

need only note that the proof of the lemma for Theorem 2 shows that 

r(u,f) is a weak equivalence. [In the notation of that proof: 

f:K ~ L is D:E ~ B, and r(u,p):r(u,E) ~ r(U,B) is a fibration 

with contractible fibres r(U,F).] 

REMARK. The proof showed that the functors Rr(u,--) are compatible, 

in an obvious sense, with inclusions of open sets. 

We close this section with some remarks on the case of simplicial 

sheaves with basepoint, where a basepoint for K is simply a vertex 

of r(X,K), or, equivalently, a map * ÷ K in ~(X). The category 

of simplicial sheaves with basepoint will be denoted ~.(X). We 

define weak equivalence, global fibration, and cofibration in J.(X) 

by means of the forgetful functor ~. (X) + ~(X), and it is 

trivial to check that Theorem 2 holds with ~ (X) replaced by 

J.(X). [For example, to check the factorization axioms for a map f 

in ~.(X), we factor f as pi in ~ (X) and then observe that 

there is a unique choice of basepoint in the target of i such that 

i and p are basepoint preserving.] The homotopy category associated 

to ~. (X) will be denoted by ~.(X), and exactly as in 

Proposition i we have functors Rr(u,--): ~(X) ÷ ~.. 
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2. Generalized sheaf cohomology. 

Throughout this section X will continue to be a Noetherian 

space in which the irreducible closed subsets satisfy th___ee ascending 

chain condition. 

If K is a simplicial sheaf with basepoint, we define the 

~eneralized sheaf cohomolo~y groups Hq(X,K) by 

H q(x ,K)  = ~ _ q R r ( X , K ) . I  

Explicitly, if i:K ~-K' is a flasque resolution, Hq(X,K)=~_qr(X,K'). 

EXAMPLE. Let F be an abelian sheaf on X and n a non-negative 

integer. We define the Eilenberg-MacLane sheaf K(F,n) to be the 

simplicial abelian sheaf which corresponds, under the Dold-Kan 

correspondence between simplicial objects and non-negative chain 

complexes over an abelian category [3, §3], to the chain complex 

consisting of F concentrated in dimension n. Equivalently, we 

can describe K(F,n) by 

r ( U , K ( F , n ) )  = K ( r ( U , F ) , n ) ,  

the latter being the ordinary semi-simplicial Eilenberg-MacLane 

complex [7, §23]. 

The following proposition shows that our generalized cohomology 

groups with coefficients in K(F,n) reduce to ordinary sheaf 

i Note that in general HO(x,K) is only a pointed set, but we will 
ignore this fact because in the examples that occur in this paper 

either H0(X,K) = 0 or HO(x,K) has a group structure induced by a 

group structure on K. Note also that Hq(X,K) = 0 for q ) O. In a 
more general treatment, K would be the O-th sheaf in an fl-spectrum, 
and positive-dimensional cohomology groups would be defined using the 
other sheaves of the spectrum. This generality, however, is not 
needed for our application to algebraicK-theory, since in this 
example the positive dimensional groups would vanish anyway. (Cf. 
Theorem 5 in §3 below.) 

280 



-16- 

cohomology groups, and that as n ~ ~ all the cohomology groups 

H (X,F) are obtained. 

PROPOSITION 2. For q ~ n, Hq(X,F) ~ Hq-n(x,K(F,n)). 

Proof: Let 

0 ~ F ~ I0 ~ ... ~ In ~ 0 

be an exact sequence of abelian sheaves, where I0,...,I n-I are 

flasque in the sense of Godement [6]. Let C. be the non-negative 

chain complex of sheaves obtained by re-indexing I :Cq = I n-q for 

q = O,...,n, Cq = 0 otherwise. Finally, let K be the simplicial 

abelian sheaf corresponding to C~. Then Hq(X,F) for q ~ n can 

be computed as Hn_q~(X,C.), which is the same as ~n_qF(X,K). Now 

K is flasque, because in order that the restriction map 

r(V,K) ~ ~(U,K) be a fibration, it is necessary and sufficient that 

the corresponding map of chain complexes r(V,C.) ~ F(U,C.) be 

surjective in positive dimensions I, and this is true because Cq is 

flasque for q ) O. Therefore ~n_qF(X,K) can be identified with 

Hq-n(X,K). To complete the proof we need only note that the map 

~:F ~ I induces a weak equlvalence K(F,n) ~ K, so 

Hq-n(X,K) ~ Hq-n(X,K(F,n)), as required. 

For the sake of completeness we point out that the formula 

r(U,K(F,n)) = K(F(U,F),n) 

also defines K(F,I) for F a sheaf of non-abelian groups and 

K(F,O) for F a sheaf of pointed sets. These occur in Proposition 3 

below, although in our later applications F will always be abelian. 

i This is "(i) (~) (ii)" of [9, Ch. ll, §3, Prop. I], specialized to 
the abelian case. 
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If K is a simplicial sheaf with basepoint we define the q-th 

homotopy sheaf ~qK to be the sheaf associated to the presheaf 

U ~ ~qr(U,K). 

PROPOSITION 3. Let K be a simplici~l sheaf with basepoint, and 

suppose that for some integer n ~ 0, ~qK = 0 for q I n. In case 

n = O, suppose further that each connected component of each stalk of 

K has trivial homotopy groups. Then K i~scanonically isomorphic in 

Proof: Replacing K by the n-th Eilenberg subcomplex [7, 

Pp.32-33] of a flasque resolution of K, we may assume that for any 

open set U, F(U,K) has a unique simplex in each dimension less than 

n. Now such a simplicial set always has a canonical normalized 

n-cocycle with values in ~n; namely, the cocycle which assigns to 

each n-simplex its homotopy class. [Every n-simplex ~ satisfies 

dia = * for all i and therefore is the imago of the non-trivial 

n-simplex of an/~n under a unique map; such a map represents an 

element of ~n" Note that if n = 0 or i the notion of cocycle 

needs to be suitably interpreted.] Since normalized cocycles are in 

I-i correspondence with maps into the appropriate Eilenberg-MacLane 

complex, we obtain a canonical map 

r(U,K) ~ K(~nr(U,K),n ). 

These maps are compatible with inclusions of open sets and so define a 

map of presheaves; passing to associated sheaves yields a map 

K ~ K(~nK, n), which is easily seen to be a weak equivalence by 

checking that it induces a stalkwise isomorphism on ~n" 

We can now prove the main result of this section. 

THEOREM 3. Let X be a Noetherian space of finite Krull dimension 

and let K b__ee ~ simplicial shaaf with basepoint. Assume that 
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~0 K = O, that ~i K and H-I(x,K) are abelian, and that 

HP(X,~nK) = 0 for p ~ n. Then there is a fourth quadrant spectral 

sequence of c ohomological t~, 

REMARKS. i. Since X has finite cohomological dimension [6, Ch.l!, 

§4.15], there is no problem with convergence. 

2. The unnatural assumptions about K can be eliminated if one 

works with spectra as indicated in the footnote on the first page of 

this section. A different way of eliminating the assumption that 

HP(X,~nK) = 0 for p ~ n is indicated in a remark following the 

proof. 

Proof of Theorem 3: We may assume K is flasque. We construct 

the Postrikov tower 

... ~ pn K Pn > Pn_l K ~ ... ~ po K ~ P_iK : , 

by defining Pn K to be the sheaf associated to the presheaf 

U~ Pnr(U,K), the latter Pn denoting the ordinary n-th Postnikov 

approximation of a Kan complex [7, pp.32-33]. One has a compatible 

family of maps fn:K ~ Pn K inducing ~qK ~ ~qPn K for q ~ n, and 

~qPn K = 0 for q ) n. Furthermore, each Pn is stalkwise a fibra- 

tion and, letting F n be the fibre of Pn' the inclusion 

induces ~nFn ~ ~nPnK(~- ~nK; since ~qF n = 0 for q I n 

from Proposition 3 that F n ~ K(~nK, n) in @9~.(X). 

We will now replace the Postnikov tower by an equivalent tower 

in which the sheaves are flasque and the maps are global fibrations. 

We begin by choosing a flasque resolution io:Po K ~ L O. Assuming 

inductively that in:PnK ~ L n has been constructed, the next stage 

is obtained by factoring inPn+l:Pn+iK ~ L n as a cofibration 

F n ~-~ Pn K 

we deduce 

283 



-19- 

in+l: Pn+l K ~ Ln+ I followed by a global fibration 

qn+l:Ln+l ~ Ln, with in+ I 

r(X,-) to the tower 

taken to be a weak equivalence. Applying 

qn+l > Ln ~ ... • .'~ Ln+ I 

we obtain a tower of fibratiomsof simplicial sets and hence a 

homotopy exact couple. (It will follow from our computation below 

of the E 2 term of the spectral sequence that all fibres in the 

tower are connected; one can then prove inductively that all 

simplicial sets in the tower are connected, so there is no problem 

with T 0. This also shows that each fibration in the tower induces 

a surjection on ~i; our computation of E will show that for 

lar~ n, ~IF(X, Ln ) ~ H-I(x,K), which is assumed to be abelian, so 

in fact all fundamental groups in the tower are abelian and there is 

no problem with ~i. ) 

To identify the E 2 term, note that the fibre of r(X, qn) is 

F(X, Gn), where G n is the fibre of qn" Since G n is flasque and 

is equivalent to K(~nK, n), we know that ~ir(X, Gn ) is isomorphic to 

H-i(X,K(~nK, n)), and this in turn (by Proposition 2) is isomorphic 

to Hn-i(x,~n K) for i ~ 0. The same result holds for i < 0, since 

then Hn-i(X,~n K) = 0 by hypothesis. Thus the E 2 term has the 

required form. (Note that the differential in the exact couple 

decreases i by i and increases n by i, hence it increases the 

filtration degree n-i by 2 and the total degree -i by i, as 

required.) 

Finally, to identify the abutment, let L = lim L . Then the 
< i  n 

spectral sequence abuts to ~ir(X,L), which is H- (X,L) since L 

is flasque. To complete the proof it suffices to show that K is 

equivalent to L. Now we have a map K ~ L (induced by the maps 

fn:K ~ PnK), which we claim is a weak equivalence. In order to 
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check this, it clearly suffices to prove that ~i L ~ ~iLn for large 

n. This is not entirely trivial since the stalk functors do not pre- 

serve inverse limits, but we can argue as follows. For any open set 

-i K U, we see as above that ~ir(U, Gn ) ~ H n (U,~ n ) = 0 for n-i ) dim X. 

Therefore ~ir(U, qn) is an isomorphism for n ) i+l+dim X, hence 

~ir(U,L) ~ ~ir(U, Ln) for n ) i+2+dim X. Passing to the direct 

limit over the neighborhoods of a point, we find that 7iL ~ ~iLn 

is a stalkwise isomorphism for n ) i+2+dim X, as required. 

REMARK. If we eliminate the assumption that HP(X,~nK ) = 0 for 

p ~ n then the same exact couple I yields a "fringed" spectral 

sequence with E~ q = HP(x,~_qK) for p+q ~ 0 and E~ q = 0 other- 

wise, with the fringe being in total degree p+q = O. This means 

that for p+q = O, E pq is a certain subquotient of E~ q, this sub- 
r+l 

quotient being determined by the exact couple, but (in total degree O) 

Er+ I is not necessarily the homology of E r- 

We end this section by broadening the notion of flasque sheaf in 

a way that will be crucial for the application in §3. We will consid- 

er now simplicial presheaves P, and for simplicity we will assume 

that P(U) is a Kan complex for all U 2. We will call P pseudo- 

flasque if (a) P(~) is contractible and (b) for each pair of open 

sets U, V the square 

P(U U V) > P(V) 
$ ¢ 

P(U) 5 P(U U V) 

iThis only works if we have an abelian group structure on 7 0 
and 71 of all the simplicial sets in the tower of fibrations, 

induced, for example, by an "H-space" structure on K. 

2The general case can be reduced to this case by replacing P(U) 
by the singular complex of its geometric realization. 
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is homotopically cartesian, where a square of Kan complexes 

w >z 

X f > Z 

h 
is called homoto~ically cartesian if the natural map W ~ X × Y is a 

h Z 

weak equivalence, X × Y, the homotopy theoretic fibre product, being 

Z h 

by definition X x Z I x Y. [Note that X × Y is the base extension 
Z Z Z 

of g' by f, where g' denotes g converted into a fibration in 

the standard way, and it is also the base extension of f' by g.] 

THEOREM 4. Let P be a pseudo-flasque presheaf and let K be the 

associated sheaf. Then the natural map 

~iP(X) ~ ~ - i ( x , x )  

is an isomorphism. 

Proof: Let i: K ~ K' be a flasque resolution. The natural 

map in question is the map on homotopy groups induced by the composite 

f: P(X) ~ F(X,K) ~ r(X,K'). Since P(X) and F(X,K') are both Kan 

complexes, one can construct the homotopy theoretic fibre of f over 

any basepoint * in r(X,K') as 

F(x) = P(x) × r ( x , K , )  I × 
r ( x , K , )  r ( x , K , )  

This also makes sense for any open subset of X, and F becomes a pre- 

sheaf on X. Note that the stalks of F are contractible; further- 

more, we claim F is pseudo-flasque. In fact, if U I and U 2 are 

open subsets of X, one sees by checking the definitions that 
h 

F(UI) × F(U2) is isomorphic to the homotopy theoretic fibre of 
F(U1NU 2) 

h h 
P(Ul)  x P(U2) * F(UI ,  K' ) × F(U2, K' ).  

P(UINU 2) F(UInU2, K') 
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But this (according to the hypotheses on P and K') is homotopy 

equivalent to the homotopy theoretic fibre of 

P(~I u ~2) ~ r (~  1 u ~2, K,),  

which by definition is F(U I D U2), as required. Having verified the 

claim, we complete the proof by observing that the proof of Theorem I 

of §i, based on Mayer-Vietoris sequences in homotopy, works for pseudo 

flasque presheaves exactly as for flasque sheaves. Thus F(X) is 

contractible and f is a weak equivalence. 
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3. Application to K-theory. 

Let X be a noetherian scheme. For any open subset U of X, 

let ~ (U) be the category of coherent sheaves on U. Let P(U) 

be the singular complex of the geometric realization of the nerve of 

Q( ~ (U)), where "Q" denotes the construction of [8, §2]. Thus 

P(U) is a connect@d Ken complex with basepoint and for any integer i, 

~i+IP(U) is by definition Gi(U ) [8, §5]. If i: U ~ V is an inclu- 

sion of open sets, the restriction functor i : ~ (V) ~ ~-(U) induces 

a map P(V) ~ P(U), thus making P a presheaf of Ken complexes. 

PROPOSITION 4. The presheaf P is pseudo-flasque. [See the end of 

§2 for the definition of "pseudo-flasque".] 

Proof: Let us first observe that the restriction functor 

i : ~ (V) + ~(U) is a localization of abelian categories. (The 

analogous statement for quasi-coherent sheaves follows f~om the eriter- 

iQn of [5, Ch. I, Prop. 1.3] together with EGA I, §9.2. The coherent 

ease can be deduced from this, using the fact that a quasi-coherent 

sheaf is the union of its coherent subsheaves and the fact that the 

category of c6herent sheaves is Closed under subo~jects and quotient 

ebjects in the cate~¢ry Of quasi-coherent sheaves.) Consequently 

~]8, Theorem 4], t~e hom~topy theoretic fibre of P(V) ~ P(U) is equi- 

valent to the nerve of Q(£(V,U)), where d(V,U) is the category 

of coherent sheaves on V which are zero on U. 

Consider now an arbitrary pair of open sets U, V, and consider 

the square 

P(U U V) ...... > P(V) 

P(~)  - > P(~  n v)  

To prove P is pseudo-flasque, it suffices to show that the induced 

map from the homotopy theoretic fibre of the left-hand vertical map 

to that of the right-hand vertical map is an equivalence. But this 
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map on fibres is equivalent by the preceding paragraph to the nerve 

of the restriction functor Q(~(UUV, U)) ~ Q(~(V, UnV)); this func- 

tor being an equivalence of categories, the proof is complete. 

We now write P = P(1) and we construct a sequence of "de- 

loopings" P(2),P(3) .... , as follows. The category Q(~ (U)) has a 

coherently commutative and associative operation (induced by direct 

sum of sheaves). Consequently its nerve has a classifying space 

P(2)(U) which has a classifying space P(3)(U), etc. These classify- 

ing spaces can be constructed, for example, by the method of Anderson 

[I]; since Anderson's construction is functorial, P(k) is a presheaf 

for each k ~ I. 

THEOREM 5- Let k ~ i be an integer and let K b_~e the sheaf asso- 

ciated t__oo the presheaf P(k)" Then for any integer q, 

~q(x,K) ~ a_k_q(X). 

Proof: One knows that for any integer i, 

~iP(k)(X) ~ ~i_k+iP(X) = Gi_k(X ). On the other hand, if we verify 

that P(k) is pseudo-flasque, then by Theorem ~ we can write 

~iP(k)(X) ~ H-i(X,K)., Setting i = -q yields the result. It remains 

to prove that P(k) is pseudo-flasque. For k = I this is Proposi- 

tion 4. Assur~ing inductively that P(k-l) is pseudo-flasque, con- 

sider the natural map 

f h 
P(k)(U U V) ~ P(k)(U) × P(k)(V). 

P(k)(U@V) 

1 
Since the source and target of f are connected, f will be an 

equivalence if ~f is. But ~f is equivalent to a map of the same 

form as f, with k replaced by k-i (since ~P(k) ~ P(k-l) )' and 

this is an equivalence by the induction hypothesis. 

IFor k ) I, P(k,!)(- ) is connected, by construction. It follows 

that P(k~(- ) is simply connected, which accounts for ~he connectivity 
% J 

of the target of f. 
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COROLLARY. Let X be a nQetherian scheme of finite Fmull dimension. 

There is a fourth ~utdrant spectral sequence of cohomolo~±eal type, 

--> a (p+q)(X), 

where /~ -q is the sheaf associated to the presheaf U~ G_q(U). 

Proof: We will see below that the hypotheses of Theorem 3 are 

satisfied by the sheaf K of Theorem 5, provided that k is suffi- 

ciently large. Let, then, ['E~ q] be the spectral sequence of Theorem 

3. The spectral sequence [E pq] which we are interested in is ob- 
r 

tained from this by re-indexing: E~ q = 'EP'q-k-r In order to compute 

E 2 and to see how large k needs to be so that the hypotheses of 

Theorem 3 will be satisfied, we compute ~i K. Now since P(k) ~ K 

is a stalkwise isomorphism, and since ~. commutes with filtered 
m 

direct limits of simplicial sets, ~i K is isomorphic to the sheaf 

associated to the presheaf U~} ~iP(k)(U). But ~iP(k)(U) m Gi_k(U) 

(see the first sentence of the proof of Theorem 5), so ~i K ~i-k" 

Thus Theorem 3 will apply provided HP(X~n) : 0 for p ~ n+k. 

In particular, we can always use any k > dim X; the E 2 term is then 

given by 

= =  p(x, k_qX ) 

and the abutment is HP+q-k(x,K), which is isomorphic to 

G_(p+q)(X) by Theorem 5- 

REMARKS. I. Since E pq = 0 in positive total degrees (and for other 

reasons as well) it is reasonable to conjecture I that HP(X,~n) = 0 

for p > n. If this is true then we can take k = i in the above 

iFor a discussion of this and related conjectures (at least in 
the regular case), see §7 of S.M. Gersten, "Some exact sequences in 
the higher K-theory of rings", these proceedings. See also problems 
i0, ii, and 12 in S.M. Gersten, "Problems about higher K-functors", 
these proceedings. 
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proof and there is no need to use the de-loopings provided by the 

theory of Segal and Anderson. (Note, however, that it is sometimes 

possible to prove the conjecture for low-dimensional X by usin G 

the spectral sequence of the Corollary. In such cases, then, one 

needs to use the existence of the P(k) in order to prove that they 

are unnecessary.) In any case, the use of the P(k) can be avoided 

if one is willing to settle for a fringed spectral sequence (see 

Remark after Theorem 3) with E~ q = HP(x,~_q) for p+q ~ I and 

E~ q ~ 0 otherwise, the fringe being in total degree p+q = i. 

2. There is a relative version of the spectral sequence for a 

map f: Y ~ X of schemes, obtained by using the presheaf on X 

defined by U~-> P(f-Iu). The E 2 term is then the cohomology of X 

with coefficents in the sheaf associated to the presheaf 

U~+ G_q(f-iu), and the abutment is G_(p+q)(Y). 

3. In case X is regular and has the property that every co- 

herent sheaf is a quoteint of a locally free sheaf, then 

~ (see proof of [8, Theorem 5]) where Gn(X ) ~ Kn(X) and ~ n n 

Kn(X ) is K n (in the sense of [8, §2]) of the category of locally 

free sheaves, and ~ n is the sheaf associated to the presheaf 

U~+ ~(U). This applies, for example, if X = Spec A with A regu- 

lar (in which case Kn(X ) = Kn(A)), or if X is a non-singular quasi- 

projective variety over a field. 
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