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To a ring A with identity is attached a sequence of abelian groups
K.A, i > 0 which may be defined as follows. Let (P. be the category of
finitely generated left A-modules, endowed with the direct sum operation.
By work of Segal and Anderson (cf. [1]), a category with a coherent
associative and commutative operation such as CP. determines a con-
nected generalized cohomology theory. The groups K.A are the co-
efficient groups of this cohomology theory. One can prove that they agree
with the K-groups in degrees ^ 2 introduced by Bass and Milnor (cf.
[4]), and with the ones computed for a finite field in [5].

However, it is clear from the existing K-theory in low degrees
that, in order to establish the basic properties of K^A for regular rings
A, one requires K-groups for the category of all finitely generated A-
modules, in which the relations come from exact sequences, not just
direct sums. In the present paper we outline a higher K-theory for
categories with exact sequences, which enables one to prove the homotopy
axiom: K^A = K^(A[T]) for regular rings, and a localization exact
sequence for Dedekind domains. Full details will appear elsewhere.

51. The space BGL(A)+ and the groips K.A. Let f : X -* Y
be a map of connected CW complexes with basepoint. We call f acyclic
if the following equivalent conditions are satisfied:

(i) H^(X, f*L)^H3k(Y, L) for any local coefficient system L
on Y.

(ii) The homotopy-theoretic fibre F of f is an acyclic space,
i. e. H^(F, Z) = 0. (F is the space of pairs (x, p), where x e X and
p is a path joining f (x) to the basepoint of Y.)

If f is acyclic, then n (X)/N-*TT (Y), where N is a normal
subgroup of ir (X) which is perfect (equal to its commutator subgroup).
Conversely, given a connected CW complex X and a perfect normal
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subgroup N of its fundamental group, one shows there exists an acyclic
map f with source X, which is unique up to homotopy, such that N is
the kernel of 77 (f).

Now let A be a ring (supposed always to be associative with
identity), let GL(A) be its infinite general linear group, and let BGL(A)
be a classifying space for the discrete group GL(A). The commutator
subgroup E(A) of GL(A) = n (BGL(A)) is perfect, so by the preceding
there exists an acylic map

f : BGL(A) -• BGL(A)+

unique up to homotopy, such that E(A) is the kernel of v (f). The K-
groups of the ring A are defined to be the homotopy groups of the space
BGL(A)+:

K.A = 7r.(BGL(A)+) for i > 1.

These groups are closely connected with the homology of GL(A)

and related groups, such as E(A) and the Steinberg group St(A). One

has isomorphisms

K^A^H^GIXA), Z)
K2A=H2(E(A), Z)
K3A=H3(St(A), Z)

showing that the above definition agrees with the K of Bass and the K
_j_ 1 2

of Milnor. Moreover, BGL(A) is a loop space, which has the same

homology as BGL(A) as f is acyclic. Thus by a theorem of Milnor and

Moore one has isomorphisms

.AiSQCPH.CGLCA), Q)

where (P denotes the subspace of primitive elements.

There are two basic examples where the K-groups have been cal-

culated in all dimensions. The case of a finite field is treated in [5].

When A is the ring of S-integers in a number field, Borel [2] has

determined the groups K^A ® Q. In both cases one proceeds by com-

96

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511662607.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 14 Apr 2018 at 09:31:24, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511662607.009
https://www.cambridge.org/core


puting the homology of GL(A) with appropriate coefficients, using
techniques special to the type of ring under consideration.

Starting from these examples, the theorems that follow may be
used to produce many rings A for which the K-groups, or at least the
groups K^A 8) Q, can be determined.

§2. Higher K-groups for categories with exact sequences. Let
G be a small abelian category, and let 3H denote a full subcategory of
Ct closed under extensions and containing the zero object. If M is an
object of 3TC, then by an 3Tl-subquotient of M, we mean a quotient of the
form M /M , where M and M are subobjects of M such that
M c M , and such that M , M /M , and M/M are objects of "JTC.

We define a new category Q(3TC) having the same objects as 3TC
in the following way. A morphism in QpTC) from Mf to M is an iso-
morphism of MT with an 3TT - subquotient of M. Such a morphism is
the same as an isomorphism class of diagrams

(*) N- -+M

MT

where 4 is a monomorphism with cokernel in 3TC, and p is an epimor-
phism with kernel in 3H. The morphism in Q(3TC) are composed in the
evident way. Thus given a morphism from M" to MT represented by
the arrows iT, p' in the diagram

its composition with (*) is represented by the arrows i. pr and pf.pr .
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Let |Q(3Tl) I denote the geometric realization of the nerve of the
category Q(3TC), the nerve being the semi-simplicial set whose n-sim-
plices are chains of compos able arrows of length n. The zero object 0
may be interpreted as a basepoint of this space, hence we can make the
following

Definition. K.pH) = 7r.+1(|Q(m) |, 0) for i > 0.

In order to make this reasonable, note that for any M in
there are two arrows

which result from viewing 0 as a subobject and as a quotient of M. Thus
each object determines a loop in the space |QpTC) |. Using the standard
description of the fundamental group of a semi-simplicial set in terms of
a maximal tree, it is not difficult to show that by means of this corres-
pondence, the fundamental group of |Q(3H) | is isomorphic to the
Grothendieck group of the category ?fTC.

Observe that the category Q(3H) depends only on 3H and the
exact sequences of objects of SHX, hence the preceding definition makes
sense for any small category with a suitable notion of exact sequence.
Also it is only necessary that 3TC be equivalent to a small category, in
order that |Q(3TC)| be a well-defined hornotopy type. For example, we
can take JPC to be the category (PA of finitely generated projective left
modules over the ring A, with the usual notion of exact sequence for
modules. In this case we have the following basic result.

Theorem 1. The loop space of | Q(CP A) | is horn otopy equivalent
to K A x BGL(A) , where K A is the Grothendieck group of G>

Consequently K.((PJ = K.A for i > 0.
l J\ I

This theorem, and the three that immediately follow, are proved

by a detailed cohomological study of categories of the form

Theorem 2. Let (P be a full subcategory of 3TC such that

(i) For any exact sequence in 3H
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(**) 0 -*MT -*M-*M"-» 0

we have

(a) M', M" e(P=» M €(P

(b) M £<P^MT e(P.

(ii) For every object M" of 3TC, there exists an exact sequence

(**) in m with M and MT in (P.

Then the induced map |Q(CP) | -• |Q(3TC) | is a homotopy equivalence.

Theorem 3. Let ft be a small abelian category and let (B be

a full subcategory which is abelian and such that the inclusion functor is

exact. Suppose also that every object of CL admits a finite filtration

whose quotients are objects of (B. Then the map |Q((B) | -* |Q(Ct) | is

a homotopy equivalence.

Theorem 4. Let et be a small abelian category, let (E b e a

Serre subcategory, and let Ct/(B be the quotient category. Then |Q((B) |

is homotopy equivalent to the homotopy-theoretic fibre of the map

|Q(Ct) | -* |Q(Ct/(B) |. Consequently, there is a long exact sequence

- K.((B) -* K.(a) -* K.(a/(B) i Ki_1((B) •* .

§3. Some applications. If A is a left noetherian ring, let

Modf(A) denote the abelian category of finitely generated left A-modules,

and set

G.A = K.(Modf(A)).

Recall that A is called left regular if it is left noetherian and if every

object of Modf(A) is of finite projective dimension.

Theorem 5. If A is left regular, then K^A = G^A.

In effect, let 3TL be the full subcategory of Modf(A) consisting

of modules of projective dimension < i. Theorem 2 implies that

iQpTl. ) | is homotopy equivalent to |Q(3TC.) | for each i, hence by a

limit argument it follows that |Q(C?A) | -> |Q(Modf(A)) | is a homotopy

equivalence, whence the theorem.
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Theorem 6. If I is a nilpotent ideal in a left noetherian ring A,
then G^A/I) = G*A.

Theorem 7. Let ft be a small abelian category in which every
object has finite length. Then

where {X., j e J } is a set of representatives for the isomorphism
j ——

classes of simple objects in ft, and D. is the sfield End(X.).

These result by applying Theorem 3 to the inclusion Modf(A/I) -*
Modf(A), and to the inclusion of the semi-simple objects in ft.

Theorem 8. If A is a Dedekind domain with fraction field F,

then there is a long exact sequence

-*K.A-K.F^©K. ..(A/m)-*K. .A-*
l l m 1-1 1 - 1

where m runs over the set of maximal ideals of A.

This follows from Theorem 4 with (B the full subcategory of
torsion modules in ft = Modf(A), together with Theorems 5 and 7.

The transfer: If A is any ring, let 3TI. be the full subcategory
of the category of left A-modules consisting of those modules which admit
resolutions of length < i by objects of G> Applying Theorem 2 induc-
tively, one sees that |Q(CPA) | -* |Q(3Tl.) | is a homotopy equivalence for

j \ i

all i. Thus if f : A -• B is a ring homomorphism such that B is an

object of 2TC. for some i, then restriction of scalars provides a functor
r») QPTC-), and hence gives rise to a homomorphism
D 1

f* : K.B -• K.A.

§4. Graded rings, filtered rings, and the homotopy axiom.

Theorem 9. Let A = © A be a graded ring such that
n ~

(i) A is left noetherian
(ii) A is flat as a right A -module
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(iii) A is of finite Tor-dimension as a right A-module.
o ~ ~~~~~~~~~

Let Modfgr(A) be the ca tegory of finitely genera ted graded left A-
modules M = © M . Then K.(Modfgr(A)) ^ G.A «UZ[T] for all i.

n>0 n 1 l °
Theorem 10. L e t A = u F A be a r ing with an inc reas ing

n>0 n

filtration such that U F A and F.A. F.A c F. , .A. Suppose that the
0 1 J I T ]

associated graded ring gr(A) = ©F A/F 1A satisfies the hypotheses
of Theorem 9. Then G*(FQA) = G*A.

Sketch of proof: Let t denote the element of degree one of the
graded ring AT = ©F A represented by 1 e F A, and let (B be the
Serre subcategory of Ct = Modfgr(A') consisting of modules on which t
is nilpotent. Then Ct/CB is equivalent to Modf(A). By Theorem 3,
|Q(CB) I is homotopy equivalent to |Q((B*) |, where (BT is the subcategory
of (B consisting of AT/tAT = gr(A) modules, hence the exact sequence
of Theorem 4 takes the form

-• K.(Modfgr(gr A)) ^ K.(Modfgr(Af)) -* K.(Modf(A)) -* .

By the preceding theorem, the source and target of u are isomorphic to

G.(F A) ®_Z[T]; one shows that u is multiplication by T - 1, whence

the result.

As a corollary one has the first part of the following.

Theorem 11. If A is left noetherian, then

( a ) G . A i

" 1(b) G.(A[T, T"1]) s G.A © G.^A.

When A is left regular, G* may be replaced by K^ in this

theorem. According to Gersten [3], the isomorphism K^A = K^(A[T])

for left regular rings signifies that the Karoubi-Villamayor K-groups

coincide with the ones considered here for such rings. Here is another

application of Theorem 10.

Corollary. Let $J be a finite dimensional Lie algebra over a

field k and U(fi) its enveloping algebra. Then K^k) = K*(U( g)) .
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§5. Higher K-theory for schemes. If X is a noetherian
scheme, let G^X) be the K-groups of the abelian category of coherent
sheaves on X, defined as in §2. Then, at least if we restrict to
schemes having ample invertible sheaves, the preceding arguments
permit one to define maps f* : G (̂X) -* G (̂Y) for a proper map
f : X -• Y, (resp. f* : G*(Y) -* G*(X) when f is of finite Tor-dimension)
with the usual properties. In addition, one has a long exact sequence

- G.(X - U) - G.(X) -* G.(U) -+ G.^CX - U) -*

when U is an open subscheme of X, the homotopy axiom:

G.(X) « G.(X x ^ z s P ec Z[T])

and the projective bundle theorem:

where PE is the projective fibre bundle associated to a vector bundle

E over X, and where K is the Grothendieck group of vector bundles.

Finally, by filtering the category of coherent sheaves on X according to

the dimension of the support, one obtains a spectral sequence

relating GJ(C(X) to the K-groups of the various residue fields of the points
of X, which generalizes Theorem 8.
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