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ANNALS OF MIATHEMATICS 

Vol. 68, No. 3, November, 1958 
Printed in Japan 

HOMOLOGICAL ALGEBRA IN ABELIAN CATEGORIES 

BY ALEX HELLER * 

(Received May 23, 1957) 
(Revised March 17, 1958) 

Introduction 

Homological algebra, as a connected system of notions and results, was 
first developed for categories of modules by H. Cartan and S. Eilenberg 
[2] and was immediately generalized by D. A. Buchsbaum to exact cate- 
gories [1 and 2, appendix]. The generalization was an important one, 
since it subsumed such new applications as categories of sheaves and of 
F-D complexes, as well as allowing a completely self-dual development 
of the subject. 

This generalization is not however sufficient to cover all the potential, 
or even all the actual, applications of homological algebra. This first 
became apparent to the author in connection with studies in the homotopy 
classification of chain-complexes of modules (to appear elsewhere). How- 
ever, such categories as that of Banach spaces and continuous linear 
maps, or that of abelian varieties over a field of nonzero characteristic, 
ought clearly to have homological algebra, yet are not exact. 

This paper, then, is yet another exposition of some of the notions of 
homological algebra, generalized from exact categories to a rather more 
inclusive context, that of abelian categories (? 3). This is broad enough 
to contain most of the examples known to the author, and has also the 
advantage that in it the relative theory [3] is no longer distinguished 
from the absolute one. But new applications appear to be accumulating 
at such a rate that it seems futile to hope for a definitive treatment at 
this time. 

The notion of an abelian category is grounded on that of an additive 
category (? 1), i. e., a category in which maps can be added. In such a 
category exactness can be defined, as well as the notions of kernel, image 
and cokernel. It is not in general true however that every map can be 
asserted to have such appurtenances. If this is indeed the case (in a 
sufficiently precise way) then the category is an exact category in the 
sense of Buchsbaum. More generally an appropriate class of such maps, 
introduced as additional structure on the category, makes the category 
into an abelian category. 

* Fellow of the Alfred P. Sloan Foundation. 
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Much of this paper is devoted to showing that the machinery of ho- 
mological algebra operates in abelian categories. The novelties introduced 
in this procedure are mainly technical in character. For example, in 
proving exactness it is necessary to show that the maps in question do 
in fact have kernels, cokernels and images. It is perhaps remarkable 
that objects-with-derivation do not in general have homology, but always 
have cohomology. They have in fact two kinds of cohomology, dual in 
the categorical sense to each other and not, of course, to homology (?11). 

An important innovation is the systematic use of categories whose 
objects are short exact sequences of an abelian category. These were 
unavailable in previous treatments since, though they are abelian, they 
are never exact (? 6). In spite of this defect they are not at all unman- 
ageable; this is illustrated by the explicit computation for Ext in such a 
category, given in ? 14. 

The notions of category and functor are here taken for granted. It 
is supposed that a category is an honest mathematical object, so that 
such operations may be made as the formation of classes of subsets or 
the assignment of choice-functions. Of course this means that such 
familiar locutions as "the category of abelian groups" must be taken 
with the customary grain of salt. The notation is that of concrete 
categories, i. e., an object A of a category is distinguished from its 
identity map 1: A. The theory is completely self-dual with respect to 
the usual contravariant isomorphism between a category and its dual. 
The duals of definitions and theorems are usually stated; the latter are 
never explicitly proved. 

1. Additive categories 

A preadditive category _5K is a category in which for each A, B e 
the set Hom(A, B; ) - often abbreviated Hom(A, B) - of maps from A 
to B is provided with the structure of an abelian group in such a way 
that the following axiom holds. 

(A) The composition of maps is a bilinear operation, i. e., for A, B, 
C e J-K it is a homomorphism 

Hom(B, C) 0D Hom(A, B) > Hom(A, C) . 

An object A of a preadditive category is a zero-object if 1: A is the 
zero-element of Hom(A, A). Equivalently, A is a zero-object if 
Hom(A, A) = 0, or if for all B, Hom(A, B) 0 0 and Hom(B, A) 0 O. Any 
two zero-objects are of course equivalent. The symbol "O" will be used 
to stand for a zero-object of any preadditive category. 
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If in a preadditive category, maps i: A -3oB, i': A' -3 B, j: B -3 A, 
j': B -> A' satisfy the relations 

ji = 1: A ji' = O 
j'i =O j'i' = 1: A' 

ii + 'j' = 1 : B 

B is said to be a direct sum of A and A' relative to the injections i and i' 
and the projections j and j'. Alternatively, the situation may be de- 
scribed by saying that (A, A', i, j, i', j') is a direct sum decomposition of B. 

PROPOSITION 1.1. If (A, A', i, j, i', j') and (A, A', i, ,, j') are direct 
sum decompositions of B and B then ij + i,'j': B-*B and ij +i'j' : BI-B 
are inverse maps and thus equivalences. If (A, A', i, j, i', j') and (A, A, 
i, j, i, j) are both direct sum decompositions of B then ji': A'-+ A and 

j'i: A -+ A' are inverse maps and thus equivalences. 
For the last statement observe that 

ji'j'i = j(1: B - ij)i = ji = 1: A . 

This proposition asserts that the summands determine the sum, and 
that the sum and one summand, together with its injection and projec- 
tion, determine the other. 

If a preadditive category _5~? satisfies the two following conditions, it 
is an additive category. 

(AO) has a zero-object. 
(Al) (Direct sum axiom). Any two objects of Xf have a direct sum. 
While it is easy enough to construct preadditive categories which fail 

to satisfy either or both of (AOl), such examples all seem sufficiently 
artificial to suggest that the notion of preadditive category can for the 
most part be by-passed. The categories considered below will all be 
additive categories. 

Examples of additive categories may be considered under several head- 
ings. 

I. Exact categories (Buchsbaum [1]): the category of left modules 
over a given ring; the category of sheaves of modules over a fixed sheaf 
of rings; the category of F-D complexes, etc. 

II. Subcategories of exact categories: in any of the above, a subclass 
of the objects, containing 0 and closed under direct sum, together with 
the maps connecting them ; in particular, the projectives or the injectives 
and the maps connecting them. 

III. Ad hoc examples: the following example, due to Whitehead and 
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Spanier [5] is included only as being different in character from the others; 
no study of it is contemplated here. The objects of v are topological 
spaces. The maps in Hom(X, Y; 97) are equivalence classes of continuous 
maps, two maps being equivalent if for some n their n-fold suspensions 
are homotopic. Addition is defined by a process analogous to that used 
in defining the addition in homotopy groups. Composition is induced by 
the composition of continuous maps. 

Additional examples will be considered below, and in a forthcoming 
paper. 

If jl< and 57' are additive (or in fact preadditive) categories a functor 
F: A?-22is said to be additive if for any A, B e ,fg: A - B, 

F(f + g) = Ff + Fg. 

The following important condition on an additive category is not 
apparently satisfied by all the reasonable examples. 

(A2) (Cancellation axiom). If i: A -* B and j: B -) A satisfy ii = 1: A 
then there is an object A' and maps i', j' such that (A, A', i, j, i', j') is a 
direct sum decomposition of B. 

A category which does satisfy this condition will be called a category 
with cancellation; the examples under I above are all categories with 
cancellation; those under II are categories with cancellation if the class 
of objects contains all direct summands of its elements, which is certainly 
true of the class of projectives, for example. It is not clear whether the 
example III has cancellation or not. 

A graded preadditive category j:r is a category in which for each 
A, B e ad the set Hom(A, B; Ad) has the structure of a graded abelian 
group: 

Hom(A, B; iY) = EkeZ Homk(A, B; A) 

where Z stands for the integers. The subgroup Homk(A, B; Jad) is the 
homogeneous component of degree k; its elements are the homogeneous 
maps of degree k. The structure is to satisfy an axiom (A-) obtained from 
axiom (A) by adding the homogeneity condition 

Homm(B, C) (0 Homk(A, B) - Hom,+J(A, C). 
in such a category, zero-object and direct sum are defined as in the 

ungraded case, with the additional condition that injections and projec- 
tions must be homogeneous maps. If (A, A', i, j, i', j') is a direct sum 
decomposition then of course the degree of j is - 1 times the degree of 
i and the degree of j' is - 1 times the degree of i'. 

An axiom (AO-), identical to (AO), and the following direct sum axiom 
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complete the definition of a graded additive category. 
(Al-) Any two objects of jy have a direct sum with injections of 

degree 0. 
The cancellation axiom in the graded case is the same as (A2) except 

of course that in the hypothesis the maps i, j must be taken homogeneous. 
It is often important, in graded categories, to be able to shift degrees. 

A graded category will be said to admit translation if for any object A 
and integer k there is an object B with an equivalence A -+ B of degree 
k. It is easy to see that any graded category may be enlarged without 
essential change so as to admit translation. 

If _5A? and 22 are graded additive categories an additive functor 
F: Jd i-+ ishomogeneous if forallA, B e Cj-andk e Z 

F(Hom,,(A, B)) c Homk(FA, FB) (or Homk(FB, FA)). 
A principal source of examples of graded categories is the following 

construction. If _5A is an additive category, jY is the category hav- 
ing as objects the sequences A: Z -. _'i of objects of A. If A, B are 
objects of Am, Hom(A, B; Ax) is defined by 

Homk(A, B; ) - fmeZ Hom(Am, Bm.k; SI)-. 

The coordinates of a map f e Homk(A, B; ) are fi: Am Bmk 
If F: i? is a covariant additive functor a homogeneous additive 

f unctor Fob: d A.-x 22" is defined by (FA)k = F(Ak) for A e Ad and 
(Ff )k = F(fk) for f a homogeneous map. If F is contravariant the defini- 
tions are (FA), = F(A-k) and (Ff)k= F(f-k-r) for f homogeneous of 
degree r. 

5d is the associated graded category of the additive category A. It 
is easy to see that A is a graded additive category admitting transla- 
tion; if has cancellation then so also has Am-. If F: --)2 is 
an additive functor then Fl, the associated homogeneous functor of F, is 
a homogeneous additive functor. 

2. Monomorphisms, epimorphisms and exact sequences 

In an additive category the notions of monomorphism, epimorphism 
and exact squence may be introduced by borrowing them from the category 
of abelian groups, where they are assumed to be known. Some few of 
the results concerning these notions go over to additive categories ; these 
will be considered here. 

In order to construct a nontrivial theory however it is necessary either 
to impose restrictions on the category, making it an exact category, or 
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to introduce additional structure. The former alternative was treated 
by Buchsbaum [1], the latter will be explored below, in ? 3. 

If 3< is an additive category a map f: A -+ B in 3< is a monomorphism 
if for all C e 3< the map Hom(C, A) -3 Hom(C, B) induced by composi- 
tion with f is a monomorphism in the category of abelian groups. Dually, 
f is an epimorphism if for each C the map Hom(B, C) -- Hom(A, C) 
induced by composition with f is a monomorphism. 

PROPOSITION 2.1. Suppose f: A -- B, g: B -* C. Then 
( 1 ) If both f and g are monomorphisms (epimorphisms) then so is gf. 
( 2 ) If gf is a monomorphism (epimorphism) then f is a monomorphism 

(g is an epimorphism). 
A short sequence in an additive category is a diagram of the form 

at a"t 
0 - A' A- A" - 0 

It is a short exact sequence, abbreviated "s.e.s.", if for all C the two 
sequences of groups 

O - Hom(C, A') - Hom(C, A) > Hom(C, A") 
O - Hom(A", C) - Hom(A, C) - Hom(A', C) 

with maps induced by composition with a' and a" are exact. It follows 
of course that a' is a monomorphism and a" an epimorphism. 

More generally, a sequence 
A n n- fi An- An1 I AO 

uj 

is exact if there are s.e.s. O-> B- u 
Aj A Bj-1--- Oforj=-1,- , 

n - 1, an epimorphism vn: An Bn -, and a monomorphism u0: Bo AO 
such that fj = vj ,uj. 

PROPOSITION 2.2. Suppose 0 - A' A Al > and 

B' B B" > 0 are s.e.s. and that the diagram 
at a"t i O - A' - A 

- A" - 0 

0 - B' B - B" -> 0 
commutes. Then there is a unique map f": A" -+ B" such that the aug- 
mented diagram commutes. Dually, if f and f" are given such that 
f"a" = b"f then there is a unique f ': A' -- B' such that b'f' = fa'. 

This is an immediate consequence of the definition. An important 
special case is that in which f and f' (f and f") are equivalences. Then 
the remaining map is also an equivalence. 
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Some special s.e.s. should be listed here. If f: A -m B is an equivalence 
then 

0 AA - B -> 0 - 0 

O - 0 ) A f B - 0 

are s.e.s. If (A, A', i, j, i', j') is a direct sum decomposition of B then 

0 - A R B j A' - 0 

is an s.e.s. In particular, injections of direct sums are monomorphisms, 
projections are epimorphisms. Equivalences are of course both. 

a' a"t 
An s.e.s. 0 - A A- A " -> is said to split if there is a 

map f: A" -- A such that a"f = 1: A"; such a map is said to split the 
sequence. In this case a"(1: A - fa") = 0 so that 1: A - fa" = a'g for 
g: A -4 A'. Then (A', A", a', g, f, a") is a direct sum decomposition of 
A. Dually, if g: A -4 A' and ga' = 1: A' then g splits the sequence, with 
the same consequences. 

Direct sums of s.e.s. are again s.e.s. 
a' af 

PROPOSITION 2.3. Suppose 0 > A' A A" -0 and 0 > 
B' B B" > are s.e.s. and let (A', B', a',?, p', 7y'), 
(A, B, a, a, p, O) (A", B", a", a", s", A") be direct sum decompositions of 
A' + B', A + By A" + B". Then 

0 Al + B' A + B All + B" - 0 

is an s.e.s., where 

c' = a aa' +f b'f' 

c" = a"a"a + fi"b"ll 

The verification is straightforward. For example, if f: C A + B 
and c"f = 0 then a"af = 0 so that af = a'g' and similarly df = b'h. But 
then c'(a'g' + ^'h') = f. 

The first Noether isomorphism theorem has an analogue, or more 
properly a generalization, as well as a dual, in an arbitrary additive 
category. 

PROPOSITION 2.4. In the commutative diagram 
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0 0 0 

a a" t o -+ A'> ____ 

0 - B' - B - B" - 0 

V f f Vff 

suppose the three columns are exact. If C' = 0 and the first two rows are 
exact then c" is an equivalence. Dually, if A" = 0 and the second two rows 
are exact then a' is an equivalence. 

In the former case vb'u' = 0. Thus, since u' is an epimorphism, vb' = 0 
and v = rb" for P : B" -) C. Since c"ab" = c"v = v"b" it follows that 
C d = v" 

But du"a" = a b"u = vu = 0 so that P = rv" for r: C" -+ C. Since 
rc' 'v = rv"b" =b" = v, rc" = 1: C. Since c"rv" =c"r = v", c"r = 1: C". 

An additive functor F: J< -- ..' is exact if it takes s.e.s. into s.e.s. 
More generally, if (5 is any class of s.e.s. in 6<, F is exact on (5 if the 
image of a sequence in (5 is exact in &. 

In graded additive categories the several notions of monomorphism, 
epimorphism, s.e.s. are all defined analogously, with the restriction that 
all maps considered are homogeneous. The analogues of all the above 
propositions are true. They need not be stated explicitly. 

If -Q?? is an additive category the following criteria are easily seen to 
hold in Ado: a homogeneous map is a monomorphism or an epimorphism 
if and only if all its coordinates are; a sequence 

a' a"l o - A'l- A -~A"- 0 

with a' and a" homogeneous of degrees k- and 1, say, is exact if and only 
if each of the sequences 

aJ-k aj 
0 -~ ,Al - AJ - All'+ 0 

is an s.e.s. in ?K. 

3. Abelian categories 

An abelian category is an additive category together with a subset of 
its maps, whose elements are to be known as proper maps. If a proper 
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map is a monomorphism or an epimorphism it is a proper monomorphism 
or a proper epimorphism. A short exact sequence whose maps are proper 
is a proper s.e.s.; more generally, any diagram of which all maps are 
proper is a proper diagram. 

The class of proper maps is to be subject to the following axioms: 
(PO) Every identity map is proper. 
(P1) If f: B -* C is proper and g: A -) B is a proper epimorphism 

then fg is proper; dually, if f is proper and h: C -+ D is a proper mono- 
morphism, then hf is proper. 

(P2) If fg is a proper monomorphism then g is proper; dually, if hf is 
a proper epimorphism then h is proper. 

(P3) If f: B-> D is proper there are proper s.e.s. 0 A BB Cr 0 
and 0 -+ C -a D -) E -O 0 such that 

a b 
0- )A. B C >0 

fl l:C 

O< E-DC< 0 

commutes. 
(P4) If in the commutative diagram 

0 0 0 

0 - ~ A' __ 
U f Of Uf 

bf bff 
(3.1) 0 B2 B" _ 

c? t ef tt 0 - C - C,- 0 

all columns and the second two rows are proper s.e.s. then the first row 
is also a proper s.e.s. 

If the class of all maps of an additive category satisfies axioms (P3, 4), 
the remaining ones being of course vacuous, the category is an exact 
category. Thus the notion of abelian category generalizes that of exact 
category, the latter carrying, of course, the abelian structure consisting 
of all its maps. 

This definition of exact category is easily seen to be equivalent to that 
of Buchsbaum [1], with the reservation that Buchsbaum does not require 
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that an exact category have direct sums (axiom (Al) here). It should also 
be noted that in the exact case, i. e., that in which all maps are proper, 
axiom (P4) is redundant. The proof of this fact which is given in [1] 
seems incomplete, but others have been supplied by N. Yoneda and J. H. C. 
Whitehead. 

Examples of abelian categories other than exact categories will be given 
below, especially in ? 7. 

In view of (P3) it is clear that an abelian structure is completely char- 
acterized by the class of proper s.e.s. A class of s.e.s. will be called 
abelian if it is the class of proper s.e.s. of an abelian structure. Axioms 
(PO-4) are easily translated into a characterization of abelian classes of 
s.e.s. 

PROPOSITION 3.2. A class e of s.e.s. in an additive category 5~? is 
abelian if and only if 

(0) foreachA e thes.e.s. 
1LA 1OA 

are in 5. 

(1) if 0 Al B' C? 0 

1:B 
0 < B" r B < B' < 0 

commutes and both rows are in 60 then there is an s.e.s. 0 Al f B- - 
C" > 0 in (5; the dual also holds. 

(2) if 0 Al B , C? , 
IP:B' 

commutes and the short sequence is in 25 then there is a sequence 0 - 
at'i A' > A -, A" - 0 0 in (5; the dual also holds. 

( 4) if the diagram (3.1) commutes, and all columns and the second two 
rows are in (5 then the first row is also in 68. 

Conditions 0, 1, 2, 4 simply express (PO, 1, 2, 4); axiom (P3) simply 
becomes a characterization of a proper map: a map is proper if it is the 
composition of the epimorphism of a sequence in (5 followed by the mo- 
nomorphism of a sequence in (B. 

If 5:? and 2 are abelian categories an additive functor F: _5?- 
is proper if it takes proper maps in into proper maps in A. It is 
proper exact if it takes proper s.e.s. in 5w into proper s.e.s. in SQ9. A 
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proper exact functor is of course proper, but it need not be exact on s.e.s. 
other than proper ones. 

For the remainder of this section consequences of axioms (PO-3) only 
will be examined. 

PROPOSITION 3.3. In an abelian category all equivalences are proper 
maps; also all injections and projections of direct sums are proper; 
also all zero-maps are proper. 

It is not asserted, and is not in general true, that compositions or sums 
or sums of proper maps are proper. 

PROPOSITION 3.4. The factorization of (P3) is unique in the following 
sense: If b': B -+C' is an epimorphism, c': C'-* D is a monomorphism 
and c'b' = f then there is an equivalence r: C -+C' such that b'= Trb, c'.r = c. 

For c'b'a = fa = 0, whence b'a = 0 and b' = rb. But c'rb = c'b' = f = cb 
whence c'r = c. Dually there is a r': C' -) C such that r'b' = b, cr' = c'. 
But c(1: C - r'r)b = cb - c'b' = 0, whence rTr = 1 : C. Dually, yr' = 1: C'. 

In these circumstances it seems reasonable to refer to the factoriza- 
tion of (P3) as the canonical factorization of a proper map. The objects 
A, C, E, which are unique up to a transitive family of equivalences, are 
the kernel, image and cokernel of the map. 

It is possible to make the kernel, image and cokernel functors on a 
category whose objects are the proper maps of the original category. 
This may be done in two ways: for each map a choice may be made 
among the equivalent possibilities, or the value may be taken to be the 
whole of the transitive equivalence system. In the former case, the 
functor is defined only up to natural equivalence; in the latter, it seems 
difficult to regard the values as lying in the original category. The 
problem will be avoided at this point by not considering the kernel, image 
and cokernel as functors. Similar situations will arise below, however, in 
?? 9 and 12, where the former alternative will be chosen. 

PROPOSITION 3.5. An additive category carries abelian structures if 
and only if it satisfies the cancellation axiom. 

Suppose 3i? is abelian, that i: A -B and j: B- A, and that ji = 1: A. 
Then j is proper and by (P3) and (3.4) there is a proper s.e.s. 0 - 

A' B - > A - 0. But i splits this sequence and thus leads to a 
direct sum decomposition of B. 

If on the other hand is additive and satisfies (A2) then the class of 
splitting s.e.s. in is easily seen to be abelian. 

This last structure is obviously contained in any abelian structure on 
A, and will be called the minimal structure on 5AK. 
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The following cancellation lemma is sometimes useful. 
LEMMA 3.6. Suppose v: G -- D is a proper monomorphism, u: B -- G 

and vu is proper. Then u is proper. Dually, if u is a proper epimorphism 
then v is proper. 

Consider the canonical factorization of f = vu. Since 0 = fa = vua it 
follows that ua = 0 and thus that u = wb for w: C -) G. But vwb = cb 
so that vw = c is a proper monomorphism. The conclusion follows from 
(3.4). 

It is clear that a map is both a proper monomorphism and a proper 
epimorphism if and only if it is an equivalence. This suggests the ter- 
minology of isomorphism for the equivalences of an abelian category. 
Observe however that a map which is not proper may be both a mono- 
morphism and an epimorphism, but is not an isomorphism. 

The notion of a graded abelian category must also be defined. It consists 
of a graded additive category together with a set of homogeneous maps, 
to be called, again, proper maps, satisfying axioms (P0-4). All the 
statements made above about abelian categories hold also for graded 
abelian categories, with appropriate restrictions as to homogeneity. 

If is an abelian category then A becomes a graded abelian 
category under the convention that a homogeneous map of Ad is proper 
if and only if each of its coordinates is proper. 

4. Consequences of axiom (P4) 

Axioms (P0-3) for an abelian category are stated in self-dual form. It 
is perhaps not immediately evident, but axiom (P4) is also self-dual. More 
precisely, it implies its dual. 

PROPOSITION 4.1. Suppose, in the commutative diagram (3.1), that all 
columns and the first two rows are proper s.e.s. Then the third row is 
also a proper s.e.s. 

For c"v = v"b" is a proper epimorphism, hence c" is one also. Thus 

there is a proper s.e.s. 0 - D 2 C 
ell 

C" - 0. Since vb'u' = 0, 

vb' =dr for r: B' yD. But by (P), 0 yAl )B'>D- >0is 
then a proper s.e.s. The conclusion follows from (2.2). 

If in (3.1) it is assumed that all columns and the first and third rows 
are proper s.e.s. it need not be the case that the second row is a proper 
s.e.s. (but see below, ? 5). However the following result can be proved. 

LEMMA 4.2. Suppose in (3.1) that all columns and the first and third 
rows are proper s.e.s. Suppose also that (A, B', a, a , i, is a direct 
sum decomposition of A + B'. Then 
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-+> A' aa__2~~~~~ A U+ B B "- O 

is proper exact. Dually, 

O- A'l B- - B" + C C"- 0 

is proper exact. 
Let (B, B', i, , i,', V') be a direct sum decomposition of B + B'. Then 

(B, B', i, i + b'i', ib' - it', - ') is also a direct sum decomposition of 
B + B'. Moreover ca' - u': A'-- A + B' is a proper monomorphism, 
since a(ca' - eu') = a'. Thus there is a proper s.e.s. 

aa u'- a O At a -u A + Br ; D O 
Also 

O A? Briua + ViP',B ? B'- V G-O 

is a proper s.e.s. It is exact by (2.3), and vi is certainly a proper epi- 
morphism. 

In consequence of (P4), then, the commutative diagram 

0 ~~0 ~,0 

O -> A' -u B' -t C' - 

aa-ul - _ ib -il {c/ 

O - A+B' ua+ -H )B+B' v* C > O 
1 t ~~+ b'f'l lc/ 

0 > D -> B C" 0 

has its third row exact, where se = (i + b'i')(iuax + ') = ua + b'j9. 
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PROPOSITION 4.3. Suppose the diagram 

0 0 0 

X'a' a'' f U 1at 1 1 
At A -A" - 0 

(4.4) t2 t1 B"ti 
0 Br B Br? 

1 1 Y 1 

commutes and that alt columns and the two center rows are proper exact. 
Then the top and bottom rows are proper exact, and in addition there is 
a natural equivalence of the cokernel of x" with the kernel of y', so that 
'- X --+X" Y-- Y' -- Y -+ Y" is proper exact. 

The cokernel of x" and the kernel of y' are naturally equivalent as 
functors on a category whose objects are diagrams of the form (4.4). The 
naturality will however become clear in the proof without formal consid- 
eration of this category. 

In a structure satisfying axioms (P0-3) this condition is equivalent to 
(P4). That it implies (P4) is easily seen, since (3.1), with all columns 
and the second two rows proper exact, becomes a special case of (4.4) if 
an extra row of zeros is added at the bottom. But then, in (3.1), A'-* 
A -+ A" -+ 0 is proper exact. Since a' is clearly a proper monomorphism, 
the first row of (3.1) is a proper s.e.s. 

The proof of (4.3) is as follows. 
First recall that a', t', t, t", b" are proper maps and introduce their 

canonical factorizations, producing from (4.4) the following diagram, 
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x 
- a - a all 

A )a A' -}A a _ A" 
Ul l Ulf 
E' E E" 

vl bf a b -bff l? Br - B B - B" B 

in which all maps appear in proper s.e.s. 
Now 7;b'v'u' = vyta' = 0, so that 7;b'v' = 0 and b'v' = ve' for a': E E, 

which must of course be a proper monomorphism. Moreover ve'u' = 
b'v'u' = vua' so that m'u' = ua'. 

Dually there is a proper epimorphism s": E -+ E" such that it may be 
introduced into the above diagram without disturbing commutativity. 

Since b'v'u'c = ta'd = 0 it follows that u'd = 0 and thus that u' = aCi' 

for a: A E', which must be a proper epimorphism. Dually, there is 
a EP E"-+ B, which must be a proper monomorphism, such that b"P = v". 

Now a' and s" appear in proper s.e.s. 0 E' E D' D 0 

and O- D"r? +E - E - E"ll Er O. But s"e'u' =u"a"a'=0. Thus there 
is a proper monomorphism 0': E' -- D" such that 3"O' = a' and a proper 
epimorphism 0": D' -- E" such that O"3' = e". 

Finally, 3'uaua' = 3'e'u' = 0 so that X'uz = 0 and 3'u = ("a" for a proper 
epimorphism a'": A"-MD' and dually v3" = b'w' for a proper monomorphism 
co': D" - B'. Clearly O"@" = u" and w'd' = v'. 

These maps may be assembled in the following commutative diagram: 

a a' a a X 

A A A>' -tA - A - - A" 

Utl /' U ,g 
-a - E I D' 

IPE >ff 

/-ff 

B' - B - B-b B"? B 

IT' ITyt 
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From this, using (P4), the following diagrams, all of which commute 
and have proper exact rows and columns, may in turn be extracted. 

O > A X' > X' > 0 0 -X > X - yf 0 

O A At > A > 0 AA A > A 

0 - E" r E" _ 0 -O D"- E > E"-r 0 

0 - ~- ~- 0 0 -* -+ - 0- 0 

7 7 - ) XEll - r? F) 0 - 0-EDr?-?'----> 0 r -0 

O > B > B- " ->B - 0 ->B ' >- Y'B - 0 

O > Y"1 > Y" > B > O O Y' > Y > Y"? , 

I I 0-*L" 

0 *0 -* - 0 0 -+G- 0'- '- 0 

O ) X" > X" > F ) 0 O 0 Er > Er > O 0 

A>X A > D' > A O D A A R 

B u Et E" ) O > G Y' > Y 

But 
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0-E'---E--- 0-0 
0 - Er > El- > > 0 

0 > Dr? ) E >Er? > 0 

0 - F -+ Dr - E"? 0 

also has proper exact rows and columns so that, up to natural equivalence, 
F = G. Since x', x", y', y" are determined uniquely by commutativity 
they must be the compositions X' -+ -+ X, X X" r? X", Y' - Y. 
Y -+ -+ Y" respectively, which completes the proof. 

A more explicit description of the map z: X" -* Y' of the above proposi- 
tion is given by the following lemma. 

LEMMA 4.4. Suppose, in the situation of (4.3), that f: W-A, f":WA" 
and a"f = t"f". Then there is a unique map ijv: W-+B' such that b'sg=tf, 
and, for this map, ?;'( = /vf". 

The key to this result is uf: W -+ E. On the one hand 8'uf = co"Vf". 
On the other, se"uf = 0 so that uf = 8"b for S : W -E D". But then 
So= =s : W -* B' and referring to the last three diagrams above, 
'Aft?= 1P 

5. Projectives, injectives, closure 

If i? is an additive category and e is a class of short sequences in _5W? 
an object Xe is projective with respect to e or '5-projective, if for 
every 0 -+ A'-+ A -+ A" - 0 in @; the induced sequence of groups 

(5.1) 0 > Hom(X, A') - Hom(X, A)- Hom(X, A") - 0 

is exact. 
It is clear that a direct sum of two @;-projectives is @;-projective. If 

X is C-projective, i: Y-+ X, j: X-+ Y and ji = 1: Y then Y is also 
2-projective. 

The projective closure Cl2 of a class @; of short sequences is the class 
of all short sequences 0 -+ A'-+ A -+ A" -+ 0 such that for every 2-projec- 
tive X the sequence (5.1) is exact. A class of short sequences is closed 
if it is equal to its projective closure. 
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The notions of (-injective, the injective closure Cl*P;, and injectively 
closed set of short sequences, are defined dually. 

PROPOSITION 5.2. If @; and (N' are classes of short sequences in an 
additive category then 

(1) Cl@; D @; 
(2 )C1(25 U @;') = Cle; U C125' 
(3) Cl(Cl@5) = Cl@5. 

Analogous properties hold for the injective closure. 
The verification is straightforward. The assertion is that Cl is a closure 

operation in the set of short sequences, except for the fact that the empty 
set is not projectively closed. 

A class @; of short sequences is, simply, closed, if e = Ci@5 n Ci*e;. In 
particular, if e is either projectively or injectively closed, then it is 
closed. 

PROPOSITION 5.3. If (N is a closed class of short sequences, and in the 
commutative diagram (3.1) all columns and the first two rows are in AN, 
then the third row is also in (5. If all columns and the first and third rows 
are in (N and b"b' = 0 then the second row is also in (5. 

This is just an application of (P4) in the category of abelian groups and 
homomorphism, as regards the first statement. The second follows from 
the corresponding property of the category of abelian groups. 

PROPOSITION 5.4. If is an additive category and @; a class of s.e.s. 
in 5K which satisfies conditions (0, 1, 2) of Proposition (3.2), then if @; is 
closed it also satisfies condition (4), and is thus abelian. 

This is just a corollary of (5.3). 
A projective of an abelian category is an object which is projective 

with respect to the class of proper s.e.s. of the category. Clearly X is 
projective if and only if Hom(X, A) -+ Hom(X, B) is an epimorphism for 
every proper epimorphism A -+ B. Injectives of abelian categories are 
defined dually. 

An abelian category is closed, projectively closed, or injectively closed if 
the class of s.e.s. possesses one of these properties. Proposition 5.4 
asserts that axioms (P0-3), together with closure, characterize a closed 
abelian category. As a practical matter, this may be important in verify- 
ing the fact that a structure is abelian. 

The second assertion of (5.3) leads to the following corollary. 

PROPOSITION 5.5. If in a closed abelian category the diagram (3.1) 
commutes, and all columns and the first and third rows are proper s.e.s., 
and in addition b"b' = 0, then the second row is a proper s.e.s. 
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An abelian category has enough projectives if for every object A there 
is a proper epimorphism X -- A with X projective. The dual notion is 
that of having enough injectives. 

LEMMA 5.6. In an abelian category with enough projectives a sequence 

An fn An1 -, . 2 AO - O 

is proper exact if and only iffor any projective X the induced sequence 

Hom(X, An) *... -o Hom(X, AO) - 0 
is exact. In a category with enough injectives, the dual result holds. 

The necessity is of course clear. The sufficiency is proved by induc- 
tion on n. For n = 1 the assertion is just that f1 is a proper epimorphism. 
But suppose (D: X -- A, is a proper epimorphism with X projective. Then 

= fA@ for some 1: X -+ A, and the assertion follows. 
Suppose the result is true for shorter sequences. Then if the sequence 

of Hom(X, A) is exact for all projective X it follows that A, -+ - - 

AO -+ 0 is proper exact and f,1 has the canonical factorization appearing 
in the following commutative diagram: 

0 B y-U An- lo > - 0 

l An-l| w 

Anlfn-1. An 

Here the top row is a proper s.e.s. and w is a proper monomorphism. 
Now for a proper epimorphism (p X-+An with X projective fn-,fnsp = 

so that fn-,fn 0. Thus vfn = 0 and fn = Uf for.7: An -+B. It is enough 
to show thatf is a proper epimorphism. 

But suppose (p X -+B is a proper epimorphism with X projective. 
Then fn,, 1 uD = 0 so that Uso =: u.ft for some (D: X -+An. But then 

=.7D =f, which completes the proof. 

PROPOSITION 5.7. If an abeli~an category has enough projecti~ves (injec- 
tives) i~t is projectively injecti~vely) closed. 

This is just the case n = 3, An = 0 of the preceding lemma. It should 
be observed that this proposition implies that in the presence of enough 
projectives axiom (P4), for an abelian category, is redundant. 

6. The category ASr 

If is an abelian category the category A~~s of proper s.e.s. i~n 
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has as objects the proper s.e.s. of A2~K; if A = (0 -+ A'-+ A -+ A" 0) 
and B = (0-*B'--*B--+ B"-0) are objects of sa map f: AA B 
is a sequence (A, B ; f ', f, f") such that 

a' all 
0 A' A - A" - 0 

(6.1) f'{ f{ 

0 >~ B' B B I B- 0 

is a commutative diagram in A. Where no confusion is possible 
(A, B ; f', f, f") may be abbreviated as (f', f, f"). Composition and ad- 
dition of maps in US being defined in terms of the corresponding opera- 
tions in J, US has at least the structure of a preadditive category. 

If also C = (0 -* C'-* C-* C" -*0) e US a sequence 

0 A m B- 0 
in US is a proper s.e.s. in 5jS if the diagram 3.1 in Sf has proper exact 
columns. 

PROPOSITION 6.2. WAS is an abelian category. 
It is first necessary to verify the fact that it is an additive category. 

But 0 -+ 0 -* 0 -+ 0 -* 0 is clearly a zero-object. To see that the direct 
sum axiom is satisfied suppose that A and B, as above, are in U5S. Then 
by (2.3), 0-*A' + B' --*A + B--*A" + B"0 is an s.e.s. in . On 
the other hand, 0 -* A' + B' -* A + B' -* A" 0 is a proper s.e.s. in A 
so that A' + B' -* A + B' is a proper monomorphism. Similarly A + B' -+ 

A + B is a proper monomorphism. Thus A' + B' -+ A + B is a proper 
monomorphism and the s.e.s. 0 -* A' + B' -+ A + B -* A" + B" -* 0 is 
proper. But it is clearly a direct sum of A and B. 

It remains to see that the class designated as proper s.e.s. in US is 
abelian. Conditions (0, 1, 2) of Proposition 3.2 are verified in straightfor- 
ward fashion; for (1) and (2) the concluding step in each case is provided 
by (P4) in A. Condition (4) in US asserts exactness in a "cubical" dia- 
gram in By; it is easily verified by applying (P4), in f, to the several 
plane sections of the diagram. 

Covariant functors S', S, S": S are defined by 

S'A = A' SA = A S"A = A" 
S'f=f' Sf=f S"f=f" 

where A, f are described above. These are of course proper exact 
functors. In addition, natural transformations s': S'- S and s": S- S" 
are defined by 
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S'A = a' s"A = aqj 

LEMMA 6.3. If X = (O >X' - X >X" - 0) e JS and X, 
X" (and hence X) are projective (injective) in then X is projective 
(injective) in JU<S. 

For, referring to (6.1), suppose f is a proper epimorphism and let 
g = (g', g, g"): X -+B. Then there is a : X" -+A such thatf"a"O==g". 
Now b"(g - fOx") = g"x" - f" a"Ox" = 0 so that g - fOx" = b'fip for 
s: X -A'. 

But h = (AD', Ox" + a'p, a"O): X -- A and fh = g. 

PROPOSITION 6.4. If 5a? is projectively (injectively) closed then so is 
J5rs ; also if jy is closed then so is U5s. 

Suppose first that is projectively closed. If 0 -+ A -+ B -- C -O 0 is 
a sequence in jU~jS such that 

(6.5) 0 - Hom(X, A) - Hom (X, B) - Hom(X, C) - 0 

is exact for every projective X e US, then in particular it is exact for X 
of the form 0 - X - X-) 0 - 0 with Xe SZ- projective. But 
for such X, S': Hom(X, A) > Hom(X, A'). Thus 0 -+ A' -+ B' -* C' -+ 0 
is a proper s.e.s. in AX. Also (6.5) is exact for X of the form 0 -+ 0 -+ 
X -- X -O 0. But for such X, S: Hom(X, A) > Hom(X, A). Thus 0 -+ 
A -+ B -+ C -+ 0 is a proper s.e.s. in y. The conclusion follows from 
(P4) in A. 

If is injectively closed the result is of course dual. The argument 
is not essentially different when dJ is simply closed; it may be omitted. 

PROPOSITION 6.5. If -Z- has enough projectives (injectives) then so has 
J4s. In this case every projective (injective) is of the form described in 
Lemma 6.3. 

For if A e jyS there are proper epimorphisms $': X' -+A' and 0: 
X-+ A with X', X" projective. Suppose (X, X", x', V', a', V") is a direct 

sum decomposition of X. Then X = (O - X' ) X X" - 0) is 
projective in JjES. But (', O ", "): X -+ A is a proper epimorphism. 

If A is projective it is a direct summand of X, and is thus of the same 
form. 

If Jif is an abelian category a connected covariant (contravariant)functor 
(T, r) on is a covariant (contravariant) functor T: Ad+ _12 together 
with a natural transformation r: TS" -+ TS' (r: TS' -+ TS") of the com- 
posed functors on US. Thus if A = (' -O A -- A' -- A" -+ 0) is a proper 
s.e.s. in 5~? and (T, r) is a covariant connected functor on SZ- the 
triangular diagram 
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TA' > TA 

TA" 

is defined. If T is contravariant the arrows are of course reversed. 
The most important case is that in which 6< is an additive category and 

T an additive functor. The following anticommutation condition then 
holds. 

PROPOSITION 6.6. If (T, r) is a covariant connected additive functor on 
a, and if Diagram (3.1) in ?By has proper exact rows and columns then 

TC" - > TC' 

TA" > TA' 

anticommutes, the maps being the appropriate connecting homomorphisms, 
e. g., zr(O - A" -+ B" -+ C" -+ 0): TC" -+ TA". If in addition A' = 0 then 

TC" > TA" I T(ua "-1l) 

T T(b'C1 ) TB 

anticommutes. If instead C" = 0 then 
T(ulf 'b"f) TB -' TA" 

T(C'-lV){ I 
TC --> TA' 

anticommutes. 
The proof, using Lemma 4.2, is identical with that of [2, III] and will 

be omitted. 

7. Relations between abelian structures; examples 

If is an additive category with cancellation it has at least one and 
perhaps-several abelian structures. These are partially ordered by the 
inclusion relation on the classes of proper maps or, equivalently, on the 
classes of proper s.e.s. There is always a minimum structure; there 
may also be a maximum one; for example this is the case if the class of 
all s.e.s. is abelian or, a fortiori, if the category is exact. 

PROPOSITION 7.1. The collection of abelian structures on an additive 
category is inductive. Also, the intersection of any collection of abelian 
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structures is abelian. 
This is a direct consequence of the axioms. In particular, if there is a 

maximum structure the collection of abelian structures is a lattice. 

PROPOSITION 7.2. If (5 is an abelian class of s.e.s. in and Z is a 
closed class of short sequences in then (5 n Z is abelian. 

This is just a matter of applying Proposition 5.3. For example, refer- 
ring to condition (1) of Proposition 3.2, suppose the two s.e.s. are both in 
e n Z. Then the diagram 

0 __ -' A'--- - > 0 

0 - B' -k B - ) 0 0 

1 1 1 
0 - C-* D - B" 0 

has all its rows and columns in 5. Thus 0 -O C' -* D -* B" -O 0 is in Z. 
But then 0 -? A' -? B -? D -+0 is also in Z. 

An additive functor F: Ji< -? < also maps short sequences in 
into short sequences in ?. If Z is a set of short sequences in v! the ex- 
pression F-1(Z) is to be understood in the light of this observation. 

PROPOSITION 7.3. If 5, Z are abelian classes of s.e.s. in JY and 
respectively and F: i is exact on e then ef n F-'(Z) is an abelian 
class of s.e.s. on I. 

The proof is straightforward. e5 n F-1(Z) gives the abelian structure 
induced by F. Evidently if F is proper exact it induces the original 
structure in Ad. 

These last two propositions may evidently be used to produce new 
abelian structures on abelian categories. Proposition 7.2 asserts that a 
relatively closed substructure of an abelian structure is abelian. In par- 
ticular, then, if is an abelian category and W is a set of objects in 
there is a maximal substructure such that all the objects of % are projec- 
tive in the substructure. If they are not all projective in the new 
structure must of course be distinct from the original one. For example 
in the category of finitely generated abelian groups and homomorphisms 
a proper substructure is generated by demanding that all the p-groups, 
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say, be projective. A map in the substructure is then proper if the 
p-primary summand of the image is a direct summand of the range and 
a direct factor of the domain; the substructure is thus different also from 
the minimum structure. 

Proposition 7.3 is illustrated in the following example which is due to 
S. Eilenberg, and is implicit in [2, VIII, ? 3]. Suppose A and F are rings 
with units and Sc: F -r A is a unitary ring homomorphism. If >of(A) and 
.//O(F) are the categories of unitary left modules sp may be used to define 
an exact covariant functor 1: .'(A)-(F), a A-module being regarded 
as a F-module with operations defined by qp. Using the minimum structure 
in v4(F), this functor induces in ,(A) a substructure of the exact 
structure known as the sc-relative structure. This is the structure used 
to define the relative derived functors, and in particular the relative Tor 
and Ext functors, in the manner to be described below. 

This relative structure also exemplifies Proposition 7.2, since it has 
enough projectives. For if A is a A-module then A ?r A is a relative 
projective which has a proper epimorphism onto A, given by A 0 a -L )a. 

Both of the above examples arise as substructures of exact categories. 
But there are of course examples for which this is not the case. The 
underlying additive category of A is not exact even if 9< is. This may 

at a"l 
be seen as follows. Let A = (0 -> A' A A" > 0) be an s.e.s. 
in which does not split, and let B be the s.e.s. (0 > 0 - A -A 

A > 0). Then (0, 1: A, a"): B -+ A is both a monomorphism and 
an epimorphism, but is obviously not an equivalence. 

A final example may be adduced as differing in spirit from the preced- 
ing ones. In the category of (real or complex) Banach spaces and contin- 
uous linear maps define a map to be proper if its image is closed. This 
is easily seen to give rise to an abelian structure. In fact this structure 
has enough projectives, namely the spaces 11(J) where J is a discrete 
set, i. e., the space of maps w: J -* R (say) such that 

I W I = L I Wji < . 
The abelian structure however is not the minimum one; F. J. Murray 
has shown [4] that in the spaces Lp, p # 2, there are closed subspaces 
without closed complements, which is to say that the corresponding s.e.s. 
do not split. 

Once more, this is not a substructure of an exact structure. For 
instance, if H is a separable Hilbert space with basis xl, x2, ... then 
f: H -* H, with fxn = x./n, is both a monomorphism and an epimorphism, 
but is not an equivalence. 
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It is to be observed here that the composition of two proper maps is 
not in general proper. For instance if V, W are closed subspaces of X 
such that V + W is dense in X then the inclusion V -* X and the projec- 
tion X -* Xf W are proper maps whose composition is not proper. 

Similar phenomena occur, in fact, in all the above examples. 

8. Objects-with-derivation 

If _5~Y is an additive category the category dJ?? of objects-with- 
derivation in gj has as its objects the pairs (A, d) where A is an object 
of A5?, d: A -A in . and d2 = O. The map d is the derivation of 
(A, d). The group Hom ((A, d), (A', d'); dad~) consists of the triples 
((A, d), (A', d'), f ) where f: A -+ A' in and df = fd. Composition and 
addition of maps in dj% are defined by the corresponding operations in 
AY. This gives do,5? the structure of an additive category; it is easy 
to see that if 5r has cancellation then so has dJo. 

Now (A, d) -- A, ((A, d), (A', d'), f) -+f defines an additive functor 
from do to o . In conformity with the usual ambiguous convention 
there will be no notation for this functor: if A is an object of d_.?? it will 
also stand for the underlying object of 5%-; the map ((A, d), (A', d'), f) 
will usually be denoted by f. Thus it will sometimes be necessary to 
distinguish between "f: A -+ A' in jA" and the stronger statement "f: 
A -+ A' in dJo." In addition, (A, d) -+ d is a natural transformation of 
this functor into itself for which again an ambiguous notation will be 
used. The derivation of an object A e do5?? will be denoted by dA or 
sometimes simply by d, d' and so forth. 

If A e and (A, A, y, j, i', j') is a direct sum decomposition of A + A 
then (A + A, i'j) is an object of d 5ai, which will be denoted by Ax. Such 
objects are called null-objects. 

LEMMA 8.1. If Ae gy, Be do?< then f -fi defines an isomorphism 
of Hom (Ax, B; doi~) with Hom (A, B; A5d). Dually f -+ j'f defines an 
isomorphism of Hom (B, AX; doY) with Hom (B, A; AY). 

The inverse, in the first case, is g -* gj + dgj'. 
If A and A' are objects of djY and f: A-+A' in .t then d'f d: A: A' 

in dor. Such maps are said to be nullhomotopic; they form a subgroup 
of Hom(A, A' ; do5Y). The factor group, the group of homotopy classes of 
A into A' will be denoted by Sgom(A, A'). Two maps are homotopic if they 
belong to the same class in 1~om(A, A'). The notion of homotopy equiva- 
lence of objects of do5? is defined in the usual way. 

PROPOSITION 8.2. A map of dj/o? is nullhomotopic if and only if it can 
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be factored through a null-object. 
For suppose g: - Ax and h: Ax ? C'. Then d'(hij'g) + (hij'g)d = 

hi'jij'g + hij'i'jg = hg. On the other hand if f: C-* A in then j + dj': 
Ax -- A and ifd' + if: C -* Ax are both in do< and have composition 
df +fd. 

If 36 is an abelian category then d.< can also be given an abelian 
structure. 

PROPOSITION 8.3. If _5~? is an abelian category and a map (A, A', f ) of 
dJof is defined to be proper whenever f is proper in t5o then do< has struc- 
ture of an abelian category. 

Axioms (P0-2) and (P4) are trivially verified. For (P3) suppose 
f: B -* D in df< with f proper in J< and consider the canonical fac- 
torization of f in 9<: 

a b 

0-> A-*B--- C- 0 

0 < E < D < C < 0 

Now cbdBa = fdBa = dfa =0 so that bdBa = 0 and bdB = dab for da : C-*C. 
But d2 b = bd& =0 so that d' = 0 and (C, d0) e do< and b: B -* C in dSoi. 
On the other hand, cdab = cbdB = dof = dDcb so that cd0 = dDc and c: CUD 
in dio. The rest of the argument is similar. 

PROPOSITION 8.4. If X is a projective (injective) of&<W then Xx is a pro- 
jective (injective) of dJ< ; if 39' is closed (projectively, injectively closed) 
then so is d5o ; if 9< has enough projectives (injectives) then so has dJo. 

These are just applications of Lemma 8.1. 
In the graded case it is usual to demand that the derivations be homo- 

geneous of degree 1 or -1 ; the latter alternative will be chosen here. 
If 9< is a graded additive category, & will denote the category having 
as objects the pairs (A, 8) where A is an object of 9< and 8: A -) A in 
is a homogeneous map of degree - 1 such that 8a = 0. Hom ((A, 8), 
(A', &'); 9) is a graded group: Homk((A, 8), (A', a'); 09<) has as ele- 
ments the triples ((A, 8), (A', 8'),f) where f: A -* A' is a homogeneous 
map of degree k in Ad such that &'f = (- 1)kfP. Composition and addition 
being defined by the corresponding operations in 9<, 5 J has the 
structure of an additive category. 

The nullhomotopic maps of A into A' in &>?- are a sub-graded-group 
with homogeneous component of degree k composed of maps 8'f+ (-lff, 
for f: A -* A' in 9< of degree k+ 1. The factor group, which is the group 
of homotopy classes of maps of A into A', is a graded group also, 
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Mom (A, A') = ark Omk(A, A'). 
The observations made above with regard to the category doi>' all have 

obvious cognates in &iw; proper attention being paid to degrees. 

9. Proper derivations; homology 

Even if is an abelian category an object in df cannot be expected 
to have homology: an obvious requirement is that its derivation be a 
proper map. Such objects, and the maps of df connecting them, con- 
stitute the subcategory dl5i? of di/if. 

If A e d Pa5~ then dA has a canonical factorization 
CA 8A 

O ZA A BA 0 
(9.1) {dA l 

< ZA C'A A <LA BA< . 

Such a factorization being chosen for each A e dP5Y, the rows of (9.1) 
are the values of functors D, D': doy -+ As. Different choices would 
of course lead to naturally equivalent functors. 

Then Z, B, Z'- the cycle, boundary and dual-cycle functors - are the 
compositions S'D, S"D = S'D', S"D', and I, 8, 8', C', are the natural trans- 
formations s'D, s"D, s'D', s"D'. 

Since d2 = 8'836' = 0 it follows that 88' = 0 and thus that 8' = C: for 
:BA - ZA a proper monomorphism and 8 = d'C' for I': Z'A - BA 

a proper epimorphism. This leads to two proper s.e.s. 

0 - BA - ZA - HA >0 

O > A > Z'A A BA >0 
which may again be considered as the values of functors Z, Z': d J? 

s However the diagram 

O > BA - BA-> 0 - 0 

1. 1. 1 
O > ZA > A > BA > O 

1. 1. 1 
o > H'A > Z'A - BA - 0 

0 0 0 
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obviously has proper exact rows and columns. Thus Z and Z' may be 
chosen so that H = H'. The common value H = S"Z = S'Z' is of course 
the homology functor. 

PROPOSITION 9.3. d Pad is an additive category with cancellation. 
This is an immediate consequence of the fact that D and D' are additive 

functors, together with the fact that 3>7 and %Ds, as abelian categories, 
have cancellation. 

It is not in general true that d Pgj is an abelian category, at least with 
the class of proper maps inherited from dJA. However the notions of 
proper map and proper exact sequence in do%? will be appropriated to 
d Pi. A map in d'-5AJ is proper if it is proper in diY; a sequence in 
d PaI'? is proper exact if it is proper exact in d1. 

The proper s.e.s. of d Par are the objects of a subcategory of (dJ)S 
which will be denotedby (dPs?)s. But while (d5I,')s and d(^) may 
obviously be identified the same is not true of d P(-?8) and (dP-l)s, the 
former being in general properly contained in the latter. For if 
((O -+ A' -- A-- A" -+ 0), (d', d, d")) is in dP(J'?S) then 0 -+ ZA'-- ZA -- 
ZA" -O 0, the kernel of (d', d, d"), is a proper s.e.s., which need not be 
the case in (dPs<)s. 

This observation is the source of the following example, which justifies 
the assertion that dP-i need not be an abelian category. 

PROPOSITION 9.5. If dig~r contains an object A such that HA # 0 then 
dP(5KS) is not abelian. 

It will be shown that axiom (P 3) is violated. If (A, A, i, j, i', j') is a 
direct sum decomposition of A + A in JVw the diagram 

0 0 0 

_ 1 1 
o D-> C -> 

0- Ax R Ax+A PA >0 

{(O 

- > A > A -> 0 

0 0 0 
in which Ax is of course (A + A, ij), (AX, A, A0, p, i, I') is a direct sum 
decomposition of Ax + A in d-p, (n = j + dj' and 0 = 'pp + p', has clearly 
proper exact rows and columns. 
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But the third row is obviously an object of d P(,2?S); the second row is 
also in dP(5fs), since the functor Z, applied to it, gives O-+A-*A+ZA-*O. 
If the diagram is regarded, reading downward, as a proper s.e.s. in dab3, 
the conclusion follows from the assertion that the first row is not in 
dP(J~rs). 

But if Z is applied to the diagram it gives 

0 ~0 0 

0 , ZD , ZC ZA > 0 

1~~~ j 0 > A > A+ZA >ZA > 0 

0 - ZA > ZA - 0 - 0 

0 0 0 

where, since0 - C-* Ax + A -0 is split by i': A Ax + A, the second 
column is proper exact. If the top row were proper exact the first column 
would be too. But since HA # 0, d is not an epimorphism. 

The functors Z, B, Z', and hence H, are exact on dP(JYS). They are 
not, however, exact on all of (dQ5?)3, and this failure of exactness is 
measured by a certain natural transformation, which will now be studied. 

LEMMA 9.6. If 0 -+ A'-- A -+ A" -+ 0 is a proper s.e.s. in dbIY then 
0 -+ ZA'-+ ZA -+ ZA" is proper exact. Daally, Z'A' -+ Z'A -+ Z'A" -O 0 
is proper exact. 

For (CA)(Za')=a'(CA') is a proper monomorphism, hence so also is Za'. 
Dually Za" is a proper epimorphism. But the columns and the two center 
rows in the diagram 
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ZA' - ZA - ZA" 

A'l A > All > 0 

d'I d {d" 

0 > A' >A > A" 

ZFAF > Z'A > ZFAFF 

0 0 0 

are proper exact, so that the result follows from (4.3). 

PROPOSITION 9.7. If A = (O -+ A'-- A -+ A" -+ 0) is a proper s.e.s. in 
dP_5 there is a natgrral transformation AA: HA"-- HA' such that 
HA' -+ HA -+ HA" -+ HA'-- HA -+ HA" is proper exact. 

It is only necessary to consider the diagram 

HA' - > HA >HAP' 

ZPAF > Z'A > Z'Alf > 0 

(9.8) 

O- > ZAF > ZA > ZAFF 

HA' -> HA > HA" 

0 0 0 
which, by the preceding lemma, satisfies the hypothesis of (4.3). 

Just as the notions of proper map and proper exact sequence were de- 
fined d Pjw in terms of the category d Jw, so the notion of a connected 
functor on dP_.yf is defined. (H, A) is of course an example of such a 
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functor. The anticommutation relations of (6.6) of course hold for it. 
The proper exact sequence of (9.7) may also be arranged in a triangle: 

HA' -*HA 

(9.9) IA 

HA". 
A null-object, Ax say, of dS lies of course in dP&< and satisfies 

H(AX) = 0. Thus by (8.2), H vanishes on null-homotopic maps and thus 
has the same value on homotopic maps. If f is a class of homotopic maps 
in d'3Pa then Hf will be used for the common value of H on its elements. 

In the graded case consideration will be restricted to categories admit- 
ting translation. If is a graded abelian category admitting translation, 
SPYJ4 may be defined in analogy with d PZj in the ungraded case. The 
factorization of (9.1), with dA replaced by aA, and the sequences (9.2), 
recur here, and because of the possibility of shifting degrees the conven- 
tion may be made that all the maps which occur in (9.1) and (9.2) are of 
degree 0, with the exception of a, 8 and A', which are of degree -1. The 
conclusions above all hold, with appropriate restrictions on degrees. In 

al a"l 
particular if 0 - A' A A" - 0 is a proper s.e.s. in sV 25 
and a', a" are of degree 0 then A is of degree - 1. 

For any abelian category j, then, &P( ma) is defined. For such a se- 
quence as that just mentioned the triangle (9.9) becomes a proper exact 
sequence, 

(9.10) * ... -~ fH+1A H+A' -+ HIA --* HkA" H- A' .. 

10. The homology connecting homomorphism 

It is useful to have a more explicit computation of the homology con- 
necting homomorphism A than that given above. This is given by the 
following lemma. 

al a"l 
LEMMA 10.1. If A = (O - A' A A > 0) is a proper s.e.s. 

daft, if '9:X-+A, q'":X-*ZA", q/:X-X ZA' and (CA")v"=a "q, 
a'(CA')(' = dq then (AA)(2'A")'p" = (7yA')(p'. 

This is just Lemma 4.4 applied to the maps (C'A)( : X Z'A, 
: X -* Z'A" and np' : X -- ZA' and the diagram (9.8). 

A most important application of this lemma occurs when the sequence 
A splits as a sequence in A. To study this case it is useful to introduce 
the covariant functorial involution T of dJad, defined by T(A, d) = (A, -d) 
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on objects and T(A, A', f) = (TA, TA', f) on maps. Observe that this 
takes d_.5< into itself. In defining the functors D, D', Z, Z' it is no 
restriction to assume that 

ZT=Z, BY=B, Z'T=Z', HT =H, 
CT = c, 8T = -d, 8'T = X', CIT - C', aT A 

7)T = Iq7, 'T = 7)', d'T =-' 

Now suppose the proper s.e.s. A in d Y splits in A%?, i.e., there is a 
map f: A" -+ A in jY such that a"f = 1: A". Then a"(df -fd") = 0 so 
that df -fd" = a'g for g: A" -+ A' in Y. But 

a'(d'g + gd") = d(df - fd") + (df - fd")d" = 0 

so that g: TA" -- A' in do5?. A change of the splitting map f results only 
in a nullhomotopic change in g. Thus for such a sequence A there is de- 
fined a homotopy class A4A of maps TA" -* A' in d1r. 

LEMMA 10.2. If the proper s.e.s. A in d'SP? splits in 5Z then AA 
H11A. 

This is a straightforward application of (10.1). 
If Ah and ' are abelian categories and T: JY is an additive 

functor djo'' -+ d , which may without danger of confusion also be de- 
noted by T, is defined by T(A, d) == (TA, Td). 

PROPOSITION 10.3. Suppose 5Zi and 9 are abelian categories, T: X - 

iH is an additive finctor, and A is a proper s.e.s. in dJoi which splits in 
o. Then TA is proper exact and splits in d%? and AOTA DTAWA. Thus 
if TA is in dart? then ATA = HTAOA. 

It is only necessary to observe that, in the covariant case for example, 
if f: A" -* A splits A then Tf splits TA. If r: A" -- A' satisfies a'- = 
df - fd" then Tr satisfies (Ta')(Tr) = (Td)(Tf -(Tf )(Td") so that Tr 
is in AL#TA. 

If T is contravariant and g: A -+ A' satisfies a'g + fal" = 1: A then Tg 
splits TA. But a'ra" = dfa" - fd"a" = d(1: A - a'g) - (1: A - a'g)d = 
a'(gd - d'g) so that ra" = d- d'g and (Ta")(Tr) = (Td)(Tg) - (Tg)(Td') 
and Tr e AOTA. 

If %Z is a graded abelian category admitting translation the homology 
connecting homomorphism in SPY may be discussed in a similar manner. 
The functor T is unnecessary in this case. If 

a' all 
A = (O AP * A Art 0) 

is a proper s.e.s. in d5f with a', a" of degree 0, say, and A is split in r 
by a map f: A"-+ A of degree 0 then af-faf" = a'g where g: A" -A' 
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is a map of degree -1 in &QK. A homotopy class AOA of such maps is 
determined as in the ungraded case, and if A lies in Opt?< the homology 
connecting homomorphism is AA = HAOA. 

The effect of homogeneous functors is described by the analogue of 
(10.3). 

11. Hom in &5A ; cohomology 

If is a graded abelian category admitting translation the graded 
groups of homotopy classes of maps in &Jw may be regarded as homology 
groups by means of the following construction. Define the mixed func- 
tor M: &%w x &5nd -? &22 by M(X, Y) = Hom (X, Y; A5K) with deriva- 
tion p =0 ,o - (_ )r7p9X for in homogeneous of degree r. Then HM= 
Hom x -+ A. 

Now suppose W = (0 - W -> W- 0) is a proper s.e.s. 
in a with w' and w" of degree 0. Then for X e 8A5 the short sequence 

M(X, W) = (O M(X, W') - M(X, W) - M(X, W") - 0) 

in a&p is defined. If M(X, W) is exact its exact homology sequence is 

*. - * > Homr+1 (X, W") -I Hom, (X, W') 

(11.1) -> Homr (X, W) - Homr (X, W") 

AM(X, W)r Homr-1 (X, W') '... I 

in which the unlabelled maps are composition with w' and w", or more 
properly, with their homotogy classes. Dually for Y e 8ar the short 
sequence 

M(W, Y) = (O - M(W", Y) - M(W, Y) > M(W', Y) -O) 

is defined; if it is exact its exact homology sequence is 

* Homr+ (W', Y) (, I Homr (W", Y) 

(11.2) > Homr (W, Y) - Homr (W', Y) 
AM(WY)r Homr1 (W", I Y) > ... I 

the unlabelled maps once more being composition with w' and w". 
If X and Y are proper s.e.s. in 8?V and all the short sequences 

M(X", Y), * * , M(X, Y") are exact then (11.1) and (11.2) may be assembled 
in the diagram 
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** 
>Hom 

(X', Y") 
> 

Homr (X', Y') 
> 

Homr (X', Y) 

1 * I I 
I I ~~~~~~~~~~~~~~~~~~~~~~~~~~I 

* *-* > Homr (X, Y") - Homril (X, Y') - Homr-l (X, Y) > * 

1 1 .1 
which commutes except in the starred squares where, according to (6.6), 
it must anticommute. 

One case in which both M(X, W) and M(W, Y) are both exact is that 
in which W splits in i. In this case A?M may be computed in the follow- 
ing way. 

PROPOSITION 11.3. If W is a proper s.e.s. in 8_5 which splits in 5< 
and X, Ye 8.Y then AIM(X, W): Hom(X, W") -) Hom(X, W') is composi- 
tion with zAW, while AM(W, Y)r: Homr (W', Y) - Homri1 (W", Y) is 
composition with (- )r+A#Wr 

This is implied by the assertion that A#M(X, W) D M(X, z?#W), while 
A#M(W, Y)r D (- 1)?r 1M(&#W, Y)r. To see this suppose that W is split by 
f: W" -+ W and suppose also that g: W -+ W' satisfies w'g + fw" = 1: W. 
Then z?#W contains the map r: W" -* W' of degree -1 such that w'T = 
awf-fa w, and rw" = gaw- iwgo 

Now Hom (X, f; .X): M(X, W") -* M(X, W) splits M(X, W) in Am. 
Thus zA#M(X, W) is represented by the map A: M(X, W") -* M(X, W') 
such that for p: X- W" of degree r, say, w'(2V9) = 8(fn) -Cf() = 
a w1f1() - (-1)&(f)x -f p - (-1)rfax] -wf f W, 5 
w'M(X,)9. 

Similarly Hom (g, Y): M(W', Y) -* M(W. Y) splits M(W, Y). Thus 
A#M(W, Y) is represented by the map u: M(W', Y) -+ M(W, Y) such that 
for (n: W' Y of degree r, say, 

(p(p)W" = a((pg) - (aqp)g = - (-1)yqpgaW - pyrp - (_1)r5p(W,]( 

- (-l)r+l[(qgaw -awg] = (-1)r+l[M(T, Y)(]W" 

Hom (X, Y) deserves special attention in the case that either X or Y 
has derivation zero. Such objects may be identified with objects of i; 
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properly speaking, a functorial injection dJt? is defined by 
A -+ (A, 0). No notation will be introduced for this; rather, Hom (X, Y) 
will also be written for X or Y in A with the injection understood. 

If X e A, Ye A% then Hom (X, Y) is the left cohomology of Y with 
coefficients X denoted by H*(X; Y), with homogeneous components 
H7(X; Y) = Hom, (X, Y). Dually if X e &5d?, Ye then Hom (X, Y) 
is the right cohomology of X with coefficients Y, denoted by H*(X; Y), 
with homogeneous components Hr(X; Y) = Hom-r (X, Y). 

Right cohomology is of course what is usually called cohomology. It 
should be noted that it is dual not to homology but to left cohomology. 
Left cohomology is traditionally neglected. 

Observe that under suitable conditions (11.1) and (11.2) are exact se- 
quences of cohomology groups. If W is a proper s.e.s. in & , X or Y is 
in and M(X, W) is exact, or M(W, Y) is exact then (11.1) or (11.2) is 
the cohomology sequence of W with coefficients X or Y. If X or Y e & 
and W is a proper s.e.s in _5r then, if M(X, W) or M(W, Y) is exact, (11.1) 
or (11.2) is the coefficient cohomology sequence of X or Y with coefficients 
W. 

For cohomology the following additional notation is introduced: 

cocycle group Zr(X; Y) = ZrM(X, Y) Zr(X; Y) = Z rM(X, Y) 
coboundary group Br(X; Y) = BrM(X, Y) Br(X; Y) = BTrM(X, Y) 
dual cocycle group Zr(X; Y) = ZrM(X, Y) Zlr(X; Y) = ZQrM(X, Y) 

If both X and Y are in A, i.e., both X and Y have derivation zero then 
so has M(X, Y) and Hom (X, Y) is just Hom (X, Y; Ad). 

Hom in the ungraded case may also be treated in the above fashion, 
with similar definitions for cohomology. This discussion will be omitted 
here. 

The following considerations are restricted to associated graded cate- 
gories of abelian categories. If is an abelian category then cohomology 
in Add may also be defined for coefficients in A an object of being 
identified with the object of A which is equal to it in degree zero and 
is zero in other degrees. In fact it is sufficient to consider only such co- 
efficients: the groups with coefficients in Ad are of course given by 

Hr(X; Y) t HkHtHrJ(Xk; Y) , Hr(X; Y) > r[lHH+k(X; Yk) 

the equivalences being natural. 
An object X of A or by extension of 8-5r<, is positive if Xk = 0 for 

k < 0. If X e SPEW is positive then ZYX = X, and (vX), : X -+ HX is a 
proper epimorphism in 8 .. If 0 -+ X-+ X -+ HOX -+ 0 is proper exact 
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in 5 then X' is also in a with HOX' = 0 and HkX' ; HeX for 
k * 0. The cohomology connecting homomorphism of this sequence with 
arbitrary coefficients C e . need not of course exist, but the start at 
least of the right cohomology sequence, i.e., 

0 > H'(HOX; C) - H'(X; C) > H'(X'; C) 

is exact. But the last of these groups is clearly trivial. This gives the 
following result. 

LEMMA 11.4. If Xe i is positive and Ce then H0(X; C) ; 
Hom (HOX, C; A). 

The following lemma is proved by recursion in standard fashion. 

LEMMA 11.5. If X e i is positive and projective in By'-, Ye OPE N 
and HY = 0 then Hom (X, Y) = 0. 

PROPOSITION 11.6. If X e 8&5- is positive and projective in Ad and 
Ye APED has HkY = O for k 0 0 then Hom(X, Y) > H*(X; HoY) In 
particular, if X e APED5 then Homr(X, Y) : Hom(HOX, HOY; 5). 

Let Y' be defined by Yk = Yk for k > 0, Y' = ZoY and Yk = 0 for 
k < 0. Then 0 -+ -Y'Y-+ Y" -*0 is a proper s.e.s. in t with 
HY" =. 

But also 0 -* W -* Y' --+HAYS- 0 is a proper s.e.s. in SPEJ%< with 
HW = 0. The result now follows from the two preceding lemmas and 
the exactness of (11.1). 

The duals of the last few results are not stated; they may easily be 
supplied by the reader. 

12. The extended category 

If 5< is an abelian category with enough projectives then for A, B e 
the groups Extr (A, B) may be defined, as in [2], up to a transitive family 
of isomorphisms. A somewhat different procedure will be followed here. 
Under these assumptions the following additional structure may be im- 
posed - in a non-unique fashion to be sure on 5<. For every A e 
let PA be a proper s.e.s. such that S"PA = A and SPA is projective. 
Such a system of choices will be referred to as an assignment of projec- 
tives. The notation SPA = PA, S'PA = 2A, s"PA = rA, s'PA = wA will 
be used, so that PA is the sequence 

A 7rA 
0 - >2A - PA - A - 0 . 

Then for each A e an object PRA e SPAYS, the projective resolution 
of A, is defined by 
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Pf2kA k > 0 
(PRA)k = { k<O 

the derivation being given by 

(wi2kl-A)(irS2kA): (PRA)k - (PRA)k1. 
Here &20A = A and f2kA = &i2(2k-1A). 

Finally, relative to such an assignment of projectives, a graded additive 
category ExtJ5?, the projective extended category of .5w, is defined. Its 
objects are the objects of A while 

Hom (A, B; Ext&5?) = Tom (PRA, PRB). 
Now wrA: (PRA)0 -+ A gives rise to an isomorphism CA H,(PRA) X A, 

and of course HkPRA = 0 for k > 0. By (11.6) then Pomo (PRA, PRB) = 
Homr (A, B; Ext?rf) is naturally isomorphic to Hom (A, B; a). Thus 
6< may be considered to be a subcategory of Ext A in fact that sub- 
category which consists of the maps of degree zero. 

If another assignment of projectives, say P', is made, Proposition 11.6 
defines a unique isomorphism of the category Ext sAd with the correspond- 
ing category Ext'e5? defined relative to P'. That is, the category Extra 
is unique up to a transitive family of isomorphisms. 

It should be remarked that the category Ext5ra does not admit trans- 
lation. In fact for any A, B e j< the groups Hbmr (A, B; Ext??f) are 
zero for r positive. For r < 0 they are of course the values of the 
functor Ext: 

Extr (A, B; a5s) = Hom-r (A, B; Ext A). 

It will in general be assumed below that, in any appropriate category, 
an assignment of projectives has been made, so that the extended cate- 
gory is defined. 

If 5?6 is an abelian category with enough projectives then so also is J<S 

If A = (O Al-) A-' Al"> 0) is a proper s.e.s. in A< then 
S'PRA, SPRA, S"PRA are in APE and by (11.6) there are homotopy 
equivalences S'PRA-? PRA', SPRA-PRA, S"PRA -+ PRA", which are 
unique up to homotopy, such that the diagram 

s'PRA s"PRA S'PRA -> SPRA - S"PRA 

a' a"l PR"A' ad PRA __- PRA" 
commutes up to homotopy. 
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Now PRA is in (SPj)S and its terms are projective in Ami?-. Thus it 
splits in Ad and defines a homotopy class A*PRA of maps S"PRA 
S'PRA of degree -1. This may be composed with the above equivalences 
to give a homotopy class AA of maps of PRA" into PRA', i.e., an element 
of Ext1 (A", A'; A) = Hom,1 (A", A'; ExtJ<). But this is a connecting 
homomorphism for the injection _ -+ Extj<, so that the injection is a 
connected functor. If also C e Ad?? then the sequences (11.1) and (11.2) 
may be written for PA and C; together with (11.3) then give the follow- 
ing result. 

PROPOSITION 12.1. If A is a proper s.e.s. in .5 and C e 5r then the 
sequences 

* * * . Extr-1 (C, A") - Extr (C, A') - Extr (C, A) 

Extr (C, A") - Extr+1 (C, A') - ... 

and 
* * * ) Extr-1 (A', C) - Extr (A", C) - Extr(A, C) 

Extr (A', C) - Ext ree (A", C) .** 

are exact, the maps being composition in Ext6< with a', a" and AA. 
If Ad is, instead, a category with enough injectives, an assignment of 

injectives may be made in A5r, the notion being dual to that of an assign- 
ment of projectives. Proceeding in dual fashion, the injective resolution 
PR*A of an A e Sw is defined, and the injective extended category Ext*J< 
of 5< is constructed, where Hom (A, B; Ext*J<) = Hom (PR*A, PR*B). 
As in the projective case, may be identified with the subcategory of 
Ext* _5< consisting of the maps of degree zero. 

PROPOSITION 12.2. If j< has both enough projectives and enough injec- 
tives then Ext ?5? and Ext*.nd are isomorphic. 

For by (11.6) and its dual, Hom (PRA, PRB) r Hom (PRA, B) 
Hom (PRA, PR*B) , Hom (A, PR*B) ; Hom (PR*A, PR*B). 

In spite of this isomorphism, it seems preferable not to identify these 
categories. 

13. Derived functors 

If j< and f26 are abelian categories, j< has enough projectives and 
F: &< ,2 is a proper covariant additive functor then, relative to an 
assignment of projectives in A5d, the left derived functor LF: Ext JY 

is defined as follows. If A e A5d then FPRA e OP-22- and if 
(n e Extr (A, B; A) then Fig is a class of homotopic maps FPRA -+ 

FPRB of degree -r. Then (LF)A = HFPIRA and (LF)lc = HFSc. Thus 
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LF is a homogeneous functor. Clearly (LkF)A = 0 for k < 0. 
If F is contravariant the contravariant homogeneous functor 

RF: Extort, the right derived functor of F, is defined in analogous 
fashion. Its homogeneous components are written (RtF)A = H-kFPRA, 
and satisfy (RkF) = 0 for k < 0. 

Dually if _ has enough injectives the right derived functor 
RF: Ext* God of a covariant F: an-y+? and the left derived func- 
tor LF: Ext* j< -A d of a contravariant F: -T -+ !2 are defined. 

Though these definitions are relative to an assignment of projectives 
or injectives the dependence is only up to natural equivalence. For in- 
stance, in the first case considered, if P and P' are two assignments of 
projectives in A with associated extension categories ExtJr and 
Ext'di derived functors LF and L'F then the diagram 

LF 
Extrf -* A 

L'F 
Ext'5d - * A 

commutes up to natural equivalence, where T is the isomorphism of ? 12. 
Now since the injections iY-+Ext _5r and N5r-+Ext*-5r are connected, 

derived functors also become connected. For example if F: f- 9 is 
a' a"l i 

proper covariant and A = (0 - A A - A" - 0) is a proper 
s.e.s. in Ad;r then, provided jy has enough projectives, (LF)(AA) A" 
(LF)A', of degree -1, in O giving rise to a sequence 

(13.1) ... - - (Lk+iF)A" -+ (LF)A' -+ (LF)A -+ (LkF)A" *-- 

As in the definition of AA, the terms of this sequence may be computed 
by means of a projective resolution PRA in (SP?)S which of course 
splits in Add so that FPRA is exact, and in fact splits, in c By (10.2), 
or rather its analogue for the graded case, (13.1) is, up to equivalences, 
just the homology sequence of FPRA. 

PROPOSITION 13.2. The sequence (13.1), as well as the corresponding 
sequences for LF and RF in both the covariant and contravari ant cases, are 
exact. 

A case of especial interest is that in which a covariant functor F: 5Ad-d 
-22 is right-exact, i.e., if whenever 0 -+ A'-+A-- A" -+ 0 is a proper s.e.s. 
in then FA'-+ FA -+ FA" -+ 0 is proper exact. Such a functor is al- 
ways proper, as may be seen by applying it to the canonical factorization 
of a proper map. 
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PROPOSITION 13.3. If F: is covariant right-exact then L0F 
is naturally equivalent to F. 

For if A e 3< then (PRA)1 -+ (PRA), -+ A -+ 0 is proper exact, hence also 
FY(PRA)1 -+ F(PRA), -+ FA -+0. 

This result has of course several duals, covariant being replaced by 
contravariant and left-derived being replaced by right-derived-functors, 
and right-exactness by left-exactness in appropriate combinations, the 
last notion being dual to that of right-exactness. 

The functor Hom, considered as a functor in either one of its variables, 
is left-exact. Its right derived functor with respect to either variable is 
easily seen to be naturally equivalent to Ext. 

It is useful for computational purposes to extend the notion of projec- 
tive resolution in the following fashion. If 3< is abelian with enough 
projectives a projective resolution of A e is a pair (X, s) where 
Xe SPA5?? is positive and projective in A5m-, HkX = 0 for k > 0 and 

H0X - A. In particular then for an assignment of projectives in 
A, (PRA, C-A) is a projective resolution of A. 
If (X, $) is a projective resolution of A there is by (11.6) a unique homo- 

topy class of homotopy equivalences f: X -+ PRA such that $(Hf ) = O-A. 

For any proper covariant F then, Hf: HFX ; (LF)A is a uniquely deter- 
mined isomorphism. Similar conclusions hold of course for contravariant 
functors, and injective resolutions, defined dually. Thus for computation 
of derived functors the projective resolution associated with an assign- 
ment of projectives may be replaced by an arbitrary projective resolu- 
tion, the same statement holding also for injective resolutions. 

For example if (X, $), (Y, ()) are projective resolutions of A, B then 
Mom (X, Y) is canonically isomorphic to Ext (A, B). 

14. Ext in the category A 

If 3< is an abelian category with enough projectives then so also is 
US. Since the structure of 3< determines that of U it seems plaus- 
ible that Ext in the category U should be related to Ext in A. 
Such a relation will be exhibited here. 

For the purpose of this computation the following construction will 
a' a"l 

first be introduced. If A = (O > A' - A A" > 0) is a proper 
s.e.s. in an abelian category y let A', A" be the proper s.e.s. 
(O -+A' -+A' -+0 -0) and (O 0 -+A" -+A" -0) and set a'= 
(1: A',a',0): A'L-A and a" =(0,a',1: A"): AD-A" so that 0- 
A'-+ A -+ A" -+ 0 is a proper s.e.s. A in .S. Then A is the value on 
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A of a functor As -~ s and A' = S'A, A" = S"A of functors 
,-- OS;, while a' = s'A and a" = s"A are natural transformations. 

LEMMA 14.1. If A and B = (O B'-- B --B'-- O) are proper s.e.s. 
itn then 

Hom (A', B'; ?5s) =Hom (A'0 , B'; 
Hom (A', B ; -25 2 Hom (A', B'; ?9) 
Hom (A', B"; 0s 
Hom (A, B'; S Hom (A , B'; ) 
Hom (A, B"; s Hom (A", B11S? 
Hom (A", B' ; ?s) > Hom (A", B' ; ?9) 
Hom (A", B ; ?s) Horm (A", B ; 9) 
Hom (A", B"; 9s) X Hom (A", B"; ?9) 

are all natural equivalences. 
Now suppose A and B are proper s.e.s. in the abelian category I 

which has enough projectives. Let X = (O -+ X' -+ X -+ X" -+0) = PRA 
and Y = (O -+ Y' -+ Y -+ Y" -+0) = PRB. Then (X, srA) is a projective 
resolution of A and (Ya 'B) is a projective resolution of B, so that 
(X', Sa'rA), ... are projective resolutions of A', *- 

The functor M: O x &5Z?- -a &- is defined in ? 11; M(X, Y) is 
Hom(X, Y; Am) with a derivation deduced from those of X and Y. The 
corresponding functor for s.e.s. in -5- will be denoted by M: x 

~A - A 

Now if M is applied to the proper s.e.s. X and Y in 8(?) it gives the 
diagram 

o > M(X", Y') > M(X, Y') > M(X', Y') > 0 

1. 1. 1 
0 > M(X", Y) > M(X, Y) > M(X', Y) >- 0 

1. 1. 1 
0 > M(X", Y") > M(X, Y") > M(X', Y") >0 

which commutes and has exact rows and columns. This may be evaluated 
by (14.1) as follows: 
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o > M(X", Y') > M(X, Y') > M(X', Y') > 0 
1. 1. 1 

(14.2) 0 > M(X", Y) > M(X, Y) > M(X', Y') > 0 

1. 1. 1. 
o > M(X", Y") > M(X", Y") - 0 - 0 0 

again commutes and has exact rows and columns. 
By (4.2), then, the sequence 

Q = (O -+ M(X", Y') - M(X, Y) -+ M(X', Y') +- M(X", Y") 0) 
is exact, where "+ " denotes the direct sum in K or Em 

The connecting homotopy classes for the first row and the first column 
of (14.2) are computed in Proposition 11.3. By naturality, they determine 
the connecting homotopy class of Q. The following result comes, then, 
by applying the homology functor to Q. 

THEOREM 14.3. If jy is an abelian category with enough projectives and 
A = (O -+ A' -+ A -+ A" -+0) and B = (0 -+ B' -+ B -+ B" -+0) are proper 
s.e.s. in J< then the sequence 
*-- > Extr(A", B'; AX) > Extr(A, B; US8) 

>Extr(A',B'; -) + Extr(A",B"; 5y) - Extr+l(A'',B'; i) > .... 
is exact, where V is given by V(' + 'p") = (AB)99" + (- 1)rjl6c (AA). 

If -5< has, instead, enough injectives, then a similar result holds with 
Ext replaced by Ext*. 
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