
Higher K-theory of~Rings 

S. M. Gersten 

In this article we shall summarize several of the proposed 

K-theories of rings and attempt to collect information about each 

theory and relate the theories where possible. The subject is very 

much in a state of flux and the notation has not yet been estab- 

lished, so we have chosen notations we find convenient. There are 

two other survey articles [4~],[~] in the subject which have 

considerable overlap with this article. We have decided to 

restrict attention to linear theories, that is algebraic analogs 

of the homotopy of the general linear group of a ring. Even with 

this restricted aim, we have not included important topics. For 

a more complete account of the Anderson-Segal theory, see Anderson's 

talk. For an account of the Volodin theory ~5~, see Wagoner's 

talk. And for the explicit computations of higher K-groups, see 

Quillen's talk. Swan [49] gives a more complete account of the 

history of the subject, but we have described the minimum history 

we think is needed to motivate the higher K's. 
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§i. Early progress towards a K-theory of rings. 

Algebraic K-theory arises from Grothendieck's proof of the 

Riemann-Roch Theorem [7 ] . A construction of the following type 

was introduced. Suppose that ~ is a category and g is a collection 

of diagrams ~ of 6 of the form 

e: E' --> E > E I~ 

Then the Grothendieck group Ko(6,g ) is an abelian group *), ~~iversal 

for mappings ~: obj ~ --> A, where A is an abelian group, such 

that 

~(E) = ~(E') + ~(E j~) 

where the diagram ~ = (E i > E > E ~I) is in g. For example, 

if ~ is an abelian category and g is the class of all short exact 

sequences, then K0(6,g ) is denoted K0(~ ) and is called the 

Grothendieck group of ~. If PAis the category of projective left 

A-modules of finite type (A a unitary associative ring) and 

g is the class of short exact sequences of 4, then K0(@A) is 

denoted K0(A). One observes that K0(A ) is a covariant functor 

of A, for a ring homomorphism 

f: A ......... > B 

induces a functor @A > @B by P > B®P . 
A 

If X is a CW complex, and ~ is the category of complex 

vector bundles on X and 8 is the class of short exact sequences 

of vector bundles, then Ko(6,g ) is denoted KO(x). It was proved 

by Atiyah and Hirzebruch [ 2] that KO(x) is one functor of a 

*) Clearly KO(G,g ) exists if 6 admits a small equivalent subcategory. 



generalized cohomology theory of complexes, which has since proved 

crucial in settling long open questions of topology. A result of 

Serre [~, greatly generalized by Swan [5~, provided a dictionary 

for translating topological notions into algebraic notions: 

Theorem i.I (Swan). Let X be a compact Hausdorff space and let 

C(X) be the ring of continuous complex valued functions on X. 

Then there is an equivalence between the category of complex vector 

bundles B on X and the category of finitely generated projective 

C(X) modules given by B, > F(B), the sections of the bundle B 

viewed as a C(X) module. 

The next step was taken by Bass ~] who proposed a candidate 

for KI(A ) of a ring A, using the dictionary relating algebraic to 

topological notions. Let Ggn(A ) imbed in G~n+I(A) by 

and let Gg(A) = lira Ggn(A ) . Then set KI(A ) = HI(Gg(A ) •) = Gg(A) ab, 
n ~ 

the commutator factor group of Gg(A). A result of J.H.C. Whitehead 

[~] states that the commutator subgroup Gg(A) t is generated by 

elementary matrices, Eij(a), i#j, aEA, where Eij(a ) is i on the 

diagonal and 0 off the diagonal, except at the ij position where 

one puts aEA. These elementary matrices then are to be considered 

"null homotopies" in Gg(A). (One can put in a parameter Eij (at) 

and let t ~ 0, connecting Eij(a ) to i, provided this makes sense. 

For example~if A is a Banach algebra over R). It was clear from 

the outset that an alternative candidate for K I existed, 

K~(A) = Gg(A)/UP(A), where UP(A) is the subgroup generated by 



unipotent matrices M = I + N, N nilpotent. (One can put in a 

parameter again i + Nt and let t ~ 0, provided this makes sense). 

The functor K~(A) is a h omotopy functor i~ the following sense. 

f0 
Definition: Two ring homomorphisms A ~ B are homotopic 

if there is a homomorphism A F > Bit] such that (t~i).F = fi' 

i = 0,i. Here t ~ i is the map Bit] > B given by evaluating 

t at i. The functor K: Ring > A__bb is a homotopy functor if 

K(f0) = K(fl) whenever f0 and fl are homotopic. 

These definitions were justified by a spate of exact 

sequences (see [~?] for more complete information). We mention 

one because of its influence on the further development of the 

subject. 

Theorem 1.2 (Milnor [~]). Given a cartesian diagram of 

rings 

D ~A 

t l 
B g > C  

where  f i s  s u r j e c t i v e ,  t h e n  t h e r e  i s  a n  e x a c t  s e q u e n c e  o f  "Nayer -  

V i e t o r i s  t ~ e "  

KI(D) > KI(A)@KI(B) ........ > KI(C) > K0(D) > K0(A)@K0(B) > K0(C) 

The functors K I and K 0 have played an important role in 

algebra which is beyond the scope of this article. We mention 

several results, because of their fundamental significance. 



Theorem 1.3. If A is noetherian and left regular (that is, each 

A module of finite type has finite projective dimension), then 

Ki(A ) -~ Ki(A[t]) for i = 0,i. 

The result for i = 0 is due to Grothendieck and for i = 1 

to Bass, Heller, and Swan [ g~. In this connection, it is worth 

mentioning 

Theorem 1.4 ~13]. If KI(R ) > KI(R[t]I is an isomorphism, then 

KI(R ) ..... > KI(R{X}) is also an isomorphism. This is in fact the 

case if R left regular. Here R{X} is the free associative algebra 

on the set X over R. 

Theorem 1.5 [-3 ]_. If R is any ring, then there is a natural exact 

sequence 

0 --> KI(R ) --> KI(R~t~)~KI(R~t-I]) --> Kl(R~t,t -I] --> K0(R) --> 0 

Consequently, if R is left regular, then 

K l(R[t,t-l]) ~ KI(R) e K 0(R) 

A decisive step was taken by Milnor ~] in defining higher 

K's. Motivated by a paper of R. Steinberg [-@$] who had defined 

covering groups of algebraic groups, Milnor defined the Steinberg 

group St(R) of a ring R to be generated by symbols xij(r) , 

r E R, i ~ j; i,j e I, and subject only to three types of relations 

t) = xi j (r+r i) I.) xij (r)xij (r 

2.) [xij(r) ,Xjk(rt)] = Xik(rr~) ; i # k 

3.) [xij(r),xk~(r~)] = I ; i ~ P~, j ~ k 

There is a canonical surjection St(R) ~ > g(R) given by 



xij (r) ~----> Eij (r). Milnor proved ~3~ that the kernel of ~ is 

precisely the center of St(R), and defined 

K2(R ) = Ker ~ . 

Hence there is an exact sequence 

In fact, 

1.6) 

I --> K2R > St(R) 

the extension 

-> G~(R) > K I(R) > 0 . 

i --> K 2(R) --> St(R) --> g(R) ~> I 

was shown by Kervaire [~@] to be the universal central extension 

of the perfect group g(R). It follows then that 

1.7) K2(R) = H2(g(R) 2) 

Milnor also extended his exact sequence 1.2. He proved that, if 

both f and g are surjective, then the sequence continues 

1.8) K2D --> K2(A)@K2(B ) --> K2(C ) -->KI(D ) --> KI(A)~KI B) --> .... 

At this point one may observe that Bg(R ) is the fibre of the map 

BG£(R) > BK I (R) induced by G~(R) > KI(R ) (and B G is an 

Eilenberg-MacLane space of type K(G,I), G a group). Also, BSt(R ) 

is the homotopy fibre of the map B£(R) > K(K2(R),2) representing 

the extension 1.6) in H2(g(R),K2(R)) = H2(B~(R),K2(R)) 

= [Bg(R),K(K2(R),2)]. This suggests ~,p. 207] that K3(R ) 

= H3(St(R)2) and higher K's should arise from a Postnikov type 

tower for BG6(R ). We shall return to this question later, when 

the Quillen K-theory has been described. 



§2. Quillen K-theory. 

From his work on the Adams conjecture [371, and in particular 

his computation of the fibre of the A~Jams operation ~q-l: BU--> BU, 

Quillen was motivated to propose an extremely elegant definition 

of higher K-groups. Since he will describe this in his talk, 

we recall only a basic consequence of his work. 

Theorem 2.1 (Quillen). If X is a based CW complex and E is a perfect 

normal subgroup of niX, then there is a map X f > X ÷, unique up 

to homotopy, such that E is the kernel of ~l(f) and such that the 

homotopy fibre F of f has the same integral homology as a point. 

If one applies this to the space BG6(R ) and subgroup g(R) of 

f + + has the same G~(R), one gets a map BG~(R ) > BG~(R ) where BG~(R ) 

integral homology as BG~(R), and ~IBG~(~) = G~(R)/g(R) = KI(R). 

Proposition 2.2: ~2BG~(~) = K2(R). 

Proof: Let F be the fibre of the map BGg(R ) > BG6(~ ). Since 

H,(F,Z) = H,(pt,Z), we have Hi(F,Z ) = O, i > 0. But the low 

dimensional terms exact sequence associated to the map F--> K(~I(F),I) 

shows that HI(~I(F)~) = H2(~I(F),Z) = O. The homotopy exact 
+ 

sequence of the fibration F > BGg(R ) > BGg(R ) gives the exact 

sequence 

+ 
0 > ~2BG~(R) 

whence the extension 

> ~I(F) ......... > Gg(R) > KI(R ) ..... > 0 , 

2.3) 0 > ~2BG6(R) ~ > ~I(F) > g(R) > 0 . 

A general property of the homotopy exact sequence is that the image of 

the boundary map ~2 B > ~i F of a fibration F > E > B is 



always central in ~I F. Thus 2.3) is a central extension. Further- 

more, since H I(~I(F),Z)= H2(~ I(F)~) = 0, it follows from a lemma 

of Kervaire (~, lemma 2, p. 215) that 2.3) is the universal 

central extension of g(R), and consequently that ~2BG$(~) K2(R) • 

Definition 2.4. Kn(R ) = ~nBG6(~), n ~ i. 

+ 
The space BG6(R ) is an extraordinary space. Quillen proves 

that it is a homotopy commutative and associative H-space, and in 

fact is an infinite loop space. One of the most useful properties 

of BGg(~ ) is expressed in the following result. 

Theorem 2.5. The map BG~(R ) f > BG6(~ ) is universal for maps 

$ > H where H is an H-space. That is, there are maps BG~ (R) 
+ h 

BG6(R ) > H such that the diagram 

BG6(R ) g > H 

f / h  
/ 

/ 
+ / 

BG6(R) 

is homotopy commutative, and such that the induced map 
h, 

[X,BG6#~ ~] -~ ~X,H] is independent of choice of h for all 

finite CW complexes X. *) 

The proof is an application of obstruction theory. For 

example, one notes that the obstructions to constructing h lie 
* + . 

in H (BG6(R), BG6(R), ~,H). Since H is n-simple for all n, the 

*) If X,Y are spaces EX,Y] denotes the set of homotopy classes of 

maps X > Y. 

I0 



kernel ~I f = 8(R) is contained in kernel ~l(g), and consequently 

the local coefficient system is trivial. These relative groups 

are then zero, since the fibre F of f is acyclic. 

Suppose now that G is a group and PA(G) is the category of 

representations 

G ~ > AUtAP 

of G in finitely generated projective A-modules. Let RA(G) denote 

the Grothendieck group of the category PA(G) with relations all 

short exact sequences of representations. RA(G ) is a contravariant 

functor of G and covariant in A, Let X be a finite based CW 

complex. 

Theorem 2.6. There is a morphism 

~X + 
RA(~I (X)) > [X,K0(A)XBG6 ~] 

(natural in X) which is universal for morphisms 

~x 
RA(~I(X)) > IX,HI, where H is an H-space. That is, there 

are maps K0(A)XBG,~ ~ > H such that the diagram 

RA (h (X)) 

~X 

IX ,K0(A ) XBG6 (~) ] 

~x 

/ 
/ 

--.~ ~X,H! 

/ 
/ 

commutes and w, is independent of the choice of w. 

We indicate how to define ~X" If niX P > AutA(P ) is a 

representation of ~i X, then by choosing a complement Q for P 

II 
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(SO that PeQ ~ A n ) we get 

~i X P > AUtA(P ) > AutA(P~Q ) ~ Ggn(A ) > G~(A). 

This determines a map B~I X > BG6(A ) . Composing with the 

2-coskeleton X > B I(X ) we have a map 

+ 
X > BG6(A) > BG6(A) 

The component of the desired map of X into Ko(A ) is just the class 

of P. One must verify of course that this association is in- 

dependent of choices and preserves the relations of RA(~I(X)). 

This is non-trivial and should appear in a forthcoming paper of 

Quillen [~]. 

For computations of K i of various rings, we refer the reader 

to Quillen's talk in these proceedings. We mention some general 

results about the Quillen K-groups. 

Theorem 2.7 [~]. if R is noetherian and left regular, then 

Ki(R ) = Ki(R[t]) for all i. Equivalently, 

Hi(G6(R ) ~) = Hi(G4(R[t]) ~) , all i. 

If R is a left noetherian ring, then Choo [9 ] has shown that 

the free associative algebra A = R~X] on the set X is a coherent 

ring. *) Similar arguments also show that if g6 dim R ~ n, then 

g6 dim A ~ n+l. The ideas used in the proof of 2.7 can then be 

used to prove 

Theorem 2.8. If R is left noetherian ring of finite global 

dimension, then Ki(R[X}) = Ki(R), all i, where R{X} is the free 

associative algebra on the set X. 

*) See also Choo, Lam~ and Luft [59]. 

12 
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As for the Laurent polynomials, we have 

Theorem 2.9. If R is any ring, then 

Kn(R[t,t -I] m Kn(R) • Kn_I(R) @ (?) 

The proof for n = 2 was given for Wagoner ~ and for 

general n by Gersten [F~]. Quillen has recently proved that 

the term (?) is zero if R is noetherian and left regular [~. 

The general structure of the term (?) is still a mystery but 

one suspects that it is related to the category Nil (R) of pairs 

(P,v) consisting of a projective R module P and a nilpotent 

endomorphism v of P (compare [~6]). 

We shall describe now a delooping of the space BG6(~ ) due to 

Wagoner [~g] and Gersten [18]. Let K be the ring of infinite matrices 

(rij),rij6R ; i,jml, where all but finitely many entries in any 

row or column are zero. Let CR be the subring of E generated by 

(infinite) permutation matrices and diagonal matrices 

d = diag (dl,d2,d3,...) of finite type, in the sense that the 

diagonal entries [di} of d are selected from a finite subset of R. 

+ 
Theorem 2.10. BGt(CR) is contractible and K0(CA ) = 0. 

The fact that Ko(CA ) = KI(CA ) = 0 was proved first by 

Karoubi [~, who observed that there is an endomorphism T of the 

category ~CR such that 

TeI~T. 

This fact was exploited in [I~] and [~] to prove 2.10. 

Next let R = U Mn(R ) be the two sided ideal of "finite" 
ne0 

matric~ in C(R), where Mn(R ) ~ > Mn+I(R) by M~ > (~ ~) 

13 
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One lets SR = CR/R. 

Theorem 2.11 [/8],[56]. The fibre of the canonical map 
+ + + 

BG~(CR) > BG~(SR) is homotopy equivalent to K0(R ) × BG~(R ) 

Consequently we have 

+ + 
2.12) ~ BG6(SR) ~ K0(R) × BG6(R) 

and hence Ki+I(SR ) = Ki(R), i ~ 0. 

There is a particularly interesting application of this 

th For we construct an ~-spectrum E(R) C~] whose n result. 

space is 

+ 
E(R) n = K0(SnR) x BG6(Sn(R)) ; n >_ 0 

and canonical homotopy equivalence 

E(R)n = ~ E(R)n+I 

is given by 2.12). As usual, one sets ~i(E(R)) = lira ~i+n(E(R)n), 
n~ 

where one observes that the definition ~i(E(R)) makes sense for 

all i E Z, and in fact ~i(E(R)) = Ki+n(SnR), n+i e 0, n ~ 0. How- 

ever the groups K0(SnR) = ~_n(E(R)) have been identified by 

Karoubi [~5] as (LnK0)(R), Bass' candidate for K n(R ), n ~ 0 [3 I- 

We recall that if F: Ring > A b is a functor, then LF: Ring --> A_~b 

is defined by exactness in the diagram 

F(R[t]) @ F(R[t-l]) > F(R~t,t-l]) > (LF)(R) > 0 . 

Theorem 2.13. The spectrum E(R) has homotopy groups ~iE(R) = Ki(R), 

i ~ 0 and ~iE(R) = LiK0(R) = K0(SiR) ' i ~ 0. If R is noetherian 

and left regular, then LiK0(R) = 0 for all i > 0. 

14 
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To terminate this section we collect some alternative 

procedures for constructing the space BG6(~ ). The first, due 

to E. Dror, makes use of the integral completion functor ~= of 

Kan and Bousfield [ ~]. The functor ~= is defined on simplicial 

sets having one vertex and takes values in the same category. 

Its main properties can be summarized as follows. 

2.14. If f: X > Y induces an isomorphism on integral homology, 

then Z (f): Z= X --> Z Y is a weak homotopy equivalence. 

i 2.15. There is a morphism X > Z X, which is a weak homotopy 

equivalenceif X is an H-space (or more generally if X is nilpotent 

[ ~]). 

Theorem 2.16 (E. Dror). BG6(~ ) = Z=BG~ (R) 

Proof: Consider the diagram 

f + 
BG6R > BG6 (R) 

Z=(f) + 
Z=BGg(R) ~ Z BG6(R) 

By 2.1, f induces an isomorphism on integral homology. By 

+ is an 2.14, Z (f) is a weak homotopy equivalence. But BG~ R 
+ + 

H-space, so BGg(R ) > ~. BG6(R ) is a weak homotopy equivalence. 

This completes the proof. 

Next, the Anderson-Segal approach ~ I ~,~]. The category 

@R with its product @ is first replaced by an equivalent category 

with product C, J_ where the operation ± is strictly associative 

15 
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and satisfies a type of commutative law. The nerve B C of the 

category C acquires from ~ the structure of a simplicial monoid. 

But one may group complete this simplicial monoid by taking its 

classifying space B(Bc) ([~; the Bar construction) and then 

applying Kan's free loop group functor G [9~] to get GB(Bc). 

Theorem 2.17. GB(Bc) ~ K0(R) x BG6(~ ). 

A proof of 2.17 may be found in [39]. Anderson and Segal 

show how to produce a generalized cohomology theory from any 

category with product, coherently associative and commutative 

in the sense of MacLane [~]. They produce in particular 

deloopings of the space GB(Bc). Their spectrum is connected, 

in the sense that ~i = 0 for i < 0. Thus, their delooping is 

different from that of 2.12) if R is not regular. The relation- 

ship between these deloopings is still unclear. 

A result that follows from the Anderson-Segal approach is the 

following 

Theorem 2.18. Suppose R and S are Morita equivalent rings (that 

is they have equivalent categories of left-modules) then 

Ki(R ) ~ Ki(S ) for all i. 

We have also avoided the question of extending the Mayer- 

Vietoris sequence 1.2 and 1.8. In fact, see Swan's talk on lack 

of excision to see that this cannot in fact be done. However we 

have the following 

Theorem 2.19. Let R be a commutative noetherian regular ring and 

let (f,g) = R. Then there is an exact Mayer-Vietoris sequence 

16 
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... --> Kn+l(Rfg) --> Kn(R ) --> Kn(Rf)@Kn(Rg) --> Kn(Rfg) --> .. 

*) 
Here Rf is the localization of R at the monoid of powers of f. 

The result 2.19 was first proved for the Karoubi-Villamayor 

theory (see §3 below) by Gersten ~l]. It is now known that the 

Quillen theory and the Karoubi-Villamayor theory agree on regular 

rings (Proposition 3.14 below). A second direct proof folluws 

from Quillen's theory of localizations ~. 

We mention now some features of the Quillen theory. These 

are external pairings Ki(A ) ® Kj(B) > Ki+j(A®B ). If A is 
Z 

commutative, then the map A ® A > A gives internal pairings 

Ki(A) ® Kj(A) > Ki+j(A), which make K,(A) into an anti- 

commutative graded ring (x.y = (-l)ijy.x for x E Ki(A),y E Kj(A)). 

f 
If A > B is a ring homomorphism and B has a finite resolution 

by finitely generated projective A-modules, then the transfer 
f, 

Ki(B) > Ki(A ) is defined [~] In addition if f*: K.(A)-->K~(B] 

is induced by B®: C A > PB' then the projection formula is 
A 

valid if A and B are commutative: 

f,(f*(a).b) = a.f,(b) , a E Ki(A), b E Kj(B) 

Since f~: K, A > K,B is a ring homomorphism, the projection 

formula states that f, is a homomorphism of K,(A)-modules. 

In the special case f: A > B where B is projective and of 

finite type as left A-module, the transfer can be constructed 

quite directly. Given an arbitrary representation ~ of a group 

G in a projective B module P of finite type, G P > AUtBP , by 

*) J. P. Jouanolou [61] has recently extended this result to a 

higher K-theory of schemes. The Mayer-Vietoris sequence for schemes 

also appears in the paper of K. Brown and S. M. Gersten [62]. 

17 
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restriction of operators, p determines a representation 

A Pl > AUtAP , where P is projective and of finite type as 

an A-module. The assignment p ~ > Pl is an exact functor 

@B(G) > ~A(G), hence determines a natural transformation 

RB(G) > RA(G) 

of contravariant functors in G. If now X is a based finite CW 

complex, we have the morphisms ~ of Theorem 2.6, and the uni- 

versal property of 2.6 determines a commutative diagram of 

functors in X: 

RB (~I (X)) ~ R A (rr I (X)) 

+ u) + 
[X,K0(B)XBG~(B); ~ [X,K0(A)×BG~(A )]  

Taking X=S n, the induced map Kn(B ) --> Kn(A ) is the desired transfer. 

We should like to discuss now a method of approximating the 
+ 

space BG%(R ) by a Postnikov type tower. The construction is due 

to Dror in his thesis t/O], where in fact it is done in much 

greater generality. It will be clear that the tower can (and 

should) be constructed as a functor in simplicial sets, but we 

adhere to the looser geometric language we've been using. Let 

X 0 = BG%(R), and observe that the maximal perfect subgroup of 

G%(R) is g(R). Let X I be the covering space of X 0 corresponding 

to 8(R), so we have the fibration 

X I > X 0 > K(KI(R ),I) 

18 
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and XI= Bg(R ). Observe now that HI(XI) = O, so H2(XI,H2(XI )) 

= Hom(H2(XI), H2(XI) ) by universal coefficients. Representing 

the identity map, we construct the fibration 

X 2 > X I .... > K(H2(XI),2). 

The exact homotopy sequence of this fibration shows that ~i(X2) = 0 

for i e 2 and yields the central extension 

0 > H2(X I) > ~IX2 > ~IXI > 0. 

The low degree terms of the Serre spectral sequence show that 

HI(X 2) = H2(X2) = 0. Since X I = Bg(R), it follows that H2(XI) 

= K2(R ) and that X 2 = BSt(R ) (compare proof of 2.2). 

Now H3(X2,H3(X2) ) = Hom(H3(X2),H3(X2)), so again, representing 

the identity map, we get a fibration 

X 3 > X 2 ........ > K(HB(X2),3). 

The homotopy exact sequence shows that ~IX3 = ~IX2 = St(R) and 

~iX3 = O, for i ~ 3, whereas ,2X3 = H3X 2. In addition, the Serre 

spectral sequence shows that Hi(X3) = 0 for i ~ 3. 

This process of killing successive homology groups may be 

continued to construct fibrations 

Xn+ I > X n > K(Hn+l(Xn),n+l) 

We summarize the properties of the X n. 

Proposition 2.20. ~i(Xn) = 0 , i ~ n ~ 2 . 

~i(Xn) = Hi+l(Xi) , 2 ~ i < n. 

Hi(Xn) = 0 , I ~ i ~ n . 

~l(Xn) = St(R) , n ~ 2 . 

19 
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Hence if we let X be the "limit" of the tower 

• .. > Xn+ I > X n > ... , we have H,(X=~) = H,(pt~), 

~IX = St(R), ~iX = Hi+iXi, 2 ~ i < n. 

+ 
Theorem 2.21. X= is the fibre of the map BG6 R > BG6(R ). Thus 

~n (X~) = ~n+IBG6($)~, = Kn+ I(R), n ~ 2. 

Corollary 2.22. K3(R ) = H3(St(R ) ~) 

Proof of 2.22: By 2.21, K3(R ) = n2X = H3(X2) = H3(Bst(R)). 

Another proof of 2.22 can be found in [~0]. 

The following proof of 2.21 is due to Quillen. Set 

M = X 0 U CX~ , the mapping cone of the map X= > X 0 = BGg(R ) , 

so one has the cofibration 

X= > X 0 J > M . 

NOW X= is acyclic, so X 0 J > M induces an isomorphism on integral 

homology. By Van Kampen's theorem, one sees that ~l(j) is the 

map G6(R) ........ >> KI(R). By Quillen's theorem (see 2.1), the map 

j is identified with the map BGg(R ) > BG6(~ ). It suffices, there- 

fore, to show that the cofibration X > X 0 J. > M is also a 

fibration. 

Let F be the fibre of j: X 0 > M. Since the composition 

X > X 0 > M is null homotopic, there is a map X~ g > F 

and a homotopy commutative diagram 

X 

g!~ x 0 J > M 

BG6 (R) > BG6 (R) 

20 
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It suffices to prove that g is a homotopy equivalence. We do 

this by constructing a homotopy inverse for g. 

Lemma: If Y is acyclic and Z has abelian fundamental group, 

then [Y,Z] = 0. 

Proof: Let Y >Y+ be as in 2.1 with E = ~i Y. Then by 

obstruction theory, there is a unique (up to homotopy) factor!- 

zation 

Y g >Z 

/ !  
t 

+ /  

of any map g: Y > Z. But Y+ is simply connected and acyclic, 

hence contractible. Thus g ~ 0. 

Corollary: If Y is acyclic, then there is a unique (up to 

homotopy) lift of any map Y--fo > X 0 to X : 

Proof: 

to a map Y - - -  

X~ 

.Z". "~ [ 

- f 
Y o > X 0 

Consider the problem of lifting a map 
f 
n ~ Xn+l" One has the fibration 

f n  
-~ X 

n 

Xn+ I > X n - - - ~  K(Hn+I(Xn),n+l) 

Y 
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and the spaces K(Hn(Xn),n+l ) all have abelian fundamental group. 

It follows one can lift fn to a map fn+l" The uniqueness state- 

ments follow similarly. 

Apply the corollary to the map F - > X 0 to construct a 

h factorization F > X : 

X= ~ X 0 

F 

That hog ~ I follows from the uniqueness assertion of the corollary. 

In particular, g, is injective on homotopy. The map goh is an 

endomorphism of the fibre in the fibration diagram 

F - - >  X 0 "] > M 

I g°h [= [-- 

F ~X 0 ] >M 

From the five lemma, it follows that g, is surjective on homotopy. 

Thus, g is a homotopy equivalence and the proof of 2.21 is complete. 

It is worth remarking that the tower of spaces 

+ X + "'" > Xn+l "> n > ... > X is the usual "upside down" 

+ + X + kills the first n homo- Postnikov tower of X 0 = BG6(R), where n 

topy groups of X~ [9~]. 

§3. The Karoubi-Villamayor Theory. 

The point of departure of the Karoubi-Villamayor Theory [~7] 

h introduced in §i. It is most convenient to set is the functor K I 
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up this theory in the setting of rings without unit. Hence 

in this section ~ will denote the category of rings without 

unit and homomorphisms. Observe that each A in G determines a 

unitary ring A + = ~ x A, where (n,a).(m,b) = (nm,nb+ma+ab) and 

the addition is componentwise. The functor A I- > A + is left 

adjoint to the forgetful functor Ring > ~. 

If F: Ring > Group is a product preserving functor, we 

may define F: ~ > Group by F(A) = Ker(F(A +) > F(Z)), where 

F(A +) > F(Z) is induced by the augmentation. A check shows 

that this definition is consistent for unitary rings. Thus the 

functors G6, K 0, K~, K I, etc. are defined for rings without 

unit. 

Definition 3.1. The path ring EA of A, A in ~, is the kernel of 

the map A [ t ]  ..t~0 > A. Thus EA c o n s i s t s  of  po lynomia l s  ~ a . t  i 
1 

with zero constant term. There is a map EA ¢ > A induced by 

Z a.t i > ~ a.. The loop ring ©A is the kernel of e: EA > A. 
l l 

Let ~: EA > E2A = t l t  2 A ~ t l , t 2 ]  be g i v e n  by 

• i 
a.tll > £ ai(tlt2) Then (E,~,~) is a cotriple in ~. 

iel l iel 

Thus one has an augmented simplicial ring 

E A. A < EA ~ E2A ~ E3A 

If we apply the functor G4 to E'A, we get an augmented simplicial 

h A G~(E*A), i ~ -i where group Gt(E*A). We set K i 2(A) = ~i 

A 
~i = ~i' i e 1 , ~A0(GtE*A ) = Ker ~0(GtE*A) c > GtA, and 

A_I * (G6E'A) = Coker (GtEA > GtA). This description was given 
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in [l~ and we shall find it convenient in comparing the K~ 
l 

with the Swan groups K~ later. 
l 

h 
The notation K I is consistent, for one readily checks that 

if A is unitary, then the image GgEA .-> G6A is exactly the 

subgroup UP(A) generated by unipotent matrices. 

Lemma: K~(EA) = 0 , all i ~ i 

For the augmented simplicial ring E*(EA) possesses then an extra 

degeneracy which gives the null homotopy of Gg(E*A). 

Observe that the split sequence 

EA --> A[t] t~0 > A 

gives rise to a split short exact sequence of simplicial groups 

i > G~(E*EA) > Gg(E*ALt]) 

and hence the homotopy exact sequences 

0 > Kh(EA) > Kh(A[_t] 

> G6(E*A) > i 

> Kh(A) > 0 . 

h 
Thus K~.'(A[t] > K~.'(A) is an isomorphism and we conclude that 

K h i are homotopy functors (i • i) (see §i). 

Definition 3.2. The homomorphism B f > C is a G6 fibration if 

G6(EnB) > G6(EnC) is surjective for all n ~ i. For example, 

if C is unitary, noetherian, and left regular, then any surjection 

f: B >> C is a Gg fibration. 

Lemma 3.3. If f: B > C is a G6 fibration and A is the kernel 

of f, then there is a long exact sequence 
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For combining the left exactness of G~ with the assumed 

right exactness in 

i > G6(EnA) > Gb(EnB) > Gg(EnC) > i (n ~ 0) , 

and taking the homotopy exact sequence yields the desired long 

exact sequence. 

Suppose now that 0 > A f > B g > C > 0 is an 

arbitrary short exact sequence of rings without unit. Then a 

result of ~P,~] gives a natural six term exact sequence 

3.4) KI(A ) --> KI(B ) --> El(C ) ~ > K0(A ) --> K0(B ) --> K0(C ). 

Proposition 3.5. [f~,p. 75] If g: B > C above is a G~ 

fibration, then 3.4) factors to give the exact sequence 

K~(A) --> K~(B) --> K~(C) ~ > K0(A ) --> K0(B) --> K0(C) 

Proof: EA > EB Eg > EC is also a short exact sequence, 

so we have the commutative diagram with exact rows 

KI(EB) > KI(EC) ~ > K0(EA) 

l i t  
KI(B) > KI(C) > K0(A) 

Since g is a G£ fibration, G6EB > G6EC is surjective, hence 

KIEB > KIEC is surjective. Thus the map ~: KIEC > KoEA is 

zero. It is now routine to verify the exactness of the resulting 

sequence of 3.5. 

Lemma 3.6. For any A in ~, the map EA c > A is a G6 fibration. 
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Proof. It suffices to show E(EA) > E(A) has a section. 

This map is 

A ® tuZ[t,u], u -->i> A ® tZEt] 
Z Z 

given by (u, > i). A section is defined by sending t > tu. 

Corollary 3.7. Kn~I(A) ~ K~(OA) , n e i. 

For one writes down the exact K h sequence of the short exact 

sequence QA > EA c > A. 

h(QnA) n ~ 0. To deal with K0, we introduce Hence K n I(A) ~ K 1 

the following 

Definition 3.8 *) The ring A is K-regular if for any set X, 

Ko(A ) > K0(A[X])is an isomorphism. For example, any unital, 

regular, left noetherian ring is K-regular by Theorem 1.3. 

Karoubi [~6-] proves that if A is K-regular, then so are EA, f~A, 

CA, and SA. 

h 
Lemma 3.9. If A is K-regular, then Kl(A ) ~ Ko(~A ) and hence also 

K~(A) ~ K0(~nA). 

For, consider the exact sequence of 3.5 

K~(EA) > K~(A) b > K0(OA) > K0(EA) " 

Observe that K~(EA) = 0 and K0(EA ) = 0, by virtue of the short exact 

sequence 

0 --> K0(EA ) > K0(A~t~ ) ~ > K0(A ) > 0 . 

*) This differs from Karoubi's terminology [~_~]. 
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As for the Mayer-Vietoris sequence, we quote 

Proposition 3.10 ([/6] 2.10). 

in 

Given a cartesian diagram 

D - - ~ A  

B g > C 

where g is surjective and a G6 fibration, 

Mayer-Vietoris sequence 

then one has the long 

Kn~ I(C) --> K~(D) --> K~(A)@K~(B) --> K~(C) --> ... 

--> K~(C) --> K0(D) --> K0(A)@K0(B) --> K0(C) 

We have already mentioned the Mayer-Vietoris sequence of 

localization, for regular rings (2.19). Thus, the Karoubi- 

Villamayor theory has good exact sequences, for Gg-fibration& at 

the expense of the "right" K I. 

The Karoubi-Villamayor theory is equipped with products [~2] 

and a transfer map for f: A > B where f is unitary and B is 

finitely generated and projective qua A module. Furthermore, 

this theory can be axiomatized [2.7]. 

One says a "K h'' theory is a sequence of functors ~n: ~ --> ~b, 

n ~ 0, such that for every surjective G6 fibration B > C with 

kernel A, one has a natural connecting homomorphism 

~: ~n+l(C) > ~n(A) 

and a long exact sequence 

~n+l(C) A > ~n(A) > ~n(C) > ... > ~o(C). 
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Theorem 3.11. There is one and only one K h theory [~n,ne0} up 

to isomorphism satisfying 

(i) ~n(A) = 0, n > 0, if A is contractible (that is, 

if the identity map of A and 0 are homotopic maps A--> A) and 

(2) g0(A) = K0(A ) 

To relate the Quillen theory K i to that of Karoubi and 

Villamayor, we have 

Theorem 3.12 If A is a unitary ring, there is a first quadrant 

spectral sequence of homological type, whose E 1 = Kq(A[Xl,..,Xp] ) 
p q  - , 

q > 0, converging to K~+q(A) 

The argument can be found in [l~]. It depends on an 

alternative description of the groups K h due to D Rector 
i 

Theorem 3.13 [~3] Let R, be the simplicial ring 
d. 

R n = R[t0,...,tn~/(t0+...+tn-l), where faces R n i > Rn_l are 

given by t i ...... > 0. Then ~iG6(R,) = Ki~I(R), i e 0. 

A useful consequence of 3.12 is 

PZoposition 3.14. Suppose that, for all q,Kq(R) ~= > Kq(R[X]) is 

an isomorphism for every set X. Then the edge homomorphism induces 

an isomorphism Kq(R) ~ > K~(R). 

Quillen has recently shown that the hypotheses of 3.14 are 

satisfied if R is unitary, left noetherian, and left regular [~2]. 

Thus the Kq and Kqh theories agree on such rings. Furthermore, 

if R is unitary, of finite global dimension, and if R[X~ is 

coherent for every set X, then again the hypotheses of 3.14 are 

h R satisfied. Hence Kq(R) = Kq( ) for such rings. 
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There is also a delooping theorem Elg]. 

Theorem 3.15. If R is unitary and K-regular, then 

BG6(SR), ~ Ko(R) x BGg(R), 

Here BG6(R), is the simplicial classifying space for the 

simplicial group G6(R,) of 3.13. 

As for Laurent polynomials, we quote 

Theorem 3.16 (~O~,~|7]). If R is any K-regular ring then 

Kn+lh (R~t,t-l]) ~ Kn+l(R)h ~ K~(R) for n ~ 0. (denote K~ = K0) 

For any ring R, let QR (as distinct from ~R) be the sub- 

ring of R~t] consisting of polynomials ~ r.t i with r 0 = Z r. 
ie0 l ie0 l 

Then there is a split short exact sequence of rings 

OR > ~R > R 

and consequently K~(~R) = K h K~ i(~R) @ (R), i e 0, where we set 

K~ = K 0. Let ~Rn be defined inductively by ~ = ~R' and 

n+l R = ~ n [~g]" Then, if R is K-regular, we have by induction 
(o R ) 

In particular, for a field F, one has 

K0(~) = K2(F ) @ 2KI(F) @ K0(F) , 

where we have used the identification Ki(F ) = K~(F). Now a 

presentation for K2(F ) is known by work of Matsumoto E3~]. One 

might hope that the formula above would be useful in providing 
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an alternative proof of Matsumoto's theorem, by considering the 

2 geometry of the ring ~F" There also exists an elementary proof 

for the localization exact sequence of a dedekind k-algebra A 

(k a field) ~3~, which makes use of the fact that Kn(A ) can be 

recovered from K0(g~). Now that the theories K hi and K i are 

known to agree on regular rings R, one might hope that one might 

be able to use geometric methods on (Q~) more systematically to 

gain information about Kn(R ). 

Anderson [ I ] has another approach to the Karoubi-Villamayor 

theory. From the simplicial ring R. (see 3.3) he constructs the 

simplicial category PR.' (PR.)n = PRn' with the obvious faces and 

degeneracies. Then B~. is a bi-simplicial set, and if all the 

@R are blown up to make them strictly associative under @, then 
n 

the diagonal complex of B~ becomes a simplicial monoid M. 
R. 

A 
The group completion M of M is then homotopy equivalent to 

BGg(R.)" 

The advantage of this approach is that it shows the dependence 

of K h i on the categories of projective modules on the rings R n. 

If, for example, R and S are unitary rings and Morita equivalent, 

then @R is equivalent to ~S , all n, so a spectral sequence 
n 

argument shows 

Proposition 3.17. 

then 

If R and S are unitary MIita equivalent rings, 

Kh(R) ~ K h i(S) for all i ~> 0. 
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§4. The Theory of Gersten and Swan. 

Swan introduced higher K-functors in [~O] by resolving 

the functor Gg in the category of functors, and Gersten intro- 

duced higher K-functors [IS] by introducing a cotriple con- 

struction in the category of rings and applying this to the 

elementary group g. Swan later showed ~-~] that Gersten's 

resolution applied to G6 gave Swan's groups. This theory we 

shall denote by K S i e 0. 
i' 

As in §3, ~ is the category of rings R without unit. The 

free ring (without unit) on a set S is the functor Set > 

adjoint to the forgetful functor. Denote by FR the free ring on 

the underlying set of R. Then adjointness gives a morphism 

¢: FR > R and a morphism U: FR > F2R, so that (F,~,U) is 

a cotriple in ~. We denote by Irl the free generator of FR 

corresponding to r E R. Thus, c(Irl) = r, and ~(Irl)= !Ir!!. 

Thus one has the augmented simplicial ring F*R 

F R: R (.. FR ~--~ F2R ~ ~ F3R ... 

Definition 4.1. __K~(R) = ~i-2 GgF*(R) , i ~ 1 , 

w h e r e  ~ i  h a s  t h e  same  m e a n i n g  a s  i n  3 . 1 .  S e t  K = K 0.  

T h e o r e m  4 . 2 .  I~I(R)  = K I ( R  ) 

The p r o o f  i s  b a s e d  on  G e r s t e n ' s  t h e o r e m ,  1 . 4  a b o v e .  

Lemma. I~ i (FR ) = 0 ,  a l l  i ~ 0 . 

F o r  t h e  s i m p l i e i a l  r i n g  F FR h a s  a n  e x t r a  d e g e n e r a c y .  The 

r e s u l t  K0(FR ) = 0 was f i r s t  p r o v e d  b y  B a s s  [ ~ ] .  
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There is an immediate relationship between the functors 

S h 
K i and Ki. For there is a morphism of cotriples (F,¢,~) --> (E,e,~) 

given by the homomorphism FR > ER, Irl i > rt, which induces 

maps K~(R) > K~(R). For i = i, this is just reduction modulo 

unipotents. 

It has proved more difficult to relate the functors K i to 

K S i" Presumably there is a spectral sequence, whose edge homo- 

morphism is the desired map K i > KS i' but this is still con- 

S is easily described. jectural. However, the relation of K 2 and K 2 

Let R be a unitary ring and let G(R) be the free group on 

symbols Xij(r) , I ~ i ~ j; r E R. There is a natural map 

G(R) > St(R) given by 

Xij (R) ,--.~ xij (r) 

Define a map G(R) > Gg (FR) by Xij(r) , -. > Eij(Irl). Recall 

that ~0GL(F*R) is the difference cokernel (coequalizer) of maps 

F¢ 
G6 F2R eF > > G$ FR . 

Proposition 4.3 ([16"],[.C~2]) The composition 

i, 

G(R) > G~(FR) > ~0G~ F R 

factors through the map G(R) > St(R). 

Consider now the commutative diagram with exact rows 

I --> K 2(R) > St(R) 

0 > ~VoG!F*R >rroG%!'~R 

> g(R) > 1 

¢ > G6 (R) 
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There is an induced map 

K 2 (R) K~ (R) ~ "~ > = ~0Gg(F"R). 

It is easy to see that this map is surjective, and one has acom- 

mutative diagram 

K2R ~ .... > K S (R) 

\ /  
K h (R) 

where the map K2(R ) ..... > K2h(R) is the edge homomorphism of the 

spectral sequence 3.12. In [5"O] (theorem 8.5) it is shown that 

the kernel of w: K2(R) > KS(R) is generated by all images 

K2(FS ) > K2(R ) under all ring homomorphisms FS > R, where 

FS is a free ring (without unit). (One interprets 

K2(A ) = Ker K2(A+ ) > K2(Z ) for A in C). However Ki(FS) = 0 for 

all i, by Theorem 2.8. Hence, we have 

Theorem 4.4. For any ring R, the natural map K2(R ) u: > KS(R) 

is an isomorphism. 

We have just seen this for unitary R. If R is without unit, 

consider the diagram (using the fact that K 2 preserves products) 

0 > K2(R) > K2(R+) > K2(2Z) 
I 

o 

We might inquire whether a similar result holds for K S but i' 

this appears to demand construction of a spectral sequence. 
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An alternative method for constructing the K S has recently 
i 

been proposed by Keune [31]. If X is a set, let FX be the free 

ring without unit on X. The augmented simplicial ring A, 

(without unit) is called free if A i is free on Xi, i ~ 0, and 

if the degeneracies sj: Ai--> Ai+ I preserve free generators: 

sj (Xi) c Xi+ I . 

Let the n-cycles Zn(A.) be 

~(a 0 .... ,an+l) E (An)n+2 I dia j = dj_la i , i<j} 

Define d: An+ 1 > Zn(A.) by d(a) = (d0a,...,dn+la). Then A. 

is aspherical if d is surjective, all n ~ -i; A. is a resolution 

of A 1 if it is aspherical; and A. is a free resolution of A_I 

if it is free and aspherical. One shows that any ring A i with- 
* 

out unit has a free aspherical resolution (for example, F A 
-i 

will work). 

Proposition 4.5 [9#]. Let A., B. be augmented simplicial rings 

and q-l: A-I --> B-1 a homomorphism. Let A. be free and let 

B. be aspherical. Then there exists a unique (up to simplicial 

homotopy) simplicial homomorphism ~: A. --> B. which extends ~-i" 

One proceeds now in the standard way. If R is a ring, let 

R. be any free resolution of R. 

A 2Gt(R.) = K~(R) , n ~ i. Corollary 4.6. ~n- 

Keune's method is particularly attractive since it removes 

one's dependence on the particular resolution F R, and is very 

suggestive of the approach taken in ordinary abelian homological 
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algebra to define derived functors. If one could establish the 

i d e n t i t y  o f  K~ 1 w i t h  K i ,  t h e n  K i c o u l d  be  i n t e r p r e t e d ,  i n  a v e r y  

r e a l  s e n s e ,  as  d e r i v e d  f u n c t o r s  o f  K 0 

§5. Additional Remarks on K I. 

There is considerable activity now in extending the higher 

K-theory of rings to schemes [~,[~] and to abelian categories 

~#~]. Since these ideas are presented elsewhere in this volume, 

we want to point out here that although K 0 is well understood 

(at any rate, one agrees how to define it) the same cannot be 

said about K I. In this volume Quillen presents a construction *) 

which assigns to an abelian category G a new category Q(~) whose 

objects are those of ~ and whose morphisms A > A I are iso- 

morphisms of A with a quotient of a subobject of A ~. He defines 

Ki(6) = ~i+I(BQ(~)), the homotopy of the geometrical realization 

of the nerve of Q(~), and verifies that K0(~) is the same group 

defined in §i. These groups are the "right" K-theory of 6, in 

view of Quillen's localization theorem. 

However, Bass ~3] defined a K I for an abelian category, 

we denote here K~et(6). One constructs the category ~6 which 

of pairs (A,~), A in G and ~ an automorphism of A, where 

morphisms are commutative diagrams, q~ has a notion of short 

exact sequence. These form a class g and one sets 

K~et(G) = K0(~6,g )/R 

~)See Quillen's talk for precise details [42]. 
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where R is the subgroup generated by 

(A,~) + (A,B) (A,~). 

There is a functor QC 

Q(~C) > Q(c~).~Q(C)~ . 

> C~ and this induces a morphism 

> Map(B_z, BQ(C)) > ~BQ(c) • 

> K I (C) 

Taking classifying spaces, gives 

BQ (~6) 

and applying ~i gives 

Ko(n~,S) 

One checks that this map kills the subgroup R, and hence there 

is a natural map 

K~et(c) > KI(C) • 

In general, this map is neither injective (Gersten) nor surjective 

(Murthy). This leaves open the problem of studying the nature of 

KI(C). We shall sketch here the arguments of Murthy and Gersten. 

If A is a noetherian ring, let h A be the category of finite 

A-modules, and Gi(A ) = Ki(~A). Let G~et(A) = Kldet(HA) " 

Proposition 5.1 (Murthy). If n is cyclic of order 2, then 

G~et(z~) > GI(Z~ ) is not surjective. 

Proof: Quillen has established an exact sequence of locali- 

zations C~] for abelian categories which, for the localization 

(where Z I = Z[½]), reads 
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--> GI(]?2~) --> GI~) --> GI~'~ ) --> G00F2~) --> G0(Z~) --> G0~i~ ) 

We claim rank GI~ ) > i. To see this, note that G0~2n ) _~Tz. 

since~?2 ~ has one simple module. Similarly, GIOF2~ ) = GI~F2~/N ) = 

GI~2 )= 0, where N is the nilradical of ]F2~. Since Zr~ = ZIxZ I, 

it follows easily that GI(ZI~) is of rank 2. Thus, the locali- 

zation sequence becomes 

0 > GI(Z~ ) > GI~I~) > G0~F2~ ) 
rank 2 rank i 

and we get rank GI~ ) e 1 as claimed. 

However, Gdet~) has been computed in T. Y. Lam's thesis 

[_3~, Theorem 4.1]. The result is Gdet~) = ~/2Z @ Z/2Z. Hence 

Gdet(E~) > GI~ ) is not surjective. 

Proposition 5.2 (Gersten). If X is a complete nonsingular curve 

over the complex numbers of genus i, then Kdet(x) ........ > KI(X ) is 

not injective, where KI(X ) = K 1 (coherent OX-mOdules ) and similarly 

for K det(X) . 

Proof: Let F be the field of rational functions of X, let 

D be the divisor group. Then the exact sequence of localization 

at the generic point is 

5.3) > K2(F ) ~ > D®C* * div -- > KIX > F ---> D > PicX > 0. 

Since ~* is the kernel of the divisor map, this gives 

K2F ~ > D®C --.> KIX > C* ....................... > 0 . 

But K l'det(X) ~- Ko(X)®C* by Robert's theorem [~ ] and Ko(X ) = PicX@Z 
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so Kdet(x) = (PicX®C*) @ C* 

diagram is commutative 

It is easy to see that the following 

K 2 (F) 

Pic X®C* 

. det. 
K I A 

,L 
> DeC > KIX ,> C >0 

J. 

where the map D®C 2> PicX®C is the natural projection. 

T h u s ,  t o  s h o w  t h a t  K d e t ( x )  -- > K I ( X  ) i s  n o t  i n j e c t i v e ,  i t  s u f f i c e s  

to prove that the composition 

K2F ~ > D®C* * .... > PicX®C 

is not zero. However, the map b is just the tame symbol; if 

f,g E F , then 

(f,g} = Z e ® ~(P) , 
PCX 

closed 

Vp (f)vp(g) fvp(g) 
where hp = (-I) 

g 

Thus, it suffices to prove that some expression b(f,g} E D®¢ does 

not represent zero in PicX®C However, this is in effect what 

L. Roberts showed in his thesis [~] (argument preceding 

Theorem 4.4.4) for X an elliptic curve. 

It is perhaps worth pointing out that the exact sequence 5.3) 

gives a presentation for SKI(X ) = Ker(KIX - > ¢*), since the 
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groups K2F and D®C and the map ~ are "known." 

Rice University 

September 26, 1972 
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