
Some Exact Sequences in the Higher K-theory of Rings 

S. M. Gersten 

§i. Introduction 

A general K-theory exact sequence of localizations has been 

announced recently by Quillen [IO]. For a Dedekind ring R with 

field of fractions F this sequence is 

i.i) ... - KnR - KnF - ~ Kn_I(R/~) - Kn_I(R) - ... 
DEmaxR 

There is some evidence now to suggest that there is a local-global 

principle valid in K-theory: the exact sequence i.i) should be a 

consequence of conjectural short exact sequences 

1.2) 0 ~ Kn(R ) - KnF - Kn_I(R/~) - 0 . 

The glue connecting the conjectural sequences 1.2) is the K-theory 

spectral sequence of Brown and Gersten [2 I, E 7 

E~ q = HP(spec R, ~_q) = K_p_q(R). 

(The glueing argument is given in Gersten [7 ]') 

As evidence for 1.2) we remark that it is true if n ~ 2 by 

a theorem of Dennis and Stein [~ ]. One of our objectives here 

is to prove 

Theorem 1.3. If A is a discrete valuation ring with maximal ideal 

m, then the transfer map Kn(A/m) ~ Kn(A ) in the localization 

sequence I.i) is zero if either 
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a) A/_m is finite, or 

b) A is a k-algebra (k a field) where A/_m is a finite 

separable extension of k. 

The exactness of I.I) together with 1.3) imply that 1.2) is 

exact under the hypotheses of 1.3). 

The next result is included here because the techniques of 

proof are similar to those of 1.3,b). 

Theorem 1.4. If F is a field, then these are short exact sequences 

0 ~ Kn(F) ~ Kn(F(t)) ~ II K ~(FEt]/~) ~ 0 
~max~F[ t ~) n-± 

This is a consequence of the fact to be established that the 

transfer map Kn(F[t]/D) ~ Kn(F[t]) in the localization sequence is 

zero. 

We assume several results of Quillen [lo], namely the locali- 

zation sequence and the fact that if R is left regular (i.e., R is 

unitary, left noetherian, and each finitely generated left R module 

has finite projective dimension) then the map Kn(R ) ~ Kn(R[t]) of 

Quillen K-groups is an isomorphism. The results in this paper 

could be stated independently of Quillen [;o ], which has not yet 

appeared, in the form that certain transfer maps vanish. But to 

do so would distort the context in which these results have sig- 

nificance, so we have chosen what we believe is the lesser evil. 

The paper is terminated by a somewhat oversized section on 

the theme of local-global principles in algebraic K-theory. That 

section is mostly conjectural and the content can be succinctly 

summarized by the suggestion that the sheaves ~n on a regular 
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scheme X should be Cohen-Macauley (with respect to the filtration 

of codimension of supports) in the terminology of Grothendieck 

[ ~ , p. 238]. This conjecture unifies a number of phenomena of 

local algebra and includes some questions raised by Claborn and 

Fossum [ 3]. It also is int.mately related to the cycle map into 

Hodge cohomology, as we shall show. More important, in our opinion, 

it indicates a direction of research that should be pursued in 

applying the higher K-functors to questions about cycles in 

algebraic geometry. 

We want to thank Spencer Bloch for patiently listening to 

these conjectures in their formative stage, commenting on them, 

and indicating to us the analogous questions that exist in deRham 

cohomology. Without his encouragement, this article could not 

have been written. 

§2. Producing maps of Quillen K-groups. 

We need a universal property of Quillen's space BGg ~ to 

describe and compute the transfer map in the localization sequence 

i.i). Let A be a unitary ring and let ~A be the category of 

finitely generated projective left A-modules. If G is a group, 

then PA(G ) denotes the category of G-representations in PA , and 

RA(G ) denotes the Grothendieek group of PA(G) with relations all 

short exact sequences of representations. We recall a result of 

Quillen (see [ ~ ], Theorem 2.6). 

Theorem 2.1. Let X be a finite based CW complex. There is a 

natural transformation (natural in X) 
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+ 
RA(~IX) ~ >  [X,K0(A)×BG&(A )] 

which is universal for morphisms 

RA(~IX) ----~--X > IX,HI , 

where H is an H-space. That is, 

+ 
K0(A ) x BG6(A ) 

such that the diagram 

there are maps 

w > H , 

R A(~I X) > IX HI 

/ 
"~X " 

/ 

A + " [X,K 0()×BGg(A) ] 

commutes, and the morphism of functors 

[. ,K0(A)×BGg(+ )= ] ~ [.,HI 

is independent of the choice of w. 

As an application of this result, suppose that one has a 
fG 

natural transformation RA(G ) > RB(G ) of (contravariant) 

functors of G. Then from the diagram 

R A (~i X) > R B (~i X) 

[ [ 
[X ,K 0 (A) XBG~ (A) ] -~ [X ,K 0 (B) ×BG,B] 

o n e  s e e s  t h a t ,  t a k i n g  X = S n ,  t h e r e  i s  i n d u c e d  a map Kn(A ) - Kn(B ) , 
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§3. The transfer for Dedekind rings. 

If R is a noetherian ring, let M R denote the category of 

finitely generated R modules. If R is regular, then the inclusion 

functor PR v--__> MR induces an isomorphism of K-groups by Quillen 

[Io ]. If R is in addition Dedekind and ~ is a maximal ideal of R, 

then the transfer map Kn(R/D ) - Kn(R ) is induced by the functor 

PR/D > _M R , given by restricting operators from R/D to R via 

the canonical map R - R/~. We shall compute the transfer by 

using representation of groups in projective modules. 

Theorem 3.1. Suppose that R is a Dedekind ring and that either 

a) R/p is finite for each maximal ideal ~, or 

b) R is a k-algebra, where k is a field, and R/D is finite over 

k for each maximal ideal ~ of R. Then 

I.) Each V in PR/D(G) has a resolution over RIG] 

0 - PI ~ PO ~ V ~ 0 

with Pi in PR(G) , 

2.) The natural map KO~R/D(G)) ~ Ko~MR(G)) lifts through 

the cartan map 

c: KO~R(G)) ~ KO(_~(G)) , 

where c is induced by the inclusion functor 

P__R(G) ~ MR(G ) ; 

that is, there is a commutative diagram 
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/ 

K0 ~R/~ (G)) 

K0 (PR (G)) 

,~- K0~R(G))  

with 0 natural in G; and 

3.) The cartan map 

c: K0(PR(G)) ~ K0(MR(G)) 

is an isomorphism for all groups G. 

Proof. Suppose V is in PR/D(G) and R/~ is finite. Then there is 

a factorization 

G ~ > Aut R/~(V) 

\ /  
G 1 

w h e r e  cO i s  t h e  s t r u c t u r e  map o f  V a n d  G 1 i s  f i n i t e .  H e n c e  V c a n  

b e  c o n s i d e r e d  a n  R [ G 1 ]  m o d u l e ,  a n d  a s t a n d a r d  a r g u m e n t  ( S w a n  I / q - I ,  

T h e o r e m  1 . 2 ) ,  s h o w s  t h a t  t h e r e  i s  a r e s o l u t i o n  

0 ~ PI - P0 - V - 0 

with Pi projective and finitely generated as R[GI] modules. If we 

restrict operators from G 1 to G, this yields a resolution with 

Pi in PR(G) . 

Suppose now that R is a Dedekind k-algebra, k a field, and 

R/~ is finite over k. Let V be in PR/~(G ). If ~ is the underlying 
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k-vector space with G action, ~ is in Pk(G). 

PR(G) where the action of g E G is given by 

Hence R ® V is in 
k 

a(r@v) = r ® gv; r E R, v C V. 

Define a map w: R ® V ~ V by w(r~v) -- ~v , where ~ is the class of 
k 

r in R/D. Clearly w is G-linear and 

0 > Ker w > R ® V w > V > 0 
k 

is the desired resolution with Ker w and R ® ~ in PR(G). This 
k 

completes the proof of conclusion i) in both cases a) and b). 

The proof of 2) follows from i) in a standard way. One 

defines an association 

objects PR/p(G) > K0~R(G)) 

by IV] , > [P0 ] [PI ~ where 

0 ~ PI ~ P0 ~ V - 0 

is an exact sequence of R[GI modules, V in PR/~(G) and P0,PI in 

__PR(G). A Schanuel lemma type argument shows the association is 

independent of the resolution chosen and additive over short 

exact sequences. Thus the map 0~: K0~R/~(G)) ~ K0(PR(G)) is 

defined and the diagram 

commutes. 

K0 ~R(G)) 

p ~. c 

K0 ~R/~ (G)) -~- K0 (M_R(G)) 
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We begin now the proof of 3). Let ~R be the category of 

finitely generated torsion R modules and let ~R(G ) be the category 

of G representations in ~R. A simple devissage argument estab- 

lishes 

Lemma 3.2. K0(T_R(G)) ~ ~ K0~R/D(G)) 
maximal 
in R 

Hence, as a result of conclusion 2) one deduces 

Lemma 3.3. Under the hypotheses of 3.1 the map 

K0(T_R(G)) ~ K0(MR(G)) induced by inclusion TR(G) L-> MR(G ) lifts 

through the tartan map. That is, there is a commutative diagram 

J 

K0~R(G)) 

f 

cO / 
f 

f 

K0 ~R (G)) 

- - ~  K0 (MR(G)) 

We establish now the surjectivity of c .  If M is in MR(G), 

then [M] = [Mtor] + ~M/Mtor] in K0(_MR(G)) where Mto r is the 

torsion submodule of M, with G action. But M/Mto r is in PR(G) 

and ~Mtor] is in the image of c by Lemma 3.3. Hence ~M] is in 

the image of c. 

Since c is surjective, to prove it is injective it suffices 

to exhibit a left inverse 4: K0(_MR(G)) " K0(~R(G)) for c. If 

M is in MR(G), then we send M to [M/Mto r] + ~[Mtor] in K0~R(G)) , 

where ~ is defined in 3.3. The problem is to prove that this 

association is additive over short exact sequences. 
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Lemma 3.4. Given a short exact sequence in MR(G), 

0 ~ X - y ~ z - 0  , 

where X and Y are in PR(G ) and Z is in TR(G)~ then 

[Y] = IX] + ~[Z] 

in KO P~(G)). 

Proof. By a devissage argument, we may assume that Z is an R/~ 

module for some maximal ideal D. In that case, ~(Z) = ~Y] -- [Z] 

by definition (compare 3.2 and 3.3). 

Lemma 3.5. The association 

objects _MR(G ) ~ > K0(PR(G)) 

given by M: > [M/Mtor] + ~Mtor] is additive over short exact 

sequences. 

Proof. Consider the short exact sequence in MR(G ) 

0 ~ M~ ~ M , M~ ~ 0 . 

Observe that the sequence 

0 - M ~ ~ M ~ tor " Mtor tor 

is exact. We embed these sequences in the diagram 
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i0 

0 0 

0 ~ M J ~ M ~ ~ M~/M ' ~ 0 
tor " tor 

i ~ i 

0 ~ Mto r ~ M ~ M/Mto r ~ 0 

u ~ ~ j 

0 ~ M ~ ~ M ~ ~ M~'/M ~ ~ 0 
tor " tor 

0 

Consider the columns as chain complexes, look at the long exact 

homology sequence, and apply exactness in the first two columns. 

We denote by H( 

H(M'/M ~ ~ = 0, 
tor ~ 

) the homology of a column at ( ). We get 

, H(M H/M H ~ = 0 H(M/Mtor) = coker u " " tor" " 

Thus we have exact sequences 

0 ~ M~/M~o r ~ Ker j ~ coker u ~ 0 , 

MH/M ~ ~ 0 0 ~ Ker j - M/Mto r tor " 

By lemma 3.4, (since M'/Mto rt and Ker j are torsion free whereas 

coker ~ is torsion), we have in K0~R(G)) 

3.6) [MJ/M~or] + ~coker u] = lEer j] = ~M/Mtor] - [MH/M~or ] 

But we have the exact sequence in ~R(G ) 

0 ~ M ~ ~ Mto r ~ M ~' ~ coker u - 0 , tor tor 
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II 

whence ~(coker u) = ~[~ M ~tor ]~ + ~M" ~ - ~0 L tor] ~[Mtor ]. Substituting 

into (3.6) and recombining shows that 

~(M) = ~(M') + ~(M ~') , 

whence ~ is additive. This completes the proof of lemma 3.5. 

It follows that ,# factors to give a morphism (also denoted 4) 

K0~R(G)) ~ > KO~R(G)). 

Clearly we have ~oc = I, and this completes the proof of Theorem 3.1 

Remark. A. Dress has constructed an exampIe of a discrete 

valuation ring A, residue class field k the algebraic closure of 

a finite field, such that the one dimensional standard repre- 

sentation of k* over k cannot be resolved as in conclusion I) 

of Theorem 3.1 (oral communication). 

Suppose now that R is dedekind and either hypotheses a) or 

b) of Theorem 3.1 are valid for R. Then by conclusion 2) of 3.1 

the maps K0~R/~(G)) ~ K0(_MR(G)) lift through the Cartan map to 

maps K0~R/~(G)) PP > K0~R(G)) , natural in G. The argument 

following Theorem 2.1 shows that these morphisms induce maps 

Kn(R/0) ~ Kn(R ). 

Theorem 3.7. Let R be a dedekind ring and assume either a) or 

b) of 3.1 are satisfied by R. Let S be a set of integral primes 

(possibly empty) and let Z S denote the localization of 7. away 

from S,~ S =~[p'l,pES]. Suppose that, for every group G, the 

P~ just constructed is such that natural map RR/~(G ) > RR(G ) 
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12 

~D ®Z S is zero. 

is zero. 

Then the transfer map tensored with Z S 

Kn(R/~) ®Z S - Kn(R ) ®Z S , 

Proof. We have indicated the universal property satisfied by the 

+ . 
space K0(A ) × BGg(A)In Theorem 2.1. The localization of this space 

away from S (Sullivan [13]) satisfies a corresponding universal 

property, with RA(G ) ®Z S replacing RA(g),for H spaces whose homo- 

topy is a Z S module. The result follows from the universal 

property. 

§4. Proof of Theorem 1.3 in the case of finite residue class 

field. 

Theorem 4.1. 

ideal m and A/m finite of characteristic p. 

finite group G, the map RA/m(G ) Pm> RA(G ) 

has p-torsion image in RA(G ). 

Proof. 

is zero. 

Let A be a discrete valuation ring with maximal 

Then for every 

of 3.1, conclusion 2, 

It suffices to prove that the map RA/m®Z _i ~ RA(G)®Z -i 
P P 

Let k = A/m. We shall construct a commutative diagram 

K0(k[G]) ..... > K0(A[G]) 

1 1 
Rk(G ) -- G0(k[G]) > RA(G) 

The first vertical arrow is the usual Cartan map induced by 
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13 

~k[G] L > ~k~G]" The second vertical arrow is induced by 

~A[G] u > PA(G). To construct the top horizontal arrow observe 

that if 0 # P E object ~k[G]' then by Kaplansky's theorem (Bass 

[ J ] p. 632), we have hdA[G]P = i. Thus restriction of operators 

induces 

~kCG] c > ~A[G] 

Now the Cartan map c is known to be a monomorphism with 

cokernel a finite p-group (Serre [1%], P. III - 13,§3.1). Thus 

c ® i: K0(k[G]) ®Z -i > G0(k[G]) ®Z -I 
P P 

is an isomorphism. To complete the proof of 4.1, it thus suffices 

to prove 

Lemma 4.2. The map K0(k[G]) ~ K0(A[G]) is zero. 

Proof. If 0 ~ V C object Pk[G], then, as we remarked before, 

hdA[G]V = I, so there is a resolution 

0 - PI " PO ~ V ~ 0 

with Pi E object PA[G ]. If F is the field of fractions of A, it 

follows that F ® PI ~ F ® P0 as FIG] modules. By a theorem of 
A A 

Swan [IV] (Theorem i.i0) it follows that PI ~ P0 over A[G]. But 

the map K0(k[G]) - K0(A[G]) is induced by IV] ~--> [P0] -- [Pl ] = 0. 

This completes the proof of 4.2 and Theorem 4.1 is fully estab- 

lished. 
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14 

Proof of 1.3 when A/~ is finite of characteristic p. 

We show first that for every group G, the map 

RA/m(G) - RA(G ) 

of 3.1, conclusion 2, has p-torsion image. However, given any 

representation G ~ > AUtA/m(V ) in PA/m(G), one knows that 

factors through a finite quotient G I of G. By considering the 

diagram 

RA/m(G I) - - ~  RA(G I) 

RA/_re(G) > RA(G) 

and applying Theorem 4.1, one sees that the image of IV] in 

RA(G ) is p-torsion. Thus every generator of RA/_m(G ) has p-torsion. 

Thus every generator of RA/m(G ) has p-torsion image in RA(G ) . 

Hence the induced map 

RA/_m(G) ®~-i > RA(G ) ®Z -i 
P P 

is zero for all groups G. By Theorem 3.7, this implies that the 

transfer Kn(A/m ) - Kn(A), tensored with with 7. -i' becomes zero. 
P 

However by a theorem of Quillen [II], Ki(A/_m) is finite (for i > 0) 

without p-torsion. It follows that Ki(A/m ) -Ki(A ) is zero for 

i > 0. For i = 0, the assertion is obvious. The proof of 

Theorem 1.3, case a), is complete. 

An amusing consequence of Theorem i. 3, case a) is the 

following 
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15 

Theorem 4.3. For each prime number p, the natural map 

K2n+l (Z (p)) ~ K2n+l (~) 

is an isomorphism for n > 0. In addition K4n+3~(p) ) is finite 

of order independent of the prime p. 

Proof. The first statement follows from the localization 

Theorem I.i, Theorem 1.3, case a), and Quillen's result [I[] 

that K2n~Fp) = 0 for n > O. 

As for the second statement, consider the localization 

theorem for Z: 

~ K4n+3~Fp) ~ K4n+3Z ~ K4n+3(~ ) ~ 0 . 
P 

By Borel's theorem, K4n+3~) is torsion and by Quillen's theorem 

K4n+3(Z) is finitely generated. Thus K4n+3~) is finite as well 

as K4n+3(~). 

Using 5.5 we can settle negatively a question which was con- 

sidered by several people at the Conference, whether 

Ki(A) ~ Ki(A/m) is surjective if A is a discrete valuation ring. 

For if we take i = 4n+3 and A = ~(p), then K4n+30Fp) is cyclic of 

order p2n+2 _ i by Quillen's computation [[I ]. However K4n+3(Z(p)) 

is finite of some order independent of p. Thus for sufficiently 

large primes p, K4n+3(Z(p)) ~ K4n+3~p ) is not surjective. 

Theorem 4.3 has some connection with one of a number of 

conjectures discussed by Lichtenbaum at the conference. We recall 

that Lichtenbaum has conjectured that K4k_I(R ) is of order 

W2k(~ ) for any subring R of 9, where W2k(~ ) = 2 denominator (B2k/2k)~ 
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Theorem 4.3 affirms that K4n+3(R ) is of order independent of R for 

all local subrings of ~. 

~5. Proof of Theorem 1.3 in the equicharacteristic case. 

Throughout this section the discrete valuation ring A is a k 

algebra (k a field) and the residue class field A/m = L is a 

finite separable extension of k. 

Lemma 5.1. The kernel J of the natural map L ® L ~ L is generated 
k 

by an idempotent e of the ring L ® L. 
k 

Proof. Since L is a separable extension of k, L ® L is reduced. 
k 

Since L is finite over k, L ® L is semisimple, and consequently 
k 

any ideal of L ® L has an idempotent generator. 
k 

Lemma 5.2. L ~[t]] ® L ~ L ® L [[t]]. 
k k 

This is immediate since dimkL < =. 

We define now a ring homomorphism A ® L - L by a ® g ~ ~.£ , 
k 

where ~ is the class of a in L = A/m. 

Proposition 5.3. In the short exact sequence 

0 ~ N ~ A ® L ~ L ~ 0, 
k 

N is a free A ® L module of rank I. 
k 

Proof. Choose ~ E ~ with A~ = m. Then by the structure theorem 

for complete local rings, the completion ~ of A is isomorphic to 

L [[~]], and 

® L ~ L ® L [[~]] (by 5.2) . 
k k 
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By approximation, we may choose an element x E A ® L, whose image 
k 

in ~ ® L ~ L ® e [C~]~ is 
k k 

e + ~ + ~2d , d E L ® L ~n]] , 
k 

where e is as in lemma 5.1. We claim that the sequence 

0 > A ® L x > A ® L > L > 0 

k k 

is exact. Since ~ is a faithfully flat A module, it suffices 

to prove that the sequence 

0 ----> L ® L C~]] e+rr+~2d > L ® L ~ ]  ......... > L -. > 0 
k k 

is exact. But this is an elementary computation that we omit. 

This completes the proof of 5.3. 

Theorem 5.4. The map 

RL(G) > RA(G) 

of 3.1, conclusion 2, is zero for every group G. 

Proof. Suppose V E ~L(G), so we are given a homomorphism 

~: G > AUtL(V). 

We have just produced an exact sequence of A - L bimodules 

0 ............. > A ® L > A ® L > L ....... > 0 . 
k k 

Hence, after ®V, we get an exact sequence of A-modules 
l 

0 ........... > A ®V > A ®V ~ V > 0 . 
k k 
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Observe that A ® L is in ~A since dimkL ~ =. The G-structure on 
k 

V makes this into an exact sequence of A~G] modules, and A ® V 
k 

is in PA(G). Hence the map RE(G) ~ RA(G) is determined by 

(V) I, > (A ® V) . . . .  (A ® V) = 0, and hence this map is zero. 
k k 

This completes the proof of 5.4 

Theorem 1.3, case b, now follows immediately from 5.4 and 

3.7, where one takes S to be empty. Thus the proof of Theoeem 1.3 

is complete in all cases. 

~6. Localization sequence of a polynomial ring. 

Let F be a field and ~ a prime ideal of the polynomial 

ring Fit]. Let F(~) denote F~t]/~. 

Lemma 6.1. The map p of Theorem 3.1, conclusion 2, 

P~: RF(D) (G) 

is zero for any group G. 

> RF[t~(G) , 

Proof. Suppose G * > AUtF(p)(V ) is an object of PF(p)(G). 

F(D) is a monogenic field extension of F, 

Now 

F(D) = F(&), where f(&) = O, f E 

Let T be the element of EndF(V) represented by multiplication by 

&. Then 

6.2) ~o,(g) = ,(g)o$ , g E G . 

Examine the characteristic sequence of the endomorphism T of V 

(E l i ,  p. 630): 

2 2 8  



19 

6.3) 0 > VEt ] t2~ > V[t] ~ > V -- 0 

i 
where ~T(lviti ) = ~ T (v i) and (t-~)(r viti) = E(Vi_l-~-Ivi))tl. 

Clearly V[t] is finitely generated and free as F~t] module. Also, 

V~t] becomes a G module in the obvious way: g(~ vi ti) = E ,(g)(vi).t i, 

and 6.2) guarantees that the sequence 6.3) is exact as F[t][G] 

modules. Hence the map RF(~)(G ) > RF[t](G) is induced by 

V > CVCt]] ~VCt]] = 0. This completes the proof of 5.1. 

From Theorem 3.7 it follows that the transfer map 

Kn(F(D)) > Kn(F~t]) is zero. But Quillen's theorem Ell] states 

that Kn(F ) = Kn(F~t]). If we combine these facts with Quillen's 

localization sequence i.i), we deduce Theorem 1.4. 

~7. Local-Global Principles. 

Suppose that X is a separated noetherian regular scheme 

possessing an ample line bundle. Then there are two procedures 

for producing higher K-groups ~7 ],[IO] which lead to the same 

K theory for X, Kn(X ) . We summarize here properties of this 

theory. 

O) K0(X) is the Grothendieck group of the category of vector 

bundles on X. 

i) If X = Spec A, then Kn(X ) = Kn(A). 

2) If U and V are open subschemes of X, there is a Mayer-Vietoris 

sequence 

... ---> Kn+I(UQV ) ---> Kn(UUV ) --> Kn(U)@Kn(V ) --> Kn(UNV) --> ... 
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3) There is a spectral sequence of cohomological type in the 

fourth quadrant, Er~q , with 

E~ 'q = ~ K (F D) = K 
codimD=p -P-q _p_q(X) 

D a p r i m e  
c y c l e  

where F D is the field of rational functions on D (Quillen [101)- 

4) There is a spectral sequence of cohomological type in the 

fourth quadrant'E p'q with 
r 

'E p'q = HP(X,K_q) = K_p_q(X) , 

where --nK is the sheaf associated to the presheaf U ~--> Kn(F(U,~x)) 

on the Zariski site (Brown and Gersten [~]). 

We propose now 

7.1) Working hypothesis (first form): 

EP,q =,E~,q 

Suppose now that A is a regular local ring. Then a simple 

computation shows that Hn(spec A, F) = 0 for any n > 0 and any 

abelian Zariski sheaf ~. Hence a first consequence of 7.1 is 

7.2) Working hypothesis (second form): The differentials d p'q 

in the Quillen spectral sequence E p'q for a regular local ring 

A produce long exact sequences 

0 --> Kn(A ) --> Kn(F ) --> @ Kn_I(FD) --> ~ Kn_2(FD) 
ht D=I ht D=2 
D prime D prime 

* Z n --> ... --> @ F D --> --> 0 
ht D=n- i 
D prime 
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where F is the field of fractions of A, F D is the field of fractions 

of the domain A/D, and Z n is the free abelian group with free 

basis the height n primes of A (Z n is the group of codimension 

n cycles on Spec A). 

If we globalize 7.2) (using the fact that exactness of 

sheaves is tested at points) we deduce immediately 

7.3) Working hypothesis (third form): 

If X is an irreducible noetherian regular scheme, then there 

is a long exact sequence of Zariski sheaves for each n e 0. 

0 ......... > --Kn > --~Kn(F) ' > codim@ D=I Kn_I(FD)~ 

D prime 
cycle 

zn > ~ > 

codim D=n- i 
D prime cycle 

> • . . 

- > 0 

where F D is the field of rational functions on D, Ki(FD) © is the 

constant sheaf Ki(FD) on D extended by zero to all of X, and Z_ n 

is the sheaf associated to the presheaf 

U I > zn(u) , 

the codimension n cycle group of U. 

Observe that each sheaf in 7.3) is flabby except for K 
n 

Consequently, HP(X,Kn) can be calculated from this flabby resolution, 

by taking global sections. But the global sections are just the 

E 1 terms of the spectral sequence P'q (E r ), and the differentials 

correspond, so we have established 
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Proposition 7.4. The working hypothesis (third form) 7.3, implies 

the working hypothesis (first form) 7.1, so all statements, 7.1, 

7.2, and 7.3 are equivalent. 

Let us list some elementary consequences of the working 

hypothesis in the form of remarks. 

Remark i. If A is a discrete valuation ring with field of fractions 

F and maximal ideal m, then 7.2) gives the short exact sequences 

0 > Kn(A) > KnF ~ > Kn_l(A/m) > 0 , 

where the map ~ is the tame symbol. 

More generally the prediction is that for any regular local 

ring A, the map KnA --> KnF is injective, where F is the field of 

fractions of A. 

Remark 2. Taking cohomology in 7.3) and using flabbyness of the 

sheaves, we deduce the exact sequences 

F~ ~ ~ > Z i .... > Hi(X,Ki ) > 0 . 7.5) 
codimD=i-I 

D irreducible reduced 
closed subscheme 

(conjectural) map Z i --> Hi(X,Ki ) has been proposed by The 

S. Bloch [15], in the case i = 2, as the "second universal Chern 

class" of a cycle. One would be tempted to call the conjectured 

map Z i Hi(X,Ki ) > the 'i th universal Chern class' map. It 

would be interesting to know what equivalence relation the map 

* b > Z i F D 
htD = i-I 

imposes on codimension i-cycles. 
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Since E~ 'q. = 0 if -q < p, one sees that 7.1) implies that 

Hi(X,Ki ) are infinite cycles for the spectral sequence 'E rp'q 

Remark 3. If n = 1 in 7.3), the exact sequence becomes 

But K I = @X ' 

0 > K I ~ KI(F) > > 0 . 

so this exact sequence is 

, , Z_I 
0 ...... >~X >Fx > >0 

defining Cartier (= Weil) divisors on the regular scheme X. In 

this case 7.5) becomes 

F* Z 1 h > > Pic X > 0 

and the map Z 1 , ~ > Pic X is indeed the first Chern class, or line 

bundle, associated to a divisor. 

Remark 4. If A is a regular local ring of dimension r, the working 

hypothesis in form 7.2 implies a surjection 

Z i 7. 6) @ F~ > --7 0 
ht D = i-i 

IJ 

D prime in A 

for each number i. Let M~ be the category of finitely generated 

A-r~odules M with codimspecA(Support M) > i ,  and l e t  Gj (M~) 

(j=0,1) be the Grothendieck group of this abelian category (mod 

= i i+l 
short exact sequences). Then Z i G0(M~/M ~ ) and one has 

ht D= i 
D prime in A 

* i i+l 
F D = G I(M~IM_~ ) 

The K-theory exact sequence of a localization reads 
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* i+l Z i 
F D > G0(M~ ) > G0(~) > > 0 . 

ht D= i 
D prime in A 

The following result is elementary, and is proved by downward 

induction on i. 

Proposition 7.7. The following statements are equivalent 

i.) 7.6) is exact for all i. 

2.) G0(M~)m Z i for all i. 

. i+l. 
3.) G0(~A ) > G0(M~) is zero for all i. 

In this connection one establishes easily 

M~ Z i Proposition 7.8. GO( ) ~ if either i ~ i or r-i ~ i 

(r = dim A). 

To produce some more evidence for 7.6 we introduce a concept 

Definition 7.9. If A is a commutative noetherian domain, we say 

. i+l. M~ that A is clean if the natural map G0(~A ) > GO( - ) is zero 

for all i. 

By proposition 7.7, the conjecture 7.6 is valid if and only 

if every regular local ring is clean. That there exist a vast 

collection of clean rings is a consequence of the next result. 

Theorem 7.10. If A is clean, then so is every localization A S 

of A. If A is clean and of finite Krull dimension, then so is 

AFt], the polynomial ring in one variable. 

Proof. For localizations, one considers the commutative diagram 
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i+l 
G0(M ~ ) > G0(~ i) 

i+l 
G O (MAs ) .... > G 0 (MA~) 

The case of a polynomial extension A[t] is more involved. 

prove by descending induction on s that the map 

s+l s 
G0 (~A[t ]) > G0 (~A[t ]) 

is zero (the induction starts with s = dim A + i). Supposing 

that this is the case for all s > i, we prove then that 

G ~. i+l i 
0k~A[t]) --> G0(M~t]) is zero. 

If P is alheight i+l prime in A[t], it suffices to prove 

that the class of the module A[t]/P maps to zero under 

G .. i+l i 
0kMA[t]) > G0(~[t]). Observe that ~ = P n A is either of 

height i or of height i+l in A. 

Case i. htA~ = i+l. Then P = DA[t] and A[t]/P ~ A/~[t] as 

A[t]-modules. Consider the commutative diagram 

i+l ¢. i+l . 
(A/D) 6 G0(M ~ ) ~ G0,~A[t ]) 

1 ,[ 
i GO(  Go( 2 t ) 

The horizontal arrows are induced by 

M S > A[t~ ® M , M E M A • 
A 

The result follows by a diagram chase from the fact that A is 

clean. 

We 
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Case 2. htAP = i. Let A' = A/~ and let P' be the image of P in 

A'[t], so P' is a height 1 prime of A'[t] with P' N A ~ = (0). 

Let F' be the field of fractions of A'. Then P'F'[t] is a 

principal ideal of F'Et~, say P'F'[t] = (f'(t)), with f' E F'[t]. 

Choose s E A' - (0) so that sf' E A'[t] and let f = sf'. Since 

F'[t] is a localization of A'Et], one has 

P~ = (f')F'[t] N A'[t~ = (fF'[t]) N A'~t] 

and hence fA'~t] ~ P~. 

Observe that P'/fA1[t] is a torsion A'-module: for 

P'F'~t] = fF'[t], so (P'/fA'[t]) S = 0 with S = A' - (0). If 

now the prime Q' ~ A'[t] contains an associated prime to 

P'/fA~Ct], then F ~ ® (A'[t]/Q') = O. Thus Q' N A ~ ~ (0) and 
A ~ 

hence htA, Q' n A' > 0. Now lift Q' to a prime Q of A[t]. It 

follows that htAQ N A > i. 

Lermna 7.11. The module (A~t]/Q) = (A'[t]/Q') maps to zero under 

G ~ .  i+l i 
0 ~A[t ]) > GO (MAlt ]) 

Proof. If htAEt] Q = i+l, then since htAQ N A > i, we have 

htAQ N A = i+l and we are in case i. If htA[t] Q = s+l > i+l, 

then the induction hypothesis gives (A[t]/Q) maps to zero under 

p s+l . s 
Go~A[t]) > G0(MA[t]) , 

zero in G0(M~)(since i < s). This completes the and hence to 

proof of the lemma. 

Now P'/fA'[t] has a filtration whose quotients are of the 

form A'[t]/Q', where the prime Q' contains as associated prime of 
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P'/fA'[t]. By lemma 7.11, it follows that P'/fA'~t] maps to zero 

f. i+l i 
under G0~HA[t] ) > G0(M~[t] ) 

Consider now the short exact sequence of A'[t] modules 

7.12) 0 > P'/fA'[t] > A'[t]/(f) > A'[t]/P' > 0 . 

Observe that A'[t]/(f) = A[t]/(fl,D) where fl 6 A[t] - ~. Thus, 

all associated primes of (fl,~) in A[t~ are of height ~ i+l, and 

hence 

i+l 
A[tJ/(fl,~) E ~A[t] 

t. i+l 
(A[t]/(fl,~)) maps to zero under ~0k~A[t ] Lemma 7.13. ) 

G0(~[t ~) " 

Proof. Consider the exact sequence of A[t] modules 

"fl 
0 > A[t]/DA[t] > A[t]/~A[t] ~ A[t]/(fl,D) ; 0 . 

i Taking the Euler characteristic in G0(M~[t]) gives the result. 

Returning to 7.12),we see that (P'/fA'[t])and A'[t]/(f) both 

(. i+l , i 
map to zero under G0~IA[t~ ) > G0(M~[t]). It follows then that 

the same holds true for A'[t]/P' ~ A[t]/P. This completes the 

induction and hence the proof of 7.10 is complete. 

Corollary 7.14. If k is a field, then all local rings of ~nk are 

clean. 

For they are obtained by localizing polynomial extensions of 

k. 

Observe also that by 7.8 any regular local ring A of dimension 

3 is clean, and hence so is any localization of a polynomial 
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ring on A, by Theorem 7.10. One can also prove that a complete 

regular local ring of equicharacteristic is clean. A proof of 

the general assertion, that regular local rings are clean, eludes 

us at the moment. 

Remark 5. The working hypothesis would follow if one could 

establish the map 

G (M i+l~ > (MI~" 
n ~A J Gn'~A" 

i s  z e r o  f o r  a l l  n and i ,  where A i s  a r e g u l a r  l o c a l  r i n g  and G n 

i s  the  h i g h e r  Q u i l l e n  K - t h e o r y  E/O3 of  an a b e l i a n  c a t e g o r y .  

Remark 6. Using G r o t h e n d i e c k ' s  t h e o r y  o f  Chern c l a s s e s  in  Hodge 

cohomology [ ~3 §6. and the  U n i v e r s a l  p r o p e r t y  o f  BG6(A) +, one 

can d e f i n e  "Hodge Chern c l a s s e s "  

i 
K i (A) > NA/Z 

i 
where qA/Z is the module of Kahler differentials of the commutative 

ring A, as follows. 

Theorem Grothendieck [ ~ ]. Suppose p: G .... > AUtAE is a represen- 

tation of the group G in the finitely generated projective 

A-module E. Then there is a unique family of classes 

i i 
ci(p) E H (G,~A/~) (trivial action) 

subject to the following properties 

Property i: (Normalization) Co(p) = i and 

i I i 
Cl(p) = log(deC p) E H (G,~A/~)= Hom(g,qA/Z) 
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d(det 
°~ I) , g E G. Also, ci(p) = 0 for where log(det p)(g) = det p 

i > rkA(m ) . 

Property 2: (Naturality) If ~: H ~> G is a homomorphism of 

groups and f: A > B is a homomorphism of rings, then 

ci(poM) = ~"(ci(0)) E Hi(H, i qA~) 

and ci(f,(0)) = f,(ck(p)) ~F H i G i 
( , ~B/~)  

w h e r e  f . ( p )  i s  t h e  r e p r e s e n t a t i o n  

G n > AutA(E ) ....... > AUtB(B@E ) 
A 

and  f . ( c i ( p )  ) i s  t h e  i m a g e  o f  c i ( p )  u n d e r  t h e  c o e f f i c i e n t  homo- 

morphism 

i i 
~A/~ > NB/I.. " 

Property. 3: (Product formula) If 

0 -> ( E ' , p ' )  -----> ( E , p )  - > ( E ' , p ' )  ...... > 0 

is a short exact sequence of representations, then 

C(p) = c(p l) c(p') , where 

i £ 
c(p) = E ci(p) ~ ~ H (G,nA/Z) 

i~0 

i i 
Here @ H (G,qA/~) is a commutative ring, the multiplication in- 

ie0 
duced from the ring structure on Kahler differentials. 

Consider now the standard representations 

i 
On: GgnA ........... > GgnA . 
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i Then ci(o n) E Hi(G6n(A),~A/Z) 

The properties 1-3 imply that under restrictions 

i ' i 
Hi(G~n+I(A),QA/Z) > HI(G~n(A),~A/~), we have ci(~n+l)~--->ci(~n ). 

But cohomology is representable, so 

i 
ci(~ n) E [BG~n(A), K(©A/~,i) 

This sequence of homotopy classes of maps determines (many) maps 
f i 

BG£(A ) ~> K(NA/Z,i) such that the following diagrams cormnute 

up to homotopy 

ci(~n) i . 
BG~n(A) ~ K(~A/~,l) 

BGg(A) 

i ,i) is an H-space, the universal property of the map Since K(~A/z 

+ 
> BGg(A ) BG6(A) 

(see [~ ], Theorem 2.5) 

determines a factorization 

BGg (A) f i • K(~A/~, l) 

f + / 
BGg (A) 
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The effect of f+ on homotopy, 

i 
Ki(A) > QA/Z ' i ~ 0 , 

is the desired Hodge Chern class. 

i Sheafifying, this gives a map ~i ~ > !X/Z of sheaves on 

X, and hence homomorphisms 

i i 7.15) Hi(X,Ki ) ............ > H (X,nx~) 

The compositio~ of the conjectured surjection 

Z i _~ Hi(X,Ki ) 

of 7.5) with the map 7.9) would be the "cycle map" Z i ---> Hi(X,Qx/~)i 

from codimension i-cycles to Hodge cohomology of X. Thus, 7.5) 

implies a particularly attractive interpretation of the cycle map 

Z i i i 
-~ H (X,Qx/~) ; 

namely it would be the composition of the universal i th Chern 

class map 

Z i ,~ ~ Hi(X,Ki ) 

with the "Hodge Chern class" map 

Hi(X,Ki ) Hi.x i . 
. . . . .  > ( , ~ X / Z  ) • 

October 31, 1972 
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Addendum 

*) 
A .  Dress has brought to my attention a result of Swan : 

Theorem. Let A be a semilocal Dedekind ring with field of 

fractions F. Then for any finite group G, the map 

K0(P_A(G)) > K0(P_F(G)) 

is an isomorphism. 

Using this result and the method of §3. we deduce 

Theorem AI. Suppose that A is a semi local Dedekind ring such 

that for all ~ E max A, A/~ is finite. Then for any group G, 

the map 

mEm~axA KO(~A/m(G)) ---> K0(~A(G)) , 

of Theorem 3.1 is zero. 

Consequently we deduce 

Theorem A2. If A is a semi local Delekind ring such that A/m 

is finite for all m E max A, then one has the short exact 

localization sequences 

0 > Kn(A) .... > Kn(F) > Em~axA Kn_I(A/~) > 0 , 

where F is the field of fractions of A. 

As in Theorem 4.3 we deduce that K4n+3(R) is finite of order 

independent of R for all semi local subri~gs of the rational 

numbers. 

*)R. G. Swan, The Grothendieck ring of a finite group, Topology 
(1963), Theorem 3 p. 87. 
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