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Preface to the new typesetting

Credits for typesetting go to (in no particular order): Aareyan Man-
zoor, George Coote, John Cerkan, DarQ, Prakhar Agarwal, Andres
Klene, Bastián Núñez, Slurp, Bryan Li, Yohan Wittgenstein, Manan
Jain, Carl Sun.

Here is a link to a dyslexic friendly version: https://aareyanman
zoor.github.io/assets/blue-book-dyslexic.pdf

We changed Adams notation SX for the (reduced) suspension
of X to ΣX, which is more modern. We also changed Qp to Z(p)

to mean the localization of Z at p. f |A was used originally to talk
about restrictions of functions, however we went with the more
modern f |A.

A lot of small typos in the original were fixed here. In addition
for bigger ones, a footnote was added to indicate it. The original
book did not have any footnotes, so all footnotes are an addition
of the new retyping.

A part I bibliography was added, as a lot of citations were made
inside the text. Some of the in-text references were added to the
bibliography for all parts. All citations now have an URL whenever
applicable, to the desired article/book etc. Citations in text are
color red.

We added hyperlinks for whenever the book referenced a e.g.
theorem of itself. These are always color blue. A table of contents
was also added with links.

We added an index with things that Adams highlighted in the
original, alongside all the different spectra he mentions, with a link
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to the appearance in the actual book. This can be extended to
be more comprehensive in future revisions, so e-mails with index
suggestions will be appreciated.

We also apologize that our cover is not Blue.



Preface to the original

The three sections of this book represent courses of lectures
which I delivered at the University of Chicago in 1967, 1970 and
1971 respectively; and the three sections are of slightly different
characters. The 1967 lectures dealt with part of Novikov’s work
on complex cobordism while that work was still new—they were
prepared before I had access to a translation of Novikov’s full-length
paper, [Nov67a]. They were delivered as seminars to an audience
assumed to be familiar with algebraic topology. The 1970 lectures
also assumed familiarity, but were a longer series attempting a
more complete exposition; I aimed to cover Quillen’s work on formal
groups and complex cobordism. Finally, the 1971 lectures were a
full-length ten-week course, aiming to begin at the beginning and
cover many of the things a graduate student needs to know in the
area of stable homotopy and generalised homology theories. They
form two-thirds of the present book.

No attempt has been made to rewrite the three sections to
impose uniformity, whether of notation or of anything else. Each
section has its own introduction, where the reader may find more
details of the topics considered. Each section has its own system
of references; in Part I the references are given where they are
needed; in Part II the references are collected at the end, with
Part I as a reference; in Part I the references are again at the end,
with Part I as a reference. However, the page numbers given in
references to Part I refer—I hope—to pages in the present book.

Although I have not tried to impose uniformity by rewriting, a
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certain unity of theme is present. Among the notions with which
familiarity is assumed near the beginning of Part I, I note the
following: spectra, products, and the derived functor of the inverse
limit. All these matters are treated in Part III- in sections 2–3, 9
and 8. Similarly, near the beginning of Part II, I assume it known
that a spectrum determines a generalised homology theory and a
generalised cohomology theory; this is set out in Part 3, section
III . Again, at the end of Part 1, section 2 the reader is referred to
the literature for information on π∗(MU); they could equally well go
to Part 2, section II. Perhaps one should infer that in my choice of
material, methods and results for my later courses, I was influenced
by the applications I had already lectured on, as well as others I
knew.

I am conscious of other places where the three parts of this
book overlap, but perhaps the reader can profit by analysing these
overlaps for themself; and certainly they should feel free to read
the parts in an order reflecting his own taste. I need hardly direct
the expert; a newcomer to the subject would probably do best
to begin by taking what they need from the first ten sections of
Part III.

I would like to express my thanks to my hosts in the University
of Chicago, and to R. Ming for taking the original notes of Part III.



Part I

S.P. Novikov’s Work on
Operations on Complex

Cobordism
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1. Introduction

The work of S.P. Novikov which is in question was presented at
the International Congress of Mathematics, Moscow, 1966, in a half-
hour lecture, in a seminar and in private conversations. It has also
been announced in the [Nov67b]. Some of Novikov’s results have
been obtained independently by F.S. Landweber (to appear in the
Transactions of the AMS).

The object of these seminar notes is to give an exposition of
that part of Novikov’s work which deals with operations of complex
cobordism. I hope that this will be useful, because I believe that
the cohomology functor provided by complex cobordism is now
ripe for exploitation. I therefore aim to present the material in
sufficient detail, so that a reader who has a concrete application
in mind can make their own calculations. In particular, I will give
certain formulae which are not made explicit in the sources cited
above.

These notes will not deal with any of the other topics which are
mentioned in the sources cited above. These include the following.

(i) Generalizations of the Adams spectral sequence in which or-
dinary cohomology is replaced by generalized (extraordinary)
cohomology.

(ii) Connections between these studies for complex cobordism
Ω∗
U (X,Y ) and the corresponding studies for complete K-theory

K∗(X,Y )

(iii) The cohomology functor Ω∗
U (X,Y )⊗ Z(p) (where Z(p) is the ring

15



Chapter 1: Introduction

of rational numbers a/b with b prime to p); and the splitting of
this functor into direct summands.

16



2. Cobordism Groups

Let ξ be a U(n)-bundle over the CW-complex X. Let E and E0

be the total spaces of the associated bundles whose fibers are
respectively the unit disc E2n ⊂ Cn and the unit sphere S2n−1 ⊂ Cn.
Then the Thom complex is by definition the quotient space E/E0;
it is a CW-complex with base point. In particular, if we take ξ to
be the universal U(n)-bundle over BU(n), then the resulting Thom
complex M(ξ) is written MU(n).

Example 2.1. There is a homotopy equivalence MU(1) ∼ BU(1).

Proof. Since E is a bundle with contractible fibers, the projection
p : E −→ BU(1) and the zero cross-section s0 : BU(1) −→ E are mutually
inverse equivalences. Since S1 = U(1) and E0 is the total space of
the universal U(1)-bundle over BU(1), E0 is contractible, and the
quotient map E −→ E/E0 is a homotopy equivalence.

We have an obvious map Σ2MU(n)
in
−→ MU(n+ 1). In this way the

sequence of spaces

(MU(0),MU(1),MU(2), . . . ,MU(n), . . .)

and maps in becomes a spectrum. Associated with this spectrum we
have a cohomology functor, as in [Whi62]. The groups of this coho-
mology functor are written ΩqU (X,Y ), and called complex cobordism
groups. For other accounts, see [Ati61], and [CF66].

We will generally suppose that this cohomology functor is de-
fined on some category of spectra or stable objects. This as-
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Chapter 2: Cobordism Groups

sumption can easily be removed, if the reader wishes, at the cost
of making some of the proof more complicated; one would have
to replace the appropriate spectra by sequences of complexes
approximating to them.

Next we wish to discuss the cup-products in this cohomology
theory. We therefore wish to introduce the product map

µ : MU∧MU −→ MU .

Here “∧” means the smash product, and we assume that MU∧MU
can be formed in our stable category. We further assume that
MU∧MU has skeletons (MU∧MU)q, in a suitable sense, so that we
have a short exact sequence

0 −→ lim
q

1[Σ(MU∧MU)q,MU] −→ [MU∧MU,MU] −→ lim
q

0[(MU∧MU)q,MU] −→ 0

(Here lim0 means the inverse limit, lim1 means the first derived
functor of the inverse limit, and [X,Y ] means the group of stable
homotopy classes of maps from X to Y in our stable category.) In
this exact sequence, the group lim

q

1[Σ(MU∧MU)q,MU] is zero. (This
follows from the facts that
Hr(MU∧MU) = 0 for r odd and πr(MU) = 0 for r odd—see below. Thus
the spectral sequence

H∗(MU∧MU, π∗(MU)) −→ [MU∧MU,MU]

has all its differentials zero.) It will therefore be sufficient to give
an element of lim

q

0[(MU∧MU)q,MU].

Now, we have a map

BU(n)× BU(m) −→ BU(n+m) ,

namely the classifying map for the Whitney sum of universal bun-

18



Chapter 2: Cobordism Groups

dles over BU(n) and BU(m). Over this map we have map

µn,m : MU(n) ∧MU(m) −→ MU(n+m) .

The map µn,m yield an element of lim
q

0[(MU∧MU)q,MU], and therefore
they yield a unique homotopy class of maps

µ : MU∧MU −→ MU .

The map µ is commutative and associative (up to homotopy).

Using the map µ, one introduces products in cobordism. More
precisely, one has a product

ΩqU (X)⊗ ΩrU (Y ) −→ Ωq+rU (X ∧ Y )

where X and Y are spectra, and therefore a similar product for the
reduced groups Ω̃∗

U where X and Y are spaces. For spaces we have
also an external product

ΩqU (X,A)⊗ ΩrU (Y,B) −→ Ωq+rU (X × Y,A× Y ∪X ×B)

and an internal product

ΩqU (X,A)⊗ ΩrU (X,B) −→ Ωq+rU (X,A ∪B) .

The products satisfy the axioms which products should satisfy,
that is, naturality, associativity, anticommutativity, existence of a
unit, and behavior with respect to suspension or coboundary.

Next we must mention the Thom isomorphism. For each U(n)-
bundle ξ over X the classifying map for ξ induces a map

γ : M(ξ) −→ MU(n).

The map γ represents a canonical element g in Ω2n
U (E,E0). We define

19



Chapter 2: Cobordism Groups

the Thom isomorphism

ϕ : ΩqU (X) −→ Ωq+2n
U (E,E0)

by ϕ(x) ∈ (p∗x)g, as usual. (See [Dol62])
Only one thing remains before we have a fair grasp on the

cohomology functor ΩU ; we need to know the coefficient groups
ΩqU (P ), where P is a point. In fact Ω∗

U (P ) is a polynomial ring

Z[x1, x2, . . . , xi, . . .] ,

where xi ∈ Ω−2i
U (P ). A good grasp on Ω∗

U (P ) is provided by the
following authors: [Mil60]; [Sto65];[Hat66].

20



3. Homology

The Novikov operations are closely related to certain polynomials
in the Conner-Floyd Chern classes. (These classes may be found
in [CF66] pp 48-52) It is convenient to begin by introducing the
corresponding polynomials in the ordinary Chern classes.

The Whitney sum map BU(n)×BU(m)→ BU(n+m) defines products
in H0(BU) defines products in H∗(BU). We have BU(1) = CP∞, so
H∗(BU(1)) has a Z-base consisting of elements 1, x, x2, x3, . . ., where
x ∈ H2(BU(1)) is the generator. Take the dual base in H∗(BU(1)) and
call it b0, b1, b2, b3, . . .. The injection BU(1)→ BU maps these elements
into H∗(BU), where they can be multiplied. H∗(BU) has a Z-base
consisting of the monomials

bv10 , b
v2
1 , b

v3
2 . . . (b0 = 1) .

Take the dual base in H∗(BU) and call its elements cν ; here the index
ν runs through the sequences of integers

ν = (ν1, ν2, ν3, . . .)

in which all but a finite number of terms are zero. We have cν ∈
H2|ν|(BU), where

|ν| = ν1 + 2ν2 + 3ν3 + . . .

If we take ν = (i, 0, 0, . . .), we obtain the classical i-th Chern class ci.
We have thus given a base of H∗(BU) which is well related to

the Whitney sum map. This is obviously profitable in considering
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Chapter 3: Homology

MU, because in H∗(MU) we have a Whitney sum map but not a
cup-product map.

For later use, we describe H∗(MU), which is defined by

H2i(MU) = lim
n→∞

H2n+2i(MU(n)) .

The Whitney sum map MU(n) ∧MU(m)→ MU(n+m) defines products
in H∗(MU). The Thom isomorphism

ϕ : Hq(BU(n))→ Hq+2n(MU(n)) ,

passes to the limit and gives an isomorphism

ϕ : Hq(BU)→ Hq(MU) ,

and similarly for homology. In particular, we have a “Thom isomor-
phism”

ϕ : H∗(BU)→ H∗(MU) ,

which commutes with the products. Thus the ring H0(MU) is a poly-
nomial ring on generators b′1, b′2, b′2, b′3, . . ., corresponding to b1, b2, b3, . . .

under the Thom isomorphism. It is equivalent, of course, to describe
these generators as follows: take the generators bi ∈ H2i(BU(1)),
take their images b′1 ∈ H2i+2(MU(1)) under the Thom isomorphism,
and apply the injections

H2i+2(MU(1))→ H2i(MU) .

Under the equivalence MU(1) ∼ BU(1), the class b′i ∈ H2i+2(MU(1))
corresponds to bi+1 ∈ H2i+2(BU(1)).

22



4. The Conner-Floyd Chern Classes

[CF66] take a U(n)-bundle ξ over a CW-complex X and undertake
to assign to it characteristic classes which lie, not in the ordinary
cohomology H∗(X), but in Ω∗

U (X).

Theorem 4.1. To each ξ over X and each α = (α1, α2, α3, . . .) we
can assign classes cfα(ξ) ∈ Ω

2|α|
U (X), called the Conner-Floyd Chern

classes, with the following properties:

(i) cf0(ξ) = 1.

(ii) Naturality: cfα(g∗ξ) = g∗cfα(ξ).

(iii) Whitney sum formula:

cfα(ξ ⊕ η) =
∑

β+γ=α

(cfβξ)(cfγη) .

(iv) Let ξ be a U(1)-bundle over X, classified by a map X
f−→ BU(1),

and let the composite X
f−→ BU(1) −→ MU(1) represent the

element ω ∈ Ω2(X). Then

cfα(ξ) =
∑
i≥0

(cα, bi)ω
i .

Explanation. In (iii), the addition of the sequences β and γ is done
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Chapter 4: The Conner-Floyd Chern Classes

term-by-term; that is, if

β = (β1, β2, β3, . . .) ,

γ = (γ1, γ2, γ3, . . .) ,

then
β + γ = (β1 + γ1, β2 + γ2, β3 + γ3, . . .) .

The multiplication of (cfβξ) and (cfγη) is done in the ring Ω∗
U (X).

In (iv), the map BU(1) → MU(1) is the equivalence provided by
Example 2.1. The integer (cα, bi) is defined by the Kronecker pairing
of H∗(BU) and H∗(BU) to Z. The sum over i is illusory; a non-zero
contribution can arise only for i = |α|. The formula merely means
that cfα(ξ) is ω|α| if α has the form (0, 0, 0, . . .) or (0, 0, . . . , 0, 1, 0, . . .),
and otherwise zero. The use of coefficients like (cα, bi) is however
convenient for doing algebra, and saves dividing cases.

Sketch proof of Theorem 4.1. The Grothendieck method for defin-
ing the ordinary Chern classes work just as well in generalized
cohomology, and defines cf1,cf2,cf3, . . .. (See [CF66]). Of course,
Conner and Floyd restrict their spaces to be finite CW-complexes
(although their arguments apply unchanged to finite-dimensional
CW-complexes.) It is therefore necesary to argue that

lim1

q
Ω∗
U ((BU(n))q) = 0 ,

so that cfi defines an element of Ω∗
U (BU(n)) (or of Ω∗

U (BU), if required).
Therefore cfi is defined on all U(n)-bundles, by naturality. The same
means is employed to extend the scope of conclusions (iii) and (iv)
beyond the case considered by Conner and Floyd. It works because
the appropriate lim1 groups for BU(n)× BU(m) and BU(1) are zero.

So far we have only considered the classes cf1, cf2, cf3, . . .. Now,
each element in H∗(BU) can be written as a unique polynomial in
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Chapter 4: The Conner-Floyd Chern Classes

the ordinary Chern classes c1, c2, c3, . . .; say

cα = Pα(c1, c2, c3, . . .) .

Define cfα to be the same polynomial in cf1,cf2,cf3, . . .; that is,

cfα = Pα(cf1,cf2,cf3, . . .) .

Of course, one of the advantages claimed for the treatment
above is that it avoids mentioning the algebra of symmetric poly-
nomials. At the insistence of my friends, I explain the connection
of the Pα with the symmetric polynomials. Let σ1, σ2, σ3, . . . be
the elementary symmetric functions in a sufficiency of variables
x1, x2, . . . , xn; then

Pα(σ1, σ2, σ3, . . .) =
∑

xm1
1 xm2

2 . . . xmn
n ,

where the sum runs over n-tuples (m1,m2, . . . ,mn) such that α1 of
the m’s are 1, α2 of the m’s are 2, and so on, while the rest of the
m’s are 0.

Both for practical calculation and conceptual work I recommend
the study of the dual rings H∗(BU) and H∗(BU) above the study of
symmetric polynomials.

Now that we have defined the classes cfα, the Whitney sum
formula (iii) is deduced from the special case

cfk(ξ ⊕ η) =
∑
i+j=k

cfi(ξ) cfj(η)

by pure algebra, and similarly the behavior on line bundles (iv) is
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Chapter 4: The Conner-Floyd Chern Classes

deduced by algebra from the special case

cfi(ξ) =


1 i = 0

ω i = 1

0 i > 1 .

26



5. The Novikov Operations

The basic analogy which Novikov follows is now: as the Steenrod
squares are to the Stiefel-Whitney classes, so the Novikov opera-
tions are to the Conner-Floyd characteristic classes. This will be
made precise in Theorem 5.1 (vii) below.

Theorem 5.1 (S.P. Novikov). For each α = (α1, α2, α3, . . .) there exists
an operation

sα : Ω
q
U (X,Y ) −→ Ω

q+2|α|
U (X,Y )

with the following properties:

(i) s0 = 1, the identity operation.

(ii) sα is natural: sαf∗ = f∗sα.

(iii) sα is stable: sαδ = δsα.

(iv) sα is additive: sα(x+ y) = (sαx) + (sαy).

(v) Cartan formula:

sα(xy) =
∑

β+γ=α

(sβx)(sγy) .

(vi) Suppose that an element ω ∈ Ω2(X) is represented by a map
X

g−→ MU(1). Then

sα(ω) =
∑
i

(cα, bi)ω
i+1 .

27



Chapter 5: The Novikov Operations

(vii) Suppose that ξ is an U(n)-bundle over X, and consider the
following diagram.

Ω2n
U (E,E0) Ω2n+2|α|(E,E0)

Ω0
U (X) Ω

2|α|
U (X)

sα

ϕ ∼= ϕ ∼=

(Here the pair E,E0 is as in § 2, and ϕ is the Thom isomorphism
for Ω∗

U .) Then we have

cfα(ξ) = ϕ−1sαϕ1 .

Explanation. In (v), the addition of the sequences β and γ is done
term-by-term. The cup product xy may be taken in any one of the
three senses explained above, and then the cup product (sβx)(sγy)

is to be taken in the same sense.
For the coefficients (cα, bi) in (vi), see the note on Theorem 4.1 (iv).

Sketch Proof. We take (vii) as our guide. We have a Thom isomor-
phism

ϕ : Ω∗
U (BU(n)) −→ Ω̃∗

U (MU(n))

Consider the elements ϕcfα ∈ Ω̃
2n+2|α|
U (MU(n)). They yield a unique

element sα ∈ Ω2|α|(MU) (the lim1 argument again). This element
defines an operation on the cohomology theory Ω∗

U .

Property (vii) results immediately from the definition, and prop-
erties (ii), (iii) and (iv) are trivial. For example if x, y : X −→ MU are
maps, and if we represent sα by a map s : MU −→ Σ2aMU, then the
maps s(x+ y) and (sx) + (sy) : X −→ Σ2aMU are homotopic, since we
are working in a stable category.

Properties (i), (v) and (vi) are deduced from the corresponding
properties (i), (iii) and (iv) of the Conner-Floyd classes (Theorem
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Chapter 5: The Novikov Operations

4.1) by using appropriate properties of the Thom isomorphism ϕ.
For example: in proving (v), it is sufficient to consider the case in
which x and y are both the identity map i : MU −→ MU so that xy is
the product map µ : MU∧MU −→ MU. Using the lim1 argument again,
it is sufficient to consider the case in which x and y are generators
for Ω̃2n

U (MU(n)), Ω̃2m
U (MU(m)). Now we use the fact that if ξ is a U(n)

bundle over X and η is a U(m)-bundle over Y the following diagram
is commutative.

Ω̃p+2n
U (M(ξ))⊗ Ω̆q+2m(MU(η)) Ω̃p+q+2n+2m(M(ξ) ∧M(η))

Ω̃p+q+2n+2m(M(ξ × η))

ΩpU (X)⊗ ΩqU (Y ) Ωp+qU (X × Y )

product

product

ϕξ⊗ϕη

ϕξ×η

The application, of course, is with ξ the universal bundle over
BU(η) and η the universal bundle over BU(m).

For (vi) we need to know that for the universal U(1)-bundle over
BU(1), the homomorphism

Ω2i
U (BU(1)) −→ Ω̃2i+2

U (MU(1)) = Ω2i+2
U (MU(1)) i ≥ 0

carries ωi to ωi+1. (Here ω is the universal element in Ω2
U (BU(1)) or

Ω2
U (MU(1)).)

Since sα is a homotopy class of maps

MU −→ Σ2|α|MU,
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Chapter 5: The Novikov Operations

it induces a homomorphism

sα : Hq(MU) −→ Hq−2|α|(MU).

It is reasonable to ask for this homomorphism to be made explicit.
Since we have seen in §3 that H∗(MU) is a polynomial ring, it is
reasonable to ask (i) how sα acts on products, and (ii) how sα acts

on the generators b′i. Set b′ =
∞∑
i=0

b′i; then it is sufficient to know

sα(b
′), since one can separate the components again.

Theorem 5.2. (i) If x, y ∈ H∗(MU), then

sα(xy) =
∑

β+γ=α

(sβx)(sγy).

(ii) sα(b′) =
∑
i≥0

(cα, bi)(b
′)i+1.

Sketch Proof. Part (i). By Theorem 5.1(v), we have the commutative
diagram.

MU∧MU MU

∨
β+γ=α

S2|β|MU∧S2|γ|MU S2|α|MU

µ

∑
β+γ=α

sβ ∧ sγ sα

µ

Pass to induced maps of homology.
Part (ii). Since the generators b′t come from MU(1), we can make

use of Theorem 5.1(vi). If ω is the canonical element of Ω2(MU(1)),
we wish to compute the effect on homology of the element ωi+1 ∈
Ω2i+2(MU(1)), that is, the effect of the following composite map.
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MU(1) MU(1) ∧MU(1) ∧ . . .MU(1) (i+ 1) factors

MU(i+ 1)

∆

µ

Now, the diagonal map

BU(1) ∆−→ BU(1)× BU(1)× . . .× BU(1)

induces a map of cohomology given by

∆∗(xu1 ⊗ xu2 ⊗ . . .⊗ xui+1) = xu1+u2+...+ui+1 ;

therefore it induces a map of homology given by

∆∗bt =
∑

u1+u2+...+ui+1=t

bu1
⊗ bu2

⊗ . . .⊗ bui+1
.

The map of H̃∗ induced by

BU(1) ∆−→ BU(1) ∧ BU(1) ∧ . . .BU(1)

is given by the same formula, provided we now interpret b0 as 0.
Next recall that b′t in MU(1) corresponds to bt+1 in BU(1). We deduce
that

∆∗b
′
t =

∑
u1+u2+...+ui+1=t−i

b′u1
⊗ b′u2

⊗ . . .⊗ b′ui+1

and
µ∗∆∗b

′
t =

∑
u1+u2+...+ui+1=t−i

b′u1
b′u2

. . . b′ui+1
.

Adding, we see that
µ∗∆∗b

′ = (b′)i+1.

By Theorem 5.1(vi), we have the following commutative diagram.
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Σ2MU

MU(1) Σ2|α|+2MU

sαω

(cα,b|α|)ω
i+1

Pass to induced maps of homology.

Corollary 5.3. sα : H0(MU) −→ H2|α|(MU) is given by

sαϕ1 = ϕcα.

Proof. By Theorem 5.1(ii),

sα(b
′
i) =

0 i < |α| (trivially)
(cα, bi)1 i = |α|.

Using Theorem 5.1(i) we have

sα(b
′
i1b

′
i2 . . . b

′
ir ) =

∑
β1+β2+...+βr=α

(sβ1
b′i1)(sβ2

b′i2) . . . (sβr
b′ir ).

If we assume that i1 + i2 + . . .+ ir = |α|, then the only terms which
can contribute to this sum are those with

|β1| = i1, |β2| = i2, . . . , |βr| = ir,

and we obtain ∑
(cβ1

, bi1)(cβ2
, bi2) . . . (cβr

, bir )1

where the sum runs over each such β1, β2, . . . , βr. This of course
yields

(cα, bi1 , bi2 , . . . , bir )1.

We have shown that
sα(ϕx) = (cα, x)1
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for x ∈ H2|α|(BU). Transposing to cohomology, we obtain

sαϕ1 = ϕcα.
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6. The algebra of all operations

Next we need to consider a much more trivial sort of operation. Let
x be a fixed element in ΩpU (P ). Let X,Y be a pair, and let c : X −→ F

be the constant map; thus c∗(x) ∈ ΩpU (X). For each y ∈ ΩqU (X,Y ), we
define

t(y) = (c∗x)y ∈ Ωp+qU (X,Y ).

This defines a cohomology operation

t : ΩqU (X,Y ) −→ Ωp+qU (X,Y ).

In fact, we can say that Ω∗
U (P ) acts on all out groups Ω∗

U (X,Y ),
acting on the left. Now suppose that we fix a dimension d (positive,
negative, or zero), and for each index α = (α1, α2, α3, . . . ) we choose
an element

xα ∈ Ω
d−2|α|
U (P ).

(We do not require that all but a finite number of the xα are zero;
they may all be non-zero if they wish.) For each xα we have a
corresponding operation

tα : Ω
q+2|α|
U (X,Y ) −→ Ωq+dU (X,Y ).

We now consider the infinite sum∑
α

tαsα : Ω
q
U (X,Y ) −→ Ωq+dU (X,Y ).
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(Here we are assuming, as usual that X,Y is a CW-pair of finite
homological dimension.)
Theorem 6.1 (Novikov). (i) This sum converges, in the sense that
all but a finite number of the terms tαsα yield zero.

(ii) This sum defines a cohomology operation on Ω∗
U which is

natural and stable.
(iii) Every cohomology operation on Ω∗

U which is natural and stable
can be written in this form.

(iv) This way of writing a cohomology operation on Ω∗
U is unique;

if
tαsα = 0: ΩqU (X,Y ) −→ Ωq+dU (X,Y )

for all X,Y and q, then xα = 0 for all α.

Sketch proof. Part (i) is trivial: the group Ωq+2α
U (X,Y ) is zero if |α|

is large compared with the homological dimension of the pair X,Y .
Part (ii) is also trivial.

For parts (iii) and (iv), consider the spectral sequence

H∗(MU,Ω∗
U (P )) =⇒ Ω∗

U (MU).

It follows from Corollary 5.3 that the elements sα ∈ Ω∗
U (MU) consti-

tute an Ω∗
U (P )-base for the E2 term of this spectral sequence.

There is alternative method of proving part (iv), as follows.
Remark 6.2 (Novikov). The operations

∑
α tαsα are distinguished by

their values on the classes

ω1ω2 . . . ωm ∈ Ω2m
U (CPn × CPn × · · · × CPn)

(where m and n run over all positive integers).

Sketch proof. It is easily seen that Ω2m
U (CPn×CPn×· · ·×CPn) is free

over Ω∗
U (P ), with an Ω∗

U (P )-base consisting of the monomials

ωi11 ω
i2
2 . . . ωimm
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with 0 ≤ ir ≤ n for all r; the remaining monomials are zero. We have

sα(ω1ω2 . . . ωm) =
∑

i1,i2,...,im

(cα, bi1bi2 . . . bim)ωi1+1
1 ωi2+1

2 . . . ωim+1
m .

This will of course be zero if α1 + α2 + α3 + · · · > m or if ai > 0 for
any i with i + 1 > n; but the remaining elements sα(ω1ω2 . . . ωm) are
linearly independent over Ω∗

U (P ).

Note. With the foundations indicated above, the use of CP∞ instead
of CPn gives no trouble.

Next we need to know how to compute the composite of two
operations tαsα, t′βsβ. This breaks up into three problems.

(i) We need to write sαt
′
β in the form

∑
γ t

′′
γsγ . This reduces to

computing the action of sα of Ω∗
U (P ), for

sα((c
∗x)y) =

∑
β+γ=α

(sβc
∗x)(sγy) =

∑
β+γ=α

(c∗sβx)(sγy).

This writes the operation in the required form.
Now we have Ω∗

U (P ) = π∗(MU), and by Milnor (loct. cit.) the
Hurewicz homomorphism

π∗(MU) −→ H∗(MU)

is monomorphic. Therefore, in principal it is sufficient to know the
action of sα on H∗(MU), which has been given in Theorem 5.2.

We will return later to the action of sα on Ω∗
U (P ).

(ii) We need to compute the composite tαt
′′
γ . This is trivial; just

multiply the corresponding elements of Ω∗
U (P ).

(iii) We need to compute the composite sγsβ . This is done by the
following theorem.

Theorem 6.3. The set S of Z-linear combinations of the sα is closed
under composition. The ring S is a Hopf algebra over Z, whose
dual S∗ is the polynomial algebra on generators b′′1 , b′′2 , b′′3 , . . . , where
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(sα, b
′′
i ) = (cα, bi). Set b′′ =

∞∑
i=0

b′′i , where b′′0 = 1; then the diagonal in S∗

is given by
∆b′′ =

∑
i≥0

(b′′)i+1 ⊗ b′′i .

Explanation. By separating this formula into components we obtain
the value of ∆b′′k; this determines the diagonal on the whole of S∗,
and hence determines the product in S. The situation is similar to
that arising in Milnor’s work on the dual of the Steenrod Algebra.

Theorem 6.3 is due to Novikov, except that he does not give
the explicit formula for the diagonal in S∗.

Sketch proof. In Ω∗
U (CP

n × CPn × . . .CPn), sβ(ω1ω2 . . . ωm) is a Z-linear
combination of monomials ωi11 ωi22 . . . ωimm , and hence sα(sβ(ω1ω2 . . . ωm))

is a Z-linear combination of monomials ωj11 ω
j2
2 . . . ωjmm . By the proof

following Remark 6.2, sαsβ is a Z-linear combination of operations
sγ .

We next wish to calculate ∆b′′k, that is, to find sαsβ(ω) for each
α, β, where ω is the generator in Ω2(CP∞). We have

sβω =
∑
i

(sβ , b
′′
i )ω

i+1

and therefore

sαsβ =
∑

i,j1,j2,...,ji+1

(sα, b
′′
j1 , b

′′
j2 . . . b

′′
ji+1

)(sβ , b
′′
i )ω

i+j1+j2+···+ji+1+1.

We conclude that

∆b′′k =
∑

i+j1+j2+···+ji+1=k

b′′j1 , b
′′
j2 . . . b

′′
ji+1
⊗ b′′i .

Summing over b, we obtain the formula given.

Note. Now that we have introduced the dual Hopf algebra S∗, we
can reformulate Theorem 5.2. Recall that S acts on H∗(MU), acting
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on the left; therefore it acts on the right on H∗(MU); that is, we
have a product map

MU : H∗(MU)⊗ S −→ H∗(MU).

Transposing again, we have a coproduct map

∆: H∗(MU) −→ H∗(MU)⊗ S∗.

This is related to the original action of S on H∗(MU) as follows: if

∆h =
∑
i

hi ⊗ s∗i

then
sh =

∑
i

hi(s
∗
i s)

for all s ∈ S. The map

∆: H∗(MU) −→ H∗(MU)⊗ S∗

may be described as follows.

Proposition 6.4. ∆ preserves products, and

∆b′ =
∑
i≥0

(b′)i+1 ⊗ b′′i .

This is a trivial reformulation of Theorem 5.2

The analogy between this formula and that in Theorem 6.3
should be noted.

At this point we possess a firm grasp of the algebra of operations
on Ω∗

U .
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7. Scholium on Novikov’s Exposition

In Moscow, Novikov made a careful distinction, which is maintained
in his Doklady note, between sω : Ω

∗
U (P ) −→ Ω∗

U (P ) and a certain
homomorphism
σ∗
ω : Ω

∗
U (P ) −→ Ω∗

U (P ). It is necessary to observe that they coincide,
and for this purpose it is necessary to analyse Theorem 3 of
Novikov’s Doklady note [Nov67b].

First observe that in Novikov’s Doklady note, MU and ΩU are
different names for the same thing, since both are defined to be
Ω∗
U (P ) (p. 33 line 4 of Section II; p. 35 line 8). Next recall that

Novikov writes AU for the algebra of operations, and observe that
the isomorphism

HomAU (AU ,MU ) ΩU
∼=

which he has in mind is precisely the standard isomorphism θ given
by

θ(h) = h(1).

Next consider Novikov’s map d : AU −→ AU . Since it is asserted to
induce a map

d∗ : HomAU (AU ,MU ) HomAU (AU ,MU ),

it is implicit that d must be a map of left A-modules. Since it is
asserted to satisfy d(1) = sω, it must be given by

d(a) = asω.
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Chapter 7: Scholium on Novikov’s Exposition

Now consider the following diagram.

HomAU (AU ,MU ) HomAU (AU ,MU )

ΩU ΩU

θ

d∗

θ

x

It is trivial to check that it is commutative if we define x by
x(y) = sωy. But Novikov asserts that it is commutative if define x

to be σ∗
ω. Therefore σ∗

ω(y) = sωy.
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8. Complex Manifolds

Next it is necessary to recall that a stable almost-complex manifold
Mn defines an element [Mn] of Ω−n

U (P ). If we are given such a stable
almost-complex manifold Mn, it is natural to ask for the value of
sα[M

n]. It is especially reasonable to ask this for manifolds CPn,
since these manifolds are familiar and are known to provide a set
of generators for the polynomial ring Ω∗

U (P )⊗Q (where Q is the ring
of rational numbers).

Theorem 8.1. sα[CPn] = (cα, b
−n−1)[CPn−|α|] where b =

∞∑
i=0

bi.

Explanation. Since the element b is a formal series with first term
1, it is invertible. The integer (cα, b

−n−1) is the Kronecker product
of an element in H2|α|(BU) and an element in

∏
qHq(BU). This time

we have used the algebra in §3 to write down a coefficient which
isn’t necessarily 0 or 1.

Theorem 8.1 is due to Novikov, except that he does not give the
explicit formula for the coefficient of [CPn−|α|].

Sketch proof. To preserve the character of the arguments, we will
show how to deduce this from Theorem 5.2 by pure algebra.

The letter χ will always mean the canonical anti-automorphism
of the relevant Hopf algebra. In CPn, the tangent bundle τ satisfies
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τ ⊕ 1 = (n+ 1)ξ, and so for the normal bundle ν we have

cα(ν) = (χcα)τ

= (χcα)((n+ 1)ξ)

=
∑

i1,i2,...,in+1

(χcα, bi1bi2 . . . bin+1)x
i1+i2+···+in+1

=
∑

i1,i2,...,in+1

(cα, χ(bi1bi2 . . . bin+1))x
i1+i2+···+in+1 .

The terms with i1 + i2 + · · ·+ in+1 = n give the normal characteristic
numbers of CPn. Therefore the class of [CPn] in H2n(MU) is

ϕ
∑

i1+i2+···+in+1=n

χ(bi1bi2 . . . bin+1) = ϕχ(bn+1)n,

where the subscript n means the 2n-dimensional component. But
since ∆b = b⊗ b, we have χb = b−1 and χ(bn+1) = b−n−1. We conclude
that the class of [CPn] in H2n(MU) is

((b′)−n−1)n.

Now by 5.2 (ii) we have the formula

sα(b
′) =

∑
i≥0

(cα, bi)(b
′)i+1.

From this we will deduce

sα(b
′)−1 =

∑
j≥0

(cα, χbj)(b
′)j−1. (8.2)
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It is easily to see that this checks; for it yields

sα(b
′ · (b′)−1) =

∑
β+γ=α
i≥0,j≥0

(cβ , bi)(cγ , χbj)(b
′)i+j

=
∑

i≥0,j≥0

(cα, bi · χbj)(b′)i+j

= (cα, b0)1,

as it should. But this manipulation allows one to prove the formula
for sα((b′′)−1)d by double induction over |α| and d, starting from the
trivial cases |α| = 0 and d = 0.

From (8.2) we deduce that

sα((b
′)−n−1)n =

∑
i1+i2+···+in+1=|α|

(cα, χ(bi1bi2 . . . bin+1))((b
′)|α|−n−1))n− |α|.

This is the class of [CPn−|α|] in H2n−2|α|(MU), up to a factor (cα, b
−n−1).

Now the result follows from the fact that the Hurewicz homomor-
phism

π∗(MU) −→ H∗(MU)

is monomorphic.

From a geometrical point of view the proof just given is uncouth
and perverse; Theorem 8.1 should be deduced from an elegant for-
mula of Novikov. Before starting this, we will recall some material
from ordinary cohomology.

LetM,N be oriented manifolds of dimension m,n, and let f : M −→
N be a continuous map. The “Umkehrunghomomorphismus” or
“forward homomorphism”

f! : H
q(M) −→ Hn−m+q(N)
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is defined to be the following composite.

Hq(M) Hn−m+q(N)

Hm−q Hm−q(N)

d d

f∗

Here d is the Poincaré duality isomorphism.

A similar construction may be given in which H∗ is replaced by
Ω∗
U , provided that M and N are stably almost-complex manifolds

and replace d by the Atiyah duality isomorphism

D : ΩqU (M) −→ ΩUm−q(M).

Here ΩUm−q means complex bordism; see [Ati61], for real bordism
and the corresponding duality theorem.

We shall in fact only have to apply the homomorphism f! i the
case when N is a point P and f is the constant map c : M −→ P . It
will make both the proof and the exposition easier if we give an
alternative definition of c!, which does not require the introduction
of bordism.

Suppose that we embed the manifold M in a high-dimensional
sphere Sm+2p, with unitary normal bundle ν. Define c! to be the
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following composite.

ΩqU (M) Ωq−mU (P )

Ωq+2p
U (E,E0)

Ωq+qpU (Sm+2p, C IntE) Ωq+qpU (Sm+2p, Dm+2p)

ϕ

∼=

ϕ

j∗

Here ϕ is the Thom isomorphism; E and E0 refer to the normal bun-
dle ν of M ; and C IntE is the complement of the interior of E. (If one
wished one could replace Ωq+qpU (Sm+2p, C IntE) by Ωq+2p

U (Sm+2p, CM);
ths would make it clearer that this group is standing in for a bordism
group of M , via Alexander duality or S-duality.) Further, Dm+2p is a
small disc contained in C IntE, and the right-hand vertical arrow is
the usual iterated suspension; this may be viewed as the analogue
of the left-hand column, with M replaced by P .

We will accept this composite as our definition of c!. If any
reader who is familiar with bordism prefers a different definition,
we may leave it to them to reconcile their definition with this one.

Now we come to Novikov’s formula. Take a stably almost
complex manifold Mm, representing an element [Mm] ∈ Ω−m

U (P ). Let
ν be its stable normal bundle; thus cfα(ν) ∈ Ω

2|α|
U (Mm) and c!cfα(ν) ∈

Ω2|α|−m(P ).

Theorem 8.3 (Novikov). sα[Mm] = c!cfα(ν).

This result follows easily from the definition of sα in §I.
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Part II

Quillen’s Work on Formal
Groups and Complex Cobordism
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0. Introduction

These notes derive from a series of lectures which I gave in Chicago
in April 1970. It is a pleasure to thank my hosts for an enjoyable
and stimulating visit.

In §§1-8, I have tried to give a connected account, beginning
from first principles and working up to Milnor’s calculation of π∗(MU)
(8.1) and Quillen’s theorem that π∗(MU) is isomorphic to Lazard’s
universal ring L (8.2). The structure of L is obtained from first
principles (7.1). This is done by relating the notion of a formal
group to the notion of a Hopf algebra. The material has been so
arranged that algebraists who are interested in the subject can
obtain a fairly self-contained account by reading §§1, 3, 5, 7.

The remaining sections deal with related matters, In [Ada69,
Lecture 3], I have shown that for suitable spectra E, E∗(E) can be
given the structure of a Hopf algebra analogous to the dual of the
Steenrod algebra. The structure of this Hopf algebra is described
for the spectrum MU in §11, for the BU-spectrum in §13, and for the
Brown-Peterson spectrum in §16. Sections 15 and 16 are devoted
to Quillen’s work on the Brown-Peterson spectrum [JP66]. §14 is
devoted to the Hattori-Stong theorem.
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1. Formal Groups

We may understand formal groups by an analogy. Let G be a real
Lie group of dimension 1. By choosing a chart, we may identify a
neighbourhood of the unit in G with a neighbourhood of zero in R1,
so that the unit of G corresponds to zero. The product in G is then
given by a power-series:

µ(x, y) =
∑
i,j≥0

aijx
iyj . (1.1)

This power-series is convergent for small x and y and satisfies
the following conditions.

µ(x, 0) = x, µ(0, y) = y. (1.2)

µ(x, µ(y, z)) = µ(µ(x, y), z). (1.3)

Now let R be any commutative ring with unit. Then a “formal
product” (over R) is a formal power series of the form (1.1), but
with coefficients aij in R, satisfying (1.2) and (1.3).

We have two trivial examples.

µ(x, y) = x+ y, (1.4)

µ(x, y) = x+ y + xy. (1.5)

For example, suppose that we consider the Lie groups G of
positive real numbers under multiplication, and use the chart under
which x ∈ R1 corresponds to (1 + x) ∈ G; we obtain formula (1.5).
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Let us return to the general case; there a few obvious comments.
Condition (1.2) is equivalent to

ai0 =

1 i = 1

0 i 6= 1

a0j =

1 j = 1

0 j 6= 1

(1.6)

So we may write our formal power-series in the following form

µ(x, y) = x+ y +
∑
i,j≥0

aijx
iyj . (1.7)

Condition (1.3) involves substituting one formal power-series into
another, but this involves no difficulty since our formal power-series
have their constant terms zero.

We observe that so far we are only discussing the case of
dimension 1. That is, in the general case one would start from a
Lie group of dimension 1, and proceed by analogy.

Given a formal product µ, a formal inverse ι is a formal power-
series

ιx =
∑
j≥1

a′jx
j (1.8)

(with coefficients a′j in our ring R) such that

µ(x, ιx) = 0, µ(ιx, x) = 0 (1.9)

Lemma 1.10. Given any formal product µ, there is a formal inverse
ι, and it is unique.

The proof is trivial.
We have two examples; with the “additive product” of (1.4) we

have
ι(x) = −x,
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and with the “multiplicative product” of (1.5) we have

ι(x) = −x+ x2 − x3 + x4 . . . .

So far, a “formal product” is like a grin without a Cheshire cat
behind it. A “formal group” must, of course, be a group object in a
suitable category; I take this notion as known. If X is to be a group
object in the category C, then Cartesian products such as Xn must
exist in C for n = 0, 1, 2, 3; and X must be provided with structure
maps in the category C, namely a product map m : X2 −→ X, a unit
map e : X0 −→ X and an inverse map i : X −→ X. These maps must
satisfy the obvious conditions. For example, consider the category
of smooth manifolds and smooth maps; a group in this category is
a Lie group. Again, consider the category of commutative maps
and homomorphisms of rings, and let C be the opposite category;
with a little goodwill C may be regarded as the category of affine
algebraic varieties. A group in this category is an “algebraic group”.

Now consider the category in which the objects are filtered
commutative algebras over R, which are complete and Hausdorff
for the filtration topology; the morphisms are filtration-preserving
homomorphisms. Let C be the opposite category. The ring of
formal power-series

R[[x1, x2, . . . , xn]],

with the obvious filtration, is an object in C. The objects R[[x1, x2, . . . , xn]]
and R[[y1, y2, . . . , ym]] have a Cartesian product in C, namely

R[[x1, x2, . . . , xn, y1, y2, . . . , ym]].

Let X be the object R[[x]] in C, then a map m : X2 −→ X in C is a
filtration-preserving homomorphism

m : R[[x]] −→ R[[x1, x2]];
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such a map m is determined by giving m(x), which is a formal power-
series µ(x1, x2) with zero constant term. It is now easy to check
that each “formal product” µ determines a structure map m which
makes R[[x]] into a group object, and conversely. (The unit map
e : R[[x]] −→ R defined by e

(∑
i≥0

cix
i
)
= c0; inverse maps come free of

charge by Lemma 1.10). It is now clear how to proceed in dimension
n; we have to consider the object R[[x1, x2, . . . , xn]], and study the
ways of making it into a group-object in C. A “formal group”, then,
is a group-object in the category C, whose underlying object is
R[[x1, x2, . . . , xn]].

We now revert to the case of dimension 1. Let θ : R −→ S be a
homomorphism of rings with unit. Then θ induces the map

θ∗ : R[[x1, x2]] −→ S[[x1, x2]]

which carries any formal product µ over R into a formal product
θ∗µ over S. However, this is not the definition of a homomorphism
between formal groups. Such a homomorphism is, of course, a
map in our category, with the obvious property. That is, if G is
a formal group (R[[x]], µ) and H is a formal group (R[[y]], ν), then a
homomorphism θ : G −→ H is a formal power series

y = f(x) =
∑
i≥1

cix
i

(with coefficients ci in R) such that

ν(f(x1), f(x2)) = fµ(x1, x2).

The analogy with the case of a Lie group is obvious. If the coefficient
c1 is invertible in R, then f−1 exists, and f is an isomorphism.

In our applications we are interested only in the case of dimension
1, and moreover only in commutative formal groups. That is, our
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formal products will satisfy

µ(x, y) = µ(y, x), (1.11)

or equivalently
aij = aji. (1.12)

Our applications arise in algebraic topology.
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2. Examples from Algebraic Topology

In this section we will explain how examples of formal products
arise in studying generalized cohomology theories. According to
[Whi62], generalized cohomology theories are closely connected
with stable homotopy theory and the study of spectra. For conve-
nience we will suppose that we are working in a suitable category
of spectra, such as that constructed by Boardman [Boa64]; [Boa65],
so that we can form smash-products of spectra. A ring-spectrum is
a spectrum E provided with a product map µ : E ∧ E −→ E. All our
ring-spectra will be associative and commutative up to homotopy,
and will be provided with a map i : S0 −→ E which acts as a unit up
to homotopy. We shall suppose known the work of G. W. Whitehead
[Whi62], according to which a ring-spectrum determines a gener-
alized homology theory E∗ and a generalized cohomology theory
E∗. These theories admit all the usual products. The coefficient
groups for these two theories are given by

E−n(pt) = En(pt) = πn(E) = [Sn, E].

Initially we are interested in three examples. First, the Eilenberg-
MacLane spectrum for the group of integers. Since the correspond-
ing homology and cohomology theories are universally written
H∗ and H∗, we will write H for this spectrum. Secondly, the BU-
spectrum; since the corresponding homology and cohomology the-
ories are called K-theory, and written K∗, K∗ (and since we have
just dispense with the use of K for the Eilenberg-Mac Lane spec-
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trum) we will write K for the BU-spectrum. (Note that we would
anyway have to find different notation for the BU-space and the
BU-spectrum, since we have to distinguish between them.) Thirdly,
the Milnor spectrum [Mil60]; this is always written MU ; the corre-
sponding homology and cohomology theories are complex bordism
and complex cobordism.

We do not need homology and cohomology with coefficients until
§15; but it seems best to deal with the matter now. Let G be an
abelian group; then we can construct a Moore spectrum M =M(G)

so that

πr(M) = 0 for r < 0

π0(M) ∼= G

Hr(M) = 0 for r > 0

We define a “spectrum with coefficients” by

EG = E ∧M.

For example, HG is the Eilenberg-Maclane spectrum for the group
G. The homology and cohomology theories associated with EG are
written EG∗, EG∗.

We will study spectra E which are provided with “orientations”,
in the following sense (which owes much to a seminar by A. Dold).

(2.1) There is given an element x ∈ Ẽ∗(CP∞) such that Ẽ∗(CP1) is a
free module over π∗(E) on the generator i∗x, where i : CP1 −→
CP∞ is the inclusion map.

We know, of course that CP1 can be identified with S2 and that
Ĕ∗(S2) is free over π∗(E) on one generator γ, which lies in Ẽ2(S2), and
is represented by the unit map S0 −→ E; but we do not insist that
i∗x is the generator, or even that it lies in Ẽ2(S2). Our assumption
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says only that i∗x = uγ, where u is an invertible element in π∗(E).
If we have more than one spectrum in sight, we write xE for the

generator in Ĕ∗(CP∞), and uE for u.
We make a blanket assumption that objects to be studied are

pairs (E, xE); any E which appears in what follows is supposed to
be provided with a class xE .

Example. (2.2) E = H. We take xH ∈ H2(CP∞) to be the usual gener-
ator.

(2.3) E = K. We identify CP∞ with BU(1), we take ξ to be the
universal line bundle over BU(1), and we take

xK = ξ − 1 ∈ K̆0(CP∞).

Notes. It is justifiable to take xK in K̆0(CP∞) instead of K̃2(CP∞),
because it makes the “n-th Chern class in K-cohomology” lie in
dimension 0 instead of dimension 2n, so that it is more conveniently
related to bundles and representation-theory. Also we get a better
formula at 2 below. The unit uK is the usual generator in π2(K); this
provides some justification for writing i∗x = uγ rather than γ = ui∗x.

(2.4) E = MU. We have a canonical homotopy equivalence ω : CP∞ −→
MU(1). In fact, MU(1) is a quotient space formed from a disc-
bundle over BU(1) by identifying to one point a subbundle whose
fibers are circles. This subbundle is the universal U(1)-bundle,
so it is contractible, and the quotient map is a homotopy
equivalence. The disc-bundle is clearly equivalent to BU(1)
under the projection.

We take xMU ∈ MU2(CP∞) to be the class of ω.
Let us return to the general case. By using the projections of

CP∞ × CP∞ onto its two factors, we obtain two elements

x1, x2 ∈ Ẽ∗(CP∞ × CP∞).
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Lemma 2.5. (i) The spectral sequences

H∗(CPn;π∗(E)) ==⇒ E∗(CPn)

H∗(CP∞, π∗(E)) ==⇒ E∗(CP∞)

H∗(CPn × CPm;π∗(E)) ==⇒ E∗(CPn × CPm)

H∗(CP∞ × CP∞) ==⇒ E∗(CP∞ × CP∞)

Are trivial.

(ii) E∗(CPn) is the ring of polynomials π∗[E] modulo the ideal gen-
erated by xn+1.
E∗(CP∞) is the ring of formal power series π∗(E)[[x]].
E∗(CPn × CPm) is the ring of polynomials π∗(E)[x1, x2] modulo
the ideal generated by xn+1

1 and xm+1
2 .

E∗(CP∞) is the ring of formal power series π∗(E)[[x1, x2]].

Proof. Consider each spectral sequence of part (i); the relevant
powers xi or xi1xj2 give a π∗(E)-base for the E2-term on which all
differentials dr vanish. Since the differentials dr are linear over
π∗(E), they vanish on everything.

We know that CP∞ is an Eilenberg-Mac Lane space of type (Z, 2);
in particular it is an H-space, and its product map

m : CP∞ × CP∞ −→ CP∞

is unique up to homotopy. One way to describe m is to say that it is
the classifying map for the tensor product ξ1ξ2 of two line-bundles
over CP∞ × CP∞; in other words m∗ξ = ξ1ξ2.

In general, we can form m∗x, and by Lemma 2.5 it is a formal
power-series in two variables:

m∗x = µ(x1, x2) =
∑
i,j

aijx
i
1x
j
2 (aij ∈ π∗(E)). (2.6)
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Lemma 2.7. This formal power-series is a commutative formal
product, in the sense of §1, over the ring π∗(E).

The proof is easy.
If we have more than one spectrum E in sight, we write µE for

E and aEij for the coefficients in π∗(E).

Example. (2.8) E = H. We have

m∗xH = xH1 + xH2 .

We get the “additive formal product” of (1.4).

(2.9) E = K. We have
m∗ξ = ξ1ξ2,

that is,
m∗(1 + x) = (1 + x1)(1 + x2)

or
m∗x = x1 + x2 + x1x2.

We get the “multiplicative formal product” of (1.5).

(2.10) We see that there is a formal product defined over π∗(MU) with

aij ∈ π2(i+j−1)(MU).

In this way we get a lot of useful elements in π∗(MU).

(2.11) Let n : CP∞ −→ CP∞ be the map which classifies the line
bundle ξ−1 inverse to ξ in the sense of the tensor-product.
(Alternatively, n is the map of classifying spaces induced by
the homomorphism z 7→ z−1 = z : U(1) −→ U(1).) Then we have

n∗xMU =
∑
j≥0

a′j(x
MU)

j
,

65



Chapter 2: Examples from Algebraic Topology

where
∑
j≥1

a′jx
j is the “formal inverse” corresponding to the

formal product µMU (see (1.8)–(1.10)).

Next a remark on naturality. Suppose given a homomorphism
f : E −→ F of ring-spectra. If xE is as above, then i∗xE = uEγE, so
i∗(f∗x

E) = (f∗u
E)γE; here f∗u

E is invertible in π∗(F ), so we can take
f∗x

E as a generator xF . With this choice of generator we have
aFij = f∗a

E
ij, or in other words µF = f∗µ

E .
More usually, however, both E and F have given generators xE,

xF . In this case we have

f∗x
E =

∑
i≥1

ci(x
F )
i
,

where the ci are coefficients in π∗(F ) and

f∗u
E = c1u

F . (2.12)

Let us set ∑
i≥1

ci(x
F )i = g(xF );

then we have the following result.

Lemma 2.13. g(µF (xF1 , xF2 )) = (f∗µ
E)(g(xF1 ), g(x

F
2 )).

The proof is immediate, by naturality.
This lemma states that the power-series g is an isomorphism

from the formal group with product µF to the formal group with
product f∗µE .

Example. (i) We will see in §4 that we have a map f : MU −→ H

such that f∗xMU = xH . Then f∗aij = 0 if i ≥ 1 and j ≥ 1.

(ii) We will see in §4 that we have a map g : MU −→ K such that
g∗x

MU = u−1xK . Then g∗a11 = u and g∗(aij) = 0 if i > 1 or j > 1.

Many calculations which are familiar for ordinary homology and
cohomology can be carried over to E.
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Lemma 2.14. (i) The spectral sequence

H∗(CPn;π∗(E)) ==⇒ E∗(CPn)

H∗(CP∞);π∗(E)) ==⇒ E∗(CP∞)

H∗(CPn × CPm;π∗(E)) ==⇒ E∗(CPn × CPm)

H∗(CP∞ × CP∞;π∗(E)) ==⇒ E∗(CP∞ × CP∞)

are trivial.

(ii) E∗(CPn) and E∗(CPn) are dual finitely-generated free modules
over π∗(E).

(iii) There is a unique element βn ∈ E∗(CPn) such that

〈xi, βn〉 =

1 i = n

0 i 6= n.

We can then consider the image of βn in E∗(CPm) for m ≥ n and
in E∗(CP∞); these images we also write βm.

(iv) E∗(CPn) is free over π∗(E) on generators β0, β1, . . . , βn.

E∗(CP∞) is free over π∗(E) on generators β0, β1, . . . , βn, . . ..

E∗(CPn × CPm) is free over π∗(E) with a base containing the
external products βiβj for 0 ≤ i ≤ n, 0 ≤ j ≤ m.

E∗(CP∞ × CP∞) is free over π∗(E) with a base consisting of the
external products βiβj .

(v) The external product

E∗(CP∞)⊗π∗(E) E∗(CP∞) −→ E∗(CP∞ × CP∞)

is an isomorphism.
The proof of part (i) is easy, by considering the pairing of these

spectral sequences with those of 2.5(iv). (Compare [Ada69, p. 21],
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where however one is arguing in the opposite direction) This leads
immediately to parts (ii) and (iii). We see that in part (i), the E2-
term of each spectral sequence has a π∗(E)-base consisting of the
appropriate elements βi or βij . This leads to parts (iv) and (v).

If we have more than one spectrum E in sight, we write βEi for
the generators in E∗(CP∞). If we have a homomorphism f : E −→ F

of ring-spectra, and if we choose xF = f∗x
E (as above), then we

have βF∗ = f∗β
E
i . More usually, however, both E and F have given

generators xE, xF . In this case we have

f∗x
E =

∑
i≥1

ci(x
F )
i
= g(xF ),

where the ci are coefficients in π∗(F ) and f∗u
E = c1u

F , as above. In
this case the appropriate move is to invert the power-series and
get

xF = g−1(f∗x
E) =

∑
i

di(f∗x
E)i;

passing to powers, we get

(xF )j =
∑
i

dji (f∗x
E)i

for some coefficients dji ∈ π∗(E). Then we have

Lemma 2.15. f∗βEi =
∑
j

djiβ
F
j .

The proof is immediate, by exploiting the pairing between gen-
eralized homology and cohomology.

Example.(2.16) We will see in §4 that we have a map f : MU −→ H

such that f∗xMU = xH . Thus we have f∗β
MU
i = βHi .

(2.17) We will see in §4 that we have a map g : MU −→ K such that
g∗x

MU = u−1xK . Thus we have g∗β
MU
i = uiβ

K
i .
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Corollary 2.18. The diagonal map

∆ : CP∞ −→ CP∞ × CP∞

gives E∗(CP∞) the structure of a coalgebra, whose coproduct map
is given by

ψβk =
∑
i+j=k

βi ⊗ βj .

This follows immediately from (2.14). It suggests that we regard
E∗(CP∞) as a Hopf algebra, with product induced by

m : CP∞ × CP∞ −→ CP∞

and coproduct as in (2.18). We note that if we do this we shall have

m∗(βi ⊗ βj) =
∑
k

akijβk,

where the sum runs over k ≤ i+ j; for by cellular approximation we
can suppose that m maps CPi × CPj into CPi+j . Of course, the for-
mulae which hold here can be written down in the general abstract
case, and we will now indicate this.
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3. Reformulation

In this section we will interpret a formal group over R as a group
in the category of coalgebras over R.

The results of the previous section suggest that the algebra of
formal power series R[[x]], which arose §1, is actually the dual of
the object which should be considered. Let F be an R-module which
is free on generators β0, β1, .., βn, .... We make F into a coalgebra
over R by setting

ψβk =
∑
i+j=k

βi ⊗ βj . (3.1)

The dual of F , given by F ∗ = HomR(F,R), is then an algebra over R,
and it can be identified with R[[x]]; the pairing between R[[x]] and F

is given by 〈∑
i≥0

cix
i, βn

〉
= cn. (3.2)

(Here the coefficients ci lie in R.)

The analogy with the case of a Lie group confirms that this
procedure is reasonable. Instead of looking at analytic functions∑
i≥0

cix
i on G, we look at differential operators, because functions

are contravariant and differential operators are covariant. More
precisely, we interpret βn as the differential operator 1

n!
dn

dxn , evalu-
ated at x = 0. The result of applying this operator to the analytic
function

∑
i≥0

cix
i is indeed cn. The coproduct in F corresponds to
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Leibniz’ formula

1

k!

dk

dxk
(fg) =

∑
i+j=k

( 1
i!

di

dxi

)( 1

j!

dj

dxj
g
)
.

Since differential operators are covariant, it is reasonable that the
product in G should induce a product of differential operators.

To continue, let F be as above; then we can form F ⊗R F , and its
dual, HomR(F ⊗R F,R), may be identified with the algebra R[[x1, x2]].
The pairing R[[x1, x2]] and F ⊗R F is given by〈∑

i,j

cijx
i
1x
j
2, βp ⊗ βq

〉
= cpq. (3.3)

Each R-map
m∗ : F ⊗R F −→ F

induces a dual map

m∗ : R[[x]] −→ R[[x1, x2]].

This induces a 1-1 correspondence between maps m∗ which are
filtration-preserving (in a suitable sense) and maps m∗ which are
filtration-preserving; corresponding maps are given by the following
formulae.

m∗(βi ⊗ βj) =
∑
k≤i+j

akijβk (3.4)

m∗xk =
∑
i+j≥k

akijx
i
1x
j
2. (3.5)

(Here the coefficients akij lie in our ring R. The coefficients a1ij are
the coefficients aij of section II.) The map m∗ is a map of algebras
if and only if the map m∗ is a map of coalgebras. It is now easy to
check that the relevant conditions on m∗ (such as associativity and
commutativity) are equivalent to the corresponding conditions on
m∗. The map e : R[[x]] −→ R, which was introduced as a unit map in
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§1 and defined by e
(∑
i≥0

cix
i
)
= c0, now has the alternative name β0;

we take β0; we take β0 as our unit in F .
It is clear, of course, that if m∗ is a map of algebras, then m∗xk

is determined by m∗x. So in this case, the coefficients akij are
determined by the a1ij = aij . For example, we easily obtain the
following formula.

ak1j = ka1,j+1−k. (3.6)

Exercise. Obtain a formula for ak22.

We conclude that there is a precise equivalence between group-
object structures on R[[x]] in the sense of §1, and suitable Hopf-
algebra structures on F . A formal group is therefore a group-object
in a suitable category of coalgebras.
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4. Calculations in E-Homology and Cohomology

In this section we continue the programme of taking results which
are familiar for ordinary homology and cohomology, and carrying
them over to E. First we compute the E-homology of the spaces
BU(n) and BU. The space BU is an H-space; its product corresponds
to addition in K-cohomology; in particular, we have the following
homotopy-commutative diagram, in which the upper arrow is the
Whitney sum map.

BU(n)× BU(m) BU(n+m)

BU× BU BU

This diagram gives rise to the following diagram of products.

E∗(BU(n))⊗π∗(E) E∗(BU(m)) E∗(BU(n+m))

E∗(BU)⊗π∗(E) E∗(BU) E∗(BU)
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By using the injection BU(1) −→ BU, the classes βi ∈ E∗(CP∞) give
classes in E∗(BU); we write βi for these classes also. The element
β0 acts as a unit for the products.

Lemma 4.1. (i) The spectral sequences

H∗(BU(n);π∗(E)) =⇒ E∗(BU(n))

H∗(BU;π∗(E)) =⇒ E∗(BU)

are trivial.

(ii) E∗(BU(n)) is free over π∗(E), with a base consisting of the
monomials

βi1βi2 ...βir

such that i1 > 0, i2 > 0, ..., ir > 0, 0 ≤ r ≤ n. (The monomial with
r = 0 is interpreted as 1).

E∗(BU) is a polynomial algebra

π∗(E)[β1, β2, ..., βi, ...].

(iii) The coproduct in E∗(BU(n)) and E∗(BU) is given by

ψβk =
∑
i+j=k

βi ⊗ βj ,

where β0 = 1.

Proof. The proof of parts (i) and (ii) is easy, because the monomials

βi1βi2 ...βir

give a π∗(E)-base for the E2-term on which all differentials dr van-
ish. Since the differentials are linear over π∗(E), they vanish on
everything. Part (iii) comes from (2.18).

We now introduce a general lemma.
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Lemma 4.2. Let X be a space (or a spectrum provided that πr(X) = 0

for r < −N , some N ). Suppose that H∗(X;π∗(E)) is free over π∗(E)

and that the spectral sequence H∗(X;π∗(E)) =⇒ E∗(X) is trivial.
Let F be a module-spectrum over the ring-spectrum E. Then the
spectral sequences

H∗(X;π∗(F )) =⇒ F∗(X)

H∗(X;π∗(F )) =⇒ F ∗(X)

are trivial, and the maps

E∗(X)⊗π∗(E) π∗(F ) −→ F∗(X)

F ∗(X) −→ Homπ∗(E)(E∗(X), π∗(F ))

are isomorphisms.

Proof. The proof is a routine exercise on pairings and spectral
sequences (compare [Ada69, p. 20, Proposition 17]).

In particular, if E is as in §2, the lemma applies to X = CP∞, BU(n)
and BU. We will also see that it applies to X = MU – see (4.5).

Although it is quite unnecessary for our main purposes, we pause
to observe that Chern classes behave as expected in E-cohomology.

Lemma 4.3. (i) E∗(BU) contains a unique element ci such that

〈ci, (β1)i〉 = 1

and
〈ci,m〉 = 0

where m is any monomial βi11 βi22 ...βirr distinct from (β1)
i. We

have c0 = 1.

(ii) The restriction of c1 to BU(1) is xE, the generator given in §2.
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(iii) The restriction of ci to BU(n) is zero for i > n. (Otherwise, the
image of ci in E∗(BU(n)) will also be written ci.)

(iv) E∗(BU(n)) is the ring of formal power-series

π∗(E)[[c1, c2, ..., cn]];

and E∗(BU) is the ring of formal power-series

π∗(E)[[c1, c2, ..., ci, ...]].

(v) We have
ψck =

∑
i+j=k

ci ⊗ cj .

Proof. The definition of ci in (i) is legitimate by (4.2) applied to
X = BU, F = E. We easily check that the unit 1 ∈ E∗(BU) plays the
role laid down for c0. Part (ii) is trivial; part (iii) follows easily from
(4.1)(ii) plus (4.2) applied to X = BU(n). We turn to part (iv).

Let m be a monomial

m = βi11 β
i2
2 ...β

ir
r in E∗(BU);

let the image of m under the iterated diagonal, which is determined
by (4.1)(iii), be ∑

α

m1α ⊗m2α ⊗ ...⊗msα.

Then
〈cj1cj2 ...cjs ,m〉 =

∑
α

〈cj1 ,m1α〉〈cj2 ,m2α〉...〈cjs ,msα〉;

and this is a well-determined integer independent of the spectrum
E. In particular this integer is the same as in the case E = H. We
conclude that in the spectral sequence

H∗(BU(n);π∗(E)) =⇒ E∗(BU(n)), or
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H∗(BU;π∗(E)) =⇒ E∗(BU)

the E2 term has a π∗(E)-base consisting of the appropriate mono-
mials

cj1cj2 ...cjs .

This leads to part (iv). Part (v) follows by duality from the definition
in part (i).

The classes ci are of course the generalized Chern classes in E-
cohomology. If required they may be constructed as characteristic
classes for U(n)-bundles over appropriate spaces by the method
of Grothendieck, and then pulled back to BU(n) and BU by limiting
arguments. (Compare [Ada67, pp. 8-9]). In the case E = MU we get
the Conner-Floyd Chern classes.

If we have more than one spectrum in sight we write βEi , c
E
i . If

we are given a map f : E −→ F of ring-spectra, and choose xF = f∗x
E,

as in §2, then we have
cFi = f∗c

E
i .

The reader may carry over (2.15) to cohomology, but it is not
necessary for our purposes.

For the next lemma, we note that E∗(MU) is a ring, and that the
”inclusion” of MU(1) in MU induces a homomorphism

Ẽp(MU(1)) −→ Ep−2(MU).

Following the analogy of ordinary homology, we take the element

uEβEi+1 ∈ Ẽ∗(MU(1)) (i ≥ 0)

and write bEi for its image in E∗(MU). The factor uE (see §2) is
introduced in order to ensure that bE0 = 1 in E0(MU).

Suppose given a map f : E −→ F of ring-spectra. Then it is clear
that Lemma 2.15 carries over; with the notation (2.15), we have
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the following result.
f∗b

E
i = c1

∑
j

dj+1
i+1 b

F
j . (4.4)

In particular, as soon as we obtain the canonical map f : MU −→ H,
it will send bMUi to bHi ; as soon as we obtain the canonical map
g : MU −→ K, it will send bMUi to uibKi , where u = uK ∈ π2(K).

With an eye to later applications (§15) we include a little spare
generality in the next two lemmas. Let R be a subring of the
rational numbers Q; the reader interested only in the immediate
applications may take R = Z. We recall from §2 that MUR is the
representing spectrum for complex bordism and cobordism with
coefficients in R.

We assume that for each integer d invertible in R, the groups
π∗(E) have no d-torsion. This assumption is certainly vacuous if
R = Z.

Lemma 4.5. (i) The spectral sequences

H∗(MUR;π∗(E)) =⇒ E∗(MUR)

H∗(MUR ∧MUR;π∗(E)) =⇒ E∗(MUR ∧MUR)

are trivial, so that Lemma 4.2 applies.

(ii) E∗(MUR) is the polynomial ring

(π∗(E)⊗R)[b1, b2, ..., bn, ...].

Proof. For (i), in the case of MUR we note that the monomials in the
bi form a π∗(E)⊗R-base for the E2-term on which all differentials
dr vanish. The differentials dr are linear over π∗(E), and by using
the assumption on π∗(E) we see they are linear over R. So the
differentials dr vanish on everything. Similarly for MUR∧MUR, using
exterior products of such monomials. This proves (i) and (ii).

For the next lemma, let R be again a subring of the rational
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numbers Q, and let E be a ring-spectrum, with xE as in §2, such
that

π∗(E) −→ π∗(E)⊗R

is iso. (For example we might have E = FR)

Lemma 4.6. Suppose given a formal power-series

f(xE) =
∑
i≥0

di(x
E)

i+1 ∈ Ẽ2(CP∞)

with uEd0 = 1. Then there is one and (up to homotopy) only one
map of ring-spectra

g : MUR −→ E

such that g∗xMU = f(xE).

Notes.

(i) By abuse of language, we have written xMU also for the image
of xMU ∈ M̃U

2
(CP∞) in M̃UR

2
(CP∞)

(ii) The necessity of the condition uEd0 = 1 is shown by 2.12.

Proof. We check that the conditions of Lemma 4.2 apply to X = MUR,
F = E. We certainly have

H∗(MUR;π∗(E)) ∼= H∗(MU;π∗(E)⊗R) ∼= H∗(MU;π∗(E))

(by the assumption on E), so H∗(MUR;π∗(E)) is free over π∗(E).
Similarly

E∗(MUR) = (π∗(E)⊗R)[b1, b2, ..., bn, ...] = π∗(E)[b1, b2, ..., bn, ...].

If π∗(E) −→ π∗(E) ⊗ R is iso, then π∗(E) has no d-torsion for any
integer d invertible in R, and Lemma 4.5 shows that the spectral
sequence

H∗(MUR;π∗(E)) =⇒ E∗(MUR)
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is trivial. So Lemma 4.2 shows that there is a 1-1 correspondence
between homotopy classes of maps

g : MUR −→ E

and maps
θ : E∗(MUR) −→ π∗(E)

which are linear over π∗(E), and of degree zero. Similarly for maps

h : MUR ∧MUR −→ E;

and this allows us to check whether a map g : MUR −→ E makes the
following diagram homotopy-commutative.

MUR ∧MUR E ∧ E

MUR E

g∧g

g

We find by diagram-chasing that for this, it is necessary and suffi-
cient that the map θ corresponding to g should be a map of algebras
over π∗(E). Now the condition

g∗x
MU =

∑
i≥0

di(x
E)

i+1

is equivalent to
θ(bi) = uEdi (i ≥ 0).

Provided that uEd0 = 1, there is one and only one map θ of π∗(E)-
algebras which satisfies this condition. This proves Lemma 4.6.

Examples 4.7. There is one and only one map f : MU −→ H of
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ring-spectra such that
f∗x

MU = xH .

This is of course a trivial example.

Examples 4.8. There is one and only one map g : MU −→ K of
ring-spectra such that

g∗x
MU = (uK)

−1
xK .

This map is, of course, the usual one, which provides a K-orientation
for complex bundles.

We can also use Lemma 4.6 to construct multiplicative cohomol-
ogy operations from MU∗ to MU∗, following Novikov [Nov63].

We can also use Lemma 4.6 to obtain Hirzebruch’s theory of
“multiplicative sequences of polynomials” in the (ordinary) Chern
classes. If we think for a moment about the gradings in Hirzebruch’s
formulae, we see that for this purpose we need to take E to be a
product of Eilenberg-MacLane spectra, having homotopy groups

πr(E) =

Q for r even
0 for r odd

A suitable candidate is the spectrum H ∧K, which has the required
properties.

Some readers may perhaps be used to thinking of “multiplicative
sequences of polynomials” as elements of the cohomology of the
space BU (elements of (H ∧K)∗(BU), in fact); and they may perhaps
be surprised to see them treated as maps of MU. On this point
several comments are in order.

(a) Lemma 4.6 provides us with all the Thom classes we need, so
we have a Thom isomorphism

(H ∧K)∗(BU) ∼= (H ∧K)∗(MU).
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(b) “Multiplicative sequences of polynomials” carry the Whitney
sum in BU into the product in cohomology. The Whitney sum in
BU corresponds to the product in MU, so it is more convenient
to describe the behavior on products by saying that we have
a map of ring-spectra defined in the spectrum MU.

(c) “Multiplicative sequences of polynomials” are intended for
use on manifolds, so that we actually require their values on
elements of π∗(MU). For this reason, their definition in terms
of MU may be more transparent than their expression in terms
of ordinary Chern classes in BU. For example, consider the
map of ring-spectra

MU g−→ K ∼= S0 ∧K −→ H ∧K,

where the map g : MU −→ K is that mentioned above.

Exercise. Follow up these hints.

Lemma 4.6 shows that if we consider pairs (E, xE), as above, and
such that uE = 1, then among them the pair (MU, xMU) has a universal
property; for any other pair (E, xE), there is a map g : MU −→ E

such that g∗xMU = xE. In particular, for any such (E, xE) we have a
homomorphism of rings g∗ : π∗(MU) −→ π∗(E) such that g∗µMU = µE

(see §2); that is, g∗ carries the one formal product into the other.
We will see in the next section that there is a ring L, with a formal
product defined over it, which enjoys a similar universal property
in a purely algebraic setting. It is known that π∗(MU) is a polynomial
algebra, over Z, on generators of dimension 2, 4, 6, 8, .... The ring L

can be made into a graded ring, and it is known that it is then a
polynomial algebra, over Z, on generators of dimension 2, 4, 6, 8, ....
Following Quillen, we regard these as plausibility arguments, to
introduce the theorem that the canonical map from L to π∗(MU) is
an isomorphism.
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5. Lazard’s Universal Ring

In this section we introduce Lazard’s universal ring. Following
Fröhlich [Frö68], we call this ring L (for Lazard).

Theorem 5.1. There is a commutative ring L with unit, and a com-
mutative formal product µL defined over L, such that for any
commutative ring R with unit and any commutative formal prod-
uct µR defined over R there is one and only one homomorphism
θ : L −→ R such that

θ∗µ
L = µR.

Proof. We define L by generators and relations; that is, we define
L as the quotient of a polynomial ring F by an ideal I. Take formal
symbols aij for i ≥ 1, j ≥ 1 and set

P = Z[a11, a12, a21, . . . , aij , . . .].

Form the formal power series

µ(x, y) = x+ y +
∑
i,j≥1

aijx
iyj (5.2)

and set
µ(x, µ(y, z))− µ(µ(x, y), z) =

∑
i,j,k

bijkx
iyjzk (5.3)

Then each coefficient bijk is a well-defined polynomial in the aij .
Take I to be the ideal in P generated by the elements bijk and aij−aji.
It is trivial to check that L = P/I has the required properties.
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We note that we can make L into a graded ring if we wish.
In fact, we assign to x, y and µ(x, y) the degree −2; then aij has
degree 2(i+ j − 1), and bijk is a homogeneous polynomial of degree
2(i+ j + k− 1). It follows that I is a graded ideal and P/I is a graded
ring.

We note the structure of L is in principle computable. For
example,

L0
∼= Z, generated by 1

L2
∼= Z, generated by a11

L4
∼= Z⊕ Z, generated by a211 and a12

L6
∼= Z⊕ Z⊕ Z, generated by a311, a11, a12 and a22 − a13.

Exercise. Obtain the relation which allows one to write a22 and a31

in terms of the relation given.

The structure of L will be described in more detail in our next
algebraic section, §7.

In order to obtain the structure of L, we use algebraic arguments
which are openly obtained by analogy with the situation in algebraic
topology.
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The element aij in π2(i+j−1)(MU) can be represented by a weakly
almost-complex manifold; we might well be asked to compute the
(normal) characteristic numbers of this manifold. It is equivalent to
ask for the image of aij under the Hurewicz homomorphism

π∗(MU) −→ H∗(MU).

It is the object of this section to this answer this question.
To do so we introduce the Boardman homomorphism, which is

slightly more general than the Hurewicz homomorphism. Let E be
a (commutative) ring-spectrum; then for any (space or spectrum) Y
we can consider the map

Y ' S0 ∧ Y i∧1−→ E ∧ Y ;

composition with this map induces a homomorphism

[X,Y ]∗
B−→ [X,E ∧ Y ]∗.

We recover the Hurewicz homomorphism by setting X = S0, E = H.
The Boardman homomorphism is more or less guaranteed to be

useful when E = H, because of the following lemma.

Lemma 6.1. H ∧ Y is equivalent (though not canonically, in general)
to a product of Eilenberg-maclane spectra, whose homotopy groups
are the groups

πn(H ∧ Y ) = Hn(Y ).
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It follows that
[X,H ∧ Y ]r ∼=

∏
n

Hn−r(X;Hn(Y ))

(not canonically); so the groups [X,E∧Y ]r are computable for E = H.

Proof. For each n, we can construct a Moore spectrum M(Gn, n) for
the group Gn = πn(H ∧ Y ) in dimension n, and construct a map

fn :M(Gn, n) −→ H ∧ Y

which induces an isomorphism

(fn)∗ : πn(M(Gn, n)) −→ πn(H ∧ Y ).

We can then construct the map

H ∧M(Gn, n)
1∧fn−−−→ H ∧H ∧ Y µ∧1−−→ H ∧ Y,

where H ∧M(Gn, n) is an Eilenberg-Maclane spectrum for the group
Gn in dimension n. We can then form the map∨

n

H ∧M(Gn, n) −→ H ∧ Y

whose n-th component is the map (µ∧ 1)(1∧ fn) just constructed; we
observe that it is a homotopy equivalence by Whitehead’s Theorem
(in the category of spectra). Let

∏
nH ∧M(Gn, n) be the product in

the categorical sense; then there is a map∨
n

H ∧M(Gn, n) −→
∏
n

H ∧M(Gn, n),

and this too is a homotopy equivalence by Whitehead’s Theorem.
This proves Lemma 6.1.

Returning to the general case, since E ∧ Y is at least a module-
spectrum over the ring-spectrum E, we may hope to obtain infor-
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mation about [X,E ∧ Y ]r = (E ∧ Y )−r(X) from E∗(X); for example, we
may have available a universal coefficient theorem.

Lemma 6.2. We have the following commutative diagram.

[X,Y ]∗ [X,E ∧ Y ]∗

Homπ∗(E)(E∗(X), E∗(Y ))

α

B

p

Here α is defined by

α(f) = f∗ : E∗(X) −→ E∗(Y ),

while p is the homomorphism of the universal coefficient theorem,
defined by

(p(h))(k) = 〈h, k〉 ∈ π∗(E ∧ Y )

In the last formula we have h ∈ (E ∧ Y )∗(X), k ∈ E∗(X), and the
Kronecker product < h, k > is defined using the obvious pairing of
E ∧ Y and E to E ∧ Y .

The proof of the lemma from the definitions is easy diagram-
chasing. The lemma is of course mainly useful when p is an iso-
morphism; but since E ∧ Y is a module-spectrum over E, Lemma
4.2 shows that p is an isomorphism when E is as in §2, and X =

CP∞,BU,MU, etc.
Let E be a ring-spectrum which satisfies the assumptions made

in §2. Then we can consider the following two maps.

E ' E ∧ S0 −→ E ∧MU

MU ' S0 ∧ E =⇒ E ∧MU.

Both are of course maps of ring-spectra. The generators xE and xMU
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will yield two generators in (E ∧MU)∗(CP∞), and these generators
may well be different. In order to remember which is which, we
call them xE and xMU also (abusing notation to avoid complicating
it). Our next task is to compare xE and xMU.

Lemma 6.3. In (E ∧MU)∗(CP∞) we have

xMU =
∑
i≥0

(uE)
−1
bEi (x

E)
i+1

.

Note that the coefficients (uE)
−1
bEi lie in π∗(E ∧MU).

Proof. Apply Lemma 6.2 to the case X = CP∞, Y = MU. Since xMU is
a reduced class, so is BxMU. by definition, we have

(αxMU)(uEβEi+1) = bEi .

But we also have

(
p(xE)

j
)
(bEi ) =

1 (i = j)

0 (i 6= j)

The result follows by comparing these formulae, since p is an
isomorphism.

In order to exploit this result, let g(xE) be the formal power-
series

g(xE) =
∑
i≥0

(uE)
−1
bEi (x

E)
i+1

, (6.4)

with coefficients in π∗(E ∧ MU), and let g−1 be the inverse power-
series, so that

xE = g−1xMU.

Corollary 6.5. After applying the homomorphisms

π∗(E) −→ π∗(E ∧MU)
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π∗(MU) −→ π∗(E ∧MU)

the formal products µE , µMU are related by

µMU(xMU1 , xMU2 ) = g(µE(g−1xMU1 , g−1xMU2 )).

The proof is immediate from Lemma 2.13; or directly, the map
m : CP∞ × CP∞ −→ CP∞ yields an induced homomorphism m∗ which
commutes with products and limits, so that

m∗g(xE) = g(m∗xE).

one just rewrites this equation.

Corollary 6.6. Take E = H. Then after applying the homomorphism
π∗(MU) −→ π∗(H ∧MU) we have

µMU(x1, x2) = expH ( logH x1 + logH x2),

where
expH(x) =

∑
i≥0

bix
i+1,

bi ∈ H2i(MU) are the usual generators coming from H2i+2(MU(1)), and
logH is the formal power-series inverse to expH .

This is immediate from (6.5), using (2.9).
This corollary yields a method of calculating the image of aij

in H2(i+j−1)(MU), in terms of the usual base in H∗(MU). For example
we have

a11 −→ 2b1

a12 −→ 3b2 − 2b21

a13 −→ 4b3 − 8b1b2 + 4b31

a22 −→ 6b3 − 6b1b2 + 2b31 etc.

Corollary 6.7. Take E = K. The after applying the homomorphism
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π∗(MU) −→ π∗(K ∧MU), we have

µMU(x1, x2) = g(g−1x1 + g−1x2 + (g−1x1)(g
−1x2)),

where
g(x) =

∑
i≥0

u−1bix
i+1,

u ∈ π2(K), bi ∈ K0(MU) are the generators defined above and g−1 is
the formal power-series inverse to g.

This is immediate from (6.5), using (2.9).
This corollary yields a method of calculating the image of aij

in K2(i+j−1)(MU), in terms of the base in K∗(MU). For example, we
have

a11 −→ u(1 + 2b1)

a12 −→ u2(b1 + 3b2 − 2b21)

a13 −→ u3(2b2 − 2b11 + 4b3 − 8b1b2 + 4b31)

a22 −→ u3(b1 + 6b2 − 3b21 + 6b3 − 6b1b2 + 2b31) etc.

We can also use the same method to calculate the Hurewicz
homomorphism

π∗(MU) −→ MU∗(MU).

For this purpose we need to distinguish between the two copies of
MU.
We borrow the notation of [Ada69], and write

ηL, ηR : π∗(MU) −→ MU∗(MU)

for the homomorphisms induced by the maps

MU ' MU ∧ S0 1∧i−→ MU ∧MU

MU ' S0 ∧MU i∧1−→ MU ∧MU.
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The Hurewicz homomorphism is ηR. The usual action of π∗(MU) on
MU∗(X), which works for any X, is given for X = MU by ηL.

Corollary 6.8. The value of ηR on the generators aij is given by

µR(x1, x2) = gµL(g−1x1, g
−1x2)

where
µR(x1, x2) =

∑
i,j

(ηRaij)x
i
1x
j
2,

µL(x1, x2) =
∑
i,j

(ηLaij)x
i
1x
j
2,

g(x) =
∑
i≥0

bMUi xi+1,

bMUi ∈ MU2i(MU) is the generator described in §4, and g−1 is the
power-series inverse to g.

This corollary is strictly on the same footing as the preceding
two.

This yields a method of calculating ηR(aij). For example, we find

ηR(a11) = 2b1 + a11

ηR(a12) = (2b2 − 2b21) + a11b1 + a12

ηR(a13) = (4b3 − 8b1b2 + 4b31) + a11(2b2 − 2b21) + a13

ηR(a22) = (6b3 − 6b1b2 + 2b31) + a11(6b2 − 3b21) + (2a12 + a211)b1 + a22.

From these formulae for the images of the aij under the Hurewicz
homomorphism

π∗(MU) −→ MU∗(MU)

one can of course deduce the formulae for the images of the aij

under the Hurewicz homomorphisms

π∗(MU) −→ H∗(MU)
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π∗(MU) −→ K∗(MU).

One just applies the maps MU −→ H, MU −→ K. In fact, the map
MU −→ H sends bMUi to bHi , and sends aij to 0 for i ≥ 1, j ≥ 1. The
map MU −→ K sends bMUi to uibKi , a11 to u, and aij to 0 if i > 1 or j > 1.
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We propose to prove:

Theorem 7.1. The graded ring L is a polynomial algebra over Z on
generators of dimension 2, 4, 6, 8, . . ..

In order to prove this, we will use a faithful representation of L.
Its construction is suggested by the results of the last section. As
a matter of pure algebra, we define a (graded) commutative ring R

by
R = Z[b1, b2, . . . , bn, . . .]

where bi is assigned degree 2i; b0 is interpreted as 1 if it arises. The
generator bi is to be distinguished from the generator βi in §3.

We define a formal power-series

exp(y) = R[[y]]

by
exp(y) =

∑
i≥0

biy
i+1. (7.2)

and we define log(x) to be the power-series inverse to exp so that

exp log(x) = x

logexp(y) = y
(7.3)

For later use, we make the log series more explicit. Let its
coefficients be

mi ∈ Z[b1, b2, . . . , bn, . . .],
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so that
logx =

∑
i≥0

mix
i+1, (7.4)

If S is an inhomogeneous sum, let us write Si for the component
of S of dimension 2i. Then we have:

Proposition 7.5.

mn =
1

n+ 1

( ∞∑
i=0

bi

)−n−1

n

,

bn =
1

n+ 1

( ∞∑
i=0

mi

)−n−1

n

.

Example.

m1 = −b1,

m2 = 2b21 − b2
m3 = −5b31 + 5b1b2 − b3 etc.

Proof. If
ω =

∑
i≥−N

ciy
idy,

define resω to be c−1, the residue of ω at y = 0. This definition of
the residue is purely algebraic, and the property of the residue
which we shall can be established purely algebraically. Set

x =
∑
i≥0

biy
i+1

y =
∑
j≥0

miy
j+1.

Then
(∑
i≥0

bi

)−n−1

n

is the coefficient of yn in
(∑
i≥0

biy
i

)−n−1

, that
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is, the coefficient of y−1 in
(∑
i≥0

biy
i+1

)−n−1

. So we have

(∑
i≥0

bi

)−n−1

n

= res(x−n−1dy)

= res
(
x−n−1dy

dxdx
)

= res
[
x−n−1

(∑
j≥0

mj(j + 1)xj
)
dx
]

= (n+ 1)mn.

Of course, the relation between the coefficients bi and mi of the
two inverse series is symmetric.

In the future, whenever symbols bi and mi appear in various
contexts, they will be related as in (7.5).

Remark 7.6. Suppose that instead of Z we have in sight a ring U ,
that we replace R by

U [b1, b2, . . . , bn, . . .],

and that we replace our series exp by

x = u−1
∑
I≥0

biy
i+1

where u is invertible in U . (An application is given in (6.3), (6.4).)
Then we have

y =
∑
j≥0

mju
j+1xj+1,

by substituting ux for x in our previous work.

Let us return to formal groups. We define a formal product over
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R = Z[b1, b2, . . . , bn, . . .] by

µR(x1, x2) = exp ( logx1 + logx2). (7.7)

It is easy to check that this does define a formal product. We
have simply taken the additive formal product, (1.4), and made
a change of variables; but the change of variables is of a fairly
general nature. The topologist who has read §6 knows that this
piece of pure algebra is read off H∗(MU); the algebraist doesn’t
have to worry.

According to §5, there is one and only one homomorphism

θ : L −→ R

which carries the formal product µL into µR. We propose to prove;

Theorem 7.8. The map θ is monomorphic.

This theorem shows that we have made the ring R big enough
to provide a faithful representation of L. The proof will require
various intermediate results.

We first recall that the augmentation ideal of a connected graded
ring A is defined by

I =
∑
n>0

An.

The elements of I2 are often called “decomposable elements”. The
“indecomposable quotient” Q∗(A) is defined by

Q∗(A) = I/I2.

We can often use Q∗(A) to get a hold on A.
It is clear that Qm(L) and Qm(R) are both zero unless m = 2n,

n > 0. In this case we have Qm(R) ∼= Z, generated by the coset [bn].

Lemma 7.9. (i) log(x) =
∑
i≥0

mix
i+1, where m0 = 1 and mi ≡ −bi

mod I2 for i ≥ 1.
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(ii) θ(aij) ≡ (i+j)!
i!j! bi+j−1 mod I2 for i ≥ 1, j ≥ 1.

(iii) The image of Q2n(θ) : Q2n(L) −→ Q2n(R) consists of the multiples
of d[bn], where

d =

p if n+ 1 = pf , p prime, f ≥ 1

1 otherwise.

Proof. Part (i) is immediate. Part (iii) follows from (7.7) by an easy
calculation, ignoring coefficients in I2. Since L is generated as a
ring by the aij, Q2n(L) is certainly generated as an abelian group by
the aij with i+ j = n+ 1, i ≥ 1, j ≥ 1. To prove part (iii) we need only
show that the highest common factor of the binomial coefficients

(i+ j)!

i!j!
(i+ j = n+ 1, i ≥ 1, j ≥ 1)

is the integer d defined in the enunciation.
It is well known and easy to see, that if n + 1 = pf all these

binomial coefficients are divisible by p, and that if n + 1 6= pf at
least one of them is not divisible by p. One has only to add that if
n+ 1 = pf , then the binomial coefficient with i = λpf−1, j = µpf−1 is

p!

λ!u!
mod p2.

and it is divisible by p but not by p2.

Topologists will note that this calculation is exactly the same
one as one which Milnor made in the topological case. He was, of
course, computing the image of

Q2n(π∗(MU)) −→ Q2n(H∗(MU)).

The “Milnor genus” may be regarded as the projection

H2n(MU) −→ Q2n(H∗(MU)),
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and the “hypersurfaces of type (1, 1) in CPi × CPj” are related to
the elements aij ∈ π∗(MU) (see Corollary 10.9).

In order to obtain the structure of Q∗(L), we propose to consider
formal groups defined over graded rings S of a particular form.
Given an abelian group A, and an integer n > 0, we can make Z⊕A
into a graded ring so that

S0 = Z

S2n = A

Sr 6= 0 for r 6= 0, 2n.

Lemma 7.10. Among formal groups defined over such rings S, the
obvious formal group defined over Z⊕Q2n(L) is universal.

The proof is immediate; any homomorphism of rings

L −→ Z⊕A

factors to give the following diagram.

L Z⊕A

Z⊕Q2n(L)

We can now reformulate the main lemma used by Lazard and by
Frohlich. Let Tn be the image of Q2n(θ) : Q2n(L) −→ Q2n(R), described
in (7.9).

Lemma 7.11 (After Lazard and Fröhlich). For any (commutative)
formal group defined over a ring Z⊕A, the homomorphism

Z⊕Q2n(L) −→ Z⊕A
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factors through the quotient map

Z⊕Q2n(L) −→ Z⊕ Tn.

The main results of this section follows very easily from this
lemma; but we will defer the proofs until we have proved Lemma 7.11.

Proof. We recall the reformulation of §3. A formal group defined
over Z⊕A is a Hopf algebra structure on a certain coalgebra F ; the
coalgebra F is free over Z⊕A on generators β0, β1, . . . , βi, . . ., and the
coaction is given by

ψβk =
∑
i+j=k

βi ⊗ βj .

Inspecting the formulae in §3 again, we see that our rings are
graded. F can be graded so that βi has degree 2i.

In our case, part of the product structure is determined by the
coproduct structure; we must have

βiβj =
(i+ j)!

i!j!
βi+j +

∑
k=i+j−n>0

akijβk. (7.12)

Here the coefficients akij are coefficients in A, which have to
be determined, and we are interested in their values for k = 1.
More precisely, let d be the highest common factor of the binomial
coefficients (i+j)!

i!j! over i+ j = n+ 1, i ≥ 1, j ≥ 1, as in (7.9); we wish
to show that

alij =
1

d

(i+ j)!

i!j!
a (7.13)

for some fixed element a ∈ A; for the required map ϕ from Tn to
A will be defined by ϕ(d[bn]) = a.

We emphasise that the product βiβj is known, from (7.12), if
i+ j < n+ 1. We now divide cases.
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Case (i). A ∼= Z; let us write as if A = Z. We have

(β1)
n+1 = (n+ 1)!

(
βn+1 +

a

d
β1

)
for some a ∈ Q. When i+ j = n+ 1 we have

(i!βi)(j!βj) = (β1)
i(β1)

i = (β1)
n+1

= (i+ j)!

(
βi+j +

a

d
β1

)

Comparing this with (7.9) we have

a1ij =
(i+ j)!

i!j!

a

d
.

Here a is a rational number such that (i+ j)!

i!j!

a

d
is an integer for

i+ j = n+ 1, i ≥ 1, j ≥ 1. The highest common factor of the numbers
(i+ j)!

i!j!

1

d
is 1, so a is an integer, and we have obtained the required

result (7.13) in this case.

Case (ii). A ∼= Zp. Take i, j such that i+ j = n+ 1, i ≥ 1, j ≥ 1 and
write

i = λ0 + λ1p+ λ2p
2 + . . .+ λrp

r,

j = µ0 + µ1p+ µ1p
2 + . . .+ µrp

r,

where 0 ≤ λi < p, 0 ≤ µi < p for each i. Then

βλ0
1 βλ1

p βλ2

p2 . . . β
λr
pr = c′βi

βµ0

1 βµ1
p βµ2

p2 . . . β
µr
pr = c′′βj

where the coefficients c′ and c′′ are non-zero mod p; in fact,
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c′ = λ0!λ1!λ2! . . . λr! mod p

c′′ = µ0!µ1!µ2! · · ·µr! mod p.

Then we have

(i+ j)!

i!j!
βi+j + a1ijβ1 = βiβj =

1

c′c′′
βλ0+µ0

1 βλ1+µ1
p . . . βλr+µr

pr .

At this point we separate cases further. Case (a): Suppose that
n+ 1 6= pf and λi + µi ≥ p for some i. Then we have pi+1 ≤ n+ 1, and
since n + 1 6= pf we actually have pi+1 < n + 1 so (βpi)

p
= 0 by (7.12)

and a1ij = 0. Since (i+ j)!

i!j!
is also 0 mod p, the required formula (7.13)

will be true in the case whatever choice of a we make later.

Case (b). Suppose that n+1 = pf and λi+µi ≥ p for some i ≤ f − 2.
Then the same argument applies, except that we have to remark
that 1

p

(i+ j)!

i!j!
is 0 mod p. (I am willing to assume the reader knows

or can work out all the required results on binomial coefficients)

Case (c). Suppose n+ 1 6= pf and λi + µi < p for all i. If we write

n+ 1 = ν0 + ν1p+ ν2p
2 + . . .+ νrp

r,

with 0 ≤ νi < p for each i, we must have

λi + µi = νi.

But we can set, once and for all,

βν01 β
ν1
p β

ν2
p2 . . . β

νr
pr = c(βn+1 + aβ1)

where the coefficient c is non-zero mod p; in fact,

c = ν0!ν1! . . . νr! mod p.
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Then

a1ij =
c

c′c′′
a

=
(i+ j)!

i!j!
a.

So the required formula (7.13) holds if n+ 1 6= pf . This completes
case (ii).

Case (iii). A ∼= Zpf . We first remark that a homomorphism of
graded rings Z ⊕ A −→ Z ⊕ A′ is equivalent to a homomorphism
of abelian groups A −→ A′. We proceed by induction over f , and
assume the result true for f − 1. Suppose given a homomorphism
Q2n(L)

θ−→ Zpf ; and the form the following diagram.

Q2n(L) Zpf

Tn Zp

θ

q q′

α

β

By case (ii) the homomorphism q′θ factors in the form αq. Since
Tn is free, we can factor α in the form q′β. Then q′(θ−βq) = 0, and so
θ − βq maps into Zpf−1. By the inductive hypothesis, θ − βq factors
in the form γq. Therefore θ = (β + γ)q. This completes the induction,
and finishes case (iii).

Case (iv). A is any finitely-generated abelian group. Then A can
be written as a direct sum of groups Z and Zpf . The result follows
from cases (i) and (iii).

Case (v). A is any abelian group. Let θ : Q2n(L) −→ A be a
homomorphism. Since Q2n(L) is finitely-generated, so is the image
of θ. The result follows from case (iv).

This completes the proof of Lemma 7.11.
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Corollary 7.14. The quotient map

Q2n(θ) : Q2n(L) −→ Tn

of (7.9) and (7.11) is an isomorphism.

Proof. Of course, the quotient map is an epimorphism. Consider
the following diagram

Z⊕Q2n(L) Z⊕Q2n(L)

Z⊕ Tn

1

1⊕Q2n(θ)

By Lemma 7.11, the identity map of Q2n(L) factors through Q2n(θ).
Therefore Q2n(θ) is monomorphic.

We now prove Theorem 7.1 and 7.8. Choose in L2n an element
tn which projects to the generator of Tn. We immediately obtain a
map

Z[t1, t2, . . . , tn, . . .]
α−→ L

By Corollary 7.14, Q2n(α) is an isomorphism for each n, and therefore
α is an epimorphism. But it is obvious that the composite map

Z[t1, t2, . . . , tn, . . .]
α−→ L

θ−→ R = Z[b1, b2, . . . , bn, . . .]

is monomorphic, since θαtn is a non-zero multiple of bn, modulo
decomposables. Therefore α is an isomorphism and θ is a monomor-
phism. This proves (7.1) and (7.8).

Corollary 7.15. Let µS be any formal product defined over a ring
S containing the rational numbers Q. Then the formal group with
formal product µS is isomorphic to the additive formula group (1.4).

Proof. We have a homomorphism θ : L −→ S carrying µL into µ. Since
S ⊃ Q, θ extends to give a homomorphism θ : L ⊗ Q −→ S. Let R
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be as above; then we may identify L ⊗ Q with R ⊗ Q. Then the
power-series

exp(y) =
∑
i≥0

(θbi)y
i+1

log(x) =
∑
i≥0

(θmi)x
i+1

give the required isomorphism.

Of course, this result is much easier than the proof we have
given of it; and it does not need the hypothesis that the formal
product µL is commutative (as we are always assuming.) We have
given the result to stress that in what follows, log and exp will
always be as in the proof of (7.15).
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8. Quillen’s Theorem

By Theorem 5.1 we have a map

θ′ : L −→ π∗(MU).

The object of this section is to prove the following results.
Theorem 8.1 (Milnor). π∗(MU) is a polynomial algebra over Z on
generators of dimension 2, 4, 6, . . ..
Theorem 8.2 (Quillen). The map

θ′ : L −→ π∗(MU)

is an isomorphism.
Following Milnor, we base our calculation of π∗(MU) on the spec-

tral sequence

Exts,tA (H∗(MU;Zp),Zp)
s=⇒ πt−s(MU) (8.3)

Here A is the mod p Steenrod algebra.
Lemma 8.3. H∗(MU;Zp) is a free module over A/(AβA), where AβA

is the two-sided ideal generated by the Bokštein boundary β = βp.
This lemma is an absolutely standard consequence of the follow-

ing facts. (i) A/(AβA) acts freely on the Thom class u ∈ H0(MU;Zp).
(ii) H∗(MU,Zp) is a coalgebra over A/(AβA).

Unfortunately, we do not only need to know that H∗(MU;Zp)
is free over A/(AβA); we need to know about its base; or more
precisely, we need the following result.
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Lemma 8.4. HomA(H
∗(MU;Zp),Zp), which can be identified with the

set of primitive elements in the comodule H∗(MU;Zp) is a polynomial
algebra on generators of dimension 2n for n > 0, n 6= pf − 1.

We prove (8.3) and (8.4) together, following Liulevicius. More
precisely, let A∗ be the dual of A/(AβA); it is a polynomial algebra

Zp[ξ1, ξ2, . . . , ξf , . . .]

with ξf of dimension 2(pf − 1). Let N∗ be a polynomial algebra

Zp[x1, x2, . . . , xp−2, xp, . . .]

with one generator xi of dimension 2i whenever i 6= pf − 1. Define a
homomorphism

α : H∗(MU;Zp) −→ N∗

by

α(bi) =

xi i 6= pf − 1

0 i = pf − 1.

Define a homomorphism from H∗(MU;Zp) to A∗ ⊗N∗ by

H∗(MU;Zp)
ψ−→ A∗ ⊗H∗(MU;Zp) 1⊗α−−−→ A∗ ⊗N∗,

where ψ is the coproduct map. Make A∗ ⊗N∗ into a comodule over
A∗ by giving it the coproduct map

A∗ ⊗N∗
ψ⊗1−−−→ A∗ ⊗ (A∗ ⊗N∗).

Then (1⊗ α)ψ is a homomorphism of rings and a homomorphism of
comodules over A∗.

Now, in BU(1) we have

ψβpf = ξf ⊗ β1 + ξpf−1 ⊗ βp + . . .+ 1⊗ βpf .
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So in MU we have

ψβpf−1 = ξf ⊗ 1 + ξpf−1 ⊗ bp−1 + . . .+ 1⊗ bpf−1.

We see that the map

Q((1⊗ α)ψ) : Q(H∗(MU;Zp)) −→ Q(A∗ ⊗N∗)

is given by

Q((1⊗ α)ψ)bi =

1⊗ xi mod I2 i 6= pf − 1

ξf ⊗ 1 mod I2 i = pf − 1.

So Q((1⊗ α)ψ) is an isomorphism, and (1⊗ α)ψ is an epimorphism.
By counting dimensions, (1⊗ α)ψ must be an isomorphism.

Since the dual of A∗ ⊗ N∗ is free, we have proved (8.3). Since
the set of primitive elements in A∗ ⊗N∗ is precisely N∗, we have
proved (8.4) too.

Corollary 8.5. In the spectral sequence (8.3), the E2-term

Exts,tA (H∗(MU;Zp),Zp)

is a polynomial algebra on generators xn, n = 0, 1, 2, 3, . . . of bidegree

s = 0, t = 2n, (n 6= pf − 1)

s = 1, t = 2n+ 1, (n = pf − 1).

This follows from (8.3), (8.4) by standard methods; see [Mil60].
It follows from (8.5) that the spectral sequence (8.3) has non-

zero groups only in even dimensions; so the spectral sequence is
trivial.

In order to deduce the required results on π∗(MU), we need a
technical lemma on the convergence of the spectral sequence (8.3).

Lemma 8.6. Suppose given a connected spectrum X, such that
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πr(X) is finitely generated for each r and zero for r < 0. Suppose
given integers m, e. Then there exists s = s(m, e) such that any
element in πm(X) of filtration ≥ s in the spectral sequence

Exts,tA (H∗(X;Zp),Zp)
s=⇒ πt−s(X)

is divisible by pe in πn(X).

This may be proved by the method given in my original paper
[Ada58].

Corollary 8.7.

Qm(π∗(MU))⊗ Zp =

Zp for m = 2n, n > 0

0 otherwise.

Proof. When m 6= 2n (n > 0) the result is trivial, so we assume m = 2n,
n > 0. There are of course many ways of seeing that Q2n(π∗(MU))⊗Zp
has dimension at least one over Zp; for example,

Q2n(π∗(MU))⊗Q ∼= Q2n(H∗(MU))⊗Q ∼= Q.

We need to prove Q2n(π∗(MU))⊗ Zp has dimension at most 1.
Let ti ∈ π2i(MU) be an element whose class in the E2-term is the

generator xi in (8.5). I claim that Q2n(π∗(MU))⊗Zp is generated by the
image of tn. In fact, let y be any element in π2n(MU), and let s be as
in (8.6), taking m = 2n, e = 1; then (by induction over the filtration)
we can find a polynomial q(t0, t1, . . . , tn) such that y − q(t0, t1, . . . , tn)
has filtration ≥ s, and so

y = q(t0, t1, . . . , tn) + pz.

Since π0(MU) = Z, the coefficient of tn (which a priori is a polynomial
in t0) must be an integer c. We deduce that

y = ctn mod In + pπ∗(MU),
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where I =
∑
i≥0

πi(MU). That is, Q2n(π∗(MU)) ⊗ Zp is generated by the

image of tn. This proves (8.7).

Corollary 8.8.

Qm(π∗(MU)) ∼=

Z for m = 2n, n > 0

0 otherwise.

Proof. Qm(π∗(MU)) is a finitely generated abelian group; use the
structure theorem for finitely generated abelian groups, plus (8.7).

We now consider the following diagram.

L π∗(MU)

Z[b1, b2, . . . , bn, . . .] H∗(MU)

θ′

θ h

Here θ has been carefully defined so that the diagram is commu-
tative, as we see by comparing (6.6) with (7.2), (7.7). The behaviour
of θ has been studied in §7.

Lemma 8.9. The image of

Q2n(h) : Q2n(π∗(MU)) −→ Q2n(H∗(MU))

is the same as the image of Q2n(θ) (which has described in (7.9)).

Proof. It is clear that ImQ2n(θ) ⊂ ImQ2n(h); we have to prove ImQ2n(h) ⊂
ImQ2n(θ). If n+1 6= pf there is nothing to prove. If n+1 = pf , consider
the canonical map

MU −→ H −→ HZp;
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call it g. The induced homomorphism

q∗ : H∗(MU) −→ (HZp)∗(HZp)

clearly annihilates the image of π2n(MU). On the other hand, it
carries bn into the Milnor generator ξf in (HZp)∗(HZp) (since both
come from MU(1) = BU(1)). The class ξf remains non-zero when we
pass to Q2n(HZp)∗(HZp) ∼= Zp. So the image of Q2n(h) consists at
most of the multiples of p[bn]. This proves (8.9).

Exercise. See if you can refrain from translating this proof into
cohomology.

We proceed to prove (8.1) and (8.2). Recall our diagram.

L π∗(MU)

Z[b1, b2, . . . , bn, . . .] H∗(MU)

θ′

θ h

It follows from (8.8) and (8.9) that

Q2n(h) : Q2n(π∗(MU)) −→ ImQ2n(θ)

is iso. Using (7.14), we see that

Q2n(θ
′) : Q2n(L) −→ Q2n(π∗(MU))

is iso. But by (7.8), the map θ = hθ′ is mono; so θ′ is mono, and θ is
an isomorphism. This proves (8.2), and (8.1) follows from (7.1).

Taking a last look at our diagram, we conclude that the homo-
morphism θ studied in §7 was up, to isomorphism, the Hurewicz
homomorphism

h : π∗(MU) −→ H∗(MU).
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Corollary 8.10. The Hurewicz homomorphism

h : π∗(MU) −→ H∗(MU)

is a monomorphism.

Exercise. Deduce (8.1) directly from (8.5).
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9. Corollaries

In this section we will record various results which follow from the
results in §8, or supplement them, and are needed later.

Recall that the complex manifold CPn defines an element [CPn] ∈
π2n(MU).

Lemma 9.1. With the notation of §7, the image of [CPn] in H2n(MU)
is (n+ 1)mn.

Proof. Algebraic topologists will instantly recognise the formula( ∞∑
i=0

bi

)−n−1

n

of (7.5) as giving the normal Chern numbers of CPn.

We know from §8 that the map

π∗(MU) −→ π∗(MU)⊗Q

is an injection, and we may identify π∗(MU)⊗Q and H∗(MU)⊗Q. It
is often convenient to work in π∗(MU)⊗Q, and we now know that
we lose nothing in doing so. In what follows, then, we will regard
mn = mH

n ∈ H2n(MU) as the element [CPn]
n+1 of π∗(MU)⊗Q. If we do so,

we have the following result.

Corollary 9.2 (Miščenko appendix 1 in [Nov63] ). The logarithmic
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series for the formal product µMU may be written

logH xMU =
∑
n≥0

[CPn]
n+ 1

(xMU)
n+1

.

Lemma 9.3. Suppose that R ⊂ S are subrings of the rationals. Then
a map

f : MUR −→ MUS

is determined up to homotopy by

f∗ : π∗(MUR) −→ π∗(MUS).

Proof. There are many variants possible; we argue as follows. Ap-
plying (4.1) as in the proof of (8.1), we see that f is determined up
to homotopy by

f∗ : MUR∗(MUR) −→ MUR∗(MUS∗).

Since π∗(MU) is torsion-free by 8.1, we see that the vertical arrows
of the following commutative diagram are monomorphisms.

MUR∗(MUR) MUR∗(MUS)

MUR∗(MUR)⊗Q MUR∗(MUS)⊗Q

π∗(MUQ)⊗ π∗(MUR) π∗(MUQ)⊗ π∗(MUS)

f∗

∼= ∼=

1⊗f∗

Next we go back to the work of (6.8). We now know that the
Hurewicz homomorphism

ηR : π∗(MU) −→ MU∗(MU)
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is adequately described by giving

ηR ⊗ 1 : π∗(MU)⊗Q −→ MU∗(MU)⊗Q,

and this can be done by giving its effect on the generators mi =

mH
i ∈ π2i(MU)⊗Q. For this purpose we propose the following formula.

We write Mj for the generator mMU
j ∈ MU2j(MU), to distinguish it from

mj = mH
j .

Proposition 9.4.

∑
i≥0

(ηRmi)x
i+1 =

∑
i≥0

mi

(∑
j≥0

Mjx
j+1

)i+1

Proof. Consider again the two maps

ηL : MU ' MU ∧ S0 1∧i−−→ MU ∧MU

ηL : MU ' S0 ∧MU i∧1−−→ MU ∧MU

of (6.8). Applying them to xMU, we obtain the two generators in
(MU∧MU)2(CP∞); we call these generators xL and xR. (We no longer
need L for the Lazard ring) Applying Lemma 6.3, we find

xR =
∑
i≥0

bMUi (xL)i+1. (9.5)

Passing to the inverse power-series, we find

xL =
∑
i≥0

mMU
i (xR)i+1 =

∑
j≥0

Mj(x
R)j+1 (9.6)

Now our log series are

xH = logL xL =
∑
i≥0

(ηLmi)(x
L)i+1

117



Chapter 9: Corollaries

xH = logR xR =
∑
i≥0

(ηRmi)(x
R)i+1

So we obtain

∑
i≥0

(ηRmi)(x
R)
i+1

=
∑
i≥0

(ηLmi)

(∑
j≥0

Mj(x
R)j+1

)i+1

.

This proves the proposition.
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10. Various Formulae in π∗(MU)

In this section we will derive various relations between different
elements lying in π∗(MU) or π∗(MU)⊗Q. In particular, we will give the
relationship between the coefficients aij and Milnor’s hypersurfaces
of type (1, 1) in CPi × CPj (10.6).

To begin with we try to answer various questions that might
arise in practical calculations.

(i) To write the coefficients mi in the logH series in terms of the
coefficients bi in the expH series. See 7.5.

(ii) To write the coefficients bi in the expH series in terms of the
coefficients mi in the logH series. See 7.5.

(iii) To write the coefficients aij in terms of the bi or the mi,
regarded as elements of π∗(MU)⊗Q. See (6.6).

(iv) To write the bi or mi regarded as elements of π∗(MU) ⊗ Q, in
terms of the aij . The most convenient formula is the following.

Theorem 10.1.
[CPn] = (n+ 1)mn =

(∑
i≥0

ail

)−1

n

. (10.1)

Corollary 10.2. If n ≥ 1, we have [CPn] ≡ −an1 mod decomposibles in
π∗(MU).

Proof of (10.1). Take the equation

log
(
x1 +

∑
i≥0, j>1

aijx
i
1x
j
2

)
= logx1 + logx2
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and equate the coefficients of x2. We obtain(∑
n≥0

(n+ 1)mnx
n
1

)(∑
i≥0

ai1x
i
1

)
= 1

Following Lemma 9.1, it is plausible to observe that the injection
in : CPn −→ CP∞ defines an element MU2n(CP∞), and to relate this
element to those we have already studied. The element [in] is not
equal to βMUn because the constant map c : CP∞ −→ pt sends [in] to
[CPn] and βMUn to 0. The required relation will be given in (10.5).

Lemma 10.3. If n ≥ 1, we have

xMU ∩ [in] = [in−1] in MU2(n−1)(CP∞).

This is the sort of result that should obviously be proved ge-
ometrically. However, since we are proceeding homologically and
not assuming much familiarity with the geometric approach, we
check the result by applying the homomorphism

MU∗(CP∞) −→ (H ∧MU)∗(CP∞),

which we know to be monomorphic by 2.14, 8.10.

The image of [in] in (H ∧MU)2n(CP∞) is

∑
p+q=n

(
b

∞∑
k=0

bk

)−n−1

p

⊗ βq

where bk = bHk , βq = βHq . The image of xMU in (H ∧MU)2(CP∞)∑
r

br(x
H)

r+1
,
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Chapter 10: Various Formulae in π∗(MU)

by (6.3). The cap product of these two classes is

∑
p+q=n

r

( ∞∑
k=0

bk

)−n−1

p

br ⊗ βq−r−1.

Set q − r − 1 = s; we obtain

∑
p+r+s=n−1

( ∞∑
k=0

bk

)−n−1

p

br ⊗ βs =
∑

t+s=n−1

( ∞∑
k=0

bk

)−n

t

⊗ βs.

This is the same as the image of [in−1].

Corollary 10.4.

(xMU)
r ∩ [in] =

[in−r] r ≤ n

0 r > n.

This follows immediately, by induction over r.

Corollary 10.5.

[in] =
∑
r+s=n

[CPr]βMUs in MU2n(CP∞).

Proof.
〈xMU, [in]〉 = c∗((x

MU)
s ∩ [in]).

If s > n we obtain 0; if s ≤ n we obtain c∗[in−s] = [CPn−s].

We are now ready to explain the connection between the co-
efficients aij of 2 and Milnor’s hypersurfaces Hi,j of type (1, 1) in
CPi × CPj .

Proposition 10.6.
[Hp,q] =

∑
r+u=p
s+v=q

ar,s[CPu][CPv].

(I understand this formula was also obtained by Boardman.)
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Corollary 10.7. If p > 1 and q > 1, we have

[Hp,q] ≡ ap,q mod decomposibles in π∗(MU).

Proof of (10.6). The construction of Hp,q yields the following for-
mula.

[Hp,q] = c∗((m
∗xMU) ∩ ([ip]× [iq])).

Here c : CP∞×CP∞ −→ pt is the constant map, and m : CP∞×CP∞ −→
CP∞ is the product map of §2; we have

m∗xMU ∈ MU2(CP∞ × CP∞)

and
[ip]× [iq] ∈ MU2(p+q)(CP∞ × CP∞).

This yields
[Hp,q] = 〈m∗xMU, [ip]× [iq]〉.

But here we have

m∗xMU =
∑
r,s

ars(x
MU
1 )

r
(xMU2 )

s
,

[ip] =
∑

r+u=p

[CPu]βMUr ,

[iq] =
∑
s+v=q

[CPv]βMUs .

The result follows immediately.

Corollary 10.8. π∗(MU) is generated by the elements [CPn] for n ≥ 1

together with the elements [Hp,q] for p > 1, q > 1.

Proof. By 8.2, π∗(MU) is generated by the aij ; but by (10.2) and (10.7)
these coincide with [CPn] and [Hp,q] modulo decomposibles.
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11. MU∗(MU)

It is shown in [Ada69, Lecture 3, pp. 56-76] that MU∗(MU) may
be considered as a Hopf algebra. We may think of MU∗(MU), the
Novikov algebra of operations on MU-cohomology, as analogous to
the Steenrod algebra; if we do so, we should think of MU∗(MU) as
analogous to the dual of the Steenrod algebra, which was studied
by Milnor. [Mil58] There is only one point at which we need to
take care in generalizing from the classical case to the case of
generalized homology; the Hopf algebra MU∗(MU) = π∗(MU ∧MU) is
a bimodule over the ring of coefficients π∗(MU), because we can
act either on the left hand factor of MU ∧MU or on the right hand
factor. On this point, see [Ada69, Lecture 3, pp. 59-60].

I would now advance the thesis that instead of considering MU∗(X)

as a (topologised) module over the (topologised) ring MU∗(MU), we
should consider MU∗(X) as a comodule with respect to the Hopf
algebra MU∗(MU). For this purpose I propose to record the structure
of MU∗(MU) as a Hopf algebra. I would like to regard this account
as superseding, to a large extent, the account which I gave in my
earlier Chicago notes [Ada67].

At this point I pause to insert various remarks intended to make
the spectrum MU∧MU seem more familiar. Some may like to think of
it as the represented spectrum for U×U-bordism; that is, we consider
manifolds Mn, which are given embedded in a sphere Sn+2p+2q, and
whose normal bundle is given the structure of a U(p)× U(q)-bundle
– say as ν = ν1 ⊕ ν2. With this interpretation, some of the structure
maps to be considered are obvious ones. For example, we shall
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Chapter 11: MU∗(MU)

consider a conjugation map or canonical anti-automorphism

c : MU∗(MU) −→ MU∗(MU);

this is induced by the usual switch map

τ : MU ∧MU −→ MU ∧MU

which interchanges the two factors. The effect of c on Mn is to
leave the manifold alone and take the new ν1 to be the old ν2 and
vice versa. We can easily construct U × U-manifolds, for example,
by taking CPn and taking the stable classes of ν1, ν2 to be pξ, qξ,
where p+ q = −(n+1). However, we will make no further use of this
approach.

I also remark that MU ∧MU is homotopy-equivalent to a wedge-
sum of suitable suspensions of MU. This follows from the following
lemma, plus (4.5).
Lemma 11.1. Let E be a ring-spectrum. In order that E ∧ X be
equivalent, as a module-spectrum over E, to a wedge-sum

∨
α

E ∧

Sn(α), it is necessary and sufficient that π∗(E ∧X) should be a free
module over π∗(E).

Proof. π∗
(∨

α

E ∧ Sn(α)
)
∼=
∑
α

π∗(E ∧ Sn(α)) is indeed a free module

over π∗(E). So if E ∩X is equivalent, as a module-spectrum over E,
to
∨
α

E ∧ Sn(α), then π∗(E ∧X) is also free.

Conversely, assume that π∗(E ∧X) is free over π∗(E), with a base
of elements bα ∈ πn(α)(E ∧X). Represent bα by a map

fα : Sn(α) −→ E ∧X,

and consider the map

f :
∨
α

E ∧ Sn(α) −→ E ∧X,
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whose α-th component is

E ∧ Sn(α) 1∧fα−−−→ E ∧ E ∧X µ∧1−−→ E ∧X.

Then f is clearly a map of module-spectra over E, and f induces an
isomorphism of homotopy groups; so f is a homotopy equivalence,
by Whitehead’s theorem (in the category of spectra.)

Let us return to the spectra of MU∗(MU). Recall from (4.5) that
MU∗(MU) is free as a left module over π∗(MU), with a base consisting
of the monomials in the generators bi = bMUi ∈ MU2i(MU).

Recall also from [Ada69, p. 61] that the structure maps to be
constructed are as follows.

(i) A product map

ϕ : MU∗(MU)⊗MU∗(MU) −→ MU∗(MU).

This is the same product in MU∗(MU) that we have been using
all along, and we do not need to give any formulae for it,
because MU∗(MU) is described in terms of this product.

(ii) Two unit maps

ηL, ηR : π∗(MU) −→ MU∗(MU).

These are induced by the maps

MU ' MU ∧ S0 1∧i−−→ MU ∧MU,

MU ' S0 ∧MU i∧1−−→ MU ∧MU

respectively. They are introduced so that left multiplication
by a ∈ π∗(MU) is multiplication by ηL(a), and right multiplication
by a ∈ π∗(MU) is multiplication by ηR(a). The map ηL sends
a ∈ π∗(MU) to a.1, and we do not need to give any other
formula for it.
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The map νR is essentially the Hurewicz homomorphism

π∗(MU) −→ MU∗(MU).

It figures in the next result; to motivate it, we recall that
one should describe the action of cohomology operations h ∈
MU∗(MU) on the ring of coefficients π∗(MU); compare [Ada67,
p. 19, Theorem 8.1, p. 23]

Proposition 11.2. Let E be as in [Ada69, Lecture 3], and let h ∈ E∗(E).
Then the effect of the cohomology operation h on the element
λ ∈ π∗(E) is given by

hλ = 〈h, ηRλ〉.

This may be proved either directly from the definitions by
diagram-chasing or by substituting X = S0, ψλ = (νLλ)⊗ 1 in [Ada69,
Proposition 2, p. 75].

We return to listing the structure maps to be considered.

(iii) A counit map
ε : MU∗(MU) −→ π∗(MU).

This is induced by the product map

µ : MU ∧MU −→ MU.

(iv) A canonical anti-automorphism, or conjugation map

c : MU∗(MU) −→ MU∗(MU).

This is induced by the switch map

τ : MU ∧MU −→ MU ∧MU,

as remarked above.
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(v) A diagonal or coproduct map

ψ : MU∗(MU) −→ MU∗(MU)⊗π∗(MU) MU∗(MU).

The maps which have not been discussed already are given by
the following result.

Theorem 11.3. (i) The homomorphism ηL is calculated in §6 and
§9.

(ii) The map ε is a map of algebras which are bimodules over
π∗(MU); it satisfies

ε(1) = 1

ε(bi) = 0 for i ≥ 1.

(iii) The map c is a map of rings; it satisfiesc(ηLa) = ηRa

c(ηRa) = ηLa
(a ∈ π∗(MU))

and c(bi) = mi, where bi and mi are related as in (7.5).

(iv) The coproduct map ψ is a map of bimodules over π∗(MU). It is
given by

ψbk =
∑
i+j=k

(∑
h≥0

bh

)j+1

i

⊗ bj .

(Compare [Ada67, p. 20, Theorem 6.3])

Proof. We begin with (ii). The formal properties of ε are given in
[Ada69]. Instead of saying ε is induced by µ : MU ∧MU −→ MU, we
may proceed as follows. Let x ∈ MU∗(MU), let 1 ∈ MU0(MU) be the
class of the identity map 1 : MU −→ MU, and let 〈1, x〉 ∈ π ∗ (MU) be
their Kronecker product; then

ε(x) = 〈1, x〉.
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Applying the naturality of the Kronecker product to the map
MU −→ MU, we find that

〈1, bi〉 = 〈xMU, βi+1〉

= 0 for i > 0.

We turn to part (iii) of (11.3). The formal properties of c are
given in [Ada69]. By (9.5) we have

xR =
∑
i≥0

bMUi (xL)
i+1

.

Applying c, we find
xL =

∑
i≥0

(cbMUi )(xR)
i+1

.

So cbi = mMU
i .

We turn to part (iv) of (11.3). The formal properties of ψ are
given in [Ada69]. We begin by determining the coproduct map

ψ : MU∗(CP∞) −→ MU∗(MU)⊗π∗(MU) MU∗(CP∞).

By definition, this coproduct map is the following composite.

MU∗(CP∞) (MU ∧MU)(CP∞)

MU∗(MU)⊗π∗(MU) MU∗(CP∞)

∼=

Here the first factor can be described by adopting the notation of
the proof of (9.4); it maps βi ∈ MU2i(CP∞) into βLi ∈ (MU∧MU)2i(CP∞).
The isomorphism maps the element 1⊗βi in the tensor-product into
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βRi ∈ (MU ∧MU)2i(CP∞). By (9.5) we have

xR =
∑
i≥0

bMUi (xL)
i+1

and therefore
(xR)j =

∑
k

(∑
i≥0

bMUi

)j
k

(xL)
j+k

.

Dualizing, we find

βLi =
∑

0≤j≤i

(∑
k

bMUk

)j
i−j
⊗ βRj ;

that is
ψβi =

∑
0≤j≤i

(∑
k

bMUk

)j
i−j
⊗ βj . (11.4)

(Note that this formula determines the coaction map

ψ : MU∗(BU) −→ MU∗(MU)⊗π∗(MU) MU∗(BU)

for the space BU) Transferring (11.4) to MU by the “inclusion” CP∞ =

MU(1) −→ MU, we find

ψbi−1 =
∑

0≤j−1≤i−1

(∑
`≥0

b`

)j
i−j
⊗ bj−1,

which is equivalent to the result given. This completes the proof
of (11.3).

Notes. Consider the subalgebra

S∗ = Z[b1, b2, · · · , bn, · · · ]

(compare [Ada67, p. 20, Theorem 6.3].) The product map ϕ, diagonal
map ψ and conjugation c all carry this subalgebra to itself, the
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counit restricts to give a map

ε : S∗ −→ Z

such that ε(1) = 1, ε(bi) = 0 for i ≥ 1. We conclude that the restriction
of c to this subalgebra must coincide with the conjugation it would
have if considered in its own right as a Hopf algebra over Z.
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12. Behaviour of the Bott map

We recall that in the spectrum K, every even term is the space BU,
and the maps between them are all the same; each is the map

B : S2 ∧ BU −→ BU

adjoint to the Bott equivalence

B′ : BU ' Ω2
0 BU.

(Here Ω2
0 means the complement of the base-point in the double

loop space Ω2.)

In order to compute E∗(BU), it is therefore desirable to compute

B∗ : Ẽn(BU) −→ Ẽn+2(BU)

This will be done in (12.5), (12.6).

We first describe the primitive elements in E∗(BU).

We have seen that

E∗(BU) = π∗(E)[β1, β2, . . . , βn, . . . , ]

with coproduct
ψβk =

∑
i+j=k

βi ⊗ βj
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Chapter 12: Behaviour of the Bott map

As usual, we define the Newton polynomial Qkn so that

xk1 + xk2 + · · ·+ xkn = Qkn(σ1, σ2, . . . , σk)

where σi is the i-th elementary symmetric function of x1, x2, . . . , xn.
Qkn is independent of n for n ≥ k, and then we write Qk for Qkn.

We define elements sk ∈ E∗(BU) for k ≥ 1 by

sk = Qk(β1, β2, . . . , βk).

Examples.

s1 = β1

s2 = β2
1 − 2β2

s3 = β3
1 − 3β1β2 + 3β3

Proposition 12.1. The primitive elements in E∗(BU) form a free mod-
ule over π∗(E), with a base consisting of the elements s1, s2, s3, . . . .

The proof goes precisely as in ordinary homology.

We need two formulas about the si.

sn − β1sn−1 + β2sn−2 + · · ·+ (−1)n−1βn−1s1 + (−1)nnβn = 0. (12.2)

This is well-known.( ∞∑
n=1

(−1)n−1sn

)
=

( ∞∑
s=1

sβs

)( ∞∑
t=0

βt

)−1

. (12.3)

Proof. Write (12.2) in the form

(−1)n−1sn + b1(−1)n−2sn−1 + · · ·+ bn−1s1 = nbn
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and add over n ≥ 1; we find( ∞∑
n=1

(−1)n−1sn

)( ∞∑
t=0

βt

)
=

∞∑
s=1

sβs

This yields (12.3).

We next consider the tensor product map. We recall that the
map

BU(n)× BU(m) −→ BU(nm)

which classifies the ordinary tensor product of bundles does not
behave well under the inclusion of BU(n) in BU(n + 1); it is neces-
sary to consider the product on reduced K-theory defined by the
“tensor product of virtual bundles of virtual dimension zero”; this
is represented by a map

t : BU ∧ BU −→ BU.

We calculate
t∗ : Ẽ∗(BU)⊗ Ẽ∗(BU) −→ Ẽ∗(BU)

at least on the elements βi ⊗ βj .

Proposition 12.4. If i > 0, j > 0 we have

t∗(βi ⊗ βj) =
∑
p≤i
q≤j

k≤p+q

akpqβk

( ∞∑
l=0

βl

)−1

i−p

( ∞∑
l=0

βl

)−1

j−q

Proof. The restriction of t to BU(1) ∧ BU(1) corresponds to the ele-
ment

(ζ1 − 1)(ζ2 − 1) = ζ1ζ2 − ζ1 − ζ2 + 1
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in BU0(BU(1)× BU(1)). We therefore introduce the following maps.

BU(1)× BU(1) m−→ BU(1) −→ BU, corresponding to ζ1ζ2

BU(1)× BU(1) π1−→ BU(1) −→ BU, corresponding to ζ1

BU(1)× BU(1) π2−→ BU(1) −→ BU, corresponding to ζ2

BU(1)× BU(1) c−→ BU(1) −→ BU, corresponding to 1

Here, π1 is projection onto the first factor, π2 is projection onto the
second factor, and c is the constant map. The required element of
BU0(BU(1)× BU(1)) can be represented in the following form.

(BU(1)× BU(1)) (BU(1)× BU(1))4

BU4

BU4 BU

∆

f

g

µ

Here ∆ is the iterated diagonal map; f is the map whose four
components are the four maps given above; g is a map whose four
components represent 1, -1, -1 and 1; and µ is the iterated product
map.
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We have

∆∗(βi ⊗ βj) =
∑

i1+i2+i3+i4=i
j1+j2+j3+j4=j

βi1 ⊗ βj1 ⊗ βi2 ⊗ βj2 ⊗ βi3 ⊗ βj3 ⊗ βi4 ⊗ βj4

m∗(βi1 ⊗ βj1) =
∑

k≤i1+j1

aki1j1βk

(π1)∗(βi2 ⊗ βj2) =

βi2 (j2 = 0)

0 (j2 > 0)

(π2)∗(βi3 ⊗ βj3) =

βj3 (i3 = 0)

0 (i3 > 0)

c∗(βi4 ⊗ βj4) =

1 (i4 = j4 = 0)

0 (otherwise)

and

(−1)∗
( ∞∑
l=0

βl

)
=

( ∞∑
l=0

βl

)−1

So we obtain

t∗(βi ⊗ βj) =
∑

i1+i2=i
j1+j3=j
k≤i1+j1

aki1j1bk

( ∞∑
l=0

βl

)−1

i2

( ∞∑
l=0

βl

)−1

j3

This proves (12.4).

Proposition 12.5. The map

B∗ : Ẽn(BU) 7→ Ẽn+2(BU)

annihilates decomposable elements.

Proof. We have the following commutative diagram.
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Ẽn(BU) ' Ẽn+2(S
2 ∧ BU)

Ẽn(Ω
2
0BU) Ẽn+2(BU)

B′
∗

σ2

B∗

Here the bottom horizontal map σ2 is the appropriate double sus-
pension, and it is well-known that it annihilates products, providing
the products in Ẽn+2(S

2 ∧ BU) are those induced by the loop-space
product; the proof for ordinary homology goes over. But BU is an
H-space, so the loop-space product µΩ on Ω2

0(BU) is homotopic to
the product µH induced from the H-space product in BU. Now the
periodicity isomorphism

B̃U
0
(X) ∼= B̃U(S2 ∧X)

is an isomorphism of additive groups; this says that under B′ :

BU −→ Ω2
0BU the H-space product in BU corresponds to the product

µH in Ω2
0BU. So σ2β′

∗ annihilates elements which are decomposable
in the usual sense.

Proposition 12.6. If j > 0 we have

B∗(βj) =
∑

r+t=j+1
t>0

uEa1r (−1)t−1st

≡
∑

r+t=j+1
t>0

uEa1r tβt mod decomposables.

Proof. The second line follows from the first by (12.2), so we need
only prove the first.

Recall that β1 is not the canonical generator in Ẽ∗(S
2); the latter

is given by uEβ1 ∈ Ẽ2(S
2). Since the Bott map B is the restriction of
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t to S2 ∧ BU, we have

B∗(βj) = t∗(u
Eβ1 ⊗ βj) for j > 0.

We apply (12.4), and find that the sum in (12.4) can be divided into
two parts, one with p = 1 and one with p = 0. In the latter, we use
the fact that

ak0q =

1 if k = q

0 if k 6= q

We find

B∗(βj) = uE
∑
q+s=j
k

ak1qβk

( ∞∑
l=0

βl

)−1

s

+ uE
∑
q+s=j

βq(−β1)
( ∞∑
l=0

βl

)−1

s

.

The second sum is zero unless j = 0, so we can forget it. In the
first sum, we have

ak1q = ka1 q+1−k

by (3.6). Writing r for q + 1− k, we find

B∗(βj) = uE
∑

r+s+k=j+1

a1r(kβk)

( ∞∑
l=0

βl

)−1

s

Using (12.3), we find

B∗(βj) = uE
∑

r+t=j+1
t>0

a1r(−1)t−1st

This proves (12.6).
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13. K∗(K)

In this section we compute the Hopf algebra K∗(K). The results
represent joint work with Mr. A.S. Harris.

We recall from [AB64] that π∗(K) is the ring of finite Laurent
series Z[u, u−1], where u ∈ π2(K) is the element introduced in §2.
By (4.1), K∗(BU) is torsion-free. Passing to the limit along the
BU-spectrum K, we see that K∗(K) is torsion-free. Therefore the
map

K∗(K) −→ K∗(K)⊗Q

is a monomorphism. But K∗(K) ⊗ Q is the ring of finite Laurent
series Q[u, u−1, v, v−1], where we have written u for ηLu, v for ηRu.
We propose to describe K∗(K) as a subring of Q[u, u−1, v, v−1]. It is
sufficient to describe K0(K) as a subring of K0(K)⊗Q = Q[u−1v, uv−1],
but we will work in full generality.

We first observe that the operation ψk was originally introduced
as an unstable operation; to make it a stable operation we need
to introduce coefficients Z

[1
k

]
. (Here Z

[1
k

]
is the ring of rational

numbers of the form n/km.) Crudely speaking, we cannot define
a map of spectra K −→ K by taking each component map to be
ψk : BU 7→ BU, because the following diagram does not commute.
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S2 ∧ BU BU

S2 ∧ BU BU

B

1∧ψk

B

ψk

We have to take the (2n)-th component of our map to be

1

kn
ψk : BU 7→ BUZ

(1
k

)
Here the space BUZ

[1
k

]
is constructed by taking the spectrum

KZ
[1
k

]
representing K-theory with coefficients in Z

[1
k

]
(see [Ada67]),

converting it into an Ω-spectrum, and taking the (2n)-th space of
this Ω-spectrum.

For any element h ∈ K∗(K), we can form

〈ψk, h〉 ∈ π∗(K)⊗ Z
[1
k

]
(k 6= 0).

But if we identify h with a finite Laurent series f(u, v), as above,
then we have

〈ψk, h〉 = f(u, ku). (13.1)

Corollary 13.2. A necessary condition that a finite Laurent series
f(u, v) lie in the image of K∗(K) is

f(u, ku) ∈ π∗(K)⊗ Z
[1
k

]
for k 6= 0. (13.3)

Theorem 13.4. (i) K∗(K) may be identified with the set of finite
Laurent series f(u, v) which satisfy (13.3).

(ii) The product in K∗(K) is the product of Laurent series.
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(iii) The unit maps are given by

ηL(u) = u

ηR(u) = v.

(iv) The counit map is given by

ε(u) = u

ε(v) = u

ε(u−1v) = 1

ε(uv−1) = 1.

(v) The conjugation map is given by

c(u) = v

c(v) = u

c(u−1v) = uv−1

c(uv−1) = u−1v.

(vi) The coproduct map is given by

ψ(u) = u⊗ 1

ψ(v) = 1⊗ v

ψ(u−1v) = u−1v ⊗ u−1v

ψ(uv−1) = uv−1 ⊗ uv−1.

The proof of (13.4) will be built up in stages.

Lemma 13.5. The Bott map

B∗ : K̃n(BU) 7→ K̃n+2(BU)
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annihilates decomposables, and is given by

B∗βj = u((j + 1)βj + jβj) mod decomposables.

Proof. Immediate from (12.5) and (12.6); the values of the coeffi-
cients a1r come from (2.6).

We observe that the generator in π2n(BU) gives an element in
K2n(BU); we write the latter element wn (noting that the mul-
tiplication involved is in the sense of the tensor-product map
t : BU ∧ BU 7→ BU, and is not to be confused with our usual mul-
tiplication, which comes from the Whitney sum map BU× BU 7→ BU.)
If we regard BU as the 2m-th term of the spectrum K, then the
image of wn in K2(n−m)(BU) is vn−m (assuming n ≥ 1).

Lemma 13.6. In K2n(BU)⊗Q we have

βn =
u−1w(u−1w − 1) . . . (u−1w − n+ 1)

1 · 2 · . . . · n

modulo decomposables in the sense of Whitney sum, where the
product is taken in the sense of the tensor-product.

Proof. By induction over n; for n = 1 we have β1 = u−1w. Suppose
the result true for n. Since B∗w

r = wr+1, we have

B∗(βn) =
u−1w(u−1w − 1) . . . (u−1w − n+ 1)w

1 · 2 · . . . · n

By (13.5), we have

βn+1 =
1

n+ 1
(u−1B∗βn − nβn) mod decomposables

=
u−1w(u−1w − 1) . . . (u−1w − n+ 1)(u−1w − n)

1 · 2 · . . . · n · (n+ 1)

This completes the induction and proves (13.6).
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Lemma 13.7. The image of K∗(K) in K∗(K) ⊗ Q is generated over
Z[u, u−1, v, v−1] by the elements

u−1v(u−1v − 1) . . . (u−1v − n+ 1)

1 · 2 · . . . · n
(n = 1, 2, 3, . . .)

Proof. Immediate, since it is generated over Z[u, u−1] by the images
of the elements βn in the 2m-th term of the spectrum K (n =

1, 2, 3, . . . ;m = 0, 1, 2, . . .)

Lemma 13.8. A polynomial f(x) ∈ Q(x) can be written as an integral
linear combination of the binomial polynomials

x(x− 1) . . . (x− n+ 1)

1 · 2 · . . . · n
(n = 0, 1, 2, . . . )

if and only if it takes integer values for x = 1, 2, 3, . . . .

The proof is a piece of standard algebra, which can be left to
the reader.

Proof of Theorem 13.4. The substantial part is part (i). First, take
an element of K∗(K); its image in K∗(K)⊗Q is a finite Laurent series
of the type described in (13.7), and f(u, ku) ∈ Z[u, u−1, 1/k] by (13.8).

Conversely, take a finite Laurent series f(u, v) which satisfies
(13.3); without loss of generality we may assume that f is homoge-
nous, say f(u, v) = udg(u−1v), where g(k) ∈ Z

[1
k

]
for k = 1, 2, 3, . . . . The

power to which z−1 occurs in g(z) is bounded, say by N. Also g(z)

contains only a finite number of coefficients in Q; their denomi-
nators contain only a finite number of prime factors p, and each
prime p occurs to a power which is bounded, say by M (independent
of p). Then

h(z) = zN+Mg(z)

has the property that h(k) ∈ Z for k = 1, 2, 3, . . . . In fact, each prime p

dividing k cannot occur in the denominator of h(k), by construction;
nor can any other prime, by assumption. By Lemma 13.8, h(u−1v) is
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an integral linear combination of binomial polynomials

u−1v(u−1v − 1) . . . (u−1v − n+ 1)

1 · 2 · . . . · n
(n ≥ 0).

So f(u, v) = ud(uv−1)N+Mh(u−1v) is a linear combination over Z[u, u−1, v−1]

of these polynomials. We do not need the polynomial for n = 0

(namely 1) since it is a multiple over Z[u, v−1] of the polynomial for
n = 1 (namely u−1v). By Lemma 13.7, f(u, v) lies in the (13.4)(i).

The remaining parts of (13.4) are easy. It is only necessary to
comment on one point. In (vi), the fact that ψ is a map of bimodules
gives

ψ(u−1v) = u−1 ⊗ v;

but in K∗(K)⊗π∗(K) K∗(K) we have

u−1 ⊗ v = u−1v ⊗ u−1v

since the tensor product is taken over π∗(K) and v = ηRu. Similarly
for ψ(uv−1).
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14. The Hattori-Stong theorem

In this section I will present a slight reformulation of the result of
Hattori and Stong. (Stong proved it first, but his name creeps to
the back for reasons of euphony–it brings a phrase or sentence
to such a resounding end.) This reformulation has been used by L.
Smith [Smi].

Recall from [Ada69, Lecture 3] that for suitable spectra E, such
as E = K, E∗(X) is a comodule over the Hopf algebra E∗(E). We say
that an element in a comodule is primitive if ψx = 1⊗ x; we write
PE∗(X) for the subgroup of primitive elements in E∗(X). One can see
directly from the definition of ψ that the Hurewicz homomorphism
in E-homology,

h : π∗(X) −→ E∗(X)

maps into PE∗(X).

Theorem 14.1 (after Stong [Sto65] and Hattori [Hat66]). The Hurewicz
homomorphism in K-homology gives an isomorphism

h : π∗(MU) ∼= PK∗(MU).

Remark. As soon as one knows that π∗(MU) is torsion-free, it is
easy to show that the Hurewicz homomorphism is a monomorphism.
For example, consider the following commutative diagram.
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π∗(MU) K∗(MU)

π∗(MU)⊗Q K∗(MU)⊗Q

h

h⊗1

We have K∗(MU)⊗Q ∼= π∗(K)⊗ π∗(MU)⊗Q; so the bottom horizontal
map and the left-hand vertical map are both monomorphisms.

The essential content of the theorem, then, is that it identifies
the images of h.

Proof of 14.1. For lack of time in writing out these notes to work
out a direct proof, I will deduce this result from the formulation
given by Hattori. (After all, Hattori’s proof is very elegant.) Hattori
proves precisely that if x ∈ K∗(MU and nx ∈ Im(h) for some integer
n 6= 0, then x ∈ Im(h). It is rather easy to see that any primitive
in K∗(MU) ⊗ Q lies in the image of h ⊗ 1. So suppose x ∈ PK∗(MU);
then by preceding sentence, x lies in Im(h ⊗ 1); that is, for some
integer n 6= 0 we have nx ∈ Im(h). So by Hattori’s form of the result,
x ∈ Im(h), This proves (14.1).

Exercise. Deduce Hattori’s form of the result from (14.1).
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15. Quillen’s Idempotent Cohomology Operations

Suppose given a spectrum E and an abelian group G. It may happen
that when we form the spectrum EG, as in §2, it splits as a sum
or product. Examples are given in [Ada69, Lecture 4]. In such
cases, it is highly desirable to have a splitting which is canonical
and doesn’t depend on any choices, I have developed this point in
[Ada69, Lecture 4]. In particular, I have made the rather obvious
point that one should look for canonical idempotent cohomology
operations, that is, idempotent maps ε : EG −→ EG.

An important special case is that in which E = MU and G = Z(p),
the integers localized at p (that is, the ring of rational numbers n/m
with m prime to p.) In this case the possibility of splitting MUZ(p)

was proved by Brown and Peterson [JP66], and again by Novikov
[Nov63]; but both methods involved choice.

Quillien has succeeded in giving canonical idempotents ε : MUZ(p) −→
MUZ(p) (one for each p). This is profitable in two ways. Firstly, it
means that we no longer have to construct the Brown-Peterson
spectrum by synthesis, building it up from its homotopy groups
and k-invariants; we can construct it by taking MUZ(p) and splitting
off the piece we want. Secondly, we obtain a very precise hold on
the Brown-Peterson spectrum, and can obtain information about it
by passing to the quotient from MUZ(p). This process yields good,
explicit formulae.

Theorem 15.1. Let d > 1 be an integer, and let R ⊂ Q be a subring
of the rationals containing d−1. Then there is a unique map of
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ring-spectra
e = ed : MUR→ MUR

satisfying the following conditions.

1. e is idempotent: e2 = e.

2. e has the following effect on π∗(MUR).

e[CPn] =

0 n ≡ −1 (mod d)

[CPn] n 6≡ −1 (mod d)

Two such idempotents ed, ed commute

Theorem 15.2 (BD, Quillen [Qui69]). Let p be a prime. Then there is
a unique map of ring-spectra

ε = εp : MUZ(p) → MUZ(p)

satisfying the following conditions.

1. ε is idempotent: ε2 = ε.

2. ε has the following effect on π∗(MUZ(p)).

ε[CPn] =

0 n = pf − 1 for some f

[CPn] else

Proof of (15.2) from (15.1). Take

ε =
∏
q

eq

where the product ranges over all primes q 6= p, observing that the
product is convergent in the filtration topology on MUZ∗

(p)(MUZ(p)),
which is complete and Hausdorff.
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We turn to consider the proof of (15.1). We know from Lemma
(15.2) that so long as π∗(E) −→ π∗(E) ⊗ R is iso (which is certainly
true for E = MUR), maps of ring-spectra g : MUR −→ E are in (l − 1)

correspondence with power-series

g∗(x
MU) = f(eE) =

∑
i≥0

di(x
E)
i+1

with uEd0 = 1, di ∈ π∗(E). Assume for simplicity that uE = 1, which is
the case in the applications. All we have to do is pick the right
power-series. Let us consider how the choice of f will affect

g∗ : π∗(MUR) −→ π∗(E).

Let us take the primitive elements

logMU xMU =
∑
i≥0

mi(x
MU)

i+1
,mi =

[CPi]
i+ 1

∈ π∗(MU)⊗Q

logE xE =
∑
i≥0

ni(x
E)
i+1

, say ni ∈ π∗(E)⊗Q, n0 = 1.

Let us define the logMU series by

mogxMU =
∑
i≥0

(g∗mi)(x
MU)

i+1
,

so that it serves to store the coefficients g∗mi. Let expE be the
series inverse to logE

Proposition 15.3. The elements g∗mi ∈ π∗(E)⊗Q are given by

mog(fxE) = logE(xE)

or equivalently
mog z = logE(f−1z).

For our applications we need to know how to construct f given
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the coefficients g∗mi, and the appropriate formula is as follows.

Corollary 15.4. f−1z = expEmogz.

Proof of (15.3), (15.4). The element

logMU xMU =
∑
i≥0

mi(x
MU)

i+1

is primitive. Therefore

g∗ logMU xMU =
∑
i≥0

(g∗mi)(fx
PE)i+1

=mog(fxE)

is primitive. But the primitive elements in ẼQ∗
(CP∞) form a free

module over π∗(EQ), with one generator logE xE; and we check that
mog(fxE) has first term xE; so

mog(fxE) = logE xE.

This proves (15.3) and (15.4).

Next suppose given a formal product µ, over a ring R, and
consider formal power-series, with zero constant term, over R.
We can make these formal power-series into an abelian group by
defining

σ +µ τ = µ(σ, τ).

Subtraction in this abelian group will be written −µ. If our ring R

also contains d−1, we can divide by d in this abelian group; we write

σ =
(1
d

)
µ
τ

for the solution of

τ = σ +µ σ +µ + · · ·+µ σ (d summands)
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If our ring R contains Q, we can write

σ +µ τ = exp(logσ + log τ)

where exp and log are as in §7.

Proof of (15.1). Our proposal is to take

mogz = log z − 1

d
(log ζ1z + log ζ2z + · · ·+ log ζdz). (15.5)

Here ζ1, ζ2, . . . , ζd are the complex d-th roots of 1, and

log z =
∑
i≥0

miz
i+1,mi =

[CPi]
i+ 1

as it should be for MU or MUR. It is easy to see that this power-
series (15.5) has the coefficients g∗(mi) given in (15.1)(ii). A priori
the coefficients of mogz lie in π∗(MU)⊗Q[exp 2πi/d].

Applying exp to (15.5), we get

f−1z = zµ

(1
d

)
µ
(ζ1z +µ ζ2z +µ + · · ·+µ ζdz). (15.6)

For any ζ1, ζ2, . . . , ζd we can consider

ζ1z +µ ζ2z +µ + · · ·+µ ζdz

as a formal power-series with coefficients in

π∗(MU)× Z[ζ1, ζ2, . . . , ζd].

The coefficients are clearly polynomials symmetric in ζ1, ζ2, . . . , ζd so
we can write them in terms of the elementary symmetric functions
σ1, σ2, . . . , σd. When we substitute for

ζ1, ζ2, . . . , ζd
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the complex d-th roots of 1, we have

σ1 = 0, . . . , σd−1 = 0, σd = (−1)d−1.

We obtain a power-series with coefficients in π∗(MU).
So (15.6) shows that f−1z, and hence fz, has coefficients in

π∗(MU)⊗ Z
[1
d

]
. This proves the existence of a map e : MUR −→ MUR

of ring-spectra satisfying (15.1)(ii).
The fact that ed is idempotent follows from the fact that its

effect on π∗(MUR) is obviously idempotent, by Lemma 9.3. The fact
that two such idempotents ed, dδ commute is proved in the same
way.
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16. The Brown-Peterson spectrum

In this section we introduce the Brown-Peterson spectrum, and
discuss its properties. In particular, we prove the homology ana-
logue of Quillen’s result on the algebra BP∗(BP) of cohomology
operations.

We keep a prime p fixed throughout. For any X, consider

ε∗ : MUZ∗
(p)(X) −→ MUZ∗

(p)(X),

where ε = εp as in §15. The image of ε∗ is a natural direct sum-
mand of MUZ∗

(p)(X), so it is a functor turning cofibrations into exact
sequences. It also satisfies the wedge axiom, so (by Brown’s theo-
rem in the category of spectra) it is a representable functor. We
write BP for its representing spectrum, after Brown and Peterson
§7. The map ε is a map of ring-spectra, so the image of ε∗ is a
cohomology functor with (external) products. Therefore BP is a
ring spectrum. We have canonical maps of ring-spectra which make
up the following commutative diagram.

MUZ(p) MUZ(p)

BP

ε

π ι

We have πι = 1 : BP −→ BP.
If we were to follow Quillen’s line [Qui69], we would now copy the

work of II, taking E = BP, to construct a whole family of cohomology
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operations from MUZ(p) to BP, and prove that they factor through
the canonical projections π : MUZ(p) −→ BP.

To construct the different operations of the family, Quillen intro-
duces into his work formal variables t1, t2, . . . , tn, . . . and constructs
an operation

rt : MUZ(p) −→ BP(Z[t1, t2, . . . , tn, . . .]).

He then takes the components of this operation; for any sequence
α = (α1, α2, . . . , αn, . . .) such that αi = 0 for all but a finite number of i,
he takes the operation rα to be the coefficient of tα1

1 tα2
2 . . . tαn

n in rt.

It would not really give us any trouble to afflict BP with coef-
ficients Z[t1, t2, . . . , tn, . . .]; we could construct a Moore space M for
the graded ring Z[t1, t2, . . . , tn, . . .] by taking a wedge of spheres of
suitable dimensions, and giving it a suitable product; and then we
could form BP ∧M . But since we are only trying to explain the
direction of Quillen’s work, we won’t labor these details.

We give BP a class xBP by using the canonical maps MU −→
MUZ(p)

π−→ BP. The log function for BP is obtained by naturality
from that for MU. Let us recall that

mi =
[CPi]
i+ 1

∈ π∗(MU)⊗Q,

and that π : MUZ(p) −→ BP annihilates mi unless i = pf − 1. Let us
write

mp−1,mp2−1,mp3−1, etc.

for the images of these surviving generators in π∗(BP) ⊗ Q. Then
we have

logBP x = x+mp−1x
p +mp2−1x

p2 +mp3−1x
p3 . . .

In our present language, Quillen’s method is to construct rt by
taking its modified log series to be (Note how one can read off
the effect on rt on π∗(BQ)⊗Q from this display.) The reason that
the coefficients in the display are introduced is that they represent
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the cheapest way to get the corresponding formal power-series
defined over π∗(BP); for we have

f−1z = expBPmogz
= z +µ t1z

p +µ t2z
p2 +µ t3z

p3 +µ . . . .

Here µ means µBP, the formal product defined over π∗(BP).

From our present point of view, Quillen’s formal variables ti are
crying to be located in BP∗(BP). That is: for any element

u ∈ Hom∗
Z(Z[t1, t2, . . .], π∗(BP))

(say assigning the value uα to tα1
1 tα2

2 . . . tαn
n ) Quillen constructs a

cohomology operation ∑
α

uαrα.

He then obtains each operation once and once only [Qui69,
Theorem 5(i)], so he is asserting

BP∗(BP) = Hom∗
Z(Z[t1, t2, . . .], π∗(BP))

= Homπ∗(BP)(BP∗(BP), π∗(BP)).

We therefore try to copy Quillen’s work in homology.

Theorem 16.1. (i) There is a unique system of classes

ti ∈ BP2(pi−1)(BP)

such that t0 = 1 and in BPQ∗(BP) we have

ηR(mpk−1) =
∑
i+j=k

mpi−1(tj)
pi .
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(ii) We have
BP∗(BP) = π∗(BP)[t1, t2, . . .].

(This describes the product map ϕ and the map ηL, or the
structure as a left module over π∗(BP); the map ηR, or the
structure as a right module over π∗(BP), is given by (i).)

(iii) The counit map is given by

ε(1) = 1

ε(ti) = 0 for i > 0.

(iv) The conjugation is given by the following inductive formula.∑
h+i+j=k

mph−1(ti)
ph(ctj)

ph+i

= mpk−1.

(v) The coproduct is given by the following inductive formula.∑
i+j=k

mpi−1(ψtj)
pi =

∑
h+i+j=k

mph−1(t
i)p

h

⊗ (tj)
ph+i

.

The formula in part (i) restates that in Quillen’s Theorem 5(iii)
[Qui69], and the formula in part (v) restates that in Quillen’s Theo-
rem 5(iv) [Qui69].

As for the formulae that are claimed as “inductive”, we note
that (iv) does indeed contain the leading term ctk (take h = 0, i = 0)
and otherwise contains terms in ctj with j < k; and similarly, (v)
contains the leading term ψtk (take i = 0) and otherwise contains
terms in ψtj with j < k.

Proof of (16.1). We first prove the uniqueness of clause of part (i).
The formula

ηR(mpk−1) =
∑
i+j=k

mpi−1(tj)
pi
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contains the leading term tk (take i = 0) and otherwise contains
terms in tj with j < k; so by induction, it determines the image of
tk in BPQ∗(BP). But the map

BP∗(BP) −→ BPQ∗(BP)

is monomorphic, so the formula of part (i) characterises the tk.

The essential part is the existence clause of part (i). We first
recall the following equation from the proof of (9.4):

∑
i

ηR(mi)(x
R)i+1 =

∑
i

mi

(∑
j≥0

Mj(x
R)j+1

)i+1

. (16.2)

Here

mi =
[CPi]
i+ 1

∈ π2i(MU)⊗Q

ηR(mi) ∈ MU2i(MU)⊗Q

Mj ∈ MU2i(MU) is as in Proposition 9.4,

and the equation takes place in (MU ∧ MUQ)∗(CP∞). To this
equation we apply the homomorphism induced by the map π ∧ π :

MU∧MU −→ BP∧BP. If, for the moment, we write Bj for the image of
Mj in BP2i(BP), we obtain the following equation in (BP∧BPQ)∗(CP∞).

∑
i

ηR(mpf−1)(x
R)p

f

=
∑
f

(mpf−1)
(∑
j≥0

Nj(x
R)j+1

)pf−1

. (16.3)

Use the equation of (16.1)(i), namely

ηRm

pk−1
=
∑
i+j=k

mpi−1(tj)
pi

to define tk (inductively) as an element of BPQ∗(BP). Substituting
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in (16.3) we get

∑
i,j

mpi−1(tj)
pi(xR)p

i+j

=
∑
f

(mpf−1)
(∑
j≥0

Nj(x
R)j+1)

)pf
.

That is, ∑
i

logBP(tj(xR)p
j

) = logBP
(∑
j≥0

Nj(x
R)j+1

)
.

Apply expBP. We get

xR +µ t1(x
R)p +µ t2(x

R)p
2

+µ t3(x
R)p

3

. . . =
∑
j≥0

Nj(x
R)j+1. (16.4)

Here µ means µBP, the formal product defined over π∗(BP).
Suppose, as an inductive hypotheses we have shown that ti ∈

BP∗(BP) for i > k. (The induction starts, since t0 = 1) Extract from
(16.4) the coefficient of (xR)p

k . We obtain

tk + f(t1, t2, . . . , tk−1) = Npk−1 (16.5)

Here Npk−1 lies in BP∗(BP); and f(t1, t2, . . . , tk−1) is a polynomial in
t1, t2, . . . , tk−1, with coefficients in π∗(BP), so it lies in BP∗(BP) by the
inductive hypothesis. Therefore tk lies in BP∗(BP). This completes
the induction, and proves part (i).

We notice that (16.5) answers the obvious question: how do the
homology generators in MU∗(MU) map into BP∗(BP)? That is, the
image Nj of Mj in BP∗(BP) is the coefficient of (xR)j+1 in the left
hand side of (16.4), and this coefficient is a definite polynomial in
t1, t2, . . ..

We turn to part (ii). It is clear that BP∗(BP) is the image under
(π ∧ π)∗ of MU∗(MU); so it is generated, over π∗(BP), by the classes
Nj . Using the last paragraph, this means that it is generated by the
classes tk. Similarly, H∗(BP) is the image under π∗ of H∗(MU), and
so it is

Z(p)[mp−1,mp2−1,mp3−1, . . .].
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Consider the spectral sequence

H∗(BP;π∗(BP)) =⇒ BP∗(BP).

It is trivial, because it is a direct summand of the corresponding
sequence for MUZ∗

(p)(MUZ(p)); and in the E2-term, tk is equal to mpk−1

modulo decomposibles, by (16.5). Therefore

BP∗(BP) = π∗(BP)[t1, t2, . . .].

This proves part (ii).

We turn to part (iii). It is one of the formal properties of the
counit that ε1 = 1. Suppose, as an inductive hypothesis, that we
have proved εti = 0 for 0 < i < k. Apply the counit ε to the formula
in (16.1)(i). Using the fact that εηR = 1, and the inductive hypothesis,
we find that

mpk−1 = mpk−1 + εtk.

We turn to part (iv). Apply the conjugation map c to the formula
in (16.1)(i). Since cηR = ηL and cηL = ηR, we obtain the following
result.

mpk−1 =
∑

f+j=k

(ηRmpf−1)(ctj)
pi .

Substituting for ηRmpf−1 from (16.1)(i), we find

mpk−1 =
∑

h+i+j=k

mph−1(ti)
ph(ctj)

ph+i

.

This proves part (iv).

We turn to part (v). Take the formula in (16.1)(i), and apply the
coproduct map ψ. Taking the right-hand side first, we have∑

i+j=k

mpi−1(ψtj)
pi = 1⊗ ηR(mph−1).
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Substituting for ηR(mph−1) from (16.1)(i), we have∑
i+j=k

mpi−1(ψtj)
pi = 1⊗

∑
t+j=k

mpf−1(tj)
pf .

Since the tensor product is taken over π∗(BP), acting on the left of
the right-hand factor and on the right of the left-hand factor, this
gives ∑

i+j=k

mpi−1(ψtj)
pi =

∑
f+j=k

(ηRm

pf−1
)⊗ (tj)

pf .

Substituting for ηRm

pf−1
from (16.1)(i), we find

∑
i+j=k

mpi−1(ψtj)
pi =

∑
h+i+j=k

mph−1(ti)
ph ⊗ (tj)

ph+i

.

This proves part (v), and the completes the proof of Theorem 16.1.
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17. KO∗(KO) (Added May 1970)

The results of §13 carry over to real K-theory. The material which
follows represents joint work with R. M. Switzer.

We write KO for the BO-spectrum. The groups KO4n(KO) are
torsion-free, so the map

KO4n(KO) −→ KO4n(KO)⊗Q

is a monomorphism. By means of the complexification map

KO −→ K

we can identify
∑
nKO4n(KO) ⊗ Q with a subalgebra of K?(K) ⊗ Q,

namely (with the notation of §13) Q[u2, u−2, v2, v−2].

Theorem 17.1. The map∑
n

KO4n(KO) −→ K?(K)⊗Q

gives an isomorphism between
∑
nKO4n(KO) and the set of finite

Laurent series f(u, v) which satisfy the following conditions.

(17.2) f(−u, v) = f(u, v), f(u,−v) = f(u, v).

(17.3) For any pair of non-zero integers h, k we have

f(ht, kt) ∈ Z[t4, t−4, 2t2, 1
hk ].

161



Chapter 17: KO∗(KO) (Added May 1970)

Notes.(17.4) It is clear from the above that any f in the image of∑
nKO4n(KO) satisfies (17.2).

(17.5) By using the operation Ψk, as in §13, one easily proves that
such an f satisfies (17.3).

(17.6) Condition (17.3) has been written with two integers h, k in
order to emphasize that it is invariant under the switch map
τ : KO ∧ KO −→ KO ∧ KO, which interchanges u and v. It would
actually be sufficient to use the special case of (17.3) in which
h = 1. Similarly, in §13 we could replace (13.3) by

f(ht, kt) ∈ Z[t, t−1, 1
hk ].

The proof of Theorem 17.1 is similar to that in §13.
Since KO∗(X) is a left module over π∗(KO), we have a product

map
πm(KO)⊗Z KO0(KO) −→ KOm(KO).

Theorem 17.7. This map

πm(KO)⊗Z KO0(KO) −→ KOm(KO).

is an isomorphism.

Thus we have

KOm(KO) ∼=

Z2 ⊗Z KO0(KO) (m ≡ 1, 2 mod 8)
0 (m ≡ 3, 5, 6, 7 mod 8)

At the risk of laboring the obvious, we make the following result
explicit.

Proposition 17.8. An element of KO0(KO) lies in the kernel of

KO0(KO) −→ Z2 ⊗Z KO0(KO)
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if and only if the corresponding Laurent series f(u, v) satisties the
following condition.

(17.9) For any pair of odd integers h, k we have

f(h, k) ∈ 2Z[ 1
hk ].

By (17.1), this is the condition for 1
2f to lie in the image of

KO0(KO).

Proposition 17.10. The generator g ∈ π1(KO) satisfies

ηL(g) = ηR(g).

This is immediate, since g lies in the image of

i∗ : π1(S
0) −→ π1(KO).
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Part III

Stable Homotopy and
Generalised Homology
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1. Introduction

These notes, prepared by R. Ming, are based on a course I gave at
the University of Chicago in the spring of 1971. I propose to con-
struct a stable homotopy category equivalent to Boardman’s, but
whose construction will be accessible to those without a specialized
knowledge of category theory. I will then formulate a number of
classical topics in this framework, and finally present some new
applications.

First I will have to explain the meaning of the word stable in al-
gebraic topology. We say that some phenomenon is stable, if it can
occur in any dimension, or in any sufficiently large dimension, and
if it occurs in essentially the same way independent of dimension,
provided perhaps that the dimension is sufficiently large.

Example 1. We consider the homotopy groups of spheres, πn+r(Sn).
We have the suspension homomorphism.

E : πn+r(S
n) −→ πn+r+1(S

n+1).

The Freudenthal suspension theorem says that this homomorphism
is an isomorphism for n > r + 1. For example, πn+1(S

n) is isomorphic
to Z2 for n > 2. The groups πn+r(Sn) (n > r + 1) are called the stable
homotopy groups of spheres.

More generally, let X and Y be two CW-complexes with base-
point. When we mention a CW-complex with base-point, we will
always assume that the base-point is a 0-cell. By [X,Y ] we will
mean the set of homotopy classes of maps from X to Y ; here
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maps and homotopies are required to preserve the base-point. The
product W ×X of two CW-complexes will always be taken with the
CW-topology. The smash-product W ∧X of two CW-complexes with
base-point is defined, as usual, by

W ∧X =W ×X/W ∨X.

The suspension ΣX of a CW-complex with base-point is to be the
reduced suspension, either S1 ∧ X or X ∧ S1, whichever suits our
sign conventions better when we come to use it. Of course the two
are homeomorphic. If f : X → Y is a map between CW-complexes
with base-point, its suspension Σf is to be 1 ∧ f : S1 ∧X → S1 ∧ Y (or
f ∧ 1: X ∧ S1 → Y ∧ S1). Suspension defines a function

S : [X,Y ] −→ [ΣX,ΣY ].

Theorem 1.1. Suppose that Y is (n− 1)-connected. Then S is onto if
dimX ≤ 2n− 1 and is a 1-1 correspondence if dimX < 2n− 1. ([Spa66,
p. 458]).

Under these circumstances we call an element of [X,Y ] a stable
homotopy class of maps.

Example 2. We consider the notion of a cohomology operation.
Such an operation is a natural transformation

ϕ : Hn(X,Y ;π) −→ Hm(X,Y ;G).

Here n,m, π and G are fixed. In other words, ϕ is a function defined
on Hn(X,Y ;π) and taking values in Hm(X,Y ;G), subject to one axiom
only: if f : X,Y → X ′, Y ′, and h ∈ Hn(X ′, Y ′;π) then ϕ(f∗h) = f∗(ϕh).

By contrast, a stable cohomology operation is a collection of
cohomology operations, say

ϕn : H
n(X,Y ;π) −→ Hn+d(X,Y ;G).
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Here n runs over Z, while d, π and G are fixed. Each ϕn is required
to be a natural, as above. But also we require that the following
diagram be commutative for each n.

Hn(Y, Z;π) Hn+1(X,Y ;π)

Hn+d(Y, Z;G) Hn+d+1(X,Y ;G)

δ

ϕn ϕn+1

δ

That is, we require ϕ to commute with δ as well as f∗.
For an example, take π = G = Z2, and let ϕn be the Steenrod

square Sqd.
So a stable cohomology operation is something which can be

applied in any dimension. Given a cohomology operation

ϕ : Hn(X,Y ;π) −→ Hm(X,Y ;G)

it need not appear as the n-th term of any stable cohomology
operation.

(For more on cohomology operations, see for example [MT68],[SE62]
and [Spa66, p. 429-403])

To do algebraic topology, it is rather important to be able to
distinguish between unstable problems, which arise in some definite
dimension, and stable problems, which arise in any sufficiently
large dimension. We have actually come quite a long way since
Eilenberg said, “We can distinguish between two cases – the stable
case and the interesting case.” Sometimes we solve an unstable
problem first and use the result to solve a stable problem. For
example, one might begin by proving π3(S

2) ∼= Z (unstable) and then
go on to deduce that πn+1(S

n) ∼= Z2 for n > 2 (stable). More usually,
however, we face some geometrical problem which looks like an
unstable problem, but we reduce it to a stable problem and solve
the stable problem.
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For example, we might consider the problem, “Is Sn−1 an H-
space?” Examples: for n = 4, S3 is an H-space; for n = 6, S5 is not.
This problem is unstable. However, one way to solve this problem
is to reduce it to the following one. “Assuming m ≥ n, is there a
complex X = Sm ∪ em+n in which

Sqn : Hm(X;Z2) −→ Hm+n(X;Z2)

is nonzero?” The problem is stable; for a given n the answer is
independent of m, provided m ≥ n. But this problem is equivalent to
the former one. Another case arises in cobordism theory. Here, for
example, one might take compact oriented smooth manifolds, of
dimension n, without boundary, and classify them under a certain
equivalence relation to get a group Ωn. The problem would be
to find the structure of Ωn. The problem as stated is not yet in
the form of a homotopy problem, but it appears to be unstable –
there is one problem for each n. However, René Thom reduced the
problem to a homotopy problem, and found it was a problem of
stable homotopy theory. More precisely, he introduced the Thom
complex MSO(n), and he gave an important construction which
yields an isomorphism

Ωr ∼= πn+r(MSO(n)) (n > r + 1)

The computation of πn+r(MSO(n)) is a stable problem, which was
begun by Thom, continued by Milnor and completed by Wall. A
suitable reference on cobordism is Stong [Sto68].

Now of course to solve stable problems, or to compute groups
such as [X,Y ] or πn+r(MSO(n)), we need computable invariants. In
the first instance this means homology and cohomology, but we
could certainly agree to go as far as generalized homology and
cohomology theories. I will suppose it is known that a generalized
homology or cohomology theory is a functor K∗ or K∗ that satisfies
the first six axioms of [ES52], but not necessarily the seventh, the
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dimension axiom. I will suppose it is known that the material of
Eilenberg-Steenrod Chapter 1 carries over to this situation. For
example, if X is a space with base-point one can define reduced
groups K̃∗(X), K̃∗(X); and one can define a suspension isomorphism

K̃n(X) ∼= K̃n+1(ΣX)

K̃n(X) ∼= K̃n+1(ΣX).

This already tells us that the study of generalized homology and
cohomology is part of stable homotopy theory. At least, what I
said is true if you consider K̃∗(X) or K̃∗(X) as an additive group; if
you started to use products, or unstable cohomology operations,
you would get outside the realm of stable homotopy theory.

To go on with Eilenberg-Steenrod Chapter 1, we have the Mayer-
Vietoris sequences

· · · K∗(U ∩ V ) K∗(U)⊕K∗(V ) K∗(U ∪ V ) · · ·

· · · K∗(U ∪ V ) K∗(U)⊕K∗(V ) K∗(U ∩ V ) · · ·

.

Also, we have the Atiyah-Hirzebruch spectral sequence, which was
really invented by G.W. Whitehead but not published by him:

H∗(X;K∗(pt.)) =⇒ K∗(X)

H∗(X;K∗(pt.)) =⇒ K∗(X).

This spectral sequence replaces the Eilenberg-Steenrod uniqueness
theorem when we go from the ordinary to the generalized case.
The Atiyah-Hirzebruch spectral sequence emphasizes that before
computing, we need to know the coefficient groups K∗(pt.) and
K∗(pt.).

At this point I should give some motivation for the topics to be
considered. One of these we will treat in some detail is that of
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products; they may not be part of stable homotopy theory, but
they have numerous applications. For example, suppose we wanted
to take the classical results on duality in manifolds, and carry them
over to the generalized case. We would proceed like this.

“Let X be a topological manifold; I don’t care whether it is
compact or not, but let us assume it has no boundary.” (If it starts
with a boundary I add an open collar, which doesn’t change the
homology and gives a non-compact manifold without boundary.)
“Suppose that X is orientable with respect to E, where E is a ring-
spectrum. Let K, L be a compact pair in X, and assume that F is
a module-spectrum over E. Then a certain homomorphism (which
has to be described) is an isomorphism

Fr(CL, CK) −→ F̆n−r(K,L),

where n is the dimension of the orientation class.” (The homology on
the left is the singular homology associated with F , the cohomology
on the right is of the C�ech type.)

Theorems of this sort were introduced by G.W. Whitehead in his
well-known paper on generalized homology theories [Whi56], but
unfortunately he did not go as far as the result I have stated. To
prove this result follows a simple recipe: take the treatment in
Spanier and do it all over again, with ordinary homology replaced
by generalized homology.

For this purpose, of course, one needs products, as in the ordinary
case. Indeed, the duality map is defined by a product. There are
four basic external products: an external product in homology, an
external product in cohomology, and two slant products. From this
one gets two internal products, the cup product and cap product.
There is also the Kronecker product, which can be obtained as a
special case of either slant product or the cap product.

Of course one needs to know the formal properties of the
products, For example, the four external products satisfy eight
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associativity formulae. I do not know of a good source in print
where they are collected and numbered 1 to 8. Again, when you
prove the duality theorem for manifolds, you need to know that
the duality homomorphism commutes (up to sign) with boundary
maps. So you need to know the properties of the products with
respect to the boundary maps. Again I know of no good source in
print; Eilenberg-Steenrod volume II is not out yet.

Once you have all the material about duality in manifolds, you
can have a certain amount of fun. For example, there is a formula
for computing the index of a compact oriented manifold. It says
that you take a certain characteristic class of the tangent bundle T
and evaluate it on the fundamental homology class. Now, you may
think I mean Hirzebruch’s formula in ordinary homology, but I don’t; I
mean the analogue in complex K-theory. If M is an almost-complex
manifold, it has a fundamental class [M ]K in K-homology, and it’s
tangent bundle T has a characteristic class ρ2(T ) in K-cohomology,
and we can form their Kronecker product 〈ρ2(T ), [M ]K〉. Then we
have

Index(X) = 〈ρ2(T ), [M ]K〉.

In ordinary cohomology, one uses not only products, but also
cohomology operations. For example, suppose X and Y are finite
complexes, and that we want to study the stable groups

lim
n→∞

[Σn+rX,ΣnY ].

There is a recipe that goes as follows. Form H̃∗(X;Zp) and H̃∗(Y ;Zp)
and consider them as modules over the mod p Steenrod algebra
A, that is, the algebra of stable operations on mod p cohomology.
Form

Ext∗∗A
(
H̃∗(Y ;Zp), H̃∗(X;Zp)

)
.

Then there is a spectral sequence with this E2-term and converging
to the stable group above, at least if one ignores q-torsion for q

175



Chapter 1: Introduction

prime to p. People seem to call this the Adams spectral sequence,
so I suppose I had better do so too. This was the way Milnor
computed π∗(MU).

At one time I used to make that the point that one ought to
take this spectral sequence and replace mod p cohomology by
a generalized cohomology theory; but the first person to do so
successfully was Novikokv, who took complex cobordism, MU∗. In
these notes I have developed the spectral sequeence in sufficient
generality so as to include spectral sequences constructed from
a number of commonly used theories, using homology instead of
cohomology for reasons which will become apparent in §16.

Recently Anderson has been considering the Adams spectral
sequence (for computing stable homotopy groups of spheres) based
on bu, the connective BU-spectrum, and Mahowald has proved vari-
ous results, including one on the image of the J-homomorphism, by
considering a similar construction based on bo, the connective BO-
spectrum. I have reproved some of their results. The calculations
to be given here give a sample application of the Adams spectral
sequence, as well as giving some of the information needed to use
these spectral sequences based on bu and bo.
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The notion of a spectrum is due to Lima [Lim58]. It is generally
supposed that G. W. Whitehead also had something to do with it,
but the latter takes a modest attitude about that.

By definition, a spectrum E is a sequence of spaces En with
basepoint, provided with structure maps, either

εn : ΣEn −→ En+1

or
ε′n : En −→ ΩEn+1

Of course giving a map εn is equivalent to giving a map ε′n, as Σ

and Ω are adjoint. There is one other variant; if we choose to work
with connected spaces, then En will automatically map into Ω0En+1,
where Ω0 is the component of the base-point in Ω; we might prefer
to write

ε′n : En −→ Ω0En+1

The index n may run over the integers or over {0, 1, 2, 3, . . .}.
Examples will appear in a moment.
The notion of a spectrum is very natural if one starts from

cohomology theory. Let K∗ be a generalized cohomology theory,
defined on CW pairs. We have

Kn(X) = Kn(X,pt.) +Kn(pt.),

and so define K̃n(X) = Kn(X,pt.). We assume that K∗ satisfies the
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wedge axiom of Milnor and Brown. More precisely, let Xα (α ∈ A)
be CW-complexes with base-point, and let iα : Xα −→

∨
αXα be the

inclusion of one summand in the wedge-sum. This induces

i∗α : K̃n

(∨
α

Xα

)
−→ Kn(Xα).

Let
θ : K̃n

(∨
α

Xα

)
−→

∏
α∈A

K̃n(Xα)

be the homomorphism with components i∗α. We assume that θ is an
isomorphism (for all choices of {Xα} and n.)

We can now apply the representability theorem of E. H. Brown
[Bro61]. We see that there exist connected CW-complexes En with
base-point and natural equivalences

K̃n(X) ∼= [X,En].

(Here X runs over connected CW-complexes with base-point.) So
we obtain a collection of spaces En (n ∈ Z). However, a cohomology
theory does not consist only of functors Kn; they are connected by
coboundary maps. If we divert attention from the relative groups
Kn(X,Y ) to reduced groups K̃n(X), we should divert attention from
the coboundary maps δ to the suspension isomorphisms

Σ : K̃n(X)
∼=−→ K̃n+1(ΣX).

Here ΣX is considered as the union of two cones CX and C ′X over
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the same copy of X. The suspension isomorphism is defined as

Kn(X,pt.) Kn+1(CX,X)

Kn+1(ΣX,C ′X)

Kn+1(ΣX,pt.)
∼= excision

∼= (C′X contractible)

δ

∼=

Σ

The map δ is the coboundary for the exact sequence of the triple
(CX,X,pt.). The vertical isomorphism is also induced by the col-
lapsing map (CX,X) −→ (ΣX,pt.).

We now observe that we have the following natural equivalences,
at least if X is connected.

[X,En] ∼= K̃n(X) ∼= K̃n+1(ΣX)

∼= [ΣX,En+1] ∼= [X,Ω0En+1].

This natural equivalence must be induced by a weak equivalence

ε′n : En −→ Ω0En+1.

So our sequence of spaces becomes a spectrum.

It is usual to make the following definition. A spectrum E is an
Ω-spectrum (resp. Ω0-spectrum) if ε′n : En −→ ΩE′

n+1 (resp. Ω0E
′
n+1)

is a weak equivalence for each n. So we have constructed an
Ω0-spectrum.

These consideration also show us how to construct a CW-complex
Fn (with base-point) and a natural equivalence [X,Fn] ∼= K̃n(X) valid
whether X is connected or not. In fact, we have only to take Fn
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weakly equivalent to ΩEn+1. Then we have

K̃n(X) ∼= K̃n+1(ΣX) ∼= [ΣX,En+1]

∼= [X,ΩEn+1] ∼= [X,Fn+1].

As before, we have the following natural equivalences.

[X,Fn] ∼= K̃n(X) ∼= K̃n+1(ΣX)

∼= [ΣX,Fn+1] ∼= [X,ΩFn+1].

This time we conclude that this natural equivalence must be induced
by a weak homotopy equivalence

ϕn : Fn −→ ΩFn+1.

We have constructed an Ω-spectrum.

Example 2.1. Take K∗ to be ordinary cohomology; Kn(X,Y ) =

Hn(X,Y ;π). The corresponding spectrum E is the Eilenberg-MacLane
spectrum for the group π; the nth space is the Eilenberg-MacLane
space of type (π, n). That is, we have

πr(En) = [Sr, En] ∼= H̃n(Sr;π) =

π (r = n)

0 (r 6= n).

Example 2.2. Take K∗ to be complex K-theory. The corresponding
spectrum is called the BU-spectrum . Each even term E2n is the
space BU, or Z × BU, depending on whether you choose to work
with connected spaces or not. Each odd term E2n+1 is the space U.

Similarly, we can take K∗ to be real K-theory. The corresponding
spectrum is called the BO-spectrum. Every eighth term E8n is the
space BO, or Z × BO, depending on whether you choose to work
with connected spaces or not. Each term E8n+4 is the space BSp.

Of course, not all spectra are Ω-spectra.
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Example 2.3. Given a CW-complex X, let En =

ΣnX (n ≥ 0)

pt (n < 0)
with

the obvious maps. We might define a spectrum F to be a suspension
spectrum or Σ-spectrum if

ϕn : ΣFn −→ Fn+1

is a weak homotopy equivalence for n sufficiently large. Then this
spectrum E would be an Σ-spectrum, but usually not an Ω-spectrum.
E is called the suspension spectrum of X. In particular, the sphere
spectrum S is the suspension spectrum of S0; it has nth term Sn for
n ≥ 0.

Example 2.4. Let MO(n) be the Thom complex of the universal
n-plane bundle ξn over BO(n). Then the Whitney sum ξn ⊕ 1 admits
a bundle map to ξn+1. (Here 1 means the trivial line bundle.) The
Thom complex of ξn ⊕ 1 is MO(n)∧ S1 and the Thom complex of ξn+1

is MO(n + 1); so we get a map MO(n) ∧ S1 −→ MO(n + 1). The Thom
spectrum MO is the spectrum in which the nth space is MO(n) and
the maps are the ones just indicated.

Similar remarks apply to the Thom spectra MSO, MSpin, MU,
MSU and MSp. However, MU(n) is the 2nth term of the spectrum MU,
the (2n + 1)th term being MU(n) ∧ S1 (because in the complex case
we have M(1) = S2.) Similarly for MSU. For MSp, the term E4n+ε is
MSp(n) ∧ Sε for ε = 0, 1, 2, 3.

These spectra arise in cobordism theory, as I said before.
We now define the homotopy groups of a spectrum. These are

really stable homotopy groups. We have the following homomor-
phisms.

πn+r(En) −→ πn+r+1(ΣEn+1)
(εn)∗−−−→ πn+r+1(En+1)

We define the stable homotopy groups:

πr(E) = lim
n→∞

πn+r(En);
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here the homomorphisms of the direct system are those displayed
above.

If E is an Ω-spectrum or an Ω0-spectrum, then the homomorphism

πn+r(En) −→ πn+r+1(En+1)

is an isomorphism for n+ r ≥ 1; the direct limit is attained, and we
have

πr(E) = πn+r(En) for n+ r ≥ 1.

Thus, in Example 2.1, the Eilenberg-MacLane spectrum, we have

πr(E) =

π (r = 0)

0 (r 6= 0)

In Example 2.2, the BU-spectrum, we have

πr(E) =

Z (r even)
0 (r odd)

by the Bott periodicity theorem. For the BO-spectrum we have

r = 0 1 2 3 4 5 6 7 8 mod 8
πr(E) = Z Z2 Z2 0 Z 0 0 0 Z

by Bott periodicity again.

In Example 2.3 we have

En =

ΣnX (n ≥ 0)

pt. (n < 0)

so that
πr(E) = lim

n→∞
πn+r(Σ

nX).

The limit is attained for n > r + 1. The homotopy groups of E are
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the stable homotopy groups of X.

In Example 2.4 the homotopy groups of the spectrum MO are
precisely those which arise in Thom’s work, namely

πr(MO) = lim
n→∞

πn+r(MO(n)).

The limit is attained for n > r + 1. Similarly for other Thom spectra.

In general, there is no reason why the limit lim
n→∞

πn+r(En) should
be attained. Exercise: Construct a counterexample.

Similarly, of course, we can define relative homotopy groups. To
do so we need subobjects. Let X be a spectrum; then a subspectrum
A of X consists of subspaces An ⊆ Xn such that the structure map
ξn : ΣXn −→ Xn+1 maps ΣAn into An+1. Of course we take ξn|ΣAn
as the structure map αn for A. And if we think in terms of maps
ξ′n : Xn → ΩXn+1, we ask that ξ′n maps An into ΩAn+1.

In fact we want to define not only relative homotopy groups,
but also boundary homomorphisms. For this purpose we want the
exact homotopy sequences of the pairs (Xn, An) and (Xn+1, An+1) to
fit into the following commutative diagram.

. . . πn+r(An) πn+r(Xn) πn+r(Xn, An) πn+r−1(An) . . .

. . . πn+r+1(An+1) πn+r+1(Xn+1) πn+r+1(Xn+1, An+1) πn+r(An+1) . . .

∂

∂

But here we must be careful of the signs. If ∂Em = Sm−1, then with
the usual conventions,

∂(S1 ∧ Em) = −S1 ∧ ∂Em and ∂(Em ∧ S1) = Sm−1 ∧ S1.

So at this point we prefer to interpret ΣXn as Xn ∧ S1, as is done in
Puppe’s paper on stable homotopy theory. With this convention,
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the ladder diagram commutes; we can define

πr(X,A) = lim
n→∞

πn+r(Xn, An)

and we obtain our exact homotopy sequence

. . . −→ π∗(A) −→ π∗(X) −→ π∗(X,A) −→ π∗(A) −→ . . . .

We have seen how to associate a spectrum to a generalized coho-
mology theory. The converse is also possible: with any spectrum E

we can associate a generalized homology theory and a generalized
cohomology theory. This is due to G. W. Whitehead, in a celebrated
paper [Whi56]. I’ll get back to this later. If we have a spectrum
E, it is very convenient to write E∗ and E∗ for this associated ho-
mology and cohomology theories. I will also reverse this. Ordinary
homology and cohomology (with Z coefficients) are always written
H∗, H∗; therefore, H will mean the Eilenberg-MacLane spectrum for
the group Z. (For coefficients in the group G, we write HG.) This
frees the letter K for other uses. Classical complex K-theory is
always written K∗ ; therefore, K will mean the BU-spectrum. This
is fine, because I would anyway need notation to distinguish the
space BU from the BU-spectrum. Similarly, we write KO for the
BO-spectrum.

The coefficient groups of the theories E∗, E∗ will be given by

Er(pt) = E−r(pt) = πr(E).

I take it that in Chicago I need not make propaganda for taking
spectra as the objects of a category. For one thing only, I would
like to define the E-cohomology of the spectrum X, in dimension
0, to be

E0(X) = [X,E]0,

the set of morphisms from X to E in our category. (Morphisms will
correspond to homotopy classes of maps.) In fact I would like to
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go further and construct a graded category, so that we can define

Er(X) = [X,E]−r

(morphisms which lower dimension by r).

Next I must explain why one would want to introduce smash
products of spectra. First, we would like to define the E-homology
of the spectrum X to be

Er(X) = πr(E ∧X) = [S,E ∧X]r.

Secondly, we would like to introduce products, for example, cup-
products in cohomology. In order to define cup-products in ordinary
cohomology, say

Hn(X;A)⊗Hm(X;B) −→ Hn+m(X;C)

we need a pairing A⊗B −→ C. George Whitehead wanted to introduce
cup-products in generalized cohomology

En(X)⊗ Fm(X) −→ Gn+m(X)

and he found he needed a pairing of spectra from E and F to G. Now
it would be very nice if a pairing of spectra were just a morphism

µ : E ∧ F −→ G

in our category. Thirdly, for example, we might want to restate a
result of R. Wood in the form KO ∧ CP2 ' K.

When we come to undertake a complicated piece of work, the
convenience of having available smash products of spectra is so
great that I, for one, would hate to do without it.

Now let me get on and define my category.

I say E is a CW-spectrum if
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(i) the terms En are CW-complexes with base-point, and

(ii) each map εn : ΣEn −→ En+1 is an isomorphism from ΣEn to a
sub-complex of En+1.

Notes. (i) There is no essential loss of generality in restricting
to CW-spectra. (See the exercise after 3.12 or the discussion
of the telescope functor in §4.)

(ii) An isomorphism between CW-complexes is a homeomorphism h

such that h and h−1 are cellular. The CW structure on ΣEn is the
obvious one on En ∧ S1, where S1 is regarded as a CW-complex
with one 0-cell and one 1-cell. Thus ΣEn has a base-point and
one cell Scα for each cell cα of En other than the base-point.

(iii) It would be possible to identify ΣEn with its image under εn
and so suppose ΣEn ⊂ En+1. Sometimes it may be convenient
to speak in this way. On the whole, it seems best to leave the
definition as I’ve given it.

The ideas which come next are introduced to help in defining
the morphisms of our category.

A subspectrum A of a CW-spectrum E will be a subspectrum
as defined above, with the added condition that An ⊂ Xn be a
subcomplex for each n.

Let E be a CW-spectrum, E′ a subspectrum of E. We say E′ is
cofinal in E (Boardman says dense) if for each n and each finite
sub-complex K ⊂ En there is an m (depending on n and K) such that
ΣmK maps into E′

m+n under the obvious map

ΣmEn
Σm−1εn−−−−−→ Σm−1En+1 −→ . . . −→ ΣEm+n−1

εm+n−1−−−−−→ Em+n.

The essential point if that each cell in each En gets into E′ after
enough suspensions. I said that m depends on n and K, but there is
no need to suppose that it does so in any particular way.

The construction of our category is in several steps. In particular,
we will distinguish between “functions”, “maps” and “morphisms”.
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A function f from one spectrum E to another F , and of degree
r, is a sequence of maps fn : En −→ Fn−r such that the following
diagrams are strictly commutative for each n.

ΣEn En+1

ΣFn−r Fn−r+1

εn

fn+1ΣFn

ϕn−r

or equivalently

En ΩEn+1

Fn−r ΩFn−r+1

ε′n

Ωfn+1fn

ϕ′
n−r

Notes.

(i) The diagrams are to be strictly commutative. If we allowed the
diagrams to be commutative up to homotopy, then to make any
further construction we would need to know what the homotopies
were, so we would have to take the homotopies as part of the
given structure of a function. It seems better to proceed as I said.

(ii) Composition of functions is done in the obvious way, and we
have identity functions.

(iii) If E′ is a subspectrum of E, the injection i of E′ in E is a function
in good standing. Restriction of functions from E to E′ is the same
as composition with i.

(iv) For graded functions, it is convenient if n runs over Z.

(v) The details of the grading are cooked up so that in the end we
get πr(F ) = [S, F ]r.

If E is a CW-spectrum and F is an Ω-spectrum, then the functions
from E to F are usable as they stand. But it is convenient to deal
with spectra which are not Ω-spectra, and then there are examples
to show that there are not enough functions to do what we want.

For one example, consider the Hopf map S3 η−→ S2. We would
like to have a corresponding function S −→ S of degree 1. But there
are no candidates for the maps S1 −→ S0, or S2 −→ S1 required to
make a function.
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For another example, take two spectra with

En = Sn+3 ∨ Sn+7 ∨ Sn+11 ∨ . . .

Fn = Sn.

We would like to have a function from E to F whose component
from Sn+4k−1 to Sn is a generator for the image of J in the stable
(4k − 1)-stem. But there is no single value of n for which all the
requisite maps exist as maps into Sn; we have to concede that for
the different cells of E the maps come into existence for different
values of n.

So we need the following construction. Let E be a CW-spectrum
and F a spectrum. Take all cofinal subspectra E′ ⊂ E and all
functions f ′ : E′ −→ F . Say that two functions f ′ : E′ −→ F and
f ′′ : E′′ −→ F are equivalent if there is a cofinal subspectrum E′′′

contained in E′ and E′′ such that the restrictions of f ′ and f ′′ to E′′′

coincide. (Check that this is an equivalence relation.)
Definition. A map from E to F is an equivalence class of such
functions.

This amounts to saying that if you have a cell c in En, a map
need not be defined on it at once; you can wait till Em+n before
defining the map on Σmc. The slogan is, “cells now – maps later.”
Notes. (i) In order to prove that the relation is an equivalence

relation, we use the following lemma.
Lemma 2.5. If E′ and E′′ are cofinal subspectra of E, then so
is E′ ∩ E′′.

The proof is trivial.

(ii) It would amount to the same to say that two functions f ′ : E′ −→
F , f ′′ : E′′ −→ F are equivalent if their restrictions to E′ ∩ E′′

coincide. This comes from the following fact: if g, h : K −→ L

are maps of CW-complexes with base-point, and Σg = Σh, then
g = h.
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Let E, F , G be spectra, of which E and F are CW-spectra. Then
we define composition of maps by composition of representatives,
choosing representatives for which composition is defined. For this
purpose we need the following lemma.
Lemma 2.6. (i) Let f : E −→ F be a function, and F ′ a cofinal

subspectrum of F . Then there is a cofinal subspectrum E′ of
E such that f maps E′ into F ′.

(ii) If E′ is a cofinal subspectrum of E, and E′′ is a cofinal subspec-
trum of E′, then E′′ is a cofinal subspectrum of E.

The proof is trivial.
Restriction of maps is done by composition with the inclusion

map, which is the class of the inclusion function.
We can piece maps together in the usual way. Let E be a CW-

spectrum, and U , V subspectra of E.
Lemma 2.7. Let u : U −→ F , v : V −→ F be maps whose restrictions
to U ∩ V are equal. Then there exists one and only one map
w : U∩V −→ F whose restrictions to U and V are u and v respectively.

The proof is easy.
A morphism in our category will be a homotopy class of maps,

and a “homotopy” will be a map of a cylinder, just as in ordinary
topology. So we begin by defining cylinders. Let I+ be the union of
the unit interval and a disjoint base-point. If E is a spectrum, we
define the cylinder spectrum Cyl(E) to have terms

(Cyl(E))n = I+ ∧ En

and maps
(I+ ∧ En) ∧ S1 1∧εn−−−→ I+ ∧ En+1.

The cylinder spectrum is a functor: a map f : E −→ F induces a
map Cyl(f) : Cyl(E) −→ Cyl(F ) in the obvious way. We have obvious
injection functions

i0, i1 : E −→ Cyl(E),
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corresponding to the two ends of the cylinder. These are natural
for maps of E. The other properties of the cylinder are as usual,
and they are too obvious to list.

We say that two maps

f0, f1 : E −→ F

are homotopic if there is a map

h : Cyl(E) −→ F

such that f0 = hi0, f1 = hi1.
Homotopy is an equivalence relation. If E, F are spectra, with E

a CW-spectrum, we write [E,F ]r for the set of homotopy classes of
maps with degree r from E to F . Composition passes to homotopy
classes, as in the usual case.

The category in which we propose to work is as follows. The ob-
jects are the CW-spectra. The morphisms of degree r are homotopy
classes of maps of degree r.

Notes. (i) Let X be a CW-spectrum consisting of Xn, n ∈ Z. Define

X ′ by X ′
n =

Xn (n ≥ 0)

pt. (n < 0)
. Then X ′ is cofinal in X, and therefore

equivalent to X in our category. For this reason it doesn’t really
make any difference whether we consider spectra indexed with
n ∈ Z or with n ∈ {0, 1, 2, . . .}.

(ii) Since we have our objects and maps open to direct inspection,
we have no trouble elaborating these definitions. For example,
suppose given a CW-spectrum X with a subspectrum A, and
another spectrum Y with a subspectrum B. Then I have no
trouble in defining

[X,A;Y,B].

To define maps f : X,A −→ Y,B we consider functions f ′ :
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X ′, A′ −→ Y,B where X ′ is cofinal in X, A′ ⊂ X ′ and A′ is cofi-
nal in A. Two such, f ′ : X ′, A′ −→ Y,B and f ′′ : X ′′, A′′ −→ Y,B

are defined to be equivalent if there exist X ′′′, A′′′ such that
f ′′|X ′′′, A′′′ = f ′′|X ′′′, A′′′. A map f : X,A −→ Y,B is an equiva-
lence class of such functions. I can define homotopies

Cyl(X), Cyl(A) −→ Y,B

and the elements of [X,A;Y,B] are homotopy classes of maps.

As long as we deal entirely with CW-spectra we can restrict
attention to functions whose components fn : En −→ Fn−r are cellular
maps. A construction in these terms leads to the same sets [E,F ]r.
The proof is left as an exercise.

In order to validate our category we give one small result. Let
K be a finite CW-complex, and let E be its suspension spectrum,
so that En = ΣnK for n ≥ 0. Let F be any spectrum.

Proposition 2.8. We have

[E,F ]r = lim
n→∞

[Σn+rK,Fn].

In particular,
[S, F ]r = πr(F ).

Proof. For any map f : Σn+rK −→ Fn we can define a corresponding
map between spectra by taking its component on En+r to be f :

Sn+rK −→ Fn; the higher components are then forced. In fact, they
are

Σm+n+rK
Σmf−−−→ Σmfn −→ Fm+n.

Suppose two maps f : Sn+rK −→ Fn, g : Σm+rK −→ Fn give the same
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element of the direct limit. Then for some p, the maps

Σp+rK
Σp−nf−−−−→ Σp−nFn −→ Fp

Σp+rK
Σp−mg−−−−→ Σp−mFm −→ Fp

are homotopic. This homotopy yields a homotopy between the
corresponding maps of spectra. This shows we have a function

lim
n→∞

[Σn+rK,Fn]
θ−→ [E,F ]r.

Now every map from E to F arises in the way we have mentioned:
this shows θ is onto. Also every homotopy arises in the way we
have mentioned: this shows that θ is a 1-1 correspondence.
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We want to show that CW-spectra can be manipulated very much
like CW-complexes. The standard way to make constructions for
CW-complexes is by induction over the cells. Now we can define
”stable cells” for CW-spectra, Let Cn be the set of cells in En other
than the base-point. Then we get a function

Cn −→ Cn+1 by cα 7→ εn(Σcα)

This function is an injection. Let C be the direct limit

lim
n→∞

Cn;

an element of C may be called a “stable cell.” Unwrapping the
definition, a stable cell is an equivalence class of cells: for each n

such an equivalence class contains at most one cell in En. Take two
cells, cα in En . and cβ in Em and suppose without loss of generality
n ≤ m; then cα and cβ are equivalent if

Cn Cn+1 . . . Cm

maps cα into cβ.

Example. E′ ⊂ E is cofinal if and only if C ′ −→ C is a bijection.
I said that the standard way to make constructions for CW-

complexes is by induction over the cells, It is usual to order the cells
of a CW-complex by dimension: first we take the cells of dimension
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0, then the cells of dimension 1, and so on. For a CW-spectrum we
can order the stable cells by “stable dimension”, but this ordering
is not inductive in general, because we can have stable cells of
arbitrarily large negative stable dimension. Nevertheless we can
perform inductive proofs, because each stable cell is attached to
only a finite number of predecessors.

More formally, we have:

Lemma 3.1. let E be a CW-spectrum, and G a subspectrum of
E which is not cofinal. Then E has a subspectrum F such that
E ⊃ F ⊃ G and F contains just one more stable cell than G.

Proof. G is not cofinal, so there exists a stable cell c in E not in G. It
has a representative cα,which is contained in a finite subcomplex K ⊂
En. So there exist finite subcomplexes K containing representatives
for stable cells in E not in G. Among such K, choose one with
fewest cells. Let K = L ∪ e, where e is a top-dimensional cell of K.
Then L fails to satisfy the conditions, for it has fewer cells than K.
So all the stable cells in L represent stable cells in G. Then there
exists m such that ΣmL gives a finite subcomplex of Gm+n Form F

by adjoining Σre to Gn+r for r > m.

We illustrate the use of this lemma by proving the homotopy
extension theorem, Actually we prove something slightly more
general.

Lemma 3.2. Let X,A be a pair of CW-spectra, and Y,B a pair of
spectra such that π∗(Y,B) = 0. Suppose given a map f : X −→ Y and
a homotopy h : Cyl(A) −→ Y from f |A to a map g : A −→ B. Then
the homotopy can be extended over Cyl(X) so as to deform f to a
map X −→ B.

The homotopy extension theorem is a special case when B = Y .

Proof. Work at the level of functions. Suppose f is represented
by a function f ′ : X ′ −→ Y , and h by a function h′ : Cyl(A′) −→ Y ,
where X ′ ⊃ A′, X ′ is cofinal in X and A′ is cofinal in A. We make
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our induction using Zorn’s Lemma. The objects to be ordered are
pairs (U, k′) where A′ ⊂ U ⊂ X ′ and k′ : Cyl(U) −→ Y is a function
which deforms f ′|U to a function into B. The set of such pairs is
non-empty since (A′, h′) qualifies; and it is clearly inductive. So we
can choose a maximal element (U, k′). I claim the maximal element
has U cofinal in X ′. If not, then by lemma 3.1 we can find U ⊂ V ⊂ X ′

where V contains just one more stable cell than U , say Vn = Un ∪ em.
Then the maps

f ′n|0∧e : 0 ∧ e −→ Yn−r

k′n|I+∧∂e : I
+ ∧ ∂e, 1 ∧ ∂e −→ Yn−r, Bn−r

define an element of πm(Yn−r, Bn−r). Now π∗(Y,B) = 0, so that this
element vanishes after sufficiently many suspensions.So on passing
to Vn+p = Un+p ∪ em+p, we can extend k′n+p to a map

k′′n+p : I
+ ∧ e, 1 ∧ e −→ Yp+n−r, Bp+n−r..

Then define k′′n+q for q > p by suspension. This extension of k′ shows
that (U, k′) is not maximal, a contradiction. This contradiction shows
that U is cofinal in X ′, i.e., U is cofinal in X. This gives the required
map of Cyl(X).

A generalized version of Lemma 3.2 works when the inclusion
B −→ Y is replaced by a general function.

Lemma 3.2′. Let X,A be a pair of CW-spectra and ∅ : B −→ Y a
function of spectra such that ∅∗ : π∗(B) −→ π∗(Y ) is an isomorphism.
Suppose given maps f : X −→ Y and g : A −→ B and a homotopy
h : Cyl(A) −→ Y from f |A to ∅g. Then we can extend g over X and h

over Cyl(X) so that h becomes a homotopy from f to ∅g : X −→ Y .

The proof is similar to that of 3.2, except that we order triples
(U, k′, g′) where g′ : U −→ B and k′il = ∅g′. The element

k′n|I+∧∂e : I
+ ∧ ∂e −→ Yn−r
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can be patched together with a contracting homotopy for f |∂e to
define an element of πm(∅n−r), say k′′n, which under the hypotheses
must vanish on passing to ∅p+n−r for some p.

Lemma 3.3. Suppose that π∗(Y ) = 0, and X,A is a pair of CW-spectra.
Then any map f : A −→ Y can be extended over X.

Proof. Exercise. Either copy the proof of 3.2 or else quote the
result of 3.2.

Theorem 3.4. Let f : E −→ F be a function between spectra such that
f∗ : π∗(E) −→ π∗(F ) is an isomorphism. Then for any CW-spectrum X,

f∗ : [X,E]∗ −→ [X,F ]∗

is a (1-1) correspondence.

I emphasize that E and F are not assumed to be CW-spectra.
By analogy with the case of CW-complexes, a function f : E −→ F

between spectra such that [X,E]∗
f∗−→ [X,F ]∗ correspondence for all

CW-spectra X would be called a weak equivalence.

Proof. (First argument). Without loss of generality we can suppose
that f is an inclusion; for if not, replace F by the spectrum M in
which Mn is the mapping cylinder of fn, Then π∗(F,E) = 0 by the
exact sequence. Now we see that f∗ is an epimorphism by applying
lemma 3.2, taking the pair X mod A to be X mod pt. Similarly, we
see that f∗ is a monomorphism by applying lemma 3.2, taking the
pair X mod A to be Cyl(X) mod its ends.

(Second argument). Instead of using the mapping cylinder spec-
trum, use Lemma 3.2′ in the above argument.

Corollary 3.5 (Compare the theorem of J.H.C. Whitehead.). Let
f : E −→ F be a morphism between CW-spectra such that:

f∗ : π∗(E) −→ π∗(F )
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is an isomorphism. Then f is an equivalence in our category.

The deduction of 3.5 from 3.4 is a triviality, valid in any category.

Example. Let f : E −→ F be a function such that fn : En −→ Fn is a
homotopy equivalence for each n. Then f is an equivalence in our
category.

Exercise. Use (3.5) to show that any CW-spectrum Y is equivalent
in our category to an Ω0-spectrum.

Hint. Construct a functor Tn from CW-complexes to spectra by

(TnX)r =

Σr−nX r ≥ n

pt. r < n

Form the set of morphisms in our category

[TnX,Y ]0,

and check that it is a representable functor, represented say by
Zn. Observe that the Zn give the components of an Ω0-spectrum Z;
construct a function Y −→ Z and apply 3.5.

Now I must reveal that we would really like a relative form of
the theorem of J.H.C. Whitehead. If X is a spectrum, let Cone(X)

be the spectrum whose nth term is I ∧Xn, with maps

(I ∧Xn) ∧ S1 I ∧Xn+1

1∧εn
(We take the base-point in I to be 0.)

We have an obvious inclusion function i : X −→ Cone(X) (use the
end of the cone).

Theorem 3.6. Let f : E,A −→ F,B be a function between pairs of
spectra such that

f∗ : π∗(E,A) −→ π∗(F,B)
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is an isomorphism. Then for any CW-spectrum X,

f∗ : [Cone(X), X;E,A]∗ −→ [Cone(X), X;F,B]∗

is a 1-1 correspondence.

Proof Sketch. Construct a new spectrum R (for relative) with Rn =

L(En, An) (the space of paths in En starting at the base-point and
finishing in An) and structure maps ρn given by

L(En, An) L(En+1Ω, An+1Ω) ∼= (L(En+1, An+1))Ω
Lε′n

where the Ω is written on the right to keep the ”loops” coordinates
out of the way of the path coordinate. Similarly, construct S (not,
for the moment, the sphere spectrum) with Sn = L(Fn, Bn). Then f

induces a function of spectra R −→ S, inducing an isomorphism of
absolute homotopy groups. By theorem 3.4,

[X,R]∗ −→ [X,S]?

is a 1-1 correspondence. Unwrapping this, it says

f∗ : [Cone(X), X;E,A]∗ −→ [Cone(X), X;F,B]∗

is a 1-1 correspondence.

This application shows why I specified that E and F in 3.4 need
not be CW-spectra.

Now for any spectrum X, we will define Susp(X) so that its nth

term is S1 ∧Xn and its structure maps are

(S1 ∧Xn) ∧ S1 S1 ∧Xn+1

1∧ξn
.

Susp is obviously a functor.
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Theorem 3.7. Susp : [X,Y ]∗ −→ [Susp(X),Susp(Y )]∗ is a 1 − 1 corre-
spondence.

This theorem assures us that in some sense we did succeed in
getting into a stable situation.

Proof. We have the following commutative diagram.

[X,Y ]∗ [Cone(X), X;Susp(Y ), Y ]∗

[Susp(X),Susp(Y )]∗ [Cone(X), X;Susp(Y ),pt.]∗

Susp

Cone

j∗

j∗

Now the map Cone is clearly injective (since restriction gives an
inverse for it) and surjective (by Lemma 3.3). Also j∗ is clearly
a 1-1 correspondence. The proof will be complete as soon as we
show that j∗ is a 1-1 correspondence, by quoting Theorem 3.6 and
proving:

Lemma 3.8. j∗ : π∗(Cone(Y ), Y ) −→ π∗(Susp(Y ),pt.) is a 1-1 correspon-
dence.

Consider the following commutative diagram:

199



Chapter 3: Elementary properties of the category of CW-spectra

πn+r+1(I ∧ Yn, Yn) πn+r(Yn)

πn+r+1(Yn ∧ S1) πn+r+1(S
1 ∧ Yn)

πn+r+2(I ∧ Yn+1, Yn+1) πn+r+1(Yn+1) πn+r+2(S
1 ∧ Y ∧ S1)

πn+r+2(Yn+1 ∧ S1) πn+r+2(S
1 ∧ Yn)

∼=

∂

j∗

(ηn)∗

(−1)n+rτ∗

∼=

∂

j∗

(1∧ηn)∗

(−1)n+r+1τ∗

π∗(Cone(Y ), Y ) is the direct limit of the left-hand column, and the
diagram shows it is isomorphic to lim

n→∞
πn+r(Yn). π∗(Susp(Y ),pt.) is

the direct limit of the right-hand column, and the diagram shows
that it ig isomorphic to the direct limit of the system in which the
groups are πn+r+1(Yn ∧ S1) and the maps are the vertical arrows in
the center column. But the center column shows that these two
direct limits are the same, This proves Lemma 3.8, which proves
Theorem 3.7.

Now we can remark that [Susp(X), Z] is obviously a group, be-
cause in Susp(X) we have a spare suspension coordinate out in front
to manipulate. And for the same reason, [Susp2(X), Z] is an abelian
group. But now we can give [X,Y ] the structure of an abelian group,
because [X,Y ] is in 1-1 correspondence with [Susp2(X),Susp2(Y )],
and we pull back the group structure on that. So now our sets
of morphisms [X,Y ] are abelian groups, and it’s easy to see that
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composition is bilinear.
Actually there is a unique way to give each set of morphisms

[X,Y ] the structure of an abelian group so that composition is
bilinear; this is standard once I’ve said the usual categorical things
about sums and products.

Well, now I would like to say that I have an additive category.
The existence of a trivial object is easy: we take the spectrum
En = pt. for all n. Then [X,pt.] = 0 and [pt., X] = 0.

I claim this category has arbitrary sums (= coproducts). In fact,
given spectra Xα for α ∈ A, we form X =

∨
αXα by Xn =

∨
(Xα)n with

the obvious structure maps.

Xn ∧ S1 = (
∨
α(Xα)n) ∧ S1 =

∨
α(Xα) ∧ S1

∨
α(Xα)n+1

∨
α ξαn

This obviously has the required property:[∨
α

Xα, Y

]
∼=−→
∏
α

[Xα, Y ]

Now I must talk about cofiberings. Suppose given a map f : X −→
Y between CW-spectra. It is represented by a function f ′ : X ′ −→ Y ,
where X ′ is a cofinal subspectrum. Without loss of generality I can
suppose f ′ is cellular, i.e., f ′n is a cellular map of CW-complexes
for each n. We form the mapping cone Y ∪f ′ CX as follows: its
nth terms is Yn ∪f ′

n
(I ∧X ′

n) and the structure maps are the obvious
ones. If we replace X ′ by a smaller cofinal subspectrum X ′′, we
get Y ∪f ′′ CX ′′ which is smaller than Y ∪f ′ CX ′, but cofinal in it, and
so equivalent. So the construct depends essentially only on the
map f , and we can write it Y ∪f CX. If we vary f by a homotopy,
Y ∪f0 CX and Y ∪f1 CX are equivalent, but the equivalence depends
on the choice of homotopy.

Let X be a CW-spectrum, A a subspectrum. I will say A is a
closed if for every finite subcomplex K ⊂ Xn, ΣmK ⊂ Am+n implies
K ⊂ An. That is, if a cell gets into A later, I put it into A to start
with. It is equivalent to saying that A ⊂ B ⊂ X, A cofinal in B implies
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that A = B.
Suppose that i : X −→ Y is the inclusion of a closed subspectrum.

Then we can form Y /X, with the nth term Yn/Xn. In this case there
is a map

r : Y ∪i CX −→ Y /X

with components
Yn ∪in CXn −→ Yn/Xn

The map r is an equivalence, by corollary 3.5.
Let’s return to the general case. We have morphisms

X
f−→ Y

i−→ Y ∪f CX

Proposition 3.9. For each Z the sequence

[X,Z]
f∗

←− [Y, Z]
i∗←− [Y ∪f CX,Z]

is exact

The proof is the same as for CW-complexes, and is trivial, be-
cause homotopies were defined in terms of maps of cylinders.

The sequence X
f−→ Y

i−→ Y ∪f CX, or anything equivalent to it,
is called a cofibre sequence or Puppe sequence . We can extend
cofiberings to the right, by taking

X
f−→ Y

i−→ Y ∪f CX −→ (Y ∪f CX) ∪i CY

The last spectrum is equivalent to (Y ∪f CX)/Y = Susp(X). If we
continue the sequence further, we get

X Y Y ∪f CX Susp(X) Susp(Y )
f i j −Susp(f)

as for CW-complexes. It follows that the exact sequence of Propo-
sition 3.9 can also be extended to the right.
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Proposition 3.10. The sequence

[W,X]
f∗−→ [W,Y ]

i∗−→ [W,Y ∪f CX]

is exact.

In other words, in our category cofiberings are the same as
fibering.

Proof. Since if ∼ 0, i?f? = 0. Suppose given g : W −→ Y such that
ig ∼ 0. Then we can construct the following diagram of cofiberings.

X Y Y ∪f CX Susp(X) Susp(Y )

W W CW Susp(W ) Susp(W )

f i j −Susp(f)

1 i j −1

g h k Susp(g)

(The homotopy ig ∼ 0 gives us h, and the rest follows automati-
cally.)

Now by Theorem 3.7 we have k = Susp(`) for some ` ∈ [W,X], and

(−Susp(f)) (Susp(`)) ' (Susp(g)) (−1)

i.e.,
Susp(f`) ' Susp(g)

so using Theorem 3.7 again, we have f` ' g. This proves Proposition
3.10.

Proposition 3.11. Finite sums are products.

In fact,
X −→ X ∨ Y −→ Y

is clearly a cofibering, because (X ∨ Y ) ∪ CX ' Y . So by 3.10
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[W,X] −→ [W,X ∨ Y ] −→ [W,Y ]

is exact; but it is clearly split short exact, so

[W,X ∨ Y ] ∼= [W,X]⊕ [W,Y ]

and X ∨ Y is also the product X and Y .
Now I know that my category in an additive category.

Theorem 3.12. The Representability Theorem of E.H. Brown is valid
in the category of CW-spectra and morphisms of degree 0.

The proof is as usual, but arrange the induction right.
Exercise. Use 3.12 to show that any spectrum Y is weakly equivalent
to a CW-spectrum. (Consider the functor [X,Y ]0.)
Proposition 3.13. The stable category has arbitrary products.

Proof. The functor of X given by∏
α

[X,Yα]0

satisfies the data of Brown’s theorem, so it is representable, Now
we see that this representing object works for maps of degree r

as well.

Note next that for any collection of Xα we have a morphism∨
α

Xα −→
∏
α

Xα

Namely, for each α and β I have to give a component which is a
map Xα −→ Xβ; I take it to be 1 if α = β, 0 if α 6= β.
Proposition 3.14. (This form is due to Boardman). Suppose that for
each n, πn(Xα) = 0 for all but a finite number of α. Then the map∨

α

Xα −→
∏
α

Xα
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is an equivalence.

Proof. First note that

πn(X1 ∨X2) ∼= πn(X1)⊕ πn(X2)

under the obvious maps. (see 3.11)

Exercise. Prove this directly from the definitions of π∗ and X1 ∨X2.

By induction, we have

πn(X1 ∨ · · · ∨Xm) ∼=
m∑
i=1

πn(Xi)

for finite wedges. Now we have

πn

(∨
α

Xα

)
=
∑
α

πn(Xα)

by passing to direct limits. Also

πn

(∏
α

Xα

)
=
∏
α

πn(Xα), by definition.

Now the data was chosen precisely so that
∑
α

πn(Xα) −→
∏
α

πn(Xα)

is an isomorphism. Therefore
∨
α

Xα −→
∏
α

Xα is an equivalence, by

3.5.

Remark. If we use the direct proof that

πn(X1 ∨X2) ∼= πn(X1)⊕ πn(X2)

this gives a proof that finite sums are products, independently of
3.7, but depending on Brown’s theorem. This can be used, in a way
which is familiar to categorists, to define an addition in the sets
[X,Y ]; this way of introducing the addition is independent of 3.7. Of
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course you have to show that the addition makes the sets [X,Y ]

into abelian groups; the main point is to establish the existence of
inverses. I recommend making use of an argument which is standard
for H-spaces, as follows. Since X ∨X is both a sum and product,
you can make a map

X ∨X −→ X ∨X

with components
[
1 1

0 1

]
. Check that it satisfies the hypotheses of

3.5, so it has an inverse. The inverse has the form
[
1 ν

0 1

]
. But you

know the inverse of
[
1 1

0 1

]
is
[
1 −1
0 1

]
; so you use ν for inversion

and it works.
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4. Smash products

In this section we will construct smash products of spectra. More
precisely, we will construct from any two CW-spectra X and Y a
CW-spectrum X ∧ Y , so as to have the properties stated in the
following theorem, among other properties.

Theorem 4.1. (a) X ∧ Y is a functor of two variables, with argu-
ments and values in the (graded) stable homotopy category.

(b) The smash-product is associative, commutative, and has the
sphere-spectrum S as a unit, up to coherent natural equiva-
lences.

We explain that statement (a) is to be taken in the graded sense.
That is, if

f ∈ [X,X ′]r, g ∈ [Y, Y ′]s

then
f ∧ g ∈ [X ∧ Y,X ′ ∧ Y ′]r+s,

and besides 1 ∧ 1 = 1, we have

(f ∧ g)(h ∧ k) = (−1)bc(fh) ∧ (gk)

if f ∈ [X ′, X ′′]a, h ∈ [X,X ′]b, g ∈ [Y ′, Y ′′]c, k ∈ [Y, Y ′]d.

We explain statement (b). It claims that there are the following
equivalences in our category.
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a = a(X,Y, Z): (X ∧ Y ) ∧ Z X ∧ (Y ∧ Z)

c = C(X,Y ): X ∧ Y Y ∧X

l = l(Y ): S ∧ Y Y

r = r(X): X ∧ S X

They are all of degree 0. They are all natural as X, Y , and Z

vary over the stable category; in the case of c this means that the
diagram

X ∧ Y X ∧ Y

X ′ ∧ Y ′ Y ′ ∧X ′

c

f∧g g∧f

c

is commutative up to a sign (−1)pq, if f ∈ [X,X ′]p, g ∈ [Y, Y ′]q. The
other naturality conditions are the obvious ones and don’t involve
signs. The equivalences make the following diagrams commute in
our category. (If one thinks in terms of representative maps, one
says that these diagrams are homotopy-commutative.)
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(i)

(W ∧X) ∧ (Y ∧ Z)

((W ∧X) ∧ Y ) ∧ Z W ∧ (X ∧ (Y ∧ Z))

(W ∧ (X ∧ Y )) ∧ Z W ∧ ((X ∧ Y ) ∧ Z)

a2a1

a3∧1

a4

1∧a5

Here

a1 = a(W ∧X,Y, Z) a4 = a(W,X ∧ Y, Z)

a2 = a(W,X, Y ∧ Z) a5 = a(X,Y, Z)

a3 = a(W,X, Y ).

(ii)
Y ∧X

X ∧ Y X ∧ Y

c1

1

c2

Here

c1 = c(X,Y )

c2 = c(Y,X).
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(ii)

(Y ∧X) ∧ Z

(X ∧ Y ) ∧ Z Y ∧ (X ∧ Z)

X ∧ (Y ∧ Z) Y ∧ (Z ∧X)

(Y ∧ Z) ∧X

ac∧1

a 1∧c

c a

Here the morphisms can be made more precise, as in (i) and
(ii)

(iv)

(S ∧ Y ) ∧ Z S ∧ (Y ∧ Z)

Y ∧ Z

a

l l∧1

(v)

(X ∧ S) ∧ Z X ∧ (S ∧ Z)

X ∧ Z

a

1∧l r∧1

(vi)

(X ∧ Y ) ∧ S X ∧ (Y ∧ S)

X ∧ Y

a

1∧r r
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(vii)

S ∧ Y Y ∧ S X ∧ S S ∧X

Y X

c

l r

c

r l

(These are equivalent, in view of (iii))

(viii)

S ∧ S S ∧ S

c

1

It follows from these properties that every other diagram con-
structed from a, c, `, and r which you might conceivably wish to
prove commutative, is commutative; see MacLane [Mac63].

The properties stated in this theorem are not intended to be a
complete list. We also want our smash-products to be compatible
with those which we already have for CW-complexes. We can take
it as a guiding idea that if X is a CW-spectrum with terms Xn, and Y
is a CW-spectrum with terms Ym, then we want X∧Y to be the thing
to which Xn ∧ Ym tends as n and m tend to infinity. It is therefore
tempting to define a product spectrum P so that

Pp = Xn(p) ∧ Ym(p),

where n(p) and m(p) are fixed functions such that n(p) + m(p) = p,
while n(p)→∞ and m(p)→∞. This approach gives the “handicrafted
smash products” (in later versions, “naive smash products”) of
Boardman. Of course, there are many different ways of choosing the
function n(p) and m(p), and these give rise to different “handicrafted
smash products”; it is obviously desirable to prove that these
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different products are related by natural equivalences. For later
work it is also desirable to have a notation more convenient than
that of functions n(p) and m(p); it is for this purpose that we
introduce the details which follow next.

Let A be an ordered set, isomorphic to the ordered set {0, 1, 2, 3, . . .}.
(The reason that we do not take A to be the ordered set {0, 1, 2, 3, . . .}
is that we will later want to take A to be a subset of {0, 1, 2, 3, . . .}.)
Let B be a subset of A; then we define a corresponding function

β : A −→ {0, 1, 2, 3, . . .}

as follows: β(a) is the number of elements b ∈ B such that b < a.
Then β is monotonic, and β|B is an order-preserving isomorphism
between B and some initial segment of {0, 1, 2, 3, . . .}. The notation
β emphasizes the dependence of β on B rather than on A; this is
legitimate, for if we have B ⊂ A ⊂ A′, then the function βA defined
on A is the restriction to A of the function βA′ defined in A′.

Next suppose given a partition of A into two subsets B and C,
so that A = B ∪ C, B ∩ C = ∅. A suitable illustration is obtained by
taking

A = {0, 1, 2, 3, . . .}

B = {0, 2, 4, 6, . . .}

C = {1, 3, 5, 7, . . .}

but there are many other equally suitable choices. Then we define
a smash-product functor which assigns to any two CW-spectra X

and Y a CW-spectrum X ∧BC Y . It is convenient to display only B

and C in the notation, but of course the product depends on the
ordering of B ∪ C.

The terms of the product spectrum

P = X ∧BC Y
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are given by
Pα(a) = Xβ(a) ∧ Yγ(a).

Note that α is an isomorphism from the ordered set A = B ∪ C to
{0, 1, 2, 3, . . .} and β, γ are monotonic functions from A = B ∪C to the
set {0, 1, 2, 3, . . .} such that β(a) + γ(a) = α(a).

The maps of the product spectrum are defined as follows. We
have

Pα(a) ∧ S1 −→ Xβ(a) ∧ Yγ(a) ∧ S1.

Here it is convenient to regard S1 as R1 compactified by adding a
point at infinity, which becomes the base-point. This allows us to
define a map of degree −1 from S1 to S1 by t 7→ −t.

If a ∈ B, then
Pα(a)+1 = Xβ(a)+1 ∧ Yγ(a)

and we define the map

πα(a) : SPα(a) −→ Pα(a)+1

by

πα(a)(x ∧ y ∧ t) = ξβ(a)
(
x ∧ (−1)γ(a)t

)
∧ y

If a ∈ C, then
Pα(a)+1 = Xβ(a) ∧ Yγ(a)+1

and we define the map

πα(a)(x ∧ y ∧ t) = x ∧ ηγ(a)(y ∧ t).

Here
x ∈ Xβ(a), y ∈ Yγ(a), t ∈ S1,

and
ξβ(a) : Xβ(a) ∧ S1 −→ Xβ(a), ηγ(a) : Yγ(a) ∧ S1 −→ Yα(a)+1
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are the appropriate maps from the spectra X, Y . The sign (−1)γ(a)

is introduced, of course, because we have moved S1 across Yγ(a).

It is clear that P = X ∧BC Y is functorial for functions of X and
Y of degree 0. Next we point out that we have no assumed that
the sets B and C are infinite. In the obvious applications they are
infinite, so that β(a) −→ ∞ and γ(a) −→ ∞; but it is convenient to
allow B and C to be finite. For example, let S1 be the suspension
spectrum of S1; then S1 ∧∅,A Y = Susp(Y ). If B is infinite, and X ′ is a
cofinal subspectrum of X, then X ′ ∧BC Y is a cofinal subspectrum
X ∧BC Y . So in this case X ∧BC Y is natural for maps of Y of degree
0. Next we observe that (Cyl(X)) ∧BC Y and X ∧BC (Cyl(Y )) can be
identified with Cyl(X ∧BC Y ). It follows that the homotopy class of
f ∧BC g depends only on the homotopy class of f (if B is infinite) or
g (if C is infinite).

We propose to construct X ∧ Y to have the properties stated in
the following theorem.

Theorem 4.2. For each choice of B, C there is a morphism

eqBC : X ∧BC Y −→ X ∧ Y (of degree 0)

with the following properties.

(i) If B is infinite and f : X −→ X ′ is a morphism of degree 0, then
the following diagram is commutative.

X ∧BC Y X ∧ Y

X ′ ∧BC Y X ′ ∧ Y

eqBC

f∧BC1 f∧1

eqBC

(ii) If C is infinite and g : Y −→ Y ′ is a morphism of degree 0, then
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the following diagram is commutative.

X ∧BC Y X ∧ Y

X ∧BC Y ′ X ∧ Y ′

eqBC

1∧BCg 1∧g

eqBC

(iii) The morphism eqBC : : X ∧BC Y −→ X ∧ Y is an equivalence if
any one of the following conditions is satisfied.

(a) B and C are infinite.

(b) B is finite, say with d elements, and ξr : ΣXr −→ Xr+1 is an
isomorphism for r ≥ d.

(c) C is finite, say with d elements, and ηr : ΣYr −→ Yr+1 is an
isomorphism for r ≥ d.

Let me show how Theorem 4.2 will help to prove Theorem 4.1(b).
Consider first the associativity. The point is that the “handicrafted
smash products” are actually associative if you pick the right
product at each point. More precisely, take a set A and partition it
into three disjoint subsets B, C, and D, such that B ∪ C and C ∪D
are infinite. Let X, Y , and Z be CW-spectra. Then we can form the
spectra

(X ∧BC Y ) ∧B∪C,D Z and X ∧B,C∪D (Y ∧CD Z).

(Now one begins to see the purpose for which the notation was
designed.) These two spectra are actually the same spectrum. For
the terms of each are given by

Pα(a) = Xβ(a) ∧ Yγ(a) ∧ Zδ(a).

The maps of each are described in the same way as before. We
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have
ΣPα(a) = Xβ(a) ∧ Yγ(a) ∧ Zδ(a) ∧ S1.

If a ∈ B, then
Pα(a)+1 = Zβ(a)+1 ∧ Yγ(a) ∧ Zδ(a)

and we have

πα(a)(x ∧ y ∧ z ∧ t) = ξβ(a)
(
x ∧ (−1)γ(a)+δ(a)t

)
∧ y ∧ z

If a ∈ C then
Pα(a)+1 = Xβ(a) ∧ Yγ(a)+1 ∧ Zδ(a)

and we have

πα(a)(x ∧ y ∧ z ∧ t) = x ∧ ηγ(a)
(
y ∧ (−1)δ(a)t

)
∧ z

If a ∈ D then
Pα(a)+1 = Xβ(a) ∧ Yγ(a) ∧ Zδ(a)+!

and we have
πα(a)(x ∧ y ∧ z ∧ t) = x ∧ y ∧ ζδ(a)(z ∧ t)

Here, of course, we have x ∈ Xβ(a), y ∈ Yγ(a), z ∈ Zδ(a), t ∈ S1 and
ξβ(a), ηγ(a), ζδ(a) are the appropriate maps of the spectra X,Y, Z. We
will arroung our construction to thave the following property.

Theorem 4.3. The equivalence

a = a(X,Y, Z) : (X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z)
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makes the following diagram commutative for each choice of B,C,D

(X ∧ Y ) ∧ Z X ∧ (Y ∧ Z)

(X ∧ Y ) ∧B∪C,D Z (X ∧BC Y ) ∧ Z X ∧ (Y ∧C,D Z) X ∧B,C∪D (Y ∧ Z)

(X ∧BC Y ) ∧B∪C,D Z X ∧B,C ∪D(Y ∧CD Z)

a

eqB∪C,D

eqBC∧1

1∧eqCD

eqB,C∪D

1
eqB∪C,D

B,C 1

eqB∪C,D

eqB,C∪D

1∧B,C∪DeqCD

Note that the squares are commutative by the naturality of eq;
we can apply 4.2(i) and (ii) since B ∪ C and C ∪D are infinite.

Let us now show how to check the commutativity of diagram
(i) in Theorem 4.1(b) (the pentagon diagram). Then by Theorems
4.2 and 4.3,all we have to do is check the following diagram is
commutative.

(W ∧BC X) ∧B∪C,D∪E (Y ∧DE Z)

((W ∧BC X) ∧B∪C,D Y ) ∧B∪C∪D,E Z W ∧B,C∪D∪E (X ∧C,D∪E (Y ∧DE Z))

(W ∧B,C∪D (X ∧CD Y )) ∧B∪C∪D,E Z W ∧B,C∪D∪E ((X ∧CD Y ) ∧C∪D,E Z)

1 1

1

1

1

This diagram is commutative as a diagram of functions before we
pass to homotopy classes.

Similarly, the “handicrafted smash products” are commutative if
you pick the right product at each point. It is tempting to partition
A as B ∪C, and consider X ∧BC Y and Y ∧CB X. Corresponding terms
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of these spectra are isomorphic; it is tempting to define

cα(a) : Xβ(a) ∧ Yγ(a) −→ Yγ(a) ∧Xβ(a)

by
cα(a)(x ∧ y) = y ∧ x

However, these components do not give a function between spectra,
because the relevant diagrams do not commute. We should have
inserted a sign (−1)β(a)γ(a), and we do not have a spare suspension
coordinate to reverse. The answer is easy; we need only consider
partitions A = B ∪ C such that β(a)γ(a) is always even.This amounts
to the following condition, Elements number 0 and 1 in A must be
either two elements of B, or else two elements of C. Similarly for
elements number 2 and 3, and similarly for elements number 2r and
2r + 1 for each r.

Now that we realize we can restrict the choice of partition in
this way, we see that it is easy and useful to go further. In fact, we
now introduce the following restriction on the partition A = B ∪ C.

Condition 4.4. Elements number 0, 1, 2, and 3 in A are either four
elements of B, or else four elements of C; similarly for elements
number 4, 5, 6 and 7 in A, and similarly for elements number 4r,
4e+ 1, 4r + 2 and 4r + 3 for each r.

With this restriction, we define an isomorphism

c = cBC : X ∧BC Y −→ Y ∧CB X

in the manner suggested:

cn(x ∧ y) = y ∧ x

This is clearly natural for functions of X and Y . it is also natural
for maps of X if B is infinite; similarly for Y if C is infinite.

We will arrange our constructions to have the following property.
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Theorem 4.5. The equivalence c = c(X,Y ) : X∧Y −→ Y ∧X makes the
following diagram commutative for each choice of B,C satisfying
4.4

X ∧ Y Y ∧X

X ∧BC Y Y ∧CB X

c

eqBC

cBC

eqCB

Let us now show how to check the commutativity of diagram (iii)

in Theorem 4.1(b) (the hexagon diagram). Take a set A and partition
it into three infinite subsets B,C and D satisfying the obvious
analogue of condition 4.4. Then by Theorems 4.24.34.5, all we have
to do is to check that the following diagram is commutative.

(Y ∧C,B X) ∧C∪B,D Z

(X ∧BC Y ) ∧B∪C,D Z Y ∧C,B∪D (X ∧B,D Z)

X ∧B,C∪D (Y ∧C,D Z) Y ∧C,D∪B (Z ∧D,B X)

(Y ∧C,D Z) ∧C∪D,B Z

c 1

1∧C,D∪Bc

1

1

c∧B∪C,D1

This diagram is commutative as a diagram of functions.

Similarly, suppose we wish to check the commutativity of dia-
gram (ii) in Theorem 4.1(b). By theorems 4.2 and 4.5, all we have
to do is check that the following diagram is commutative.
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Y ∧CB X

X ∧BC Y X ∧BC Y

cBCCBC

1

This diagram, too, is commutative as a diagram of functions.

Similarly, the “handicrafted smash products” have S as a unit if
you pick the right product at each point. More precisely, suppose
we partition A as ∅ ∪A.This is a legitimate partition satisfying the
condition 4.4; this was the reason that we allowed the set B to be
finite.We can form the spectrum S ∧∅A Y and it is isomorphic to Y ;
the obvious isomorphism has as its components the isomorphisms
S0 ∧ Yn ∼= Yn. This isomorphism is natural for morphisms of degree 0.
We can now define

l : S ∧ Y −→ Y

to be the composite

S ∧ Y S ∧∅A Y ∼= Y
eq∅,A

Here eq∅A is an equivalence by 4.2(iii)(b). Similarly, we can form the
spectrum X∧A∅S, and it is isomorphic to X; the obvious isomoprhism
has as its components the isomorphisms Xn ∧ S0 ∼= Xn. As before,
this isomorphism is natural for morphisms of degree 0. We now
define

r : X ∧ S −→ X

to be the composite

X ∧ S X ∧A∅ S ∼= X
eqA,∅

Here eqA∅ is an equivalence by 4.2(iii)(c).
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To check the commutativity of diagrams (iv), (v), (vi) and (vii) in
Theorem 4.1(b), we have only to check that the following diagrams
are commutative.

(S ∧∅B Y ) ∧BC Z S ∧∅,B∪C (Y ∧BC Z)

Y ∧BC Z
∼=

1

∼=∧BC1

(X ∧B∅ S) ∧BC Z X ∧BC (S ∧∅C Z)

X ∧BC Z
1∧BC

∼=

1

∼=∧BC1

(X ∧BC Y ) ∧B∪C,∅ S X ∧BC (Y ∧C∅ S)

X ∧BC Y
1∧BC

∼=∼=

S ∧∅A Y Y ∧A∅ S

Y

∼=∼=

c

X ∧A∅ S S ∧∅A X

X

∼=∼=

c

These diagrams are all commutative as diagrams of functions.

Finally, we comment on part (viii) of Theorem 4.1(b). If you
believe any of these results you must believe that S∧S is equivalent
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to S. So [S ∧S, S ∧S]0 ∼= [S, S]0 = Z. So all we have to do is check that
c : S ∧ S −→ S ∧ S has degree 1; but we shall make our constructions
to have the obvious effect on orientations.

We now turn to the constructions necessary to prove Theorems
4.1, 4.2, 4.3 and 4.5. First we give a simple construction which
is used in proving Theorem 4.2; this is the telescope functor. If
fn : Xn −→ Yn is a sequence of maps of CW-complexes, we can
form the iterated mapping cylinder, or telescope. If the are taken
to be cellular, the telescope is a CW-complex. We apply this
construction to the terms of a Spectrum of certain form, Let X
be a spectrum consisting of CW-complexes Xn with base-point and
cellular maps ξn : Xn ∧ S1 −→ Xn+1; we need not even assume that
ξn is an isomorphism from Xn ∧ S1 to a subcomplex of Xn+1; the
telescope functor Tel will convert a spectrum X which does not
have this property into one which does.

We take the half-line i ≥ 0 and divide it into 0-cells [i] and 1-cells
[i, i + 1] for i = 0, 1, 2, . . . . We define the nth term of Tel(X) as a
quotient space of the following wedge-sum

( n−1∨
i=0

[i, i+ 1]+ ∧Xi ∧ Sn−i
)
∨
( n∨
i=0

[i]+ ∧Xi ∧ Sn−i
)

Here it is convenient to regard Sm as Rm compactified by adding
point at infinity, which becomes the base-point. In this way the
isomorphism Rm×Rn −→ Rm+n gives an isomorphism Sm∧Sn −→ Sm+n

which is convenient for later use. The following identifications are
to be made. Identify the point

i ∧ x ∧ t ∈ [i, i+ 1]+ ∧Xi ∧ Sn−i

with the point
i ∧ x ∧ t ∈ [i]+ ∧Xi ∧ Sn−i
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Identify the point

(i+ 1) ∧ x ∧ t ∧ u ∈ [i]+ ∧Xi ∧ Sn−i−1

with
(i+ 1) ∧ ξi(x ∧ t) ∧ u ∈ [i]+ ∧Xi ∧ Sn−i−1

We give Tel(X)n the obvious structure as a CW-complex.
The nth map of the spectrum Tel(X) is obtained by passing to

quotients from the obvious isomorphism of

{( n∨
i=0

[i]+ ∧Xi ∧ Sn−i
)
∨
( n−1∨
i=0

[i, i+ 1]+ ∧Xi ∧ Sn−i
)}
∧ S1

with ( n∨
i=0

[i]+ ∧Xi ∧ Sn−i+1

)
∨
( n−1∨
i=0

[i, i+ 1]+ ∧Xi ∧ Sn−i+1

)
.

There is an obvious homotopy equivalence rn : Tel(X)n −→ Xn

(collapse the telescope to its right-hand end [n]+ ∧Xn ∧ S0). These
equivalences give the components of a function r : Tel(X) −→ X.
This function is a weak equivalence, by 3.4.

We pause to observe that this construction is functorial. It is
clear that a function f : X −→ Y induces Tel(f) : Tel(X) −→ Tel(Y ).
If X ′ is a subspectrum of X,then Tel(X ′) is a subspectrum of Tel(X).
Unfortunately, if X is a CW-spectrum and X ′ is cofinal in X, it does
not follow that Tel(X ′) is cofinal in Tel(X). So we avoid saying
that a map of X induces a map of Tel(X). However, the injection
Tel(X ′) −→ Tel(X) is a homotopy equivalence, as we see using
Theorem 3.5. Morever, we can identify Tel(Cyl(X)) with Cyl(Tel(X)).
It follows that a homotopy class of maps of X induces a homotopy
class of maps of Tel(X). We can now remark that r is a natural
transformation, These facts are, of course, fairly trivial, but we
need to cite this passage later; it is for this reason that I have
avoided a short cut–one could define Tel on morphisms by requiring
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that r be natural.

We propose to arrange for Theorem 4.2 to be true by construct-
ing X ∧ Y so that it contains a copy of Tel(X ∧BC Y ) for each choice
of B and C. The morphism

eqBC : X ∧BC Y −→ X ∧ Y

Will be defined as the following composite:

X ∧BC Y
r←− Tel(X ∧BC Y ) −→ X ∧ Y

The construction of X ∧ Y (call it P ) is as a ”double telescope”:
That is, just as the parts of Tel(X) corresponded to the cells of a
cell-decomposition of the half-line i ≥ 0, so here we make a similar
use of the quarter-plane i ≥ 0, j ≥ 0. We divide the half-line i ≥ 0

with 0-cells [i] and 1-cells [i, i+1], i = 0, 1, 2, . . . . We divide the half-line
j ≥ 0 similarly, and we divide the quarter plane i ≥ 0, j ≥ 0 into the
products of these cells. Thus we have four cells eij with bottom
left-hand corner at (i, j):

the 0-cell [i]× [j]

the 1-cells [i, i+ 1]× [j] and [i]× [j, j + 1]

the 2-cell [i, i+ 1]× [j, j + 1]

To construct Pn we use those cells eij which lie entirely in the
part of the quarter-plane given by x+ y ≤ n. The condition for this
is

i+ j + dim(eij) ≤ n

Let us start from ∨
i+j≤n

([i]× [j])+ ∧Xi ∧ Yj ∧ Sn−i−j
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and attach ∨
e+ij ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j

where eij runs over the 1-cells [i, i+1]× [j] and [i]× [j, j +1] such that
i+ j + 1 ≤ n. The identifications are obvious. The point

(i, j) ∧ x ∧ y ∧ s ∧ t in e+ij ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

is to be identified with

(i, j) ∧ x ∧ y ∧ (s ∧ t) in ([i]× [j])+ ∧Xi ∧ Yj ∧ Sn−i−j

The point

(i+ 1, j) ∧ x ∧ y ∧ s ∧ t in ([i+ 1]× [j])+ ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

is to be identified with

(i+ 1, j) ∧ ξi
(
x ∧ (−1)js

)
∧ y ∧ t in ([i+ 1]× [j])+ ∧Xi+1 ∧ Yj ∧ Sn−i−j−1

The point

(i, j + 1) ∧ x ∧ y ∧ s ∧ t in ([i]× [j, j + 1])+ ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

is to be identified with

(i, j + 1) ∧ x ∧ ηj(y ∧ s) ∧ t in ([i]× [j + 1])+ ∧Xi ∧ Yj+1 ∧ Sn−i−j−1

Consider now a cell e = [i, i + 1] × [j, j + 1] such that i + j + 2 ≤ n.
We have just described the subcomplex of Pn corresponding to ∂e.
Morever, it contains a family of subspaces Xi ∧ Yj ∧ S2 ∧ Sn−i−j−2,
parametrized by the points of ∂e. Unfortunately, this family is not
a proudct family, at least, not in a completely trivial way. Lets
start from the point

(i, j) ∧ x ∧ y ∧ s ∧ t ∧ u in ([i]× [j])+ ∧Xi ∧ Yj ∧ S1 ∧ S1 ∧ Sn−i−j−1
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if we first increase i and then increase j, we get first to
(i+1, j)∧ ξi

(
x∧ (−1)js

)
∧ y ∧ t∧u and then to (i+1, j+1)∧ ξi(x∧ (−1)js)∧

ηj(y ∧ t)∧ u. If we first increase j and then increase i, we get first to
(i, j+1)∧x∧ηj(y∧s)∧t∧u and then to (i+1, j+1)∧ξi

(
x∧(−1)j+1t

)
∧ηj(y∧s)∧u.

If I wanted to turn the first formula into the second I would have
to substitute s for t, −t for s.

We conclude, then, that the family of subspaces we have con-
sidered is best described as

Xi ∧ Yj ∧M(τ) ∧ Sn−i−j−2

Here M(τ) is the Thom complex of a certain 2-plane bundle τ over
∂e; more precisely, τ is obtained from I × R2 by identifying the two

ends under the homeomoprhism
(
0 −1
1 0

)
, So τ is an SO(2)-bundle

over ∂e = S1; it can be extended to a bundle over e. Of course
there are different ways of extending τ to a bundle over e, since
π1(SO(2)) = Z. But τ is essentially independent of n,i,j,X and Y ;
this follows from the description given above; or else one can use
coordinates to write down explicit isomorphisms which increase i
by 1 or j by 1. (The isomorphisms start from the identity map of
R2 over [i]× [j], and each suspension coordinate is either preserved
or reversed according to the demands of the signs.) All that is
essential is that we choose an extension of τ that is similarly
independent of n, i, j,X and Y . For example, with the description of
τ given above, we can trivialize τ by using a geodesic path of Lent
π/2 of SO(2).

We take the part of Pn corresponding of e = eij to be

Xi ∧ Yj ∧M(τ) ∧ Sn−i−j−2

where τ now refers to the bundle as extended over eij . The
identification with the part of Pn already constructed is automatic.

This completes the construction of Pn = (X ∧ Y )n. The structure
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maps are obvious.
To summarize, we have constructed (X ∧Y )n as a quotient space

of ∨
Xi ∧ Yj ∧M(τd) ∧ Sn−i−j−d

Here the sum runs over cells eij such that i+ j + dim(eij) ≤ n, and
d = dim(eij), and τd is a suitabled-plane bundle over eij . (For d = 0

and d = 1, τd was introduced as an explicitly trivialized bundle.) The
identifications are obvious: we regard Xi ∧ S1 as embedded in Xi+1,

Xi ∧ S1 ∧ Yj ∧M(τ) ∧ Sn−i−j−d

as
Xi ∧ Yj ∧M(1⊕ τ) ∧ Sn−i−j−d

The discussion of the functoriality of X ∧ Y goes exactly as for
the telescope functor. More precisely, suppose X ′ is cofinal in X,
and we are given a function f : X ′ −→ Z Then X ′ ∧ Y is not cofinal in
X ∧ Y , but we have the following functions.

X ∧ Y Z ∧ Y

X ′ ∧ Y

i∧1
f∧1

When we pass to morphisms, i′ ∧ 1 is an equivalence, by 3.5, so we
obtain a morphism from X ∧ Y to Z ∧ Y . Since cylinders work right,
we conclude that this morphism depends only on the homotopy
class of f . It is clear how one embeds Tel(X ∧BC Y in X ∧ Y . The
functions βα−1, γα−1 give a function

{0, 1, 2, 3 . . . } −→ {0, 1, 2, 3 . . . } × {0, 1, 2, 3 . . . }

In other words, they give the corners of a stepwise path in the
quarter-plane i ≥ 0, j ≥ 0. We extend it to a function θ : {k ≥ 0} −→
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{i ≥ 0} × {j ≥ 0} so that if a ∈ B,

θ[α(a), α(a) + 1] ⊂ [β(a), β(a) + 1]× [γ(a)]

and if a ∈ C,
θ[α(a), α(a) + 1] ⊂ [β(a)]× [γ(a), γ(a)]

The choice of θ is immaterial; two choices are homotopic through
maps θ satisfying the same restrictions.

A typical part of Tel(X ∧BC Y ) is

[k, k + 1]+ ∧Xi ∧ Yj ∧ S1 ∧ Sn−k−1

where i = βα−1k, j = γα−1k. We take the point

t ∧ x ∧ y ∧ u ∧ v

and map it to

θ(t) ∧ x ∧ y ∧ u ∧ v in e+ij ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

where eij is the appropriate 1-cell. Similarly for [k]+ ∧Xi ∧ Yj ∧ Sn−k.

It is clear that changing the choice of θ only changes the resulting
function

Tel(X ∧BC Y ) −→ X ∧ Y

by a homotopy. For any choice of θ, the function Tel(X ∧BC Y ) −→
X ∧ Y is natural for functions of X and Y of degree 0. From this,
one has no difficulty in obtaining the naturality properties of eqBC
in Theorem 4.2.

We now prove Theorem 4.2(iii). First we consider case (a). So we
suppose that B and C are infinite. We define a subspectrum Q of P
as follows. Let Qα(a) be the subcomplexes of Pα(a) corresponding to
the cells eij in the part of the quarter-plane given by i′ ≤ β(a), j′ ≤
γ(a). Qα(a) admits a deformation retraction on Xβ(a) ∧ Yγ(a), and
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Tel(X ∧BC Y )α(a) admits a deformation retraction on Xβ(a) ∧ Yγ(a).
Hence, in the diagram

Tel(X ∧BC Y )

Xβ(a) ∧ Yγ(a) Qα(a)

∼=

∼=

the two inclusions marked induce isomorphisms of homotopy groups,
so the third one does also; passing to direct limits and applying 3.5,
the inclusion

Tel(X ∧BC Y ) −→ Q

is an equivalence.

It remains to consider cases (b) and (c), which are similar. Let us
consider case (b), so that B is finite with d members, and

ξr : ΣXr −→ Xr+1

is an isomorphism for r ≥ d. We now make a small change in the
definition of Qα(a) for ”a” such that β(a) ≥ d. For such a, we define
Qα(a) to be the subcomplex of Pα(a) corresponding to the cells eij in
the part of the quarter-plane given by i′ + j′ ≤ α(a), j′ ≤ γ(a). Then
Qα(a) still admits a deformation retraction onto Xβ(a) ∧ Yγ(a), since
the relevant map

Xd ∧ Yj ∧ Sn−d −→ Xd+e ∧ Yj ∧ Sn−d−e (e ≥ 0)

is an isomorphism. Also Q is cofinal in P , so the proof carries over.
We now turn to the proof of Theorem 4.5.

Lemma 4.6. There is a spectrum Q with homotopy equivalences
i0 : X ∧ Y −→ Q, i1 : Y ∧ X −→ Q so that the following diagram is
commutative for each choice of B and C satisfying condition 4.4
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Q

X ∧ Y Y ∧X

Tel(X ∧BC Y ) Tel(Y ∧CB X)

X ∧BC Y Y ∧CB X
cBC

i0 i1

This will certainly prove Theorem 4.5; we have only to define c

to be i−1
1 i0. Note that we do not have to discuss the naturality of

i−1
1 i0; it follows from that of the other morphisms in 4.6.

To construct Q, we begin by taking a copy of X ∧ Y and a copy
of Y ∧X. The remainder of the construction will be indexed ever
the product of the quarter-plane i ≥ 0, j ≥ 0 and the interval I. The
endpoint 0 of I will correspond to X ∧ Y and the endpoint 1 of I will
correspond to Y ∧X.

First we observe that we can make the following cells:

([i]× [j]× I)+ = ([i]× [j])+ ∧ I+ (i or j even)
([i, i+ 1]× [j]× I)+ (j even)
([i]× [j, j + 1]× I)+ (i even)

The nth term of the construction consists in taking the appropri-
ate part of (X ∧ Y )n ∧ I+, identifying the end 0 of the cylinder with
the appropriate part of (X ∧Y )n, attaching the end 1 of the cylinder
to the appropriate part of (Y ∧X), by the following map: the point

(t, s) ∧ x ∧ y ∧ u ∧ v in e+ij ∧Xi ∧ Yj ∧ Sd ∧ Sn−i−j−d
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is to be identified with

(s, t) ∧ x ∧ y ∧ u ∧ v in e+ji ∧ Yj ∧Xi ∧ Sd ∧ Sn−i−j−d

These identifications are consistent.
Consider now a cell e = [2i, 2i + 2] × [2j, 2j + 2] × I. We have just

described the part of Qn corresponding to the boundary ∂e of e.
Moreover, it contains a subcomplex of the following form:

X2i ∧ Y2j ∧M(τ ′) ∧ Sn−2i−2j−4.

Here τ ′ is a certain 4-plane bundle over ∂e. This 4-plane bundle
depends only on the permutations and signs in our construction
and on the extension τ chosen in the construction of X ∧ Y ; it does
not depend on the n, i, j,X or Y . It is classified by an element

α ∈ π1(SO) = Z2

Suppose now that we consider the four cells, like the cell e just
considered, which make up the cell

e′ = [4i, 4i+ 4]× [4j + 4j]× I

Call them e1, e2, e3 and e4. The part of Q so far constructed, corre-
sponding to these cells, has a subcomplex of the form

Sn−4i−4j−8 ∧M(τ ′′) ∧X4i ∧X4j .

Here M(τ ′′) is the Thom complex of a certain 8-plane bundle over
∂e1 ^ ∂e2 ^ ∂e3 ^ ∂e4. Over each ∂ei it restricts to the whitney sum
of the previous bundle τ ′ and a trivial 4-plane bundle. Therefore
the restriction of τ ′′ to ∂e′ is classified by 4α = 0. Therefore τ ′′ = 0

can be extended over e′.
From the previous construction, we now retain only X ∧ Y, Y ∧X,

and the parts of the cylinder (X ∧ Y )n ∧ I+ with i divisible by 4 or j
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divisible by 4. We now add X4i ∧ Y4j ∧M(τ ′′) ∧ Sn−4i−4j−8 for each i, j,
and n such that n ≥ 4i+ 4j + 8. This completes the construction of
Q.

The injections of X ∧ Y and Y ∧X into Q are clearly homotopy
equivalences, by 3.5. It is also clear that the diagram of Lemma 4.6
is commutative, because the relevant part of the cylinder Cyl(X∧Y )

was put in for that purpose.

This completes the proof of Lemma 4.6 and, therefore, of Theo-
rem 4.5.

We now turn to the proof of Theorem 4.3. The constructions
(X ∧ Y )∧Z and X ∧ (Y ∧Z) are “quadruple telescopes”, indexed by a
cell-decomposition of the positive cone in 4-space. We arrange to
replace (X ∧ Y ) ∧ Z by an equivalent construction P ′ and X ∧ (Y ∧ Z)
by an equivalent construction P ′′, so that both P ′ and P ′′ are “triple
telescopes”, indexed by a cell-decomposition of the positive cone
in 3-space. It will then be apparent that P ′ and P ′′ are equivalent.
More formally, we have the following lemma.

Lemma 4.7. There is a spectrum P ′ and a homotopy equivalence
i′ : P ′ −→ (X ∧ Y )∧Z (both independent of B, C and D) such that the
following diagram is commutative for each choice of B, C and D.

(X ∧BC Y ) ∧ Z (Tel(X ∧BC Y )) ∧ Z (X ∧ Y ) ∧ Z

Tel((X ∧BC Y ) ∧B∪C,D Z) P ′

(X ∧BC Y ) ∧B∪C,D Z

i∧1r∧1

r

i

k′
j′

i′

Similarly for X ∧ (Y ∧ Z) with i′, j′, k′ and P ′ replaced by i′′, j′′, k′′

and P ′′. Moreover, there is a homotopy equivalence P ′ e−→ P ′′ such
that the following diagram is commutative.
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P ′ P ′′

Tel((X ∧BC Y ) ∧B∪C,D Z) Tel(X ∧B,C∪D (Y ∧CD Z))

e

k′ k′′

Proof. By definition, the nth term of (X ∧ Y ) ∧ Z is a union⋃
hk

(X ∧ Y )h ∧ Zk ∧M(τδ) ∧ Sn−h−k−δ

where the union extends over cells ehk such that

h+ k + dim ehk ≤ n,

δ = dim ehk and τδ is a δ-plane bundle. That is, it is a union⋃
eij ,ehk

Xi ∧ Yj ∧M(τd) ∧ Sh−i−j−d ∧ Zk ∧M(τδ) ∧ Sn−h−k−δ

where eij runs over cells with

i+ j + dim eij ≤ h,

d = dim(eij) and τd is a d-plane bundle. We arrange this as⋃
eik,ehk

Xi ∧ Yj ∧ Zk ∧M(τd ⊕ τδ) ∧ Sh−i−j−d ∧ Sn−h−k−δ.

Thus the construction is indexed over a cell-decomposition of the
positive cone i ≥ 0, j ≥ 0, h ≥ 0, k ≥ 0 in 4-space. Call this cone C4.
Let C3 be the positive cone i ≥ 0, j ≥ 0, k ≥ 0 in 3-space, and divide
C3 into cells in the obvious way, so that the cells are r-cubes of
side 1 for r = 0, 1, 2, 3.

We construct P ′ by giving a suitable cellular map θ from C3 to C4

by “pulling back” the bundles and complexes we have associated
with the parts of C4. Actually we construct θ to preserve the
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k-coordinate, so it is only necessary to construct a map ϕ from the
positive cone i ≥ 0, j ≥ 0 to the positive cone i ≥ 0, j ≥ 0, h ≥ 0.

Our idea in defining θ and ϕ is to only use the cells eij × ehk such
that

i+ j + dim eij = h;

firstly because the other parts of (X ∧ Y ) ∧ Z are redundant, and
secondly because by keeping Sh−i−j−d = S0 we avoid suspension
coordinates in the wrong place.

We first indicate into which subcomplexes the cells are to be
mapped

ϕ([i]× [j]) = [i]× [j]× [i+ j]

ϕ([i, i+ 1]× [j]) ⊂ ([i]× [j]× [i+ j, i+ j + 1])

∪ ([i, i+ 1]× [j]× [i+ j + 1])

ϕ([i]× [j, j + 1]) ⊂ ([i]× [j]× [i+ j + 1])

∪ ([i]× [j, j + 1]× [i+ j + 1])

ϕ([i, i+ 1]× [j, j + 1]) ⊂ ([i]× [j]× [i+ j, i+ j + 1])

∪ ([i, i+ 1] ∪ [j]× [i+ j + 1, i+ j + 2])

∪ ([i]× [j, j + 1]× [i+ j + 1, i+ j + 2])

∪ ([i, i+ 1]× [j, j + 1]× [i+ j + 2]).

In each case the proposed subcomplex is contractible, so the
construction of ϕ is possible and unique up to homotopy. In each
case, the image of ϕ must be the whole subcomplex given, so we
can refer to the subcomplex as ϕ(eij). Similarly for θ(eijk).

We next note that for each cell eijk such that i+j+k+dim(eijk) ≤ n,
the part of ((X∧Y )∧Z)n associated with θ(eijk) contains a subcomplex
of the form

Xi ∧ Yj ∧ Zk ∧M(τd) ∧ Sn−i−j−k−d,

where d = dim(eijk) and τd is a d-plane bundle over θ(eijk). We
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decompose the corresponding part of P ′ to be

Xi ∧ Yj ∧ Zk ∧M(θ∗τd) ∧ Sn−i−j−k−d,

where θ∗τd is the induced bundle over eijk. The map i′ on this part
of P ′ is induced by the map of bundles θ∗τd −→ τd over the map θ of
spaces. The identifications to be made assembling P ′ are automatic;
one just pulls back the identification of (X ∧ Y ) ∧ Z.

We make the structure of P ′ more explicit. Corresponding to
the 0-cells eijk we have∨

i+j+k≤n

Xi ∧ Yj ∧ Zk ∧ ([i]× [j]× [k])+ ∧ Sn−i−j−k.

Corresponding to 1-cells we have∨
i+j+k+1≤n

e+ijk ∧Xi ∧ Yj ∧ Zk ∧ S1 ∧ Sn−i−j−k−1.

Here the attaching maps are the obvious ones, involving the obvious
signs.

For each 2-cell e = eijk, the bundle θ∗τ over e is exactly as
described in the construction of X ∧ Y .

For each 3-cell e = eijk, there is only one bundle over e extending
the given bundle θ∗τ over ∂e, since π3(BSO(3)) = π2(SO(3)) = 0. So we
need not worry which bundle arises.

On the other hand, the description of P ′′ is exactly the same as
the description we have just given for P ′. This provides the map
e : P ′ −→ P ′′.

The map
k′ : Tel((X ∧BC Y ) ∧B∪C,D Z) −→ P ′

is basically obvious. The functions βα−1, γα−1 and δα−1 give a
function θ′ : {0, 1, 2, 3, . . .} → {0, 1, 2, 3, . . .}3. We extend it to a function
θ′′ mapping each cell of C1 (the positive half-line with our usual cell
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structure) into the obvious cell of C3. Now we construct the map
k′ as we constructed the map Tel(X ∧BC Y ) −→ X ∧ Y .

We now observe that the function

i′k′ : Tel((X ∧BC Y ) ∧B∪C,D Z) −→ (X × Y ) ∧ Z

actually maps into {Tel(X ∧BC Y )} ∧ Z; this defines the function

j′ : (Tel(X ∧BC Y )) ∧B∪C,D Z −→ (Tel(X ∧BC Y )) ∧ Z.

The function (r ∧ 1)j′ satisfies the definition for i. (Some of the
cylinders spend some of their time stationary and the rest hurrying
to make up for it, but this is allowed)

This completes the proof of Lemma 4.7, which completes the
proof of 4.3, which completes the proof of Theorem 4.1 so far as
it refers to maps of degree 0.

We now propose to go back and recover the properties of our
constructions with respect to maps of non-zero degree.

First we introduce the sphere-spectra of different stable dimen-
sions. Let us define the spectrum Si by

(Si)n =

Sn+1 n+ i ≥ 0

pt. n+ i < 0.

Proposition 4.8. We have an equivalence Si ∧ Sj e−→ Si+j such that
the following diagrams are commutative.

236



Chapter 4: Smash products

(Si ∧ Sj) ∧ Sk Si ∧ (Sj ∧ Sk)

Si+j ∧ Sk Si ∧ Sj+k

Si+j+k

a

e∧1 1∧e

e e

Si ∧ Sj Sj ∧ Si

Si+j Sj+i

e

c

e

(−1)ij

S0 ∧ Sj Sj

e

`

Si ∧ S0 Si

e

r

Proof. (i) Any handicrafted smash-product of Si and Sj gives a
spectrum that has the same terms as Si+j from some point
onwards. We just take care to pick an equivalence that is
orientation-preserving.

(ii) [Si, Sj ] = limn→∞[Sn+i, Sn+i] = Z; so to check the commutativity
of any such diagram, we have only to check the degree of a
map. We have been careful to make all our constructions so
as to do the right thing on orientations.
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Proposition 4.9. We have the equivalences

γr : X −→ Sr ∧X (of degree r)

with the following properties.

(i) γr is natural for maps of X of degree 0. (This is all we can ask,
because we have not yet made Sr ∧X functorial for maps of
non-zero degree.),

(ii) γ0 = `−1,

(iii) The following diagram is commutative for each r and s.

Sr+s ∧X (Sr ∧ Ss) ∧X

Sr ∧ (Ss ∧X)

X Ss ∧X

a

e∧1

γr+s

γs

γr

Proof. Clearly if we take γ0 = `−1, it is natural for maps of X of
degree 0. Consider now

S0 ∧1,{2,3,...} X and S1 ∧∅,{1,2,3,...} X.

On the left, the nth term is S1 ∧ Xn−1; on the right, the (n − 1)-st
term is S1 ∧Xn−1. The structure maps are the same in both cases.
So the identity maps S1 ∧Xn−1 −→ S1 ∧Xn−1 give the components
of an equivalence of degree +1

S0 ∧X −→ S1 ∧X.

It is clearly natural for maps of X of degree 0. Composing with `−1,
we obtain an equivalence γ1.
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Note that at this point I have essentially picked up the Puppe
Desuspension Theorem, without the restrictive hypotheses.

Now I define γs for all other values of s by induction upwards
and downwards over s, making the following diagram commutative.

S1+s ∧X (S1 ∧ Ss) ∧X

S1 ∧ (Ss ∧X)

X Ss ∧X

a

e∧1

γ1+s

γs

γ1

One has to check that this is consistent for s = 0. Note also that
γ1+s or γs, whichever is being defined, is natural for maps of X of
degree 0, because all the ingredients of its definition are so.

We now prove the commutativity of the diagram

Sr+s ∧X (Sr ∧ Ss) ∧X

Sr ∧ (Ss ∧X)

X Ss ∧X

e∧1

a

γs

γr+s

γr

by induction upwards and downwards over r. Here we start from
the cases r = 0 (which is a trivial verification) and r = 1 (which holds
by the construction of γs). The inductive step is diagram-chasing.

We are now ready to replace our original graded category by one
which appears slightly different. In the new category, the objects
are CW-spectra just as before; but the morphisms of degree r are
given by

[Sr ∧X,Y ]0
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in the old category. Composition is done as follows. Suppose given

Sr ∧X f−→ Y, Ss ∧ Y f−→ Z

of degree 0; take their composite to be

Ss+r ∧X e∧1←−− (Ss ∧ Sr) ∧X a−→ Ss ∧ (Sr ∧X)
1∧f−−→ Ss ∧ Y g−→ Z.

One has to check that composition is associative, and that ` :

S0 ∧X −→ X is an identity map. This is easy.

Proposition 4.10. The new graded category is isomorphic to the old,
under the isomorphism sending

Sr ∧X f−→ Y (in the new category)

to
X

γr−→ Sr ∧X f−→ Y (in the old category).

Proof. Since γr is an equivalence in the old category, it is clear that
this gives a 1-1 correspondence between [Sr ∧X,Y ]0 (that is, the set
of morphisms of degree r in the old category). It remains only to
check that this one-to-one correspondence preserves composition
and identity maps. But this is immediate from the properties of γr
in Proposition 4.9.

If you want to see what you are doing with maps of degree r, I
really recommend considering them as maps Sr ∧X −→ Y of degree
0. In particular, it is easy to see how to make X ∧ Y functorial on
the new category. More precisely, suppose given morphisms in the
new category

Sr ∧X f−→ X ′, Ss ∧ Y g−→ Y ′.

Then we define their smash-product to be

Sr+s ∧X ∧ Y e∧1∧1←−−−− Sr ∧ Ss ∧X ∧ Y 1∧c∧1−−−−→ Sr ∧X ∧ Ss ∧ Y f∧g−−→ X ′ ∧ Y ′.
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To prove that this has all the properties mentioned in Theo-
rem 4.1 is now a routine exercise of diagram-chasing. At the same
time, we check that we have not altered the definition of f ∧ g if f
and g happen to be of degree 0.

This completes the proof of Theorem 4.1.

Exercise. Show that the naturality of γr with respect to maps of
degree s is as follows: the diagram

X Sr ∧X

(−1)rs

Y Sr ∧ Y

γr

f 1∧f

γr

is commutative up to a sign of (−1)rs if f ∈ [X,Y ]s.

Proposition 4.11. The smash-product is distributive over the wedge-
sum. Let X =

∨
αXα; let iα : Xα −→ X be a typical inclusion. Then

the morphism ∨
α

(Xα ∧ Y )
{iα∧1}−−−−→

(∨
α

Xα

)
∧ Y

is an equivalence.

Proof. Use a suitable handicrafted smash-product.

Proposition 4.12. Let X f−→ Y
i−→ Z be a cofibering (it is sufficient

to consider morphisms of degree zero). Then

W ∧X 1∧f−−→W × Y 1∧i−−→W ∧ Z

is also a cofibering.
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Proof. It suffices to check for the case in which f : X −→ Y is the
inclusion of a closed subspectrum, i : Y −→ Z is the projection
Y −→ Y /X and

∧
=
∧
BC .
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5. Spanier-Whitehead Duality

Suppose I have a compact subset X ⊂ Sn, say X 6= ∅, X 6= Sn. Then I
know that the homology of the complement CX of X is determined
by the cohomology of X. This is given by the Alexander duality
theorem:

˜̌Hr(X) ∼= Ȟr(X,pt.) ∼= Hn−r(Cpt., CX) ∼= Hn−r−1(CX,pt.) ∼= Ȟn−r−1(CX).

However, the homotopy type of CX is clearly not determined by
X; it depends on the embedding. For example, take X = S1, n = 3;
we can embed S1 in S3 as a knotted circle or an unknotted circle,
and make π1(CX) different in the two cases. It would be reasonable
to ask the following question. Suppose X is a good subset, i.e.,
a finite simplical complex linearly embedded in ∂σn+1. (We make
this assumption to avoid pathologies.) How far does X determine
anything about CX beyond its bare homology groups?

It was proved by Spanier and Whitehead that X does determine
the stable homotopy type of CX; even the stable homotopy type
of X suffices to do this. This may easily be seen as follows. First,
suppose that I take X ⊂ Sn. Now embed Sn as an equatorial sphere
in Sn+1, and embed the suspension of ΣX of X in Sn+1 by joining to
the two poles. Then the complement of ΣX in Sn+1 is homotopy-
equivalent to the complement of X in Sn. So if somebody gives me
X ⊂ Sn, Y ⊂ Sm and a homotopy equivalence f : ΣpX −→ ΣqY , I may
as well embed ΣpX in Sn+p and ΣqY in Sm+q, because I can do so
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without changing the complements. So without loss of generality I
can suppose I have X ′ ⊂ Sn′ , Y ′ ⊂ Sm′ and a homotopy equivalence
f : X ′ −→ Y ′. I can even suppose that f is PL.

Now suppose we take X ′ ⊂ Sn′ and embed Sn
′ as an equatorial

sphere in Sn
′+1 without changing X ′. Then the complement of X ′

suspends; more precisely, the complement of X ′ in Sn
′+1 is the

suspension of that in Sn
′ . So now consider Sn′ ∗ Sm′ . In this sphere

we can embed the mapping-cylinder M of f ′. In this sphere we have

Sm
′+n′+1 −X = Σm

′+1(Sn
′
−X)

Sm
′+n′+1 − Y = Σn

′+1(Sm
′
− Y )

and two maps

Sm
′+n′+1 −X Sm

′+n′+1 −M Sm
′+n′+1 − Y.

f g

But the injections

X M Y

induce isomorphisms of cohomology. The Alexander duality isomor-
phism is natural for inclusion maps, and therefore f and g induce
isomorphisms of homology. But now I can suspend further if neces-
sary to make everything simply-connected. So f and g are stable
homotopy equivalences, and we have proved the result.

With a little more attention to detail we can show that the
passage from X to the stable homotopy type of its complement in
a sphere is essentially functorial; a map f : X −→ Y induces a stable
class of maps f∗ : CY −→ CX. The functor is contravariant, as we
would expect.

The next step was taken by Spanier, and it was to eliminate
the embedding in Sn. More precisely, suppose I have two finite
simplical complexes K and L embedded in Sn so as to be disjoint.
I am really interested in the case when the inclusion L −→ CK,
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K → CL are homotopy equivalences, but this is not necessary for
the construction. Run a PL path from some point in K to some
point in L; without loss of generality we can suppose the first point
is the only point where it meets K, and the last point is the only
point where it meets L. Without loss of generality we can suppose
these points are vertices and take them as base-points in K and L,
writing bpt. for either. Take some point in the middle of the path
as the point at ∞. Then we have an embedding of K and L in Rn.
Define a map

µ : K × L −→ Sn−1

by

µ(k, l) =
k − l
‖k − l‖

.

The maps u|K ×bpt. and µ|bpt.×L are null homotopic, so we get
a map

µ : K ∧ L −→ Sn−1.

Spanier’s essential step was to realize that everything could be
said in terms of this map µ. To begin with, he considered maps
µ : K ∧ L −→ Sn−1 whose homological behaviour was such as you
would expect. In order to explain what you would expect, I need
slant products, which I have not done yet.

So we use the framework we already have. Let X be a CW-
spectrum. Then we can form

[W ∧X,S]0.

With X fixed this is a contravariant functor of W , and it satisfies
the axioms of E.H. Brown. So it is representable; there is a spectrum
X∗ and a natural isomorphism

[W ∧X,S]0 [W,X∗]0 .
T
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Taking W = X∗ and 1: X∗ −→ X∗ on the right, we see that there is a
map

e : X∗ ∧X −→ S.

Using the fact that T is natural, we see that T carries

f : W −→ X∗

into

W ∧X X∗ ∧X S.
f∧1 e

Of course, this prescription defines

T : [W,X∗]r −→ [W ∧X,S]r,

and by applying the canonical isomorphism to a different choice of
W we see that

T : [W,X∗]r −→ [W ∧X,S]r

is an isomorphism also.
We think of this as being like duality for vector-spaces over a

field K. In that case we have

V ∗ = HomK(V,K);

there is a canonical evaluation map

e : V ∗ ⊗ V −→ K;

and there is a 1-1 correspondence

HomK(U ⊗ V,K) HomK(U,HomK(V,K)).
T

The dual X∗ is a contravariant functor of X. For if we take a
map g : X −→ Y , it induces a natural transformation
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[W ∧X,S]0 [W ∧ Y, S]0

[W,X∗]0 [W,Y ∗]0

(1∧g)∗

and this natural transformation must be induced by a unique map

g∗ : Y ∗ −→ X∗.

(We go through the usual argument of substituting W = Y ∗ and
1: Y ∗ −→ Y ∗ on the right.) In terms of maps e, the relation between
g and g∗ is that the following diagram commutes.

Y ∗ ∧X Y ∗ ∧ Y

X∗ ∧X S

g∗∧1

1∧g

eY

eX

Let Z be a third spectrum; we can make a map

[W,Z ∧X∗]r [W ∧X,Z]r
T

as follows. Given

W Z ∧X∗
f

we take

W ∧X Z ∧X∗ ∧X Z.
f∧1 1∧e

T is clearly a natural transformation if we vary Z.

Remark 5.1. T is an isomorphism if Z is the spectrum Sn. (The case
n = 0 has already been considered, and changing n just changes the
degrees.)
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Remark 5.2. Suppose given a cofibering

Z1 Z2 Z3 Z4 Z5.

If T is an isomorphism for Z1, Z2, Z4 and Z5, then it is an isomorphism
for Z3.

Proof. Use the five lemma.

[W,Z1 ∧X∗]r [W,Z2 ∧X∗]r [W,Z3 ∧X∗]r [W,Z4 ∧X∗]r [W,Z5 ∧X∗]r

[W ∧X,Z1]r [W ∧X,Z2]r [W ∧X,Z3]r [W ∧X,Z4]r [W ∧X,Z5]r

Remark 5.3. T is an isomorphism if Z is any finite spectrum. This
is immediate by induction, using 5.1 and 5.2.

Proposition 5.4. If W and X are finite spectra, then

T : [W,Z ∧X∗]r −→ [W ∧X,Z]r

is an isomorphism for any spectrum Z.

Proof. Pass to direct limits from the case of finite spectra.

Lemma 5.5. If X is a finite spectrum, then X∗ is equivalent to a
finite spectrum.

The proof is postponed until section 6, for a reason which will
appear. 1

Proposition 5.6. Let X be a finite spectrum, Y any spectrum. Then
we have an equivalence (X∧Y )∗

h−→ X∗∧Y ∗ which makes the following
diagram commute.

1The proof is linked: 6
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(X ∧ Y )∗ ∧X ∧ Y S

X∗ ∧ Y ∗ ∧X ∧ Y X∗ ∧X ∧ Y ∗ ∧ Y.

h∧1

eX∧Y

1∧c∧1

eX∧eY

Proof. By 5.5 we can assume that X∗ is a finite spectrum. By 5.3,

[W,X∗ ∧ Y ∗]r [W ∧ Y,X∗]r
TY

is an isomorphism for any spectrum W , and so is

[W ∧ Y,X∗]r [W ∧ Y ∧X,S]r
TX

by the original property of X∗ applied to the spectrum W ∧ Y . This
state of affairs reveals X∗∧Y ∗ as the dual of Y ∧X with TY ∧X = TXTY .
Writing this equation in terms of maps e, we obtain the diagram
given by a little diagram-chasing.

I should perhaps emphasize that I have only done what I need
later. In particular, I have not proved that S-duality converts a
cofibering of finite spectra into another cofibering. This is true,
but it needs a slightly more precise argument, given in Spanier’s
exercises. Also, I have only talked about maps into X∗ or Z ∧X∗.
Once we have the result on cofiberings we can talk about maps
from X∗, at least when X is a finite spectrum, and so prove X∗∗ ' X.
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6. Homology and Cohomology

Suppose given a spectrum E. Then we define the E-homology and
E-cohomology of other spectra X as follows.

1. En(X) = [S,E ∧X]n

2. En(X) = [X,E]−n

In order to convince ourselves these functors do deserve the name
of generalized homology and cohomology, let’s list their trivial
properties.
Proposition 6.1. 1. E∗(X) is a covariant functor of two variables

E, X in our category, and with values in the category of graded
abelian groups.

(Note: A morphism f : X −→ Y of degree r induces f∗ : En(X) −→
En+r(Y ), etc.)

The same is true for E∗(X), except that it is covariant in E and
contravariant in X.

2. If we vary E or X along a cofibering, we obtain an exact
sequence, That is, if

X
f−→ Y

g−→ Z

is a cofiber sequence, then

En(X)
f∗−→ En(Y )

g∗−→ En(Z)

and
En(X)

f∗

←− En(Y )
g∗←− En(Z)
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are exact; if E i−→ F
j−→ G is a cofiber sequence, then

En(X)
i∗−→ Fn(X)

j∗−→ Gn(X)

and
En(X)

i∗−→ Fn(X)
j∗−→ Gn(X)

are exact.

3. There are natural isomorphisms

En(X) ∼= En+1(S
1 ∧X)

En(X) ∼= En+1(S1 ∧X)

4.

En(S) = E−n(S) = πn(E)

The proofs are mostly easy, Part (ii) uses 4.12, 3.9 and 3.10. Part
(iii) uses 4.9–the fact that we have an equivalence X −→ S1 ∧ X
of degree 1. These statements give the analogues for a theory
defined on spectra of the Eilenberg-Steenrod axioms.

Once we have defined homology and cohomology of spectra, of
course we can define homology and cohomology of CW-complexes,
That is, if L is a CW-complex, we define Ẽn(L) to be En applied to
the suspension spectrum of the complex L, and similarly for Ẽn.
The theory on complexes satisfies the same axioms.

For example, let Hπ be an Eilenberg-MacLane spectrum with
a single non-vanishing homotopy group π in dimension 0; then
(Hπ)∗ is a homology theory defined on spectra with a single non-
vanishing coefficient group, π in dimension 0. Apply (Hπ)∗ to the
suspension spectrum of a complex L; it must coincide with the
ordinary homology theory of L. If one happens to have seen the
ordinary homology groups of a spectrum defined before, then (Hπ)∗
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is the same thing, as we see by passing to limits.

Theorem 6.2. (G. W. Whitehead). En(X) ∼= Xn(E)

Proof. E ∧X c−→ X ∧ E is an equivalence, so

[S,E ∧X]n ∼= [S,X ∧ E]n

Corollary 6.3. (Hπ)n(HG) ∼= (HG)n(Hπ).

This was found empirically by Cartan, but it is non-trivial to
prove directly. G.W. Whitehead’s discovery of the proof just given
was probably an important step in his thinking about the connection
between spectra and homology theories.

Proposition 6.4. if X is a finite spectrum, En(X∗) ∼= E−n(X)

Proof. [S,E ∧X∗]n
T−→ [X,E]n is an isomorphism by 5.3.

This shows that generalized homology and cohomology behave
correctly under S-duality.

Proof of 5.5. that is, if X is a finite spectrum, then X∗ is equivalent
to a finite spectrum.

Let X be a finite spectrum. Then [S,X∗]n
∼= [X,S]n, and the right-

hand side is zero if n is negative with sufficiently large absolute
value. But Hn(X

∗) = H−n(X), which is finitely generated in each
dimension and zero outside a finite range of dimensions. Therefore
X∗ is equivalent to a finite spectrum.

Remark 6.5. Every generalized homology or cohomology theory de-
fined on the category of CW-complexes arises by G.W. Whitehead’s
construction from some spectrum E.
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In order to have a proper statement, it is necessary to spell
out the assumptions we make on the homology or cohomology of
infinite complexes, In the case of homology we assume that

lim
→
a

Ẽn(Lα) −→ Ẽn(L)

is an isomorphism, where Lα, runs over the finite subcomplexes
of L, In the case of cohomology we assume the Wedge Axiom of
Milnor and Brown, that is

Ẽn
(∨

a

Lα

)
−→

∏
α

Ẽn(Lα)

is an isomorphism.
I propose to omit the proof of Remark 6.5. In the case of

cohomology the results is fairly easily deduced from E. H. Brown’s
theorem in G the category of CW-complexes, and this was done in G.
W. Whitehead’s original paper [Whi62]. The argument is essentially
that given in section 2. In the case of homology we first obtain a
homology theory on spectra in an obvious way. One then converts
one’s homology theory into a cohomology theory defined only on
finite spectra, by the definition

E−n(X) = En(X
∗)

(So one only needs the homology theory on finite spectra, in which
case it is trivial to define it.) One then has a contravariant functor
defined on finite spectra or finite complexes, and we have the task
of representing it. I have proved the required result [Ada71].

We now consider generalized homology and cohomology groups
with coefficients. Let G be an abelian group. We can take a resolu-
tion

0 −→ R
i−→ F −→ G −→ 0

by free Z-modules (a subgroup of a free abelian group is free). Take
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∨
α∈A S,

∨
β∈B S such that

π0

( ∨
α∈A

S

)
= R

π0

( ∨
β∈B

S

)
= F

Take a map f :
∨
α∈A S −→

∨
β∈B S inducing i. Form

M =

( ∨
β∈B

S

)⋃
f

C

( ∨
α∈A

S

)
;

this is a Moore spectrum of type G. That is we have

πr(M) = 0 for r < 0

π0(M) = H0(M) = G

Hr(M) = 0 for r > 0

Now for any spectrum E, we define the corresponding spectrum
with coefficients in G by

EG = E ∧M

Example 6.6. SG means S ∧M =M , so a Moore spectrum of type G

may be written SG.

Proposition 6.7. 1. There exists an exact sequence

0 −→ πn(E)⊗G −→ (EG)n(X) −→ TorZ1 (πn−1(E)) −→ 0

(This need not split, e.g., take E = KO, G = Z2.)

2. More generally, there exists exact sequences

0 −→ En(X)⊗G −→ (EG)n(X) −→ TorZ1 (En−1(X), G) −→ 0
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and (if X is a finite spectrum or G is finitely generated)

0 −→ En(E)⊗G −→ (EG)n(X) −→ TorZ1
(
En+1(X), G

)
−→ 0

Proof.
∨
α S −→

∨
β S −→M is cofibering, hence the top row of

E ∧ (
∨
α S) E ∧

(∨
β S
)

E ∧M

∨
αE

∨
β E

''

is a cofibering. Similarly

E ∧ (
∨
α S) ∧X E ∧

(∨
β S
)
∧X E ∧M ∧X

∨
αE ∧X

∨
β E ∧X

''

is a cofibering. Therefore we get exact sequences

πn (
∨
αE) πn

(∨
β E
)

πn(E ∧M)

R⊗ πn(E) F ⊗ πn(E)

∼=

i⊗1

∼=
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and more generally,

[S,
∨
αE ∧X]n [S,

∨
β E ∧X]n [S,E ∧M ∧X]n

R⊗ [S,E ∧X]n F ⊗ [S,E ∧X]n

∼= ∼=

i⊗1

[X,
∨
αE]−n [X,

∨
β E]−n [X,E ∧M ]−n

R⊗ [X,E]−n F ⊗ [X,E]−n

∼= ∼=

i⊗1

To pet the isomorphisms in the last case we assume either that
X is a finite spectrum or that α and β run over finite sets, which
we can arrange if G is finitely generated. Now the cokernel and
kernel of i⊗ l are, according to the case

G⊗ πn(E) and TorZ1 (G, πn(E))

G⊗ En(X) and TorZ1 (G,En(X))

G⊗ En(X) and TorZ1 (G,En(X))

Example 6.8. If H means an Eilenberg-Mac Lane spectrum of type
Z, then HZ does indeed mean the Eilenberg-MacLane spectrum of
type G.

Proof. The Tor term is zero in

0 −→ Z⊗G −→ π∗(HG) −→ Tor1Z(Z, G) −→ 0
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Proposition 6.9. If G is torsion-free, then

π∗(E)⊗G −→ π∗(EG)

and
E∗(X)⊗G −→ (EG)∗(X)

are isomorphisms, and if X is finite or G finitely generated,

E∗(X)⊗G −→ (EG)∗(X)

is an isomorphism.

Proof.

TorZ1 (π∗(E), G) = 0

TorZ1 (E∗(X), G) = 0

TorZ1 (E∗(X), G) = 0

Example 6.10. take G = Q, and take a map i : S −→ H representing
a generator of π0(H) = Z, Then i induces an equivalence SQ '−→ HQ,
i.e., the Moore spectrum for Q is the same as the Eilenberg-MacLane
spectrum.

Proof. In the diagram

πn(S)⊗Q πn(SQ)

πn(H)⊗Q πn(HQ)

i∗⊗1

the top and bottom rows are isomorphism by 6.9. But by theorem
of Serre, πn(S) ⊗ Q = 0 for n 6= 0; and for n = 0, i∗ : π0(S) −→ π0(H) is
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an isomorphism.

Example 6.11. The map i : S −→ H induces

π∗(X)⊗Q −→ H∗(X)⊗Q

that is, rational stable homotopy is the same as rational homology.

Proof. π∗(X) = S∗(X). Again by 6.9 the top and bottom rows of the
following diagram are isomorphisms.

S∗(X)⊗Q SQ∗(X)

H∗(X)⊗Q HQ∗(X)

By the previous example SQ −→ HQ is an equivalence, so the right-
hand arrow is an isomorphism.

Now we give a checklist of the standard spectra corresponding
to the usual generalized homology and cohomology theories.

(i) HG, the Eilenberg-MacLane spectrum for the group G, so that

πn(HG) =

G n = 0

0 n 6= 0

The theories (HG)∗, (GH)∗ are ordinary homology and cohomol-
ogy with coefficients in G.

For greater interest, let G∗ be a graded group, and define
H(G∗) =

∨
nH(Gn, n) ∼=

∏
nH(Gn, n); the second map is an equiv-

alence by 3.14 Then by the first form

H(G∗)r(X) =
∑
n

Hr−n(X;Gn)
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and by the second

H(G∗)
r(X) =

∑
n

Hr+n(X;Gn)

(ii) S, the sphere spectrum. The corresponding homology and
cohomology theories are stable homotopy and stable coho-
motopy. With all due respect to anyone who is interested in
them, the coefficient groups πn(S) are a mess. There is a lot
of detailed information known about them, but I won’t try to
summarize it.

(iii) K, the classical BU-spectrum. This is an Ω- or Ω0-spectrum;
each even term is space BU or Z × BU; each odd term is the
space U.

The corresponding homology and cohomology theories are
complex K-homology and K-cohomology. In fact it is rather
easy to see that for a finite-dimensional CW-complex X, [X,Z×
BU] agrees with the Atiyah-Hirzebruch definition of K(X) or
K̃(X) in terms of complex vector-bundles over X. (Here we
have to take K̃(X) if [X,Z × BU] means homotopy classes of
maps preserving the base-point, or K(X) if we work without
base-points.) This shows that our definition of K∗(X) agrees
with the Atiyah-Hirzebruch definition if X is a finite-dimensional
CW-complex. For infinite dimensional complexes our K∗(X)

is the variant called “representable K-theor”, i.e., we take
[X,Z× BU] as the definition.

The coefficient groups are given by the Bott periodicity theo-
rem:

πn(K) =

Z (n is even)
0 (n is odd)

We have a map K ' S ∧K i∧1−−→ H ∧K −→ H (π∗(K)⊗Q). This map
is universal Chern character.
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(iv) K-theory with coefficients. Suppose we are willing to localize
Z at the prime p; i.e., let Z(p) be the ring of fractions a/b with
b prime to p. Then we can form KZ(p). It splits as the sum or
product of (p− 1) similar spectra E. The typical one has

πn(E) =

Z(p) (n ≡ 0 (mod 2(p− 1))

0 otherwise

Of course you may just want to split K into the sum or product
of d similar Spectra, so that a typical one has

πn(E) =

R (n ≡ 0 (mod 2(p− 1))

0 otherwise

where R is a subring of Q. In this case one need only invert
those primes p such that p 6≡ 1 (mod d). For example, for d = 2

take R = Z[1/2]. See [Ada69].

(v) Connective K-theory. bu is a spectrum having a map bu −→ K

such that

πr(bu) −→ πr(K) is an isomorphism for r ≥ 0, and
πr(bu) = 0 for r < 0

We may take the 0th term of bu to be Z× BU and the second
term to be BU. If X is a complex, we have

bu0
(X) = K0(X)

but the groups bun(X) and Kn(X) are different in general for
n > 0.

(vi) Similarly, one can consider connective K-theory with coeffi-
cients.

(vii) KO, the classical BO-spectrum. This is an Ω- or Ω0-spectrum;
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every term E8r is the space BO or Z× BO; every term E8r+4 is
the space BSp or Z×BSp, The other terms are the ones which
com in Bott’s periodicity theorem for the real case:

O,O/U,U/Sp,BSp,Sp/U,U/O,BO

The corresponding homology and cohomology theories are
real K-homology and real K-cohomology. In fact (as for the
complex case) for a finite-dimensional CW-complex X, [X,Z×BO]

agrees with the Atiyah-Hirzebruch definition of KO(X) or K̃O(X)

in terms of real vector-bundles over X. So our definition of
KO∗(X) agrees with Atiyah and Hirzebruch if X is a finite-
dimensional CW-complex.

The coefficient groups are given by the Bott periodicity theo-
rem:

n ≡ 0 1 2 3 4 5 6 7 8 (mod 8)

πn(KO) = Z Z2 Z2 0 Z 0 0 0 Z.

(viii) KO-theory with coefficients. The quickest thing to say is that
by a theorem of Reg Wood, KO ∧

(
S0 ∪η e2

)
' K. Here S0 ∪η e2

means the suspension spectrum whose second term is CP2.
The attaching map η is stable of order 2. So SZ[1/2] η∧1−−→ SZ[1/2]
factors through

(
S0 ∪2 e1

)
Z[1/2], which is contractible. So

KZ[1/2] ' KO ∧
(
S0 ∪η e1

)
Z[1/2]

' KO ∧
(
S0
∨
S2

)
Z[1/2]

' KOZ[1/2]
(
S0
∨
S2

)
So the two summands into which KZ[1/2] splits are actually
copies of KOZ[1/2], it follows that if you introduce a ring of
coefficients containing 1/2, K cannot be distinguished from two
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copies of KO. Of course this is classical, by a more direct
proof.

(ix) Connective real K-theory. bo is a spectrum having a map
bo −→ KO with properties like those of bu −→ K

(x) KSC, the self-conjugate K-theory of Anderson and Green, The
quickest way to say it is this. To each bundle ξ we have its
complex conjugate ξ which has the same underlying space
but a new C-module structure on each fiber; the mew action
of z is the old action of z. Stably, this is induced by a map
Z× BU t−→ Z× BU. We can define a map of spectra T : K −→ K

which has components t in dimensions divisible by 4, and −t in
dimensions of the form 4r+2. Now take KSC to be the fiber of

K
1−τ−−→ K

You can read its homotopy groups off from the exact sequence
of this fibering: we have

n ≡ 0 1 2 3 4 (mod 4)

πn(KO) = Z Z2 0 Z Z.

(xi) MO, the Thom spectrum of the group O . The corresponding
theories are unoriented bordism and cobordism. To connect
our definition of MO∗(X) with a geometrical definition in terms
of manifolds one has to make use of a transversality theorem
at some point; see e.g [CF66].

We have
MO ' H (π∗(MO))

π∗(MO) is a polynomial algebra over Z2, with one generator in
every dimension d > 0 such that d+ 1 is not a power of 2, The
decomposition of MO as a wedge of copies of HZ2, shows that
the theories MO∗ and MO∗ are not very powerful, but they are
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good for studying unoriented manifolds.

(xii) MSO. The corresponding theories are oriented bordism and
cobordism. We have1

MSO(2) ' H
(
π∗(MSO(2))

)
π∗(MSO(2)) is a direct sum of copies of Z and Z2. It is known
but somewhat complicated to describe.

(xiii) MU. The corresponding theories are complex bordism and
cobordism. π∗(MU) is a polynomial algebra over Z with genera-
tors of dimension 2, 4, 6, 8 . . . There is a very good map MU −→ K

due to Atiyah-Hirzebrach, Conner-Floyd [AH59], [CF66]. The
theories MU∗, MU∗ are powerful.

(xiv) MU with coefficients. If one takes MUZ(p) , it splits as a sum
of suspensions of similar spectra. A typical one is BP, the
Brown-Peterson spectrum. π∗(BP) is a polynomial algebra over
Z(p), on generators of dimension 2(pf − 1) for f = 1, 2, . . .

(xv) MSpin, MSU, MSp. π∗(MSpin) and π∗(MSU) are known but π∗(MSp)
is not yet known.

For a general reference on bordism and cobordism, I suggest Stong
[Sto68].

We now consider the elementary additive properties of general-
ized homology and cohomology theories.

Recall that I had my theories E∗, E∗ defined on spectra, and then
I defined them on CW-complexes with base-point by saying

Ẽ∗(L) = E∗(L)

Ẽ∗(L) = E∗(L)

1Adam’s originally just had MSO as the Eilenberg-Maclane spectrum, however
this is only true after localizing at 2.
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where L is the suspension spectrum of L. I should say how one
defines relative groups E∗(X,A), E∗(X,A). This is well enough known.
One defines K/A to be the quotient complex in which A is identified
to a new point, which becomes the base-point. In particular, X/∅ =

X∪pt., also written X+. Alternatively, one constructs the unreduced
cone CA and forms X ∪ CA, taking the base-point at the vertex.
This happens to be the same as the reduced cone X+ ∪ CA+. Then
one has a map X ∪ CA r−→ X/A, which is a homotopy equivalence.
Then one defines

E∗(X,A) = Ẽ∗(X ∪ CA) = Ẽ∗(X/A)

using the isomorphism r∗ to identify the last two groups. Similarly,

E∗(X,A) = Ẽ∗(X ∪ CA) = Ẽ∗(X/A)

Note that E∗(X,pt.) = Ẽ∗(X), as it should be, similarly for E∗(X,pt.) =
Ẽ∗(X).

The induced homomorphism are obvious: a map f : X,A −→ Y,B

induces
X ∪ CA Y ∪ CB

X/A Y /B

rr

and we take the induces homomorphisms of Ẽ∗ or Ẽ∗

Excision is now obvious. Suppose a CW-complex is the union of
two subcomplexes U , V . Then

U/U ∩ V −→ U ∪ V /V

is actually a homeomorphism, so it surely induces an isomorphism
of Ẽ. and Ẽ∗. Homotopy is equally obvious, Now we would like to
have boundary maps and exactness. Given an inclusion X −→ Y , we
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have a cofibering

X+ i−→ Y + j−→ Y +/X+ ' Y + ∪ CX+ −→ ΣX+ Σi−→ ΣY + −→ . . .

So applying Ẽn we have the following exact sequence

En(X) En(Y ) En(Y,X) Ẽn(ΣX
+) Ẽn(ΣY

+) . . .

Ẽn−1(X
+) Ẽn−1(Y

+)

En−1(X) En−1(Y )

i∗ Σi∗

∼= ∼=

i∗

i∗

j∗

∂

If define ∂ to be the composite indicated, the sequence will be
exact, So in order to fix the boundary map and have it natural I
simply want to make some quite explicit choice of isomorphism
Ẽn(X

+) ∼= Ẽn+1(S
1 ∧X+).

Let’s recall that almost the last thing I did in Section 4 was to
make the smash-product a functor of maps of degrees other than
zero. So I look at the sphere-spectrum

S = (S0, S1, S2, . . . )

and the S1-spectrum

S = (S1, S2, S3, . . . )

and I make a map from one to the other by taking the identity
map from Sn, the nth component of S, to Sn, the (n−1)-st component
of S1. This gives me a morphism of degree 1, say σ : S −→ S. (This
is actually γ1 for the spectrum S, but you are allowed to have
forgotten about γ1 by now.) σ is clearly an equivalence. Since I
have smash-products of morphisms of nonzero degree, I am entitled
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to form
X ' S ∧X τ∧1−−→ S1 ∧X

This is an equivalence too. (Of course, the smash-product of mor-
phisms of nonzero degree was defined in terms of the maps γr. and
if you go back to the definition and unwrap it, you find that this is
just the map γ1 for the spectrum X.) I now say that this map

X
σ∧1−−→ S1 ∧X

is the one to be used in inducing

En(X)
∼=−→ En+1(S

1 ∧X)

En(X)←− En+1(S1 ∧X)

This gets my suspension isomorphism in a form convenient for later
work, and makes the boundary and coboundary quite precise.

Now we would like to assure ourselves that all the contents of
Eilenberg-Steenrod, Chapter I, go through. But we can also put
the question in this form: is there anything in Ellenberg-Steenrod
Chapter I which can’t be derived from our constructions? The grand
conclusion should be that the homology groups of sphere are the
right thing, and we already know that

Ẽ = [Sn, E]r

∼= [S0, E]r−n

∼= πr−n(E)

The only problem is to compute π∗(E) for a given E, So what about
the other things in Eilenberg-Steenrod Chapter I? One very useful
thing is the exact sequence of a triple. Suppose we have CW-
complexes X ⊃ Y ⊃ Z. We would like to know that the following
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sequence is exact.

En(Y, Z)
i∗−→ En(X,Z)

j∗−→ En(X,Y )
∆−→ En−1(Y, Z) −→ . . .

Here ∆ is the composite

En(X,Y )
δ−→ En−1(Y )

j∗−→ En−1(Y, Z)

No special proof is needed. We know that the following is a
cofibering:

Y +/Z+ −→ X+/Z+ −→ X+/Y + −→ Σ(Y +/Z+) −→ Σ(X+/Y +)

Therefore I know that I have an exact sequence

En(Y, Z)
i∗−→ En(X,Z)

j∗−→ En(X,Y )
∂−→ En−1(Y, Z)

i∗−→ En−1(X,Z)

provided that ∂ is induced by the top line of the following commu-
tative diagram.

X+/Y + (X+/Z+) ∪ C(Y +/Z+) Σ(Y +/Z+)

X+ ∪ CY + ΣY +

jr

'

q
'

j

q
r

The rest of the diagram shows that δ is the same as ∆.

There is however a moral to be drawn. We know how to display
the various groups and homomorphisms involved here in a sine

268



Chapter 6: Homology and Cohomology

wave diagram

E∗(Z) E∗(X) E∗(X,Y ) E∗(Y, Z)

E∗(Y ) E∗(X,Z) E∗(Y ) E∗(X,Z)

E∗(Y, Z) E∗(Z) E∗(X)

δ

δ

∆

δ

It is useful to know that we can obtain this whole diagram from a
diagram of cofiberings.

Lemma 6.12. Suppose given a commutative diagram

Z X

Y

h

gf

of CW-complexes with base-point. Then there exists following
commutative diagram of cofiber sequence.

Z X X ∪g CY Σ(Y ∪f CZ)

Y X ∪h CZ ΣY Σ(X ∪h CZ)

Y ∪f CZ ΣZ ΣX

f g i
f ′

j

Si

i g′

j

Σf Σg Σi

Σg′

h
i j

j

Σh

Here g′ is induced from g, etc. If the original diagram is only
homotopy-commutative, then by choosing a homotopy you can
reduce to the case in which it is commutative,
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This is sometimes known as Verdier’s axiom. The proof is
elementary. One way to say it is this: you can assume without
loss of generality that f and g are inclusions, and then I have told
you everything necessary already. Since the constructions are
elementary, they commute with suspensions on the right and carry
over to spectra. So the corresponding lemma is true for spectra.
In a fully Bourbakized treatment this lemma would go in Section III.

The next thing we would like to know is the Mayer-Vietoris
sequence, This needs no special proof either. Suppose that we
have a CW-complex which is the union of two subcomplexes U and
V . We wish to know the relationship of E∗(U ∪ V ), E∗(U), E∗(V ),
E∗(U ∩ V ). We may replace these by E∗(Σ(U ∪ V )+), etc. So we take
Σ(U ∩ V )+ and Σ(U+ ∨ V +) and make a map from one to the other
by taking i1-i2, where i1 : (U ∩ V )+ −→ U+ and i2 : (U ∩ V )+ −→ V + are
the inclusions. Now let me form the cofiber sequence

Σ(U∩V )+ −→ Σ(U+∨V +) −→ Σ(U+∨V +)∪i1−i2CΣ(U∩V )+ −→ Σ2(U∩V )+ −→ . . .

The third term is the same as

ΣU+ ∨ ΣV + ∪ Cyl(Σ(U ∩ V )+)

where the (reduced) cylinder is attached by i1 to SU+ and i2 to SV +.
But this is clearly has the same homotopy type as Σ(U ∪ V )+. So
we get a cofibering

Σ(U ∩ V )+
i1−i2−−−→ Σ(U+ ∨ V +) −→ Σ(U ∪ V )+ −→ Σ2(U ∩ V )+ −→ . . .

Here the third map can be written either as

Σ(U ∪ V )+ −→ Σ(U ∪ V /V )
∼=←− Σ(U/U ∩ V ) −→ Σ2(U ∩ V )+

or as minus

Σ(U ∪ V )+ −→ Σ(U ∪ V /U)
∼=←− Σ(V /U ∩ V ) −→ Σ2(U ∩ V )+
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So we get the following long exact sequence

En(U ∩V )
i1∗,−i2∗−−−−−→ En(U)⊕En(V )

j1∗,j2∗−−−−→ En(U ∪V )
∆−→ En−1(U ∩V ) −→ . . .

Here the boundary is given by

En(U ∪ V ) −→ En(U ∪ V, V )
∼=←− En(U,U ∩ V )

∂−→ En−1(U ∩ V )

or minus

En(U ∪ V ) −→ En(U ∪ V,U)
∼=←− En(V,U ∩ V )

∂−→ En−1(U ∩ V )

We proceed similarly in cohomology.
Of course this construction also carries over to spectra. In

fact for spectra we need not bother about writing the suspension,
because up to equivalence everything is a suspension. We obtain:

Lemma 6.13. Suppose a CW-spectrum is the union of two closed
subspectra U , V . Then there is a cofibering

U ∩ V (i1,−i2)−−−−−→ U ∨ V (j1,j2)−−−−→ U ∪ V −→ Susp(U ∩ V ) −→ . . .

in which the third morphism is

U ∪ V −→ U ∪ V /V
∼=←− U/U ∩ V −→ Susp(U ∩ V )

or minus

U ∪ V −→ U ∪ V /U
∼=←− V /U ∩ V −→ Susp(U ∩ V )

We may call this the Mayer-Vietoris cofibering.
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7. The Atiyah-Hirzebruch Spectral Sequence

In this section we study the machine which plays the same role
in the study of generalized homology theories as the Eilenberg-
Steenrod uniqueness theorem plays for ordinary homology theories.
Let us suppose for convenience that X is a finite-dimensional CW-
complex.

Theorem. For each CW-spectrum F there exist spectral sequences

Hp(X;πq(F )) Fp+q(X)

Hp(X;πq(F )) F p+q(X).

p

p

These spectral sequences were probably first invented by G.W.
Whitehead, but he got them just after he wrote the paper [Whi56]
in which they ought to have appeared. They then became a folk-
theorem and were eventually published by Atiyah and Hirzebruch,
who needed them for the case F = K.

It is probably desirable to give the first part of the construction
in greater generality. Suppose I have a CW-complex X with a finite
filtration by subcomplexes,

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X.

To get the Atiyah-Hirzebruch spectral sequence you take Xr = Xr,
the r-skeleton; but other choices of filtration are possible, and
sometimes useful. If we then apply a functor F∗ or F ∗ to all the
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available pairs and triples, we get a maze of interlocking exact
sequences. The spectral sequence helps us find out way through
this maze and to distill out the essential information.

There are two ways to present the distillation. The first is due
to Massey, and it is the method of exact couples. We observe that
we have an exact sequence, which we write in a triangle like this.

F∗(Xp−1) F∗(Xp)

F∗(Xp, Xp−1)

i∗

j∗∂

If we add over p, we obtain

∑
p F∗(Xp−1)

∑
p F∗(Xp)

∑
p F∗(Xp, Xp−1)

i∗

j∗∂

Here we interpret F∗(Xp) as 0 for p < 0 and as F∗(X) for p ≥ n.
Now we have a triangle of the following form.

A A

C

i∗

j∗∂

Massey called such a triangle an exact couple, and he showed
that from such an exact couple you could obtain a derived exact
couple
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A A

C

For example you define d1 = j∗∂ : C −→ C and define C ′ = Kerd1/Imd1.
Iterating this procedure, you obtain at C ′, C ′′, C ′′′, etc. all the

terms of the spectral sequence. A suitable reference is Massey
[Mas52].

The second method probably goes back to Eilenberg, and it is
essentially equivalent; it consists simply of writing down explicit
definitions of the desired groups and homomorphisms. For example,
we define

Zrp,q = Ker{Fp+q(Xp, Xp−1)
∂−→ Fp+q−1(Xp−1, Xp−r)}

= Im{Fp+q(Xp, Xp−r)
j∗−→ Fp+q(Xp, Xp−1)},

Brp,q = Im{Fp+q+1(Xp+r−1, Xp)
∂−→ Fp+q(Xp, Xp−1)}

= Ker{Fp+q(Xp, Xp−1)
i∗−→ Fp+q(Xp+r−1, Xp−1)},

check Brp,q ⊂ Zrp,q and define

Erp,q = Zrp,q/B
r
p,q.

We define the boundary maps dr by passing to the quotient from
boundary maps ∂ in an appropriate way. We prove Kerdr/Imdr ∼= Er+1

p,q

by diagram-chasing. For r sufficiently large groups Zrp,q, Brp,q and Erp,q

become independent of r, and may be written Z∞
p,q, B

∞
p,q and E∞

p,q.
We filter the groups Fm(X) by taking the images of the maps

Fm(Xp) Fm(X);

the image of Fm(Xn) is the whole of Fm(X), the image of Fm(X−1)

is zero, and the quotients of the successive filtration subgroups
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are isomorphic to the groups E∞
p,q for p+ q = m, as one sees with a

little diagram-chasing.
So one gets a spectral sequence with

E1
p,q = Fp+q(Xp, Xp−1) Fp+q(X).

p

A similar construction works in cohomology.
Now we revert to the case in which we take the skeleton filtration

on X, so that Xr = Xr and X = Xn. Then we have

E1
p,q = Fp+q(X

p, Xp−1)

= F̃p+q(X
p/Xp−1)

= F̃p+q

(∨
α

Sp
)

=
∑
α

πq(F )

= Cp(X;πq(F )), the cellular chains of X with coefficients in πq(F ).

Now we need to know that we have the following commutative
diagram.

E1
p,q

∼= Cp(X;πq(F ))

E1
p−1,q

∼= Cp−1(X;πq(F ))

d1 ∂

If so, then we have E2
p,q
∼= Hp(X;πq(F )). For this purpose there

are two alternative methods of proceeding.

(i) Suppose we know that πp(S
p) = Z. Then we argue that we

simply have to find one component of our map ∂, say
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∑
α πq(F )

∑
β πq(F )

πq(F ) πq(F )

pβiα

One sees by diagram-chasing that this is the homomorphism
of F̃p+q−1(S

p−1) induced by the following map.

Sp−1 Xp−1 Xp−1/Xp−2 =
∨
β S

p−1 Sp−1

Here the first map is the attaching map for the cell indexed
by α, and the last is the projection to that indexed by β. This
composite map has to have a degree ν, and the homomorphism
of F̃p+q−1(S

p−1) which it induces is multiplication by ν. But then
ν is also the incidence number between the cells epα and ep−1

β

which figures in the definition of

∂ : Cp(X;G) Cp−1(X;G).

(ii) If you deny me the knowledge that πp(Sp) = Z, then I have to
begin by assuming that X is a finite simplicial complex. In this
case

∂ : Cp(X;G) Cp−1(X;G)

is given by a combinatorial formula. I arrange the proof that

Fp+q(X
p, Xp−1) ∼= Cp(X;πq(F ))

with slightly more care and diagram-chasing, so as to incorpo-
rate a proof that the isomorphism takes d1 onto the boundary
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∂ given by the combinatorial formula. This is essentially as in
Eilenberg-Steenrod, where they prove the uniqueness theorem.
It issues in the result that when X is a finite simplicial complex,
you can take the H in

Hp(X;πq(F )) Fp+q(X)
p

to mean finite simplicial homology. Of course this form of
the result is the one which includes the Eilenberg-Steenrod
uniqueness theorem: for a finite simplicial complex, any ordi-
nary homology theory agrees with finite simplicial homology
with the same coefficients.

Example. Take F = K, the classical BU-spectrum, and X = CPn. We
have

Hp(X;π−q(K)) =

Z p even, 0 ≤ p ≤ 2n, q even
0 otherwise.

The E2-term is illustrated as follows.

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

· · ·

· · ·

· · ·

q

p

Since the terms with either grading odd are zero, the spectral
sequence collapses, and

K2m(CPn) =
n∑
0

Z.
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The Atiyah-Hirzebruch spectral sequence works for infinite com-
plexes, but we need the discussion of limits in the following section.

The spectral sequence also works for spectra X, provided they
are bounded below, i.e., there exists ν such that πr(X) = 0 for r < ν.
For spectra which are not bounded below you can still formally set
up the spectral sequence, but the convergence is so bad that the
spectral sequence is unusable in practice.
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8. The Inverse Limit and its Derived Functors

Let I be a partially ordered set of indices α. We assume I is directed,
that is, for any α, β there is a γ with α < γ and β < γ. An inverse
system G of abelian groups indexed over I consists of abelian
groups Gα (one for each α ∈ I) and homomorphisms gαβ : Gα ←− Gβ
(one for each pair of indices α < β in I). Such inverse systems
form the objects of a category; a morphism θ : G −→ H in this
category is a list {θα} of homomorphisms θα : Gα → Hα such that
θαgαβ = hαβθα whenever α < β. We define lim←−−G to be the subgroup
of
∏
αGα consisting of lists {xα}, xα ∈ Gα, which satisfy xα = gαβxβ

for all α < β. The functor lim←−− is representable in this category; for
let Z be the integers, and let Z be the inverse system in which
Zα = Z and zαβ = 1; then Hom(Z, G) ∼= lim←−−G. Moreover, this category
has enough injectives. In fact, let I be an injective abelian group;
let Iγ be the inverse system in which

Gα =

I if γ ≤ α
0 otherwise

, gαβ =

1 if γ ≤ α
0 otherwise

Then Iγ is injective, and we get enough injectives by taking products
of objects like Iγ . We can therefore do homological algebra; in
particular, we have the functors

lim←−−
i
G = Exti(Z, G)
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We have lim←−−
0
G = lim←−−G.

Frequently we have I = {1, 2, 3, ...}. In this case we have an alter-
native construction of lim←−−

i. Given G, define a cochain complex C

by

C0 = C1 =

∞∏
i

Gn, Cr = 0 for r > 1

δ{xn} = {xn − gn,n+1xn+1} for {xn} ∈ C0

Let Hi be the ith cohomology group of C. Then it is immediate that
H0 = lim←−−G. To show that Hi ∼= lim←−−

i
G, it is sufficient to make the

following remarks.

1. Let
0 −→ G′ i−→ G

j−→ G′′ −→ 0

be an exact sequence in the category of inverse systems, that is

0 −→ G′
α

iα−→ Gα
jα−→ G′′

α −→ 0

is exact for each α. Then we obtain an exact sequence of chain
complexes

0 −→ C ′ −→ C −→ C ′′ −→ 0,

and hence an exact cohomology sequence

0 −→ H ′0 −→ H0 −→ H ′′0 −→ H ′1 −→ H1 −→ H ′′1 −→ 0.

2. We have constructed enough injectives with the property
that all their maps gαβ are epi. If all the maps gαβ are epi, it follows
that H1 is zero. So H1 vanishes on enough injectives.

It follows that lim←−−
i
G ∼= Hi, and in particular lim←−−

i
G = 0 for i ≥ 2,

assuming I = {1, 2, 3, ...}. For a general I we would not have this.

Exercise. Let I = {1, 2, 3, ...}, and let G be an inverse system in which
the maps gn.m are mono; thus we may regard G1 as a topological
group, topologized by giving the decreasing sequence of subgroups
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Im g1n. Then lim←−−
0
G = 0 if and only if G1 is Hausdorff; lim←−−

1
G = 0 if

and only if G1 is complete. (Here we use words so that ”complete”
does not imply ”Hausdorff”; it means that each Cauchy sequence
has a limit, perhaps not unique.)

Exercise. Let I = {1, 2, 3, ...}. We say that G satisfies the Mittag-
Leffler condition if for each n, there exists m such that Im gnp =

Im gnm for p ≥ m; that is, Im gnp converges. Show that if G satisfies
the Mittag-Leffler condition then lim←−−

1
G = 0.1

The cochain complex used above is due to Milnor [Mil62]. He made
the following use of it. Let E∗ be a generalized cohomology theory
satisfying the wedge axiom; this axiom says that the canonical
map

Ẽ∗
(∨

α

Xα

)
−→

∏
α

Ẽ∗(Xα)

is an isomorphism. (One can use E∗ instead of Ẽ∗ if one uses the
disjoint union instead of the wedge.) Suppose given an increasing
sequence of CW-pairs (Xn, An) and set

X =
⋃
n

Xn, A =
⋃
n

An

.

Proposition 8.1 (Milnor). There is an exact sequence

0 −→ lim←−−
n

1
Eq−1(Xn, An) −→ Eq(X,A) −→ lim←−−

n

0
Eq(Xn, An) −→ 0

Proof sketch. First consider the absolute case. Replace X by the
telescope⋃
n[n, n+1]×Xn. Set U =

⋃
n[2n, 2n+1]×X2n, V =

⋃
n[2n+1, 2n+2]×X2n+1,

so that U consists of the even-numbered cylinders, V of the odd-

1It was believed at the time (because of a false proof) that in any abelian category,
lim1 dissapears on Mittag-Leffler sequences. However in [Nee02] a counterexample
was found.
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numbered cylinders. Using the wedge axiom, show that the part

Eq(U)⊕ Eq(V ) −→ Eq(U ∩ V )

of the Mayer-Vietoris sequence coincides, up to isomorphism, with
the cochain complex

∞∏
1

Eq(Xn) −→
∞∏
1

Eq(Xn)

considered above. When you have a sound proof for the absolute
case, relativize it.

Proposition 8.1 is evidently valid for spectra as well as spaces.
Sketch of applications. It may happen that we wish to construct

a morphism f : X −→ E, and can construct morphisms fn : Xn −→ E

where {Xn} is an increasing sequence of subspectra whose union
is X. Suppose that fn|Xn−1

= fn−1. Then 8.1 assures us that there
is a morphism f : X −→ E whose restriction to each Xn is fn. (In
fact, so much is easy to prove directly by using the homotopy
extension property.) However, it is difficult to check that morphisms
constructed in this way have any good properties, unless one has a
uniqueness statement; one needs to know that f is determined by
giving f |Xn

for all n. By 8.1, it is sufficient to prove that lim←−−
1
[Xn, E]1 =

0.
For some applications it is important to know how inverse limits

work in spectral sequences. Suppose, for example, that we take a
generalized cohomology theory E∗ satisfying the wedge axiom and
a CW-complex X containing an increasing sequence of subcomplexes

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X.

Suppose also that lim←−−
0
E∗(X,Xn), lim←−−

1
E∗(X,Xn) = 0. (For example,

we might have X =
⋃
nXn). Applying E∗, we obtain a half-plane

spectral sequence whose term Ep,q is Ep+q(Xp, Xp−1). In what sense
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does this spectral sequence converge? We may be interested in
three conditions.

1. Observe that Ep,qr+1 −→ Ep,qr is mono for r > p. So we can ask
that the map Ep,q∞ −→ lim←−−

r

Ep,qr should be iso.

2. Similarly, we can ask that lim←−−
r

1
Ep,qr = 0.

3. Let F p,q be the filtration quotients of Ep+q(X), so that we have
exact sequences

0 −→ Ep,q∞ −→ F p,q −→ F p−1,q+1 −→ 0

and F−1,q = 0. We can ask that the map En(X) −→ lim←−−
0
F p,n−p should

be iso.

Theorem 8.2. Condition (ii) is equivalent to (i) plus (iii).

In practice we verify condition (ii) (see exercise 8). We then use 8.2
to deduce that conditions (i) and (iii) hold.

We can also generalize 8.1. For convenience I consider the
absolute case. Let X be any CW-complex which is the union of
a directed set of subcomplexes Xα. Then we have a spectral
sequence

lim←−−
α

p
Eq(Xα) =⇒

p
Ep+q(X)

This spectral sequence is convergent in the sense that 8.2 holds.
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9. Products

There are four external products we need: an external product
in homology, an external product in cohomology and two slant
products. Perhaps I should give some motivation for the slant
products. The first thing to say is that I need one of them for the
duality theorems. The second is to point to the case of ordinary
homology. There the Eilenberg-Zilber theorem gives one chain
equivalences

C∗(X)⊗ C∗(Y )
µ−→ C∗(X × Y )

∆−→ C∗(X)⊗ C∗(Y ).

So if we have a cycle u in X and a cycle v in Y ,then µ gives us a
cycle µ(u⊗ v) on X × Y , whence the external homology product

H∗(X)⊗H∗(Y )
µ∗−→ H∗(X × Y ).

Also we can dualize ∆ : if u is a cocycle in X and v is a cocycle in Y ,
then ∆∗(u⊗ v) is a cocycle in X × Y , whence the external product
in cohomology

H∗(X)⊗H∗(Y )
∆∗

−−→ H∗(X × Y )

But you could also consider µ(x⊗ y) as a function of x with y fixed,
and then dualize it, so as to get

C∗(X × Y ) −→ C∗(X) depending on y,
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that is,
C∗(X × Y )⊗ C∗(Y ) −→ C∗(X),

whence
H∗(X × Y )⊗H∗(Y ) −→ H∗(X).

Similarly, if we had a cocycle C∗(X)
u−→ Z, we could form

C∗(X × Y )
∆−→ C∗(X)⊗ C∗(Y )

u⊗1−−−→ C∗(Y ),

and so get
H∗(X)⊗H∗(X × Y ) −→ H∗(Y ).

If anything, these products are even more obvious with spectra.
Suppose I want to define products in generalized theories, say

E∗(X)⊗ F ∗(Y ) −→ G∗(X ∧ Y )

where X and Y are spectra, or

Ẽ∗(X)⊗ F̃ ∗(Y ) −→ G̃∗(X ∧ Y )

where X and Y are complexes with base-point. Then I should assume
given a pairing, i.e., a map µ : E∧F −→ G of spectra. But then I might
as well consider the case G = E ∧ F , because everything follows
from it by naturality.

(i) The external product in cohomology is a map

Ep(X)⊗ F q(Y ) −→ (E ∧ F )p+q(X ∧ Y )

defined as follows. If

f ∈ Ep(X) = [X,E]−p, g ∈ F q(Y ) = [Y, F ]−q
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then
f ∧ g ∈ [X ∧ Y,E ∧ F ]−p−q = (E ∧ F )p+q(X ∧ Y ).

The result is written f Z g to distinguish it from the external
product in homology.

(ii) The external product in homology is a map

Ep(X)⊗ Fq(Y ) −→ (E ∧ F )p+q(X ∧ Y ).

To define it, suppose

f ∈ Ep(X) = [S,E ∧X]p, g ∈ Fq(Y ) = [S, F ∧ Y ]q,

and form

S
f∧g−−→ E ∧X ∧ F ∧ Y 1∧c∧1−−−−→ E ∧ F ∧X ∧ Y.

This gives
f∧g ∈ (E ∧ F )p+q(X ∧ Y ),

the external product in homology.

In order to see the slant products, one way is to suppose X and
Y are finite complexes. Suppose given an element of E∗(X ∧ Y ),
represented by a map

S
f−→ E ∧ (X ∧ Y )∗ = E ∧X∗ ∧ Y ∗,

and suppose given an element of F∗(Y ), represented by a map

S
g−→ F ∧ Y.

Then we can form

S
f∧g−−→ E∧ (X∗∧Y ∗)∧F ∧Y 1∧c∧1−−−−→ E∧F ∧ (X∗∧Y ∗)∧Y 1∧1∧1∧e−−−−−−→ E∧F ∧X∗;
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this gives an element of (E ∧ F )∗(X). Similarly, suppose given an
element of E∗(X), represented by a map

S
f−→ E ∧X∗,

and an element of F∗(X ∧ Y ), represented by a map

S
g−→ F ∧X ∧ Y.

Then we get

S
f∧g−−→ E ∧X∗ ∧ F ∧X ∧ Y 1∧c∧1∧1−−−−−−→ E ∧ F ∧X∗ ∧X ∧ Y 1∧1∧e∧1−−−−−−→ E ∧ F ∧ Y ;

this gives an element of (E ∧ F )∗(Y ).
It follows from §III that these constructions are equivalent to

the following ones, which work whether X and Y are finite or not.

(i) The first slant product is a map

Ep(X ∧ Y )⊗ Fq(Y ) −→ (E ∧ F )p−q(X).

If f : X ∧ Y −→ E represents an element of Ep(X ∧ Y ) and
g : S −→ F ∧ Y represents an element of Fq(Y ), we form

X
1∧g−−→ X ∧ F ∧ Y 1∧c−−→ X ∧ Y ∧ F f∧1−−→ E ∧ F.

The result is written f/g.

(ii) The second slant product

Ep(X)⊗ Fq(X ∧ Y ) −→ (E ∧ F )−p+q(Y )

is defined by taking

X
f−→ E and S

g−→ F ∧X ∧ Y
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and forming

S
g−→ F ∧X ∧ Y c∧1−−→ X ∧ F ∧ Y f∧1∧1−−−−→ E ∧ F ∧ Y.

This result is written f\g.

Notes. The following conventions are useful.

(i) Fractions have the same variance as the numerator, and the
opposite variance of the denominator.

(ii) Pay strict attention to the order of writing things on the page.

(a) Keep the cohomology variables (which are like functions)
on the left of the homology variables. (which are like
arguments) That way both f/g and f\g means composites
in which you first apply g and afterwards apply f .

(b) If you have a class in E∗(X ∧ Y ) and want to “divide off” a
homology class on one factor, by (a) you put the homology
class on the right, so let it be a class in F∗(Y ) rather than
F∗(X). If you have a class in F∗(X ∧ Y ) and you want to
divide it into a cohomology class on one factor, then by
(a) you want to put the cohomology class on the left, so
let it be a class in E∗(X) rather than E∗(Y )

Of course, once we have the external products for spectra,
we get them for CW-complexes with base-point by specializing
to suspension spectra. We then get them for relative groups by
turning the handle. Note that if X,A and Y,B are pairs, then

X/A ∧ Y /B = X × Y /(A× Y ∪X ×B)

So for the relative groups we have the following products

Ep(X,A)⊗ F q(Y,B)
×−→ (E ∧ F )p+q(X × Y,A× Y ∪X ×B),
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Ep(X,A)⊗ Fq(Y,B)
×
−→ (E ∧ F )p+q(X × Y,A× Y ∪X ×B),

Ep(X × Y,A× Y ∪X ×B)⊗ Fq(Y,B)
/−→ (E ∧ F )p−q(X,A),

Ep(X,A)⊗ Fq(X × Y,A× Y ∪X ×B)
\−→ (E ∧ F )−p+q(Y,B).

These products have various properties, of which we consider first
naturality. I will do this in the case of spectra, because there we
have to provide for maps of degree r. But first we need a remark
about induced homomorphisms in cohomology. Let f : X −→ Y be a
morphism of degree −p, and let g : Y −→ E be a morphism of degree
−q, i.e., an element of Eq(Y ). Then the obvious thing to do is define

f∗ : Eq(Y ) −→ Ep+q(X)

by:
(g)f∗ = gf.

But we usually write f∗ on the left, and so we take care to introduce
the proper sign:

f∗(g) = (−1)pqgf

For the next proposition assume for parts (i) to (iv) that we have
the morphisms

f : X −→ X ′ and g : Y −→ Y ′

Proposition 9.1. (i) If u ∈ E∗(X ′), v ∈ F ∗(Y ′), then

(u Z v)(f ∧ g)∗ = (−1)|f ||v|uf∗ Z vg∗

or equivalently

(f ∧ g)∗(u Z v) = (−1)|g||u|(f∗u) Z (g∗v).
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(ii) If u ∈ E∗(X), v ∈ F∗(Y ), then

(f ∧ g)∗(u∧v) = (−1)|g||u|(f∗u)∧(g∗v).

(iii) If u ∈ E∗(X ′ ∧ Y ′), v ∈ F∗(Y ), then

(u(f ∧ g)∗)/v = (−1)|f |(|g|+|v|)(u/g∗v)f
∗

or equivalently

((f ∧ g)∗u)/v = (−1)|g||u|f∗(u/g∗v).

(iv) If u ∈ E∗(X ′), v ∈ F∗(X ∧ Y ), then

u\(f ∧ v)∗v = (−1)|g|(|u|+|f |)g∗((uf
∗)\v)

or equivalently

u\(f ∧ g)∗v = (−1)|g||u|+|g||f |+|f ||u|g∗((f
∗u)\v).

(v) With respect to morphisms E and F , all the naturality state-
ments are the same. Suppose given morphisms e : E −→ E′,
f : F −→ F ′. Then

(e ∧ f)∗(u v) = (−1)|f ||u|(e∗u) (f∗v),

where the absence of a product symbol indicates that any of
the four products may be used.

The proofs are elementary diagram-chasing.
Proposition 9.2. All these products are biadditive.

We have two commutativity statements.
Proposition 9.3. (i) Suppose u ∈ Ep(X), v ∈ F q(Y ). Then

v Z u = (−1)pqc∗c∗(u Z v).
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(ii) Suppose u ∈ Ep(X), v ∈ Fq(Y ). Then

v∧u = (−1)pq(c ∧ c)∗(u∧v).

Of course, if we are going to apply maps µ : E ∧ F −→ G and
µ′ : F ∧ E −→ G such that:

E ∧ F

G

F ∧ E

c

µ

µ′

is a commutative diagram, then this absorbs the effect of c : E∧F −→
F ∧ E.

We have eight associativity statements. The first statement is
obvious: suppose

u ∈ Ep(X), v ∈ F q(Y ), w ∈ Gr(Z).

Then we have

(u Z v) Z w = u Z (v Z w) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z).

If we were using pairings of spectra, we would suppose that they
made the following diagram commutative.

E ∧ F ∧G H ∧G

E ∧K L

λ∧1

l∧µ

π

ν
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(Here, of course, H,K and L are some spectra fitting into such a
diagram.) Then we would obtain

(u Z v) Z w = u Z (v Z w) ∈ Lp+q+r(X ∧ Y ∧ Z).

The associativity law for the external homology product is entirely
similar. With our conventions, the other six appear as very natural
rules for manipulating fractions. For example, suppose

x ∈ E∗(X), v ∈ F ∗(Y ∧ Z), z ∈ G∗(Z).

Then x Z v ∈ (E ∧ F )∗(X ∧ Y ∧ Z), (x Z v)/z ∈ (E ∧ F ∧G)∗(X ∧ Y ).
On the other hand, v/z ∈ (F ∧G)∗(Y ), x Z (v/z) ∈ (E ∧F ∧G)∗(X ∧ Y ).

We have (x Z v)/z = x Z (v/z).

Theorem 9.4. (i) If x ∈ Ep(X), y ∈ F q(Y ), z ∈ Gr(Z) then

(x Z y) Z z = x Z (y Z z) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z).

(ii) If x ∈ Ep(X), u ∈ F q(Y ∧ Z), z ∈ Gr(Z) then

x Z (u/z) = (x Z u)/z ∈ (E ∧ F ∧G)p+q−r(X ∧ Y ).

(iii) If v ∈ Ep(X ∧ Z), y ∈ F q(Y ), u ∈ Gr(Y ∧ Z) then

v/(y\u) = [(1 ∧ c)∗(v Z y)]/u ∈ (E ∧ F ∧G)p+q−r(X).

(iv) If t ∈ Ep(X ∧ Y ∧ Z), z ∈ Fq(Z), y ∈ Gr(Y ) then

(t/z)/y = t/(c∗(z∧y)) ∈ (E ∧ F ∧G)p−q−r(X).

(v) If y ∈ Ep(Y ), x ∈ F q(X), t ∈ Gr(X ∧ Y ∧ Z) then

y\(x\t) = (c∗(y Z x))\t ∈ (E ∧ F ∧G)−p−q+r(Z).
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(vi) If w ∈ Ep(X ∧ Y ), y ∈ Fq(Y ), v ∈ Gr(X ∧ Z) then

(w/y)\v = w\[(c ∧ 1)∗(y∧v)] ∈ (E ∧ F ∧G)−p+q+r(Z).

(vii) If x ∈ Ep(X), w ∈ Fq(X ∧ Y ), z ∈ Gr(Z) then

(x\w)∧z = x\(x∧z) ∈ (E ∧ F ∧G)−p+q+r(Y ∧ Z).

(viii) If x ∈ Ep(X), y ∈ Fq(Y ), z ∈ Gr(Z) then

(x∧y)∧z = x∧(y∧z) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z).

The proofs, as usual, are done by diagram-chasing.
Now we recall the sphere spectrum S acts as a unit for the

smash-product. It follows that we can identify

Ep(S) = [S,E]p

with
E−p(S) = [S,E]p.

Proposition 9.5. Suppose s is of this sort, say s ∈ [S,E]∗, and y ∈ F∗(Y ).
Then

s\y = s Z y ∈ (E ∧ F )∗(Y ).

Suppose t is of this sort, say t ∈ [S, F ]∗, and x ∈ E∗(X). Then

x/t = x Z t ∈ (E ∧ F )∗(X).

Suppose the result is of this sort, say x ∈ E∗(X), y ∈ F∗(X). Then

x\y = x/y ∈ [S,E ∧ F ]∗.

The proof is diagram-chasing. The third case gives the Kronecker
product 〈x, y〉. The explicit definition is as follows. Suppose given
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X
x−→ E, S y−→ F ∧X. Form

S
y−→ F ∧X c−→ X ∧ F x∧1−−→ E ∧ F.

The naturality properties of the Kronecker product are obvious and
well known.

Proposition 9.6. Suppose given f : X −→ X ′ (of any degree), x ∈
E∗(X ′), y ∈ F∗(X). Then

〈x′f∗, y〉 = 〈x′, f∗y〉,

or equivalently
〈f∗x′, y〉 = (−1)|f ||x

′|〈x′, f∗y〉.

We know that in the classical case the two slant products are
obtained from the two more usual products by dualizing; in other
words, they are related to them by the Kronecker product. We now
state this for the generalised case.

Proposition 9.7. (i) Suppose u ∈ Ep(X ∧ Y ), y ∈ Fq(Y ), x ∈ Gr(X).
Then

〈u/y, x〉 = 〈u, c∗(y∧x)〉 ∈ [S,E ∧ F ∧G]−p+q+r.

(ii) Suppose y ∈ Ep(Y ), x ∈ Gq(X), u ∈ Gr(X ∧ Y ). Then

〈y, x\u〉 = 〈c∗(y Z x), u〉 ∈ [S,E ∧ F ∧G]−p+q+r.

Proof. 〈u/y, x〉 may be viewed as either (u/y)/x or (u/y)\x. So part (i)
follows by substituting into the appropriate associativity relation,
number (iv) or (vi) on the list. Similarly for part (ii), using (v) or
(iii).

These formulae are useful as a heuristic guide. For example,
suppose you know some formula for the product y Z x, and want
to know the corresponding formula for the product x\u. I really
have in mind something like a coboundary formula, but I haven’t
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yet done quite enough to use this case as an illustration, so let
me consider a naturality formula. It’s rather trivial, but it will do
as an illustration of the method. Suppose y ∈ Ep(Y ), x ∈ F q(X),
u ∈ Gp+q(X ′ ∧ Y ′), g : Y ′ −→ Y , f : X ′ −→ X. We write down:

〈(y Z x)(g ∧ f)∗, c∗u〉 = (−1)|x||g|〈yg∗ Z xf∗xf∗, c∗u〉

(−1)|f ||g|〈y Z x, c∗(f ∧ g)∗u〉 (−1)|x||g|〈yg∗, xf∗\u〉

(−1)|f ||g|〈y, x\(f ∧ g)∗u〉 (−1)|x||g|〈y, g∗(xf∗\u)〉.

If we knew that pairing with y were non-singlular, we would have

(−1)|f ||g|x\(f ∧ g)∗u = (−1)|x||g|g∗((xf∗)\u).

But this argument is indeed a valid proof, because we can take

y = 1 ∈ Y 0(Y ).

Proposition 9.8. Suppose x∗ ∈ Ep(X), y∗ ∈ F q(Y ), x∗ ∈ Gr(X), y∗ ∈
Hs(Y ). Then

〈x∗ Z y∗, x∗ Z y∗〉 = (−1)qr(1 ∧ c ∧ 1)∗〈x∗, x∗〉〈y∗, y∗〉.

Here 1 ∧ c ∧ 1 : E ∧G ∧ F ∧H −→ E ∧ F ∧G ∧H.

Proof. Apply 9.7, commutativity, and associativity law (ii) or (vii).

Now we would like to write down the properties of our products
for boundary and coboundary maps, One of them is immediate, that
for the Kronecker product. We simply observe that the boundary
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or coboundary is induced by a map

X/A −→ A(of degree -1);

we have a naturality formula for the Kronecker product valid for
morphisms of any degree, so we get the following formula.

If a ∈ EP (A), u ∈ Fq(X,A) then 〈a, ∂u〉 = 〈aδ, u〉 = (−1)p〈δa, u〉, where
we make the same sign conventions as before about f∗a.

In order to see what to expect in the other cases, let’s go back
to the classical case, and suppose given

u ∈ C∗(X), ∂u ∈ C∗(A), v ∈ C∗(Y ), ∂v ∈ C∗(B).

Then we expect to have

∂(uv) = (∂u)v + (−1)|u|u(∂v) ∈ C∗(A× Y ∪X ×B).

However the separate terms (∂u)v and u(∂v) do not define elements
of H∗(A× Y ∪X ×B), so we have to work instead in

H∗(A× Y ∪X ×B,A×B) = H∗(A× Y,A×B)⊕H∗(X ×B,A×B).

Here (∂u)v defines an element in the first summand and u(∂v) in the
second.

Additional motivation can be obtained if we consider the pos-
sibility of arguments using the five lemma. We have the exact
sequence

Ep(A) −→ Ep(X) −→ Ep(X,A) −→ Ep−1(A).

If we tensor it with Fq(Y,B) we get the left-hand column of the
following diagram,
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Ep(A)⊗ Fq(Y,B) (E ∧ F )p+q(A× Y,A×B)

(E ∧ F )p+q(A× Y ∪X ×B,X ×B)

Ep(X)⊗ Fq(Y,B) (E ∧ F )p+q(X × Y,X ×B)

Ep(X,A)⊗ Fq(Y,B) (E ∧ F )p+q(X × Y,A× Y ∪X ×B)

(E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

Ep−1(A)⊗ Fq(Y,B) (E ∧ F )p+q−1(A× Y,A×B)

×

∼=

×

×

∂⊗1

∂

×
∼=

Ip

IIp

The oblique isomorphisms identify the second column with the
exact sequence of a triple. The section of the diagram labeled I is
commutative by the naturality of x , and we would like to know that
the section labeled II is also commutative. So we wish to obtain
commutative diagrams of the following form.
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Ep(X,A)⊗ Fq(Y,B) Ep−1(A)⊗ Fq(Y,B)

(E ∧ F )p+q−1(A× Y,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

Ep(X,A)⊗ Fq(Y,B) (Ep(X,A)⊗ Fq−1(B)

(E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,A× Y )

×

∂⊗1

×

∼=

∂

×

1⊗∂

×

∼=

∂

Here we need a convention about signs. If θ : G→ G′ and ϕ : H →
H ′ are homomorphisms of graded groups, their tensor product is
defined by

(θ ⊗ ϕ)(g ⊗ h) = (−1)|ϕ||g|θg ⊗ ϕh.

In particular, 1⊗ ∂ is defined by (1⊗ ∂)(uθv) = (−1)|u|u⊗ ∂v.

Of course we propose to obtain our commutative diagrams by
applying the results we already have to geometrical diagrams.

Lemma 9.9. The following diagrams are commutative.
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(i)

A∧Y ∪X∧B
X∧B

X∧Y
X∧B

X∧Y
A∧Y ∪X∧B

A∧Y ∪X∧B
X∧B

A∧Y
A∧B

X
A ∧

Y
B A ∧ Y

B

J

∼=

∼=

j∧1

(ii)

A∧Y ∪X∧B
A∧Y

X∧Y
A∧B

X∧Y
A∧Y ∪X∧B

A∧Y ∪X∧B
A∧Y

X∧B
A∧B

X
A ∧

Y
B

X
B ∧B

J′

∼=

∼=

1∧j′

∼=

Notes. The diagrams are valid as they stand for spectra. The maps
J, j, J ′, j′ are the appropriate maps from the cofibre sequences, and
they have degree −1. They may be replaced by maps of degree
zero into the appropriate terms S(A∧Y ∪X∧B

X∧B ), S(A∧Y
A∧B ), etc, except

that 1 ∧ j′ in (ii) has to be replaced by

X

A
∧ Y
B

1∧j′−−−→ X

A
∧ S1 ∧B c∧1−−→ S1 ∧ X

A
∧B.

With this interpretation the diagrams are valid if X,Y, etc. are
CW-complexes. For the case of spectra, the two ways of writing the
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diagrams are equivalent, because we have the canonical equivalence
Z ∼ S1 ∧ Z of degree 1.

It is sufficient to prove the commutativity of one of the diagrams,
say the first; the other then follows by applying c (and checking
that J corresponds to J ′). But it is trivial to check the first diagram
for CW-complexes by constructing the appropriate maps of (X ∪
CA) ∧ (Y ∪ CB). The construction commutes with suspension on the
right, and so passes to CW-spectra.

We now get the following eight commutative diagrams by apply-
ing Proposition 9.1 to the diagrams in Lemma 9.9. The morphisms
J, j and sign conventions are as above.

Theorem 9.10. The following diagrams are commutative.

Ep(A)⊗ F q(YB ) Ep+1(XA )⊗ F q(YB )

(E ∧ F )p+q(A ∧ Y
B ) (E ∧ F )p+q+1(XA ∧

Y
B )

(E ∧ F )p+q(A∧Y ∪X∧B
A∧B ) (E ∧ F )p+q+1( X∧Y

A∧Y ∪X∧B )

Z

j∗⊗1

Z

∼=

J∗

Ep(XA )⊗ F q(B) Ep(XA )⊗ F q+1(YB )

(E ∧ F )p+q(XA ∧B) (E ∧ F )p+q+1(XA ∧
Y
B )

(E ∧ F )p+q(A∧Y ∪X∧B
A∧Y ) (E ∧ F )p+q+1( X∧Y

A∧Y ∪X∧B )

Z

1⊗j∗

Z

∼=

J∗
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Ep(A∧Y ∪X∧B
X∧B )⊗ Fq

(
Y
B

)
Ep+1( X∧Y

A∧Y ∪X∧B )⊗ Fq(YB )

Ep(A ∧ Y
B )⊗ Fq(YB ) Ep+1(XA ∧

Y
B )⊗ Fq(YB )

(E ∧ F )p−q(A) (E ∧ F )p−q+1(XA )

∼=⊗1

J∗⊗1

/ /

j∗

Ep(A∧Y ∪X∧B
A∧Y )⊗ Fq(YB ) Ep+1( X∧Y

A∧Y ∪X∧B )⊗ Fq(YB )

Ep(XA ∧B)⊗ Fq(YB ) Ep+1(XA ∧
Y
B )⊗ Fq(YB )

Ep(XA ∧B)⊗ Fq−1(B) (E ∧ F )p−q+1(XA )

∼=⊗1

J∗⊗1

1⊗j∗ /

/

Ep(A)⊗ Fq( A∧Y
A∧Y ∪X∧B ) Ep(A)⊗ Fq−1(

A∧Y ∪X∧B
X∧B )

Ep(A)⊗ Fq(XA ∧
Y
B ) Ep(A)⊗ Fq−1(A ∧ Y

B )

Ep+1(XA )⊗ Fq(XA ∧
Y
B ) (E ∧ F )−p+q−1(

Y
B )

1⊗J∗

j∗⊗1 \

1⊗∼=

\

304



Chapter 9: Products

Ep(XA )⊗ Fq( X∧Y
A∧Y ∪X∧B ) Ep(XA )⊗ Fq−1(

A∧Y ∪X∧B
A∧Y )

Ep(XA )⊗ Fq(XA ∧
Y
B ) Ep(XA )⊗ Fq−1(

X
A ) ∧B

(E ∧ F )−p+q(YB ) (E ∧ F )−p+q−1(B)

1⊗J∗

\ \

1⊗∼=

j∗

Ep(XA )⊗ Fq(YB ) Ep−1(A)⊗ Fq(YB )

(E ∧ F )p+q(XA ∧
Y
B ) (E ∧ F )p+q−1(A ∧ Y

B )

(E ∧ F )p+q( X∧Y
A∧Y ∪∧B ) (E ∧ F )p+q−1(

A∧Y ∪X∧B
A∧Y )

∧

j1⊗1

∧

∼=

J∗

Ep(XA )⊗ Fq(YB ) Ep(
X
A )⊗ Fq−1(B)

(E ∧ F )p+q(XA ∧
Y
B ) (E ∧ F )p+q−1(

X
A ∧B)

(E ∧ F )p+q( X∧Y
A∧Y ∪X∧B ) (E ∧ F )p+q−1(

A∧Y ∪X∧B
A∧Y )

∧

1⊗j∗

∧

∼=

J∗

By an immediate translation, we obtain commutative diagrams
for the boundary and coboundary in relative groups of pairs.

Theorem 9.11. The following diagrams are commutative.
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Ep(A)⊗ F q(Y,B) Ep+1(X,A)⊗ F q(Y,B)

(E ∧ F )p+q(A× Y,A×B)

(E ∧ F )p+q(A× Y ∪X ×B,X ×B) (E ∧ F )p+q+1(X × Y,A× Y ∪X ×B)

X̄

δ⊗1

X̄

∼=

δ

Ep(X,A)⊗ F q(B) Ep(X,A)⊗ F q+1(Y,B)

(E ∧ F )p+q(X ×B,A×B)

(E ∧ F )p+q(A× Y ∪X ×B,A× Y ) (E ∧ F )p+q+1(X × Y,A× Y ∪X ×B)

X̄

1⊗δ

X̄

∼=

δ

Ep(A× Y ∪X ×B,X ×B)⊗ Fq(Y,B) Ep+1(X × Y,A× Y ∪X ×B)⊗ Fq(Y,B)

Ep(A× Y,A×B)⊗ Fq(Y,B)

(E ∧ F )p−q(A) (E ∧ F )p−q+1(X,A)

∼=⊗1

δ⊗1

/

\

δ

Ep(A× Y ∪X ×B,A× Y )⊗ Fq(Y,B) Ep+1(X × Y,A× Y ∪X ×B)⊗ Fq(Y,B)

Ep(X ×B,A×B)⊗ Fq(Y,B)

Ep(X ×B,A×B)⊗ Fq−1B (E ∧ F )p−q+1(X,A)

∼=⊗1

δ⊗1

/

1⊗∂

/
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Ep(A)⊗ Fq(X × Y,A× Y ∪X ×B) Ep(A)⊗ Fq−1(A× Y ∪X ×B,X ×B)

Ep(A)⊗ Fq−1(A× Y,A×B)

Ep+1(X,A)⊗ Fq(X × Y,A× Y ∪X ×B) (E ∧ F )−p+q−1(Y,B)

δ⊗1

1⊗∂

1⊗∼=

\

\

Ep(X,A)⊗ Fq(X × Y,A× Y ∪X ×B) Ep(X,A)⊗ Fq−1(A× Y ∪X ×B,A× Y )

Ep(X,A)⊗ Fq−1(X ×B,A×B)

(E ∧ F )−p+q(Y,B) (E ∧ F )−p+q−1(B)

\

1⊗∂

1⊗∼=

\

∂

Ep(X,A)⊗ Fq(Y,B) Ep−1(A)⊗ Fq(Y,B)

(E ∧ F )p+q−1(A× Y,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

X

∂⊗1

X

∼=

∂

Ep(X,A)⊗ Fq(Y,B) Ep(X,A)⊗ Fq−1(B)

(E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,A× Y )

X

1⊗∂

X

∼=

∂
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Unfortunately, we need still more diagrams. Let’s return to our
original formula in the classical case,

∂(uv) = (∂u)v + (−1)|u|u(∂v).

We have written a relation between ∂(uv) and (∂u)v by working in a
group where we can ignore u(∂v), and a relation between ∂(uv) and
u(∂v) by working in a group where we can ignore (∂u)v. It remains
to write a relation between

(∂u)v and u(∂v)

by working in a group where we can ignore ∂(uv). And in this case
the answer is obvious. We have to say that the following diagram
commutes up to a sign −1.

Hp(X,A)⊗Hq(Y,B)

Hp−1(A)⊗Hq(Y,B) Hp(X,A)⊗Hq−1(B)

(−1)

Hp+q−1(A× Y,A×B) Hp+q−1(X ×B,A×B)

Hp+q−1(X × Y,A×B)

∂⊗1 1⊗∂

× ×

We can easily prove such a result for the generalised case.
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Consider the following diagram.

Ep(X,A)⊗ F q(Y,B)

Ep−1(A)⊗ Eq(Y,B) Ep(X,A)⊗ Fq−1(B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B)

(E ∧ F )p+q−1(A× Y ∪X ×B,X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,A× Y )

(E ∧ F )p+q−1(A× Y ∪X ×B,A×B)

(E ∧ F )p+q−1(A× Y,A×B) (E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q−1(X × Y,A×B)

∂⊗1 1⊗∂

×

× ×

∂1

∂ ∂

i∗

∼= ∼=

The diagram displays

(E ∧ F )p+q−1(A× Y ∪X ×B,A×B)

as the direct sum

(E ∧ F )p+q−1(A× Y,A×B)⊕ (E ∧ F )p+q−1(X ×B,A×B).

The composite i∗∂1 is zero, so the two paths from (E ∧ F )p+q(X ×
Y,A× Y ∪X ×B) to (E ∧ F )p+q−1(X × Y,A×B) around the outside of
the lower hexagon gives maps whose sum is zero. This is the
Eilenberg-Steenrod hexagon lemma. Of course, we know the result
geometrically by 6.13. Now fill in the rest of the diagram by 9.11.

Proceeding in this way for the four products we obtain four more
diagrams listed in the following theorem.

Theorem 9.12. (i) The following diagram is commutative up to
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a sign −1.

Ep(A)⊗ F q(B)

Ep+1(X,A)⊗ F q(B) Ep(A)⊗ F q+1(B)

(E ∧ F )p+q−1(X ×B,A×B) (−1) (E ∧ F )p+q−1(A× Y,A×B)

(E ∧ F )p+q−1(A× Y ∪X ×B,X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

(E ∧ F )p+q−1(A× Y ∪X ×B)

δ⊗1 1⊗δ

× ×

∼= ∼=

(ii)

Ep(A× Y,A×B)⊗ Fq(Y,B) (E ∧ F )p−q(A)

Ep(X × Y,A×B)

Ep(X ×B,A×B)⊗ Fq−1(B) (E ∧ F )p−q+1(X,A)

∂

/

δ

j∗

i∗

/

If u ∈ Ep(X × Y,A×B) and y ∈ Fq(Y,B), then

δ((i∗u)/y) = (−1)p+1(j∗u)/(∂y).

(iii)
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(E ∧ F )−p+q(Y,B) Ep(A)⊗ Fq(A× Y,A×B) Fq(A× Y ∪X ×B,X ×B)

Fq(A× Y,X ∪B)

(E ∧ F )−p+q−1(B) Ep+1(X,A)⊗ Fq(X ×B,A×B) Fq(A× Y ∪X ×B,A× Y )

∂

\ ∼=

δ

θ

ϕ

\ ∼=

If a ∈ Ep(A) and u ∈ Fq(A× Y ∪X ×B) then

∂(a\(θu)) = −(δa)\(ϕu).

(iv) The following diagram is commutative up to a sign −1.
Ep(X,A)⊗ Fq(Y,B)

Ep−1(A)⊗ Fq(Y,B) Ep(X,A)⊗ Fq−1(B)

(−1)

(E ∧ F )p+q−1(A× Y,A×B) (E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q−1(X × Y,A×B)

∂⊗1 1⊗∂

× ×

Internal Products
Following the idea of Lefschetz, these products are introduced

by considering the diagonal map

∆ : X −→ X ×X.

Here X is a CW-complex. Given u ∈ Ep(X,A), v ∈ F q(Y,B), we have
defined

u×v ∈ (E ∧ F )p+q(X ×X,A×X ∪X ×B)
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and we can define

u ∪ v = ∆∗(u×v) ∈ (E ∧ F )p+q(X,A ∪B).

Similarly, given u ∈ Ep(X,A), v ∈ Fq(X,A ∪B), we can form

∆∗v ∈ Fq(X ×X,A×X ∪X ×B)

and define
u ∩ v = u\∆∗v ∈ (E ∧ F )−p+q(X,B).

Conversely, the × and \ products can be recovered from ∪ and ∩.
Let p1 : X × Y −→ X, p2 : X × Y −→ Y be the projections on the two
factors.

Proposition 9.13. If u ∈ Ep(X,A), v ∈ F q(Y,B) then

u×v = (p∗1u) ∪ (p∗2u) ∈ (E ∧ F )p+q(X × Y,A× Y ∪X ×B).

If u ∈ Ep(X,A) and v ∈ Fq(X × Y,A× Y ∪X ×B) then

u\v = p2∗((p
∗
1u) ∩ v) ∈ (E ∧ F )−p+q(Y,B).

The proof is immediate, by naturality.
Since we can recover the Kronecker product from either slant

product, we can recover it from the cap product.

Proposition 9.14. If u ∈ Ep(X,A), v ∈ Fq(X,A) then

〈u, v〉 = ε∗(u ∩ v) ∈ π−p+q(E ∩ F ),

where ε : X −→ pt. is the constant map.

All the properties of the internal products can be deduced from
those of the external ones, by naturality. The list of associativity
properties, however, will look less symmetrical than in the case of
the external products.
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In the classical case, to have a duality theorem relating Hr(M ;A) and
Hm−r(M ;A) we need to assumeM is orientable, and then we can take
A to be any abelian group. Otherwise, we can suppose thatM is non-
orientable; then either we must use twisted coefficients, or we must
suppose that A is a module over Z2. The point is that an orientable
manifold has classes in Z-homology and cohomology which enter
into the statements and the proofs; and even a non-orientable
manifold has such classes if we use homology and cohomology with
coefficients in Z2.

To generalise this situation, G.W. Whitehead introduced the notion
of a ring-spectrum and a module-spectrum. The idea is that if M
is orientable with respect to E∗ and E∗, where E is a ring-spectrum,
then the duality theorem will hold for F∗ and F ∗, where F is any
module-spectrum over E.

Example. To illustrate the situation above, take

E = H, F = HA for any abelian group A;

or
E = HZ2, F = HA for any Z2-module A.

A spectrum E is said to be a ring-spectrum if it has given maps
µ : E ∧ E −→ E, η : S −→ E of degree 0 such that the following
diagrams commute.
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E ∧ E ∧ E E ∧ E S ∧ E E ∧ E

E E

E ∧ E E E ∧ S E ∧ E

1∧µ

µ∧1

µ

η∧1

µ

1

µ 1∧η

µ

Let E is a ring-spectrum. We say a spectrum F is a module-
spectrum over E if it has given a map ν : E ∧ F −→ F of degree 0
such that the following diagrams commute.

E ∧ E ∧ F E ∧ F S ∧ F E ∧ E

E ∧ F F F F

1∧ν

µ∧1

ν

η∧1

∼= ν

ν 1

A ring-spectrum E is said to be commutative if the following
diagram commutes.

E ∧ E E

E ∧ E

µ

c
µ

If E is a ring-spectrum, we can use the product map µ : E∧E −→ E

to obtain products with values in E∗ or E∗ instead of (E ∧ E)∗ or

314



Chapter 10: Duality in Manifolds

(E ∧ E)∗. For example, we obtain a cup-product

Ep(X,A)⊗ Eq(X,B) −→ Ep+q(X,A ^ B).

Similarly for an action map ν : E ∧ E −→ F .
Practically all the examples of spectra which I have mentioned

are, in fact, ring-spectra. I will only illustrate the case E = H. We
have

πr(H ∧H) = Hr(H) =

0 (r < 0)

Z (r = 0)

so that by the Hurewicz theorem,

H0(H ∧H) = Z.

Alternatively, by the Kunneth theorem

H0(H ∧H) ∼= H0(H)⊗H0(H) ∼= Z⊗ Z ∼= Z.

By the universal coefficient theorem,

H0(H ∧H) = Hom(Z,Z) = Z.

Therefore I can take a map ν : H ∧H −→ H realizing the product map
Z⊗ Z −→ Z of π0.

Alternatively, realize H ∧ H with no stable cells of dimension
d < 0. Map the cells of dimension 0 in the indicated way, and similarly
for the cells of dimension 1. Now the map extends over the higher
stable cells of H ∧H, because the higher homotopy groups of H
are zero. For the same reason, the map is unique up to homotopy.

For similar reasons, if R is a ring then HR is a ring-spectrum; if
M is an R-module then HM is a module-spectrum over HR.

So far our generalised homology and cohomology theories have
been defined on CW-pairs X,A. Now we would like to extend them
to other categories of pairs.
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We begin with the singular extension of E∗ and E∗. Take any
pair X,A and let X ′, A′ be a weakly equivalent CW-pair. Define the
singular E-homology and E-cohomology groups of X,A to be

Ep(X,A) = Ep(X
′, A′),

Ep(X,A) = Ep(X ′, A′).

The result is independent of the choice of X ′, A′, up to a canonical
isomorphism.

All the properties of Ep and Ep carry over very well, except for
excision. Here one has to be careful. Let U ∪ V be a space which
comes as the union of two subspaces U and V intersecting in U ∩ V .
Then we can certainly take a CW-complex W ′ equipped with a weak
equivalence

W ′ w−→ U ∩ V,

and we can enlarge W ′ on the one hand to a CW-complex U ′ admit-
ting a weak equivalence

U ′ u−→ U

extending w, and on the other hand to a CW-complex V ′ admitting
a weak equivalence

V ′ v−→ V

also extending w. Then we can put them together to get

U ′ ∪W ′ V ′ −→ U ∪ V.

But this map is not a weak equivalence in general. For example,
take subsets of the real numbers; let U = Q, V = R−Q; then W ′ will
be empty, U ′ will be a countable discrete space, and U ′ ∪W ′ V ′ will
be an uncountable discrete space, which is not weakly equivalent
to R.

However, if we assume that IntU ∪ IntV = U ∪V , then U ′ ∪W ′ V ′ −→
U ∪ V is a weak equivalence, and all is well. So the excision axiom
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holds with this extra hypothesis, which is actually the standard one
for ordinary (singular) homology and cohomology.

I must also comment on the behaviour of singular homology for
limits. Let X,Y be a pair containing a directed family of subpairs
Xα, Yα. Then we can form

lim−−→
α

Ep(Xα, Yα) −→ Ep(X,Y ).

Proposition 10.1. In order that this map be an isomorphism, it is
sufficient that for any compact pair K,L ⊂ X,Y we can find an α

such that Xα, Yα ⊃ K,L.

The proof is easy.
Now I want to define a Čech-type cohomology theory for compact

pairs K,L which happen to come embedded in some topological
manifold M , possibly not compact, possibly with boundary. The
definition is as follows. Let U, V run over open pairs in M with
U ⊃ K,V ⊃ L. These form a directed set; if Ui ⊃ K, Vi ⊃ L for i = 1, 2

then U1 ∩ U2 ⊃ K, V1 ∩ V2 ⊃ L. So I define

Ě∗(K,L) = lim−−→
(U,V )

E∗(U, V ).

(The notation E∗, when applied to an arbitrary topological pair X,A
will mean singular E-cohomology). Of course we will always have
a map

E∗(U, V ) −→ E∗(K,L);

this passes to the limit, and gives us a map

Ě∗(K,L) −→ E∗(K,L).

In general this map need not be an isomorphism. However, there
are cases when it is.

Example (i). Suppose that M is a compact topological manifold,
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possibly with boundary. Then

Ě∗(M) −→ E∗(M)

is an isomorphism.

In fact, the pair M, ∅ qualified as an open pair containing the
compact pair M, ∅, and is terminal.

Example (ii). Suppose K is a point x. Then

Ě∗(x) −→ E∗(x)

is an isomorphism.

In fact, any point x lies in a coordinate neighbourhood, so we can
choose a cofinal system of open pairs Uα, ∅ ⊃ x, ∅ with Uα contractible.
Then

E∗(Uα) −→ E∗(x)

is an isomorphism for all α.
Next I would like to know that Ě∗(K,L) is a topological invariant

of the pair (K,L), and does not depend on the embedding in M .

Lemma 10.2 (i). Suppose given compact pairs K1, L1 ⊂M1 and K2, L2 ⊂
U2, V2 ⊂M2, where U2, V2 is an open pair, and a continuous map

f : K1, L1 −→ K2, L2.

Then f can be extended so as to map some open pair U1, V1 ⊃ K1, L1

in M1 to U2, V2.
(ii) Suppose given a homotopy

h : I ×K1, I × L1 −→ K2, L2,

and extensions f0 of h0, f1 of h1 which map (possibly different) open
pairs U0, V 0 and U1, V 1 into an open pair U2, V2 ⊃ K2, L2. Then there
exists an open pair pair U, V with K1, L1 ⊂ U, V ⊂ U0 ∩ U1, V 0 ∩ V 1 and
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a homotopy
h : I × U, I × V −→ U2, V2

extending f0|U,V , f1|U,V and h.

Proof. Standard but repeated use of compactness, plus the Tietze
extension theorem; we rely heavily on the fact thatM2 is a manifold.

Corollary 10.3. A map f : K1, L1 −→ K2, L2 induces f∗ : Ě∗(K2, L2) −→
Ě∗(K1, L1) depending only on the homotopy class of f , and satisfying
1∗ = 1, (fg)∗ = g∗f∗.

The exactness properties of Ě∗ are fine, since direct limits
preserve exactness.

Example. Let M,∂M be a pair consisting of a compact topological
manifold with boundary and its boundary. Then

Ě∗(M,∂M) −→ E∗(M,∂M)

is an isomorphism.

Proof. Consider the following commutative diagram.

. . . Ě∗(M,∂M) Ě∗(M) Ě∗(∂M) E∗(M,∂M) . . .

. . . E∗(M,∂M) E∗(M) E∗(∂M) E∗(M,∂M) . . .

∼= ∼=

δ

δ

The rows are exact, and the two arrows marked are isomorphisms
by a previous example. The result follows by the 5-lemma.

N.B. This way of saying things relies on the previous proof that
Ě∗(∂M) is independent of the embedding of ∂M in M , but it does
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not need the construction of a collar for ∂M inside M .
The excision properties of Ě∗ are excellent, because Ě∗ was

defined using only open pairs in M .
Proposition 10.4. If U, V are any compact sets in M , then

Ě∗(U ∪ V, V ) −→ Ě∗(U,U ∩ V )

is an isomorphism.
This follows from the definitions by a bit of general topology

(compact Hausdorff spaces again.)
I also have to comment on the behaviour of Ě∗ for limits.

Proposition 10.5. Let Kα, Lα be a downward-directed set of compact
pairs in M , with intersection K,L. Then

lim−−→
α

Ě∗(Kα, Lα) −→ Ě∗(K,L)

is an isomorphism.
Again, this is easy modulo a bit of general topology. One must

show that given any open pair U, V ⊃ K,L there is an α with Kα, Lα ⊂
U, V .

Experience in Manchester and Cambridge suggests I had better
give some exposition about orientations. Suppose E

p−→ B is an
n-plane bundle and E0 is the complement of the zero cross-section.
Then for each point x ∈ B, I have the fibre Ex = p−1x; let E0

x = Ex∩E0.
I can form

Hn(Ex, E
0
x)
∼= Z

Hn(Ex, E
0
x)
∼= Z.

Now since E
p−→ B is a bundle, locally it is a product; and if x and y

are close together we can easily tell which element in Hn(Ex, E
0
x)

corresponds to which in Hn(Ey, E
0
y). That is, we get a bundle over

B, with fibre Z, and with structure group Z2 acting on Z by n 7→ −n.
A similar situation occurs in cohomology.
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One may say that the original n-plane bundle was orientable if
the Z-bundle

⋃
xHn(Ex, E

0
x) is trivial. The definition may be given

equally well in terms of homology or cohomology; we have

Hn(Ex, E
0
x) = Hom(Hn(Ex, E

0
x),Z),

so the two bundles are trivial or non-trivial together.

If we are given orientations consistently on each fibre, that
amounts to saying there is a continuous section

λ : B −→
⋃
x

Hn(Ex, E
0
x)

which assigns to each point x ∈ B a generator

λ(x) ∈ Hn(Ex, E
0
x)
∼= Z.

The same goes to cohomology. But I would like a statement more
global than that. In this case it is clear that cohomology rather
than homology is required. Suppose, for example, that B had an
infinity of path-components; then a singular homology class could
only have a non-zero component in a finite number of them, but
this difficulty does not arise in cohomology. We can ask if there is
an element

ω ∈ Hn(E,E0)

such that for each x ∈ B, the induced homomorphism

i∗x : H
n(E,E0) −→ Hn(Ex, E

0
x)

has i∗xω = λ(x) for any given section λ.

Now in ordinary homology, the answer is yes: if you are given
a section λ, there exists a cohomology class ω such that i∗x = λ(x)

for each x, and ω is unique. However, the proof makes essential
use of the dimension axiom. For a generalised cohomology theory
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the corresponding result is not true. There is an n-plane bundle
E −→ B and a section λ : B −→

⋃
xKO

n(Ex, E
0
x) such that there exists

no w ∈ KOn(E,E0) with i∗xω = λ(x) for all x; in another such example
the required ω exists but is not unique.

It seems best to choose our definitions so as to avoid the dif-
ficulty. First I consider the meaning to be assigned to the word
“generator.” Let F be a ring-spectrum; then F∗(Rn,Rn − 0) = F̃ ∗(Sn)

and F ∗(Rn,Rn − 0) = F̃ ∗(Sn) are modules over π∗(F ). In fact each is a
free module on one generator, because we have canonical classes

γn ∈ Fn(Rn,Rn − 0), γn ∈ Fn(Rn − 0).

I will say that ϕ ∈ F ∗(Rn,Rn − 0) is a generator if {ϕ} is a π∗(F )-base
for F ∗(Rn,Rn − 0). ϕ is a generator if and only if ϕ = uγn, where u

is a unit in π∗(F ). ϕ need not lie in Fn(Rn,Rn − 0), because we may
have units of non-zero degree in π∗(F ); e.g., this occurs if F = K.

The property which I need of generators is the following. Let G
be a module-spectrum over F . Then the map

G∗(Rn,Rn − 0) −→ π∗(G)

given by
y 7→ 〈ϕ, y〉

is an isomorphism. In fact it is trivially so if ϕ = γn, and the general
case differs only by a unit in π∗(F ).

We say ω ∈ F ∗(E,E0) is an orientation for E if

i∗xω ∈ F ∗(Ex, E
0
x)

is a generator for each x ∈ B.
Of course, the question of constructing an orientation for a

vector-bundle, or of constructing orientations for some class of
bundles, is non-trivial. However it can be done in several cases
which are important in the applications. For example, complex
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n-plane bundles can be oriented over K∗ or MU∗; Spin bundles can
be oriented over KO∗; and so on. I will not give the constructions
here.

We have defined orientations as they apply to n-plane bundles;
but we want the notion as well for topological manifolds, which
might not have a tangent bundle in the same sense as smooth
manifolds. But it is well known what one substitutes for the
tangent bundle. That is, one replaces E by M ×M , where M is a
topological manifold, say without boundary. One replaces E0 by the
complement of the diagonal, M ×M −∆. One replaces the fibres Ex
by the fibres x×M of the projection p1 : M ×M −→M . One replaces
E0
x by x × M − x × x. Since M is a topological manifold without

boundary, x has a neighbourhood U in M which is homeomorphic to
a neighbourhood of 0 in Rn, by a homeomorphism mapping x onto
0. Then F ∗(M,M − x) ∼= F ∗(U,U − x) by excision and so is isomorphic
to F ∗(Rn,Rn − 0).

By an orientation over F ∗ for the tangent bundle of a topological
manifold M , we will therefore mean a class ω ∈ F ∗(M ×M,M ×M −∆)

such that
i∗xω ∈ F ∗(x×M,x×M − x× x)

is a generator for each x.
If M happens to have a boundary, there are two things we can do.

The first starts from the observation that for a smooth manifold M ,
the tangent bundle to M contains over ∂M tangent vectors which
point out, as well as tangent vectors which point in. To copy this
in the topological case, one adds an open collar on the boundary;
that is, one forms

M ′ =M ∪ [0, 1)× ∂M.

This is a topological manifold without boundary, and it has a fully
satisfactory topological tangent bundle, and one can ask for an
orientation.

The other thing we can do is to use the same form of words as
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before, and ask for a class

F ∗(M ×M,M ×M −∆)

but only demand that i∗xω be a generator for x ∈M − ∂M .

Evidently the first sort of orientation restricts to the second,
but I will not go into the relations between them.

Having completed the discussion of bundles, we go back to using
E for a ring-spectrum.

Suppose given an orientation class

ω ∈ Ed(M ×M,M ×M −∆),

where E is a ring-spectrum. Let F be the module-spectrum over
E. We define a duality map, which ultimately will be a map of the
following form. Let K,L be a compact pair in M . Then M −L,M −K
is an open pair in M . The duality map will be a homomorphism

D : Fp(M − L,M −K) −→ F̌ d−p(K,L)

where the left-hand side, as before, indicates singular F -homology.

We will define the map D in a number of steps. Let U, V ⊃ K,L be
an open pair and V ′, U ′ another open pair with U ∩ U ′ = ∅, V ∩ V ′ = ∅.
Then we have

U × U ′ ⊂M ×M −∆

V × V ′ ⊂M ×M −∆.

Therefore we can form

i∗ω ∈ Ed(U × V ′, U × U ′ ∪ V × V ′).

So given x ∈ Fp(V ′, U ′) we can form

D(x) = (i∗ω)/x ∈ F d−p(U, V ).
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I claim D is natural for inclusion maps. First, suppose U ′′ ⊂ U ,
V ′′ ⊂ V . Then surely U ′′ ∩ U ′ = ∅, V ′′ ∩ V ′ = ∅. The following diagram
commutes.

Fp(V
′, U ′′)

F d−p(U, V ) F d−p(U ′′, V ′′)

Next suppose V ′′′, U ′′′ ⊂ V ′, U ′. Again U ′′′ ∩ U ′ = ∅, V ′′′ ∩ V = ∅. The
following diagram commutes.

Fp(V
′′′, U ′′′) Fp(V

′, U ′)

F d−p(U, V )

Both facts are immediate from 9.1.

Again, I claim that D commutes with boundary maps, up to a
suitable sign. More precisely, suppose we have

U ⊃ V ⊃W U ′ ⊂ V ′ ⊂W ′
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with U ∩ U ′ = ∅, V ∩ V ′ = ∅, W ∩W ′ = ∅. Then the diagram

Fp(W
′, V ′) Fp−1(V

′, U ′)

(−1)d+1

F d−p(V,W ) F d−p+1(U, V )

∂

D D

δ

commutes up to the sign (−1)d+1. For we can easily reduce it to the
case W = ∅, U ′ = ∅, by the following diagram.

Fp(W
′, V ′) Fp−1(V

′, ∅) Fp−1(V
′, U ′)

F d−p(V,W ) F d−p(V, ∅) F d−p+1(U, V )

∂

δ

Now since ω ∈ Ed(U ×W ′, V × V ′) and by 9.12(ii) we have

δ((i∗ω)/x) = (−1)d+1(j∗ω)/∂x.

Now we can start to pass to limits. Let us take a compact pair
K,L ⊂M and consider the complementary open pair M − L,M −K.
We vary V ′, U ′ over open pairs contained in M − L,M −K, of course
arranging that U ∩ U ′ = ∅, V ∩ V ′ = ∅. Now F̌ ∗(K,L) = lim−−→F ∗(U, V ), so
with a class in F̌ ∗(U, V ) for any U, V we get an image in F̌ ∗(K,L).
Now I claim that for any x ∈ Fp(V

′, U ′), its image in F̌ d−p(K,L) is
independent of the choice of pair U, V , provided, of course, that
there exists a pair U, V ⊃ K,L with U ∩ U ′ = ∅, V ∩ V ′ = ∅. And this is
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immediate, by the following diagram.

Fp(V
′, U ′)

Fd−p(U, V ) Fd−p(U
′′, V ′′)

Fd−p(U ∩ U ′′, V ∩ V ′′)

So now we have a well-defined function

D : Fp(V
′, U ′) −→ F̌ d−p(K,L).

(In fact, if V ′′′, U ′′′ ⊂ V ′, U ′ and there exists a pair U, V with U ∩ U ′ =

∅, V ∩ V ′ = ∅, then the following diagram commutes.)

Fp(V
′′′, U ′′′) Fp(V

′, U ′)

F d−p(U, V )

But I claim we have

lim−−→
(V ′,U ′)

Fp(V
′, U ′) −→ Fp(M − L,M −K).

For this we need only check, by general topology, that the available
pairs (V ′, U ′) satisfy 10.10.

At this stage, then, we have a transformation

D : Fp(M − L,M −K) −→ F̌ d−p(K,L)

which is natural in the sense that it commutes with the homomor-
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phisms induced by inclusion maps, and, up to a sign (−1)d+1, with
the boundary maps.

Theorem 10.6. D is an isomorphism if K ∩ ∂M ⊂ L.

We build up the proof by stages. We always assume our pairs
K,L have K ∩ ∂M ⊂ L.

Remark 10.7. D is an isomorphism if K is a point x, and L = ∅.

Proof. Our assumption is x ∩ ∂M ⊂ L = ∅, so x 6∈ ∂M . I claim the
following diagram is commutative.

Fp(M,M − x) F̆ d−p(x)

F d−p(x)

g

D

∼=

Here g(y) = 〈i∗xω, y〉. Our assumption is that i∗xω is a generator, so the
Kronecker product with it is an isomorphism.

The commutativity of the diagram follows easily from naturality.
We can begin by supposing that we start from a class in Fp(M,M−x)
which comes from y ∈ Fp(M,M −B), where B is a small closed ball
in a coordinate neighbourhood. (This uses 10.1.) If we apply D and
the map into F d−p(x), we obtain

j∗((i∗ω)/y),

where j : x −→ IntB is the injection. We have

j∗((i∗ω/y) = ((j × 1)∗i∗ω)/y = i∗xω/y = 〈i∗xω, y〉.

Remark 10.8. Suppose K is a rectilinear simplex in a coordinate
neighborhood and L is one face of K (which may be K but must not
be ∅). Then D is an isomorphism between groups which are zero.
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Note: coordinate transformations are supposed to map ∂M into
a linear subspace of Rn, e.g., Rn−1

Proof. (i) F̌ ∗(K,L) = 0. In fact, we can even show this without
appealing to the homotopy invariance of F̌ ∗; just surround K,L by
a confinal system of open convex neighborhoods U, V , for which
F ∗(U, V ) = 0.

(ii) Also F∗(M − L,M − K) = 0. This is seen geometrically; see
the accompanying figure. We can write K as the join K = L ∗K ′. If
K ′ = ∅,K = L then the result is trivially true. Since K ′ ∩ ∂M = ∅, we
can draw a slightly larger simplex K ′′ slightly farther away from L so
that L∗K ′′ is n-dimensional and contains L∗K ′, while L∗K ′∩∂(L∗K ′′) =

L. Then (L ∗K ′′)− L is homeomorphic to L× (0, 1]×K ′′ ∪K ′′:

K ′′

L

K

K ′

Now clearly L ∗K ′′ − L ∗K ′ −→ L ∗K ′′ − L is a homotopy equivalence,
by maps and homotopies keeping ∂(L ∗ K ′′) − L fixed throughout.
These maps and homotopies extend over M by keeping everything
fixed outside L ∗K ′′.

Remark 10.9. Suppose K is a rectilinear simplex in a coordinate
neighborhood and L = ∅. Then D is an isomorphism.

Proof. Since L = ∅, we have K ∩ ∂M = ∅. Let x be one vertex of K.
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Then we have the following commutative diagram.

0 = Fp(M − x,M −K) Fp(M,M −K) Fp(M,M − x) Fp−1(M − x,M −K) = 0

0 = F̆ d−p(K,x) F̆ d−p(K) F̆ d−p(x) F̆ d−p+1(K,x) = 0

∼=

The four groups marked zero are so by 10.8. The map marked as
an isomorphism is so by 10.7.

Remark 10.10. Suppose K1, L1 and K2, L2 are compact pairs in M

with K1 ∩ ∂M ⊂ L1, K2 ∩ ∂M ⊂ L2, and K1 ∩ L2 = L1 ∩ K2. If D is an
isomorphism for (K1, L1), (K2, L2) and (K1 ∩K2, L1 ∩ L2), then it is an
isomorphism for (K1 ∪K2, L1 ∪ L2).

Proof. Consider the diagram of Mayer-Vietoris sequences on the
following page. The Mayer-Vietoris sequences are slightly more
general than those considered in Eilenberg and Steenrod but none
the worse for that. The second row works because K1∩L2 = L1∩K2;
this is the condition that the Mayer-Vietoris sequence may be
replaced by one in which the subspaces remain fixed (namely at
L1 ∪ L2). The first row works for the dual reason that

(M −K1) ∪ (M − L2) = (M − L1) ∪ (M −K2);

this is the condition that the Mayer-Vietoris sequence may be
replaced by one in which the subapces remain fixed (namely at
(M − L1) ∪ (M − L2)) and the subspaces vary. We have the excision
necessary for the first row because all the subspaces are open,
and for the second because excision always holds for Čech F -
cohomology on compact spaces.

The result follows from the five lemma.

Remark 10.11. Suppose K,L is a finite simplicial pair linearly em-
bedded in a coordinate neighborhood. Then D is an isomorphism.
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Proof. By barycentric subdivision we can suppose that for each
simplex σ of K, σ ∩ L is either 0 or 1 faces of σ. For such pairs
we argue by induction over the number of simplices in K. If this
number is zero the result is trivial; if this number is one it is true
by 10.8 and 10.9. The inductive step is immediate from 10.10.
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Remark 10.12. Suppose K,L is any compact pair in a single coordi-
nate neighbourhood. Then D is an isomorphism.

Proof. Pass to direct limits from finite simplicial neighbourhoods
U, V .

Proof of Theorem 10.6. Each point of K is in the interior of a com-
pact neighbourhood. Hence, K can be covered by finitely many such
subsets. Now argue by induction on the number of such subsets; if
the number is one, 10.12 gives us the result; the inductive step is
immediate from 10.10.

Corollary 10.13 (Poincaré duality). Let M be a compact topological
manifold without boundary, oriented over E∗. Then we have an
isomorphism

D : Fp(M) −→ F d−p(M)

which may be given by
D(y) = ω/y.

Now we observe that we can make E∗(M) act on F∗(M) via the
cap product, and on F ∗(M) via the cup product. We could like to
know that D is a map of modules, up to sign, provided that E

is a commutative ring-spectrum. Actually this is not quite good
enough for what follows; in any case, it helps to keep the details
in order if we assume our spectra are distinct as long as we can.
So I suppose given two module-spectra G,G′ over E, and a pairing
µ : F ∧G −→ G′, where F is not necessarily a module-spectrum over
E. I also assume the pairing is right-linear over E, in the sense that
the following diagram is commutative.

E ∧ F ∧G E ∧G′ G′

F ∧ E ∧G F ∧G G′

1∧µ

c∧1

ν

1

1∧ν µ
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Example. Take E and F to be E; take G and G′ to be F ; and assume
E is a commutative ring-spectrum.

Proposition 10.14. If u ∈ F p(M), the following diagram is commuta-
tive up to a sign (−1)dp.

Gq(M) G′
−p+q(M)

(−1)dp

Gd−q(M) G′d+p−q(M)

u_

D D

u^

That is, D(u _ v) = (−1)dpu ^ (Dv), v ∈ Gq(M).

Proof.
D(u _ v) = ω/(u _ v)

u ^ (Dv) = u ^ (ω/v)

using the pairings from the first and second rows of the diagram.
Now we want the following associativity formulae.

Lemma 10.15. If

ω ∈ Ed(X × Y,A× Y ^ X ×B), u ∈ F p(Y,C), v ∈ Gq(Y,B ^ C)

then
ω/(u _ v) = (ω ^ p∗2u)/v ∈ (E ∧ F ∧G)d+p−q(X,A).

If
u ∈ F p(X,A), ω ∈ Ed(X × Y,B × Y ∪X × C), v ∈ Gq(Y,C)

then
u ^ (ω/v) = (p∗1u ^ ω)/v ∈ (F ∧ E ∧G)p+d−q(X,A ∪B).
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The proof is immediate from the associativity formulae we have,
by naturality.

This gives
D(u _ v) = (ω ^ p∗2u)/v

u ^ (Dv) = p∗1u ^ ω)/v

where we are still using the pairing from the second row of the
diagram for the second formula. However, because the diagram of
pairings is commutative we can write

u ^ (Dv) = (−1)dp(ω ^ p∗1u)/v

using the pairing from the top row of the diagram. Now it is
sufficient to prove

ω ^ p∗1u = ω ^ p∗2.

Consider the maps

p1 : M ×M −→M

p2 : M ×M −→M.

They have the same restriction to ∆; a fortiori they are homeo-
morphic on ∆. By 10.2(ii) there is an open neighbourhood U of ∆ in
M and a homotopy h : U −→M between p1|U and p2|U . Hence, if we
apply

i∗ : F p(M ×M) −→ F p(U),

we have
i∗p∗1u = i∗p∗2u ∈ F p(U).

But by excision,

(E ∧ F )d+p(M ×M,M ×M −∆) −→ (E ∧ F )d+p(U,U −∆)
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is an isomorphism. The classes

ω ^ p∗1, ω ^ p∗2u

restrict to
(i∗ω)^ (i∗p∗1u), (i∗ω)^ (i∗p∗2ω),

that is, they restrict to the same thing. Therefore they were already
equal in

(E ∧ F )d+p(M ×M,M ×M −∆).

This proves 10.14.

Applying 10.13 to the case F = E, we see that there is a class
[M ] ∈ Ed(M) such that

D([M ]) = 1 ∈ E0(M).

This is called the fundamental class of M (corresponding to the
given orientation).

The usual way to present the Poincaré duality isomorphism is to
say that it is the isomorphism

F p(M) −→ Fd−p(M)

given by x 7→ x _ [M ]. Of course the pairing being considered is

F ∧ E c−→ E ∧ F ν−→ F.

Proposition 10.16. This homomorphism is the inverse of D, up to a
sign (−1)dp; it is therefore an isomorphism.

Proof. In 10.14, take E and G to be E; take F and G′ to be F . The
resulting diagram is commutative even without the assumption that
E is a commutative ring-spectrum. Then

D(u _ [M ]) = (−1)dpu ^ D([M ]) = (−1)dpu.
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The relative version of Poincaré duality is called Leftschetz
duality. It asserts that we have the following diagram, commutative
up to sign.

Fp(∂M) Fp(M) Fp(M,∂M) Fp−1(∂M) . . .

± ± ±

F d−1−p(∂M) F d−p(M,∂M) F d−p(M) F d−p(∂M) . . .

∼= ∼=

δ

∼= ∼=

δ

I will omit the proof. It involves the relation between an orienta-
tion on M and one on ∂M , and also manipulation of collars.
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11. Applications in K-Theory

The material presented so far may have seemed rather theoretical.
But topologists also like to do sums and see how things work out
in concrete cases, so I ought to show you some examples. I choose
to present some examples from complex K-theory.

First we recall some facts we need about complex K-theory.
This has a geometric interpretation; a complex vector-bundle ξ

over X represents an element of K0(X). (See section III.) Similarly, a
formal linear combination of bundles, such as ξ−η, gives an element
of K0(X). The Whitney sum of bundles gives addition in K0(X); the
tensor product of bundles gives multiplication in K0(X).

We need to know the K-cohomology of a few simple spaces.
Over BU(1) = CP∞ we have the universal U(1)-bundle, which gives a
linear bundle, i.e., a complex vector bundle with fibres of dimension
1. Call this line bundle ξ. Define x = ξ − 1 ∈ K̃0(CP∞). Use the same
symbol x for the restriction of this class to CPn.

Proposition 11.1 (Atiyah and Todd). K∗(CPn) is free over π∗(K) with
a base consisting of 1, x, x2, ..., xn(xn+1 = 0).
K∗(CP∞) = π∗(K)[[x]].

We need a cohomology operation in K-theory.

Proposition 11.2. There exists a function ψ2 : K0(X) −→ K0(X) such
that

1. Ψ2 is natural,

2. Ψ2 is a homomorphism of rings, and
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3. if η is a line bundle, then Ψ2(η) = η2

Now I have said something about orientations for particular
vector-bundles. If we construct orientations for a whole class of
vector-bundles, we would like them to have various properties.
First, the orientations should be natural for maps of vector-bundles.
Secondly, we would like good behaviour on Whitney sums. Suppose
given two bundles ξ′, ξ′′ over X; form their Whitney sum ξ = ξ′ ⊕ ξ′′.
Let the total spaces be E, E′, E′′ and the complements of the
zero cross-sections E0, E

′
0, E

′′
0 respectively. Then we have maps

p′ : E −→ E′, p′′ : E −→ E′′; over each x ∈ X one projects the sum of
two fibres onto either summand. Then

E0 = ((p′)−1E′
0) ∪ ((p′′)−1E′′

0 ).

Let ω ∈ F ∗(E,E0), ω′ ∈ F ∗(E′, E′
0), ω′′ ∈ F ∗(E′′, E′′

0 ) be the three orien-
tations. We would like them to satisfy

ω = ((p′)∗ω′)^ ((p′′)∗ω′′).

Thirdly, we have a normalisation axiom. Consider the canonical line
bundle ξ over BU(1). I claim its Thom complex MU(1) is equivalent to
BU(1). In fact, we have to consider the associated pair of bundles
with fibres D2 and S1. But S1 ∼= U(1); the associated S1-bundle is
the universal S1-bundle, so it is contractible. Thus, when we form
a Thom complex by collapsing it to a point, we do not change
anything. But D2 is contractible and the associated D2-bundle is
equivalent to BU(1). Hence, MU(1) ∼= BU(1).

Proposition 11.3. There is an orientation ω for each complex vector-
bundle ξ which satisfies the following axioms.

1. Naturality.

2. The axiom on Whitney sums.

3. Normalization; for the universal bundle, ω ∈ K̃0(MU(1)) corre-
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sponds under the equivalence to x ∈ K̃0(BU(1)).

Now we can construct various characteristic classes. The eas-
iest is the Euler class. Suppose we have an orientation ω in F -
cohomology for some class of bundles; let ζ : X −→ E be the zero
cross-section. We define the Euler class of ξ by

χF (ξ) = ζ∗ω.

Its formal properties are: naturality (if ω is natural):

χF (ξ
′ + ξ′′) = χF (ξ

′)χF (ξ
′′),

(if ω satisfies the axiom on Whitney sums); and normalisation (if
ω satisfies the normalisation axiom). For example, in the case of
complex K-theory we have

K(η) = η − 1 where η is a line bundle.

Proposition 11.4. Suppose the bundle in question is the tangent
bundle τ of a compact smooth manifold Mn, orientable for ordinary
homology. Then

χF (τ) = f∗i∗ω

Here i∗ω is the restriction of the orientation ω to one fibre, so that
it lies in

F̃ ∗(Rn,Rn − 0) ∼= F̃ ∗(Sn),

and f :Mn −→ Sn is a map of degree χ(M), this being the ordinary
Euler characteristic for M .

Proof. By a result going back to Hopf, we can construct on M a
field γ of tangent vectors with non-degenerate singularities, so
that the number of singularities, when counted with appropriate
signs, is χ(M). But now the zero section ζ :M −→ E(τ) is homotopic
to a section λ, which crosses the zero-section transversely a total
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ξ(M) times. So ζ∗ω = λ∗ω. But here the contribution comes from
many small discs, each of which constributes ±i∗ω.

Given an orientation, we can also construct a Thom isomorphism.
This allows us to copy Thom’s treatment of the Stiefel-Whitney
classes. We consider the following diagram.

K0(E,E0) K0(E,E0)

K0(X) K0(X)

ϕK ϕK

Ψ2

We define
ρ2(ξ) = ϕ−1

K Ψ2ϕK(1)

Proposition 11.5. ρ2(ξ) ∈ K0(X) is a characteristic class with the
following properties.

1. Naturality

2. ρ2(ξ ⊕ η) = ρ2(ξ)ρ2(η)

3. If η is a line bundle,
2(η) = 1 + η.

Proposition 11.6. ρ2 extends to a function

ρ2 : K0(X) −→ K0

(
X;Z

[
1

2

])
We need the denominators because ρ2(1) = 2, so ρ2(−1) = 1

2 .

Now we are ready to study the following problem. In terms
of our knowledge of K∗(CPn), what is the fundamental class in
K∗(CPn)? If we look at our account of duality, it appears we should
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ask a prior question. Take CPn×CPn and embed CPn in the diagonal
∆. We have an orientation

ω ∈ K0(CPn × CPn,CPn × CPn −∆).

What is its image in K0(CPn×CPn)? Of course we require our answer
in terms of the base we know in K∗(CPn × CPn).

Proposition 11.7. K∗(CPn × CPn) is free over π∗(K) with a base con-
sisting of the products xi1xj2 for 0 ≤ i ≤ n, 0 ≤ j ≤ n, (xn+1

1 = 0, xn+1
2 = 0).

Here x1 and x2 are generators for the two factors – see 11.1.

The difficulty is that the construction of ω refers to a tubular
neighbourhood of the diagonal, and it is not clear how to relate
that to the whole of M ×M .

Lemma 11.8. Consider

j∗ : K∗(CPn × CPn,CP× CPn −∆) −→ K∗(CPn × CPn).

Of k ∈ Im j∗, then x1k = x2k.

See the proof of 10.14.

Lemma 11.9. The subgroups of elements k ∈ K0(CPn × CPn) such
that (x1 − x2)k = 0 has a Z-base p0, p1, ..., pn, where

pr =
∑

i+j=n+r

xi1x
j
2

The proof is a trivial calculation.

Lemma 11.10. We have

j∗ω = 1 · p0 + a1p1 + a2p2 + ...+ anpn, ai ∈ Z

Proof. By Lemmas 11.8 and 11.9 we have

j∗ω =
∑
i

aipi.
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Now consider the restriction of j∗ to the diagonal. p0 restricts to
(n+1)xn; pi restricts to 0 for i > 0. But j∗ω restricts to the Euler class;
χ(CPn) = (n+ 1), and the orientation was chosen so that 1∗i∗ω = xn.
So a0 = 1.

Lemma 11.11. j∗ω satisfies

Ψ2(j∗ω) = (ρ2τ)(j
∗ω)

where ρ2(τ) =
1
2 (2 + x)n+1.

Proof. The first equation is immediate from the definition of ρ2. For
the second

τ + 1 = (n+ 1)ξ,

ρ2(ξ) = 1 + ξ = 2 + x,

ρ2(1) = 2;

so
ρ2(τ) =

1

2
(2 + x)n+1.

Lemma 11.12. j∗ω is uniquely determined by 11.10 and 11.11.

Proof. Suppose as an inductive hypothesis that a1, ..., ai−1 are deter-
mined. Then

Ψ2(aipi) = 2n+iaipi + T1,

where T1 is a sum of terms in pi+1, ..., pn; so

Ψ2(j∗ω) = T2 + 2n+iaipi + T3,

where T2 is a sum of known terms and T3 is a sum of terms in
Pi+1, ..., pn. Similarly, (ρ2τ)(j∗ω) is the sum of known terms, terms in
pi+1, ..., pn and the term 2naipi. So we can find ai by equating the
coefficients of pi.
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Lemma 11.13. We have

2(1 + x)Ψ2(p0) = (2 + x)n+1p0.

Proof. Calculating in K0(CP∞ × CP∞) we have

(x1 − x2)p0 = xn+1
1 − xn+1

2 ,

therefore
Ψ2(x1 − x2)Ψ2p0 = Ψ2xn+1

1 −Ψ2xn+1
2 ,

i.e.,

(2x1 + x21 − 2x2 − x22)Ψ2p0 = (2xj + x21)
n+1 − (2x2 + x22)

n+1

=
∑

i+j=n+1

(n+ 1)!

i!j!
2i(xn+1+j

1 − xn+1+j
2 ).

Dividing by x1 − x2, which is not a zero-divisor in K0(CP∞ ×CP∞), we
have

(2 + x1 + x2)Ψ
2p0 =

∑
i+j=n+1

(n+ 1)!

i!j!
2ipj .

Now restricting to K0(CPn × CP∞), we get

2(1 + x)Ψ2p0 =
∑

i+j=n+1

(n+ 1)!

i!j!
2ixjp0 = (2 + x)n+1p0.

This proves 11.13

It follows that

Ψ2((1 + x)p0) = (1 + x)2Ψ2p0 =
1

2
(2 + x)n+1(1 + x)p0.

We conclude that the solution to our problem is:
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Theorem 11.14.

j∗ω = (1 + x)p0 =
∑
i+j=n

xi1x
j
2 +

∑
i+j=n+1

xi1x
j
2.

As a corollary, we obtain the relation between the fundamental
class [CPn]K in K-homology and our base {xi}.

Theorem 11.15.
〈
xi, [CPn]K

〉
= (−1)n−i.

Proof. Suppose we choose a base {bj} in K0(CPn) such that
〈
xi, bj

〉
=

δij . Then
xi1x

j
2/bk = xi1〈x

j
2, bk〉 = xi1δjk.

Thus

j∗ω/bn =1 + x1,

j∗ω/bn−1 =x1 + x21,

...
j∗ω/b1 =xn−1

1 + xn1 ,

j∗ω/b0 =xn1 .

We require the class [CPn]K such that j∗ω/[CPn]K = 1. Clearly the
answer is

[CPn]K = bn − bn−1 + bn−2 − bn−3 + ...+ (−1)nb0.

This proves the result.

Theorem 11.16. If M is a weakly almost complex manifold then

Index(M) = 〈ρ2(τ), [M ]K〉 .

Proof. The index is a homomorphism of rings from the cobordism
ring of weakly almost complex manifolds, that is, π∗(MU). It is
therefore sufficient to prove the result for a set of generators of
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the Q-algebra π∗(MU)⊗Q. But the complex projective spaces CPn

are such generators. For CPn we have

ρ2(τ) =
1

2
(2 + x)n+1.

So 〈
ρ2(τ), [CPn]K

〈
=

〈
1

2
(2 + x)n+1, [CPn]K

〉
=

1

2

∑
i+j=n+1

(n+ 1)!

i!j!
2i
〈
xj , [CPn]K

〉
=

1

2

[ ∑
i+j=n+1

(
(n+ 1)!

i!j!
2i(−1)n−j

)
+ 1

]
=

1

2

[
(−1)n(2− 1)n+1 + 1

]
=

1

2
[1 + (−1)n]

=

1 (n ≡ 0 (2))

0 (n ≡ 1 (2))

= Im(CPn).
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12. The Steenrod Algebra and its Dual

One knows that in order to perform calculations in ordinary coho-
mology, it is very useful to have operations like Steenrod squares.

In the general case, let E be a spectrum. Then to every element
of E∗(E) we can associate a natural transformation E∗(X) −→ E∗(X)

defined for all spectra X. Namely, given

X
f−→ E and E

g−→ E,

we form X
gf−→ E. This gives a 1 − 1 correspondence between

elements of E∗(E) and such natural transformations (consider the
case X = E).

Now E∗(E) is of course a group; addition in it corresponds to
adding operations

(g1 + g2)f = (g1f) + (g2f).

But E∗(E) is in fact a ring; multiplication in it corresponds to com-
posing operations,

(g1g2)f = g1(g2f)

Example. Suppose given a prime p; take E = HZp. Then A∗ =

(HZp)∗(HZp) is the mod p Steenrod algebra, the algebra of stable
cohomology operations on ordinary chomology with Zp coefficients.
That it is an algebra over Zp is clear from the fact that it contains
Zp.

It is a fact that A∗ is generated by the Steenrod operations. If
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p = 2 these are Steenrod squares

Sqi : Hn(X,Y ;Z2) −→ Hn+i(X,Y ;Z2)

If p > 2 these are the Steenrod powers

P k : Hn(X,Y ;Zp) −→ Hn+2k(p−1)(X,Y ;Zp)

together with the Bockstein boundary

βp : H
n(X,Y ;Zp) −→ Hn+1(X,Y ;Zp)

The fact that A∗ is generated by the Steenrod operations is not
obvious, and should not be taken as a definition; it comes from the
calculation of (HZp)∗(HZp) which is due to Serre for p = 2, and to
Cartan for p > 2.

Actually A∗ has more structure than just the structure of an
algebra. Before going into this, I want to comment on the work of
Milnor [Mil58]. Milnor showed that it is also good to look at the
dual of the Steenrod algebra,

A∗ = (HZp)∗(HZp).

Here A∗ and A∗ are dual graded vector spaces over Zp. Of course,
if we did not know that A∗ is finite-dimensional over Zp in each
degree we would only say

An = HomZp
(An,Zp);

but of course we do know it.

Now HZp is a ring-spectrum; we have a map

µ : HZp ∧HZp −→ HZp
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So we get

A∗ ⊗A∗ = (HZp)∗(HZp)⊗ (HZp)∗(HZp)
∧−→ (HZp)∗(HZp ∧HZp)
µ∗−→ (HZp)∗(HZp) = A∗.

So A∗ also is an algebra.

The dual of the product map ϕ : A∗ ⊗ A∗ −→ A∗ is of course a
coproduct map ψ = ϕ∗ : A∗ −→ A∗ ⊗ A∗. The interpretation of this
coproduct is as follows. Suppose

ψ(a) =
∑
i

a′i ⊗ a′′i

Then

a(x Z y) =
∑
i

(−1)|a
′′
i ||x|(a′ix) Z (a′′i y) (Cartan formula).

There exists one and only one element
∑
i

a′i ⊗ a′′i such that this

formula is true for all x and y. Of course the formula is then true
for x×̄y and x ^ y. For example,

Sqk(xy) =
∑
i+j=k

(Sqix)(Sqiy)

so that
ψSqk =

∑
i+j=k

Sqi ⊗ Sqj .

It can easily be shown that in this way A∗ becomes a Hopf algebra.
Dually, A∗ becomes a Hopf coalgebra; its coproduct is the dual of
the composition product in A∗.

More generally, let X be a space such that (HZp)∗(X) is finite-
dimensional in each degree. Then (HZp)∗(X) is a module over A∗.
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The action is given by a map:

A∗ ⊗ (HZp)∗(X) −→ (HZp)∗(X).

The dual of this map is a coaction map:

(HZp)∗(X) −→ A∗ ⊗ (HZp)∗(X).

Thus (HZp)∗(X) becomes a comodule over the coalgebra A∗. The
assumption that (HZp)∗(X) is locally finite-dimensional is in fact
unnecessary, since the coaction map can be defined directly, as will
be done below in a more general setting.

It turns out that the structure of A∗ is very much easier to
describe than the structure of A∗. One reason is that the product
in A∗ is commutative, whereas that in A∗ is not (Sq1Sq2 6= Sq2Sq1).

We give a description for the case p = 2. We start from RP∞,
which is an Eilenberg-MacLane space of type (Z2, 1). We have
(HZ2)

∗
(RP∞) = Z2[x], a polynomial algebra on one generator x of

dimension 1 (the fundamental class). We may take in (HZ2)∗(RP∞)

a base of elements bi ∈ (HZ2)i(RP
∞) such that

〈xi, bj〉 = δij .

Since RP∞ is term 1 in the HZ2 spectrum, bj yields some element in
(HZ2)j−1(HZ2) = Aj−1. It can easily be shown that this element is
zero unless j is a power of 2. We define ξn to be the image of b2n
in A2n−1. The element ξ0 turns out to be the unit 1 ∈ A0.

Theorem 12.1 (Serre-Milnor). If p = 2,

A∗ = Z2[ξ1, ξ2, . . . ].

The proof is non-trivial, and is omitted here.
The construction of ξi yields the following description of ξi as a

linear function on A∗.
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Proposition 12.2. The action of a ∈ A∗ on (HZ2)
1
(RP∞) is given by

ax =
∑
i≥0

〈a, ξi〉x2
i

.

For x is a morphism and the suspension spectrum of RP∞ to HZ2

of degree −1, and

〈ax, bj〉 = 〈x∗a, bj〉 = 〈a, x∗bj〉 =

0 if j 6= 2r for some r

〈a, ξr〉 if j = 2r
.

From this it is rather easy to work out the effect of a on x2, x4,
etc. We get:
Proposition 12.3.

a
(
x2

i
)
=
∑
j≥0

〈a, ξ2
i

j 〉x2
i+j

It now becomes easy to work out the effect of a composite ba

on x, which gives us 〈ba, ξi〉 and therefore ψξi.
Proposition 12.4.

ψξk =
∑
i+j=k

ξ2
i

j ⊗ ξi

We would now like to carry over some of this work to generalised
homology theories. Let E be a ring-spectrum with multiplication
µ. Then obviously the appropriate generalisation of A∗ is E∗(E). It
turns out that this works quite well even in various cases where
E∗(E) works horribly badly. However, one needs an assumption and
one must give a warning. The warning is that in the classical case A∗

is an algebra over Zp, but in the generalised case E∗(E) is a bimodule
over π∗(E). There are two actions of π∗(E) on E∗(E), and one has to
remember that they are different. The left action π∗(E)⊗ E∗(E) −→
E∗(E) is obtained by using the morphism E∧E∧E µ∧1−→ E∧E; the right
action E∗(E) ⊗ π∗(E) −→ E∗(E) is obtained by using the morphism
E ∧ E ∧ E 1∧µ−→ E ∧ E.

The assumption we have to make is that E∗(E) is flat as a right
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module over π∗(E). I say “as a right module”, but if E is commutative,
which is the usual case it is equivalent to say that E∗(E) is flat as a
left module; this is seen by using c : E ∧ E −→ E ∧ E to interchange
the two sides.

The assumption is satisfied for the following cases:
E = KO,K,MO,MU,MSp, S, and HZp. See [Ada69], Lemma 28, p. 45.

With this assumption, we have the following lemma. Consider
the morphism

(E ∧ E) ∧ (E ∧X)
1∧µ∧1−−−−→ E ∧ E ∧X.

It induces a product map

E∗(E)⊗π∗(E) E∗(X) −→ [S,E ∧ E ∧X]∗

Lemma 12.5. The product map is an isomorphism.

Proof. 1. If X = SP , the result is trivial.

2. If we have a cofibering:

X1 −→ X2 −→ X3 −→ X4 −→ X5

and the result is true for X1, X2, X4, and X5, then it is true for
X3 (by the 5-lemma).

3. The result is true if X is any finite spectrum, by induction on
the number of cells, using (i) and (ii).

4. The result is true if X is any spectrum, by passing to direct
limits.

We can now define the coaction map we want. Consider the
morphism

E ∧X ' E ∧ S ∧X 1∧i∧1−−−−→ E ∧ E ∧X.
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This induces
E∗(X)

(1∧i∧1)∗−−−−−−→ [S,E ∧ E ∧X]∗.

Composing this with the inverse of the isomorphism in Lemma 12.5,
we obtain a homomorphism

ψX : E∗(X) −→ E∗(E)⊗π∗(E) E∗(X).

Specialising to the case X = E, we obtain the homomorphism:

ψE : E∗(X) −→ E∗(E)⊗π∗(E) E∗(E).

We also define a counit map

ε : E∗(E) −→ π∗(E),

which is simply the homomorphism induced by the product morphism

µ : E ∧ E −→ E.

Theorem 12.6. 1. E∗(E) is a coalgebra with ψE as a coproduct map
and ε as a counit map.

2. E∗(X) is a comodule over E∗(E) with ψX as the coaction map.

3. If E = HZp, then ψX , ψE, and ε become the structure maps
classically considered.

To give a complete proof of 12.6, one has to introduce a few
more structure maps, which is very easy, and check their properties
by diagram chasing. See [Ada69] chapter 3.
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13. A Universal Coefficient Theorem

The theme for the next part of the course is the following. Let E
be a fixed ring-spectrum. Suppose given E∗(X) and E∗(Y ); what can
be said about [X,Y ]∗? In other words, given homological information,
what can we say about homotopy?

I propose to treat this problem under a restrictive hypothesis;
that is, I will assume that E∗(X) is projective over π∗(E). I do know
how to avoid this hypothesis, but it involves extra work; one has to
resolve both X and Y and mix the resolutions geometrically. The
present hypothesis is sufficient for the applications to be given here.
To see that the hypothesis is reasonable, consider two examples.

Example. (i) Let X = S. Initially most people need to compute
stable homotopy, that is, [S, Y ]∗. Of course E∗(S) is projective
over π∗(E) for any ring-spectrum E; in fact it is free on one
generator.

(ii) Let E = HZp. In this case π∗(E) is the field Zp, so any module
over it is projective; in particular, (HZp)∗(X) is projective over
Zp for any X.

All the same, the correct level of generality will probably turn
out to be the maximum level, so ultimately we will probably want
to go beyond the case in which E∗(X) is projective over π∗(E).

To handle even this case, we need some results of the general
type of universal coefficient theorems. The reader interested only
in the case X = S may without loss omit this section.

In the situation of the universal coefficient theorem, E is the
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ring-spectrum and F is a module-spectrum over E. E∗(X) is given
and the aim is to find information about F∗(X) and F ∗(X).

Lemma 13.1. Let E be a ring-spectrum, F a module-spectrum over
E and X any spectrum. If E∗(X) = 0, then F∗(X) = 0 and F ∗(X) = 0.

Proof. E∗(X) = 0 is equivalent to π∗(E ∧ X) = 0, i.e., E ∧ X is con-
tractible. Now any morphism

S
f−→ F ∧X

can be factored as

S ∧ F ∧X E ∧ F ∧X

S F ∧X

i∧1∧1

ν∧11∧f

f

and of course E ∧ F ∧ X ∼= F ∧ (E ∧ X), so it is contractible; hence
f = 0.

Similarly, any morphism X
f−→ F can be factored as

E ∧X E ∧ F

X F

1∧f

νi∧1

f

so f = 0.

Now observe that for any element x∗ ∈ F ∗(X) we get a homo-
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morphism
E∗(X) −→ π∗(F ).

One way to say it is that this map is

x∗ 7→ 〈x∗, x∗〉

where we use the pairing

F ∧ E c−→ E ∧ F ν−→ F.

Another way to say it is that if X x∗

−→ F , we form

E∗(X)
(x∗)∗−−−→ E∗(F )

ν∗−→ π∗(F ).

In any case, we get a homomorphism

F ∗(X) −→ Homπ∗(E)(E∗(X), π∗(F )).

We will be interested in spectra X which satisfy the following
condition.
Condition 13.2. F ∗(X) −→ Hom∗

π∗(E)(E∗(X), π∗(F )) is an isomorphism
for all module-spectra F over E.
Condition 13.3. E is the direct limit of finite spectra Eα for which
E∗(DEα) is projective over π∗(E) and DEα satisfies 13.2.

Here DEα means the S-dual of Eα.
Proposition 13.4. Condition 13.3 is satisfied by the following spectra
E:

S,HZp,MO,MU,MSp,K,KO

For the moment I postpone the proof of this proposition; it will
be outlined below. Evidently one needs a lemma to say that DEα
satisfies 13.2, but one can impose very a restrictive condition on
DEα.

The result we want is as follows.
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Proposition 13.5. Suppose E satisfies Condition 13.3 (e.g., E may be
one of the examples listed in 13.4). Suppose E∗(X) is projective
over π∗(E). Then 13.2 holds, i.e.,

F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F ))

is an isomorphism for all module-spectra F over E.

This is a special case of a more general result.

Theorem 13.6. Suppose E satisfies Condition 13.3. Then there is a
spectral sequence

Extp,∗π∗(E)(E∗(X), π∗(F )) =⇒
p

F ∗(X)

whose edge-homomorphism is the homomorphism

F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F ))

considered above, and convergent in the sense that Theorem 8.2
holds.

Proof of 13.5 from 13.6

Proof. If E∗(X) is projective over π∗(E), then

Extp,∗π∗(E)(E∗(X), π∗(E))

is zero for p > 0. Hence, the spectral sequence collapses to its
edge-homomorphism. Note that we have enough convergence;
condition (ii) of Theorem 8.2 is trivially satisfied, so (i) and (iii) of
8.2 hold.

We now prove intermediate results necessary to prove Theorem
13.6.

The force of Condition 13.3 is that it allows us to make res-
olutions of the sort used by Atiyah in his paper on a Künneth
theorem for K-theory. Recall that E is the direct limit of finite
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spectra Eα. The injection Eα −→ E corresponds to a cohomology
class iα ∈ E0(Eα) or to a homology class gα ∈ E0(DEα).

Lemma 13.7. For any spectrum X and any class e ∈ Ep(X) there is
an Eα and a morphism f : DEα −→ X of degree p such that e = f∗(gα).

Proof. Take a class e ∈ Ep(X). There there is a finite subspectrum
X ′ i
⊂ X and a class e′ ∈ Ep(X ′) such that i∗(E′) = e. We may interpret

e′ as a morphism DX ′ −→ E of degree p; here I need the fact (not
proven in §III) that D2Y ∼= Y . By assumption, this morphism factors
through some Eα, so that

DX ′ E

Eα

ϕ iα

and ϕ∗iα = e′ considered as an element of E−p(DX ′). Dualising back,

(Dϕ)∗gα = e′ ∈ Ep(X ′).

Take f to be

DEα X ′ X
Dϕ i

.

Lemma 13.8. For any spectrum X there exists a spectrum of the
form

W =
∨
β

Sp(β) ∧DEα(β)

and a morphism g : W −→ X (of degree 0) such that

g∗ : E∗(W ) −→ E∗(X)

is an epimorphism.
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Proof. Immediate from 13.7, by allowing the class e in 13.7 to run
over a set of generators for E∗(X).

Note that W =
∨
β S

p(β) ∧ DEα(β) inherits from its factors the
properties that E∗(W ) is projective and 13.2 holds, that is

F ∗(W ) −→ Hom∗
π∗(E)(E∗(W ), π∗(F ))

is an isomorphism for all module-spectra F over E.
Proof of 13.6 We will construct a resolution of the following

form, with the properties listed below.

X = X0 X1 X2 X3 . . .

W0 W1 W2 . . .

x1 x2x0

(i) The triangles

Xr Xr+1

Wr

xr

are cofibre triangles.
(ii) For each r,

(xr)∗ : E∗(Xr) −→ E∗(Xr+1)

is zero.
(iii) For each r, E∗(Wr) is projective over π∗(E).
(iv) For each r, the map

F ∗(Wr) −→ Hom∗
π∗(E)(E∗(Wr), π∗(F ))

is an isomorphism.
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Let X0 = X. Assume Xr is constructed. By 13.8, there exists a
spectrum Wr and a morphism

gr : Wr −→ Xr

as described in 13.8. Form a cofibering

Wr
gr−→ Xr −→ Xr+1 −→Wr

where the last morphism has degree −1. Without any essential
loss of generality we may suppose by using a telescope that
X0 ⊂ X1 ⊂ X2 ⊂ . . . ; let X∞ be their union. Since

E∗(Wr) −→ E∗(Xr)

is an epimorphism
E∗(Xr) −→ E∗(Xr+1)

is zero. Therefore

E∗(X∞) = Lim
−→
r

E∗(Xr) = 0

By Lemma 13.1, we have F ∗(X∞) = 0.

By applying F ∗, we get a spectral sequence, convergent in the
sense that Theorem 8.2 holds. It is convergent to F ∗(X∞, X0) ∼=
F ∗(X0) and has E1-term

Ep,∗1 = F ∗(Wp).

Now we have arranged that

F ∗(Wr) = Hom∗
π∗(E)(E∗(Wr), π∗(F ))

and
0←− E∗(X)←− E∗(W0)←− E∗(W1)←− E∗(W2) . . .
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is a resolution of E∗(X) by projective modules over π∗(E). Moreover,
the boundary d1 in the spectral sequence is that induced by the
boundary in this resolution. Therefore

Ep,∗2 = Extp,∗π∗(E)(E∗(X), π∗(F )),

as claimed.
It can be checked that the edge-homomorphism is the obvious

map.
Now we start work on the proof of Proposition 13.4. We need

the following lemma:

Lemma 13.9. Suppose

(i) X is a finite spectrum,

(ii) the spectral sequence

H∗(X;π∗(E)) −→ E∗(X)

is trivial, i.e., it’s differentials are zero, and

(iii) for each p, Hp(X;π∗(E)) is projective as a left module over
π∗(E).

Then E∗(X) is projective and X satisfies Condition 13.2, i.e.,

F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F ))

is an isomorphism for all module-spectra F over E.
(The condition that X is finite is not essential, but is satisfied in

the applications.)
In order to apply Lemma 13.9 to DEα, we simply have to check

that

(i) the spectral sequence

H∗(Eα;π∗(E)) −→ E∗(Eα)
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is trivial, and

(ii) for each p, Hp(Eα;π∗(E)) is projective over π∗(E).

Proof. (from [Ada69], Lecture 1, Prop 17). Let Erp,q(0) and Ep,qr (2) be
respectively the spectral sequences

H∗(X;π∗(E)) =⇒ E∗(X)

H∗(X;π∗(F )) =⇒ F ∗(X).

It follows immediately from the assumptions on the spectral se-
quence E∗

∗∗(0) that E∗(X) is projective.
The Kronecker product yields a homomorphism

Ep,∗r (2) −→ Homπ∗(E)(E
r
p∗(0), π∗(F )).

This homomorphism sends dr into (dr)
∗. (This assertion needs

detailed proof from the definitions of the spectral sequences, but
it can be done using only formal properties of the product and the
fact that Hom is left exact.) Because of the assumption that the
spectral sequence E∗

∗∗(0) is trivial, which is used here. the groups
Homπ∗(E)(E

r
p∗(0), π∗(F )), equipped with the boundaries (dr)

∗ (which
happened to be zero) form a (trivial) spectral sequence Ep,qr (4). We
now have a map of spectral sequences

Ep,qr (2) −→ Ep,qr (4).

For r = 2 it becomes the obvious map

Hp(X;π∗(F )) −→ Hom∗
π∗(E)(Hp(X;π∗(E)), π∗(F )).

Since we are assuming Hp(X;π∗(E)) is projective over π∗(E), a the-
orem on ordinary homology shows that for r = 2 the map is an
isomorphism. Therefore it is an isomorphism for all r, and the
spectral sequence Ep,qr (2) is trivial. Since X is a finite spectrum, it
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is easy to deduce that the map

Ep,∗∞ (2) −→ Hom∗
π∗(E)(E

∞
p,∗(0), π∗(F ))

is an isomorphism, because the limit is attained for some finite
value of r.

Let us now introduce notation for the filtration quotient groups,
say

Gp∗(0) = Im(E∗(X
p) −→ E∗(X))

Gp∗(2) = Coim(F ∗(X) −→ F ∗(Xp)).

The Kronnecker product yields a homomorphism

Gp∗(2) −→ Hom∗
π∗(E)(Gp∗(0), π∗(F )).

(Again, the verification uses formal properties of the product and
the fact that Hom is left exact.) Consider the following diagram.

0 0

Ep∗∞ (2) Hom∗
π∗(E)(E

∞
p∗(0), π∗(F ))

Gp∗(2) Hom∗
π∗(E)(Gp∗(0), π∗(F ))

Gp−1∗(2) Hom∗
π∗(E)(Gp−1∗(0), π∗(F ))

0 0

The second column is exact because E∞
p∗(0) is projective. Induction
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over p, using the short five lemma, now shows that

Gp∗(2) −→ Hom∗
π∗(E)(Gp∗(0), π∗(F ))

is an isomorphism. Since X is a finite spectrum, in a finite number
of steps we obtain the result that

F ∗(X) −→ Homπ∗(E)(E∗(X), π∗(F ))

is an isomorphism.

We now sketch the proof of 13.4 (See [Ada69]. pp. 29-30)

(i) E = S, the sphere spectrum. Take Eα = S; then 13.3 may be
verified directly.

(ii) E = HZp. The hypotheses of 13.9 are satisfied by X, and it
is sufficient to let Eα run over any system of finite spectra
whose limit is HZp.

(iii) E = MO. It is well known that

MO ∼=
∨
i

Sn(i)HZ2
∼=
∏
i

Sn(i)HZ2.

The hypotheses of 13.9 are satisfied by any X, and it is suffi-
cient to let Eα run over any system of finite spectra whose
limit is MO.

(iv) E = MU. We have Hp(MU;πq(MU)) = 0 unless p and q are even.
Therefore the spectral sequence

H∗(MU;π∗(MU)) =⇒ MU∗(MU)

is trivial. Again, Hp(MU;π∗(MU)) is free over π∗(MU). It is suf-
ficient to let Eα run overt a system of finite spectra which
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approximate MU in the sense that

i∗ : Hp(Eα) −→ Hp(MU)

is an isomorphism for p ≤ n, while Hp(Eα) = 0 for p > n.

(v) E = MSp. A simple adaptation of the method of S.P. Novikov
[Nov67b] [Nov67a] from the unitary to the symplectic case
shows that the spectral sequence

H∗(MSp;π∗(MSp)) =⇒ MSp∗(MSp)

is trivial. Again, Hp(MSp;π∗(MSp)) is free over π∗(MSp). The
rest of the argument is as in (iv).

(vi) E = K. Recall that in the spectrum K every even term is the
space BU. We have

Hp(BU;πq(K)) = 0 unless p and q are even.

Therefore the spectral sequence

H∗(BU;π∗(K) =⇒ K∗(BU)

is trivial. Again, Hp(BU;π∗(K)) is free over π∗(K). It is sufficient
to let Eα run over a system of finite spectra which approximate,
as in (iv) the difference space BU of the spectrum K.

(vii) E = KO. Recall that in the spectrum KO, every eighth term is
the space BSp. I claim that the spectral sequence

H∗(BSp;π∗(KO)) =⇒ KO∗(BSp)

is trivial. In fact, for each class h ∈ H8p(BSp(m)) we can con-
struct a real representation of Sp(m) whose Chern character
begins with h; for each class h ∈ H8p+4(BSp(m)) we can con-
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struct a sympletctic representation of Sp(m) whose Chern
character begins with h. The rest of the argument is as for
(vi).

369



Chapter 13: A Universal Coefficient Theorem

370



14. A Category of Fractions

We recall that our general object in these sections is to answer
the following question. Suppose given E∗(X) and E∗(Y ). What can
we say about [X,Y ]∗?

Now it is clear that we cannot say everything. For example,
suppose E = HZ2; given (HZ2)∗(X) and (HZ2)∗(Y ) there is no hope
of finding out anything about the odd torsion in [X,Y ]∗.

More generally, we will say that a morphism f : X −→ X ′ is an
E-equivalent if the induced homomorphism

f : E∗(X) −→ E∗(X
′)

is an isomorphism. This can happen without f being an equivalence;
for example, take E = HZ2, X = HZ3, X ′ = pt. Then it is clear that
methods based on E-cohomology cannot tell X and X ′ apart.

It therefore seems best to introduce a new category in which
one does not attempt to tell X and X ′ apart. In technical terms I
have to start from the stable category and define a category of
fractions.

(Added later.) I owe to A.K. Bousfield the remark that the
procedure below involves very serious set-theoretical difficulties.
Therefore it will be best to interpret this section not as a set of
theorems, but as a programme, that is, as a guide to what one
might wish to prove.

Let C be the stable category already constructed.

Theorem 14.1. There exists a category F , called the category of
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fractions, and a functor
T : C −→ F

with the following properties.

(i) if e : X −→ Y is an E-equivalence in C, then T (e) is an actual
equivalence in F , i.e., it has an inverse T (e)−1.

(ii) T is an universal with respect this property; given a category C

and a functor U : C −→ G such that e an E-equivalence implies
U(e) is an equivalence in G, then there exists one and only
functor V : F −→ G such that U = V T .

C G

F

T

U
V

(iii) The objects of F are the same as the objects of C, and T is
the identity on objects.

(iv) Every morphism in F from X to Y can be written T (e)−1T (f),
where f : X −→ Y ′ and e : Y −→ Y ′ are in C and e is an E-
equivalence.

Y ′

X Y

f
e
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We have T (e1)
−1T(f1) = T (e2)

−1T (f2) in F if and only if there
exists a diagram of the following form in C.

Y1

X Y Y ′

Y2

f1

f2

e1 e′1

e′2e2

(v) Every morphism in F from X to Y can be written T (f)T (e)−1,
where f : X ′ −→ Y and e : X ′ −→ X are in C and e is an E-
equivalence.

X

Y

X ′

e

f

We have T (f1)T (e1)
−1 = T (f2)T (e2)

−1 in F if and only if there
exists a diagram of the following form in C.

X1

X ′ X Y

X2

e′1

e′2

e1

e2

f1

f2
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If one takes only parts (i), (ii), and (iii) the theorem is almost
empty; such a category of fractions exists under negligible as-
sumptions. (Added later: unfortunately there is no reason why
the result should be a small category.) Our object, of course, is
construct F in such a way that we obtain a good hold on it. Parts
(iv) and (v) essentially describe two ways of constructing F . We
shall write [X,Y ]

E
∗ to mean the morphisms from X to Y in category

F . Beside constructing F , we must also give results calculating
[X,Y ]

E
∗ in various cases which arise in the applications. When we

construct the Adams spectral sequence, based on the homology
theory E∗ we will try to prove that it converges to [X,Y ]

E
∗ .

Before proving 14.1, I will finish stating some results which help
to show what F is.

We propose to get a hold on [X,Y ]
E by showing that if we keep Y

fixed and vary X, then we get a functor of X which is representable
in C. Then we give means for recognizing the representing object,
and finally we construct the representing object in an elementary
way in special cases.

Proposition 14.2. The following conditions on Y are equivalent.

(i) f : [X,Y ]∗ −→ [X,Y ]
E
∗ is an isomorphism for all X.

(ii) if E∗(X) = 0, then [X,Y ]∗ = 0.

if these equivalent conditions hold, we say that Y is E-complete.
This term can be justified by inspecting the special case E = HZP ,
which will be considered later.

As an example, we give:

Corollary 14.3. If Y is an E-module spectrum, then Y is E-complete
and

T : [X,Y ]∗ −→ [X,Y ]
E
∗ is an isomorphism.

Proof. (From 14.2). Condition (ii) of 14.2 holds by 13.1.
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Theorem 14.4. (i) For any spectrum Y there is an E-equivalence
e : Y −→ Z such that Z is E-complete.

(ii) Such an E-equivalence is universal. That is, given any other
E-equivalence e′ : Y −→ Z ′, there exists a unique f : Z ′ −→ Z

such that fe′ = e.

Z ′

Y

Z

e′

e

f

(iii) Therefore, Z is unique up to canonical equivalence.

(iv) For such a Z we have an isomorphism

[X,Z]∗ −→ [X,Y ]E∗ .

given by f 7→ T (e)−1T (f).

Notes. (iii) follows immediately from (ii). Since Z is defined up
to canonical equivalence by Y , we may write it as a function of Y ;
we choose the notation Z = Y E, so that

[
X,Y E

]
∗ = [X,Y ]

E
∗ .

We will call Y E the E-completion of Y . Again, the term can be
justified by considering the special case E = HZp. Note that (Y E)E =

Y E, so that the term “completion” is justified.
We say that X is connective if there exists n0 ∈ Z such that πr(X) = 0

for r < n0.

Proposition 14.5. Suppose that E is a commutative ring-spectrum
and πr(E) = 0 for r < 0; suppose also that Y is connective. Then
[X,Y ]

E
∗ depends only on the ring π0(E).
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For example, [X,Y ]
E
∗ is the same whether E = MUQp or E = buQp.

The idea is that under these hypotheses, the difference between
[X,Y ]

E
∗ and [X,Y ]∗ is essentially arithmetical.

For the next result, we assume that E is a commutative ring-
spectrum, that πr(E) = 0 for r < 0, and Y is connective.

Theorem 14.6. (i) Suppose π0(E) is a subring R of the rationals.
Then

Y E = Y R.

(ii) Suppose π0(E) = Zm and πr(Y ) is finitely generated for all r.
Then,

Y E = Y Im,

where Im is the ring of m-adic integers, lim←−−
r

Zmr .

(iii) Suppose π0(E) = Zm and the identity morphism 1: Y −→ Y

satisfies me · 1 = 0. Then

Y E = Y.

Example. (ia) Suppose π0(E) = Z, then Y E = Y and T : [X,Y ]∗ −→

[X,Y ]
E
∗ is an isomorphism.

(ib) Suppose π0(E) is a subring R of the rationals and X is a finite
spectrum. Then

[X,Y ]
E
∗ = [X,Y Im]∗ = [X,Y ]∗ ⊗R by 6.9

(iia) Suppose π0(E) = Zm, πr(Y ) is finitely generated for all r and X

is a finite spectrum. Then

[X,Y ]
E
∗ = [X,Y Im]∗ = [X,Y ]∗ ⊗ Im by 6.9
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(iib) Take m to be a prime p, and take X = Y = S. Then

[S, S]
E
r =


0 (r < 0)

1p (r = 0)

the p-component of of [S, S]r if r > 0.

It is very plausible that the classical Adams spectral sequence
should converge to these groups.

Warnings. (i) We have assumed that πr(E) = 0 for r < 0. If we do
not have this, the relationship between [X,Y ]∗ and [X,Y ]

E
∗ may

be much more distant. For example, take E = K; it can be
shown that [S, S]

K
r 6= 0 for infinitely many negative values of r.

(ii) Consider parts (ii) and (iii) of the theorem, in which π0(E) = Zm.
Results of the form given do require some assumption on Y

beyond the fact it is connective. For example, take Y = S(Q/Z)
It can be shown that

[S, Y ]1 = 0 and so [S, Y ]1 ⊗ Im = 0, but [S, Y ]
E
I = Im.

If one takes m to be a prime p and checks the behavior of
the classical Adams spectral sequence based on E = HZp, one
sees that it converges to [S, Y ]

E
1 , as indeed it must do by the

theorem so be proved in the next section. So something which
was previously a counterexample can now be used as evidence
to support the theory.

The proof of Theorem 14.1 requires two lemmas.

Lemma 14.7. (i) Suppose given a diagram
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X X ′

Y

f

e

in which e is an E-equivalence. Then we can complete it to a
commutative diagram

X X ′

Y Y ′

e

f

e′

g

in which e′ is an E-equivalence. If f is also an E-equivalence,
so is g.

(ii) Suppose given a diagram

X ′

Y Y ′
g

e′

in which e′ is an E-equivalence. Then we can complete it to a
commutative diagram
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X X ′

Y Y ′

e

f

e′

g

in which e is an E-equivalence. If g is also an E-equivalence, so
is f.

Proof. (i) Let W be the fibre of X −→ X ′, and let Y ′ be the cofibre
of W −→ Y . The morphism e′ is an E-equivalence by the five
lemma.

(ii) Part (ii) is similar.

Lemma 14.8. (i) Suppose given

X ′ e−→ X
f

⇒
g
Y

Where e′ is an E-equivalence and fe=ge. Then we can construct

X
f

⇒
g
Y

e′−→ Y ′

with e′ an E-equivalence and e′f = e′g.

(ii) Suppose given

X
f

⇒
g
Y

e′−→ Y ′

Where e′ is an E-equivalence and e’f=e’g. Then we can con-
struct

X ′ e−→ X
f

⇒
g
Y
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with e an E-equivalence and fe = ge.

Proof. The proof is a manipulation with cofibering using Veridier’s
axiom 6.12 and is left as an exercise.

Now, to contrusct F, let the object of F be the same as the objects
of C. To define morphism in F, say [X,Y ]

E, one makes a preliminary
construction. Fix Y, and consider the category in which the objects
are E-equivalences. Y e′−→ Y ′ and morphisms are diagrams of the
following form.

Y ′

Y

Y ′′

e′

e′′

Then 14.7 and 14.8 say that we get a directed category in the sense
of Grothendieck. That is, given two objects A and B, there exists

A

C;

B

given two morphisms A
f

⇒
g
B, there exists A

f

⇒
g
B

h−→ C where
hf = hg.

We define [X,Y ]
E
∗ = lim

−→
[X,Y ′]∗, where the direct limit takes place
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over this desired category. An element of lim
−→

[X,Y ′] is an equiva-

lence class of diagrams

Y ′

X Y

f ′

e′

in which e′ is an E-equivalence. Two such diagrams are equiva-
lent if and only if there exists a diagram of the following form.

Y1

X Y Y ′

Y2

f1

f2

e1 e′1

e′2e2

This is essentially the construction presented in (iv). To check that
this is an equivalence relation one uses 14.7 (i).

To define composition in the category, suppose given the two
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diagrams shown below with undotted arrows.

Z ′′

Y ′ Y ′

X Y Z

f1

e1

f2

e2

Add the dotted arrows by 14.7 i. We get a diagram represent-
ing a morphism from X to Z in the new category. We check that
the equivalence class of this diagram depends only on the equiv-
alence classes of the factors, not on the choice of parallelogram
(use 14.7 (i), 14.8 (i)).

We check the associativity law and the existence of identity
morphisms. We now have a category F . We define T : C −→ F as
follows: if f : X −→ Y , let T (f) be the class of the following diagram.

Y

X Y

f
1

One checks that this is a functor, It is now almost trivial to verify
properties (i)-(iv)) of the theorem.

On the other hand, precisely the dual construction works using
14.7 (ii) and 14.8 (ii) to show that one can construct F so as to have
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properties (i)-(iii) and (v). But of course F is characterized by (i)-(iii),
so it must have both properties (iv) and (v).

Now we turn to Proposition 14.2. First, suppose E∗(X) = 0. Then it
is clear that the morphism pt. −→ X is cofinal among E-equivalences.
e′ : X ′ −→ X. So we have [X,Y ]∗ = 0. If we assume that T : [X,Y ]∗ −→

[X,Y ]
E
∗ = 0 is an isomorphism, then clearly we deduce that [X,Y ]∗ = 0.

So condition (i) of 14.2 implies condition (ii). The proof that(ii) implies
(i) will be given together with the proof of part of Theorem 14.4 to
be considered below. This requires three lemmas, numbered 14.9,
14.10, and 14.11.

Lemma 14.9. Let A −→ B −→ C be a cofibering. Then

[A, Y ]
E
∗ ←− [B, Y ]

E
∗ ←− [C, Y ]

E
∗

and
[X,A]

E
∗ −→ [X,B]

E
∗ −→ [X,C]

E
∗

are exact.

Proof. For any Y ′, the sequence

[A, Y ′]←− [B, Y ′]∗ ←− [C, Y ′]∗

is exact. The given sequence is obtained from such sequences by
passing to a direct limit. But direct limits over a directed category
preserve exactness. The same form of argument holds for the
second sequence, using the fact that we can also define [X,Y ]

E
∗ by

taking a direct limit of [X ′, Y ]∗ as we vary X ′.

Lemma 14.10. The canonical map[∨
α

Xα, Y

]E
∗
−→

∏
a

[Xα, Y ]E∗

is an isomorphism.
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Proof. (i) Suppose given an element in
∏
a [Xa, Y ]

E
; each of its

components is represented by a diagram

Xα Y

X ′
α

eα

fα

Then we can form the diagram

∨
αXα Y

∨
αX

′
α

∨
α eα

{fα}

This gives an element of [
∨
αXα, Y ]

E
∗ which maps the required

way.

(ii) Suppose given an element of [
∨
αXα, Y ]

E
∗ , say represented by

∨
αXα Y

W ′

e

f

Suppose it restricts to zero in each [Xα, Y ]
E
∗ . This says that for

each α we have a commutative diagram of the following form;
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Xα

∨
αXα Y

Xα W ′

X ′
α

1

eα

iα

jα

f
e

and moreover, fjα = 0. Then consider the following diagram.

∨
αXα Y

W ′

∨
αX

′
α

∨
α eα

e

{jα}

f

This shows that the diagram

∨
αXα Y

W ′

e f
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gives the zero element of [
∨
αXα, Y ]

E
∗ .

Now we start the proof of 14.4. Consider [X,Y ]
E
∗ . Hold Y fixed

and vary X. By 14.9 and 14.10, we have the data for E. H. Brown’s
Theorem, and we deduce that [X,Y ]

E
∗ is a representable functor of

X. That is, there is a spectrum Z and a natural transformation

U : [X,Y ]∗
∼=−→ [X,Y ]

E
∗

Here Z satisfies condition (ii) of 14.2. For suppose E∗(X) = 0; then
[X,Y ]

E
∗ = 0, as we have remarked; so [X,Y ]∗ = 0, since U is an

isomorphism.

Now consider 1 ∈ [Z,Z] and U(1) ∈ [Z, Y ]
E . the latter is represented

by this diagram

Y ′

Z Y

u

e′

Extend this to a cofibre sequence
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Y ′

Z Y

X

f

u

e′

Then by naturality U(f) = f∗U(1) = 0. Since U is a monomorphism,
f = 0. Therefore the morphism Z

u−→ Y ′ is equivalent to the injection
Z −→ Z ∨Susp(X); we can replace the representative for U(1) by the
following diagram.

Z ∨ Susp(X)

Z Y

i e′′

Now consider 1 ∈ [Y, Y ]
E
∗ ; there exists ε : Y −→ Z such that

U(ε) = 1 ∈ [Y, Y ]
E. That is, we have the following commutative

diagram.
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Z ∨ Susp(X)

Z

Y Y Y ′′

Y

1

1 e2

ε

i

e′′

e1

We conclude that i∗ : E∗(Z) −→ E∗(Z ∨ Susp(X)) is an epimorphism.
Therefore E∗(Z ∨ Susp(X)) = 0. Hence, i∗ : E∗(Z) −→ E∗(Z ∨ Susp(X))

and ε∗ : E∗(Y ) −→ E∗(Z) are isomorphisms.

Since we now know that ε : Y −→ Z is an E-equivalence, we allow
ourselves to change its name to e : Y −→ Z. We have proved that
any spectrum Y admits an E-equivalence e : Y −→ Z, where E∗(X) = 0

implies [X,Y ]∗ = 0.

We will now forget everything about Z except these two prop-
erties.

Lemma 14.11. Suppose e : Y −→ Z is an E-equivalence, and E∗(X) = 0

implies [X,Y ]∗ = 0. Then 14.4 (ii) and (iv) hold.

This will complete the proof of Proposition 14.2; for we take
e : Y −→ Z to be 1: Y −→ Y , and deduce that

T : [X,Y ]∗ −→ [X,Y ]
E
∗

is an isomorphism. Moreover, it will obviously complete the proof
of 14.4.
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Proof. We have to show that e : Y −→ Z is universal. Suppose given
an E-equivalence e′ : Y −→ Z ′. Then up to equivalence we have
Z ′ = Y ∪gCA for some g : A −→ Y ; and here E∗(A) = 0, by the exact

sequence of the cofibering A −→ Y
e′−→ Z ′.

A

Z ′

Y Z (j has degree -1).

A

g

e′

j

e

Then eg = 0 by the assumed property of Z, so e extends over
Y ∪gCA and there is a map f : Z ′ −→ Z with fe′ = e. Also f is unique,
because two choices differ by an element of j∗ [A,Z]∗, and [A,Z]∗ = 0

by the assumed property of Z.

This shows that e : Y −→ Z is universal. Then clearly the single
object Y e−→ Z is cofinal in the directed category used to construct
[X,Y ]

E
∗ so we have an isomorphism

[X,Y ]∗ −→ [X,Y ]
E
∗

given by assigning to a morphism f : X −→ Z the class of the diagram
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Z

X Y

f

e

i.e., the element T (e)−1T (f) ∈ [X,Y ]
E
∗ . This completes the proof

of 14.2, 14.3, and 14.4.

Now we start working toward the proof of 14.5.

Lemma 14.12. Suppose πr(E) = 0 for r < 0. Suppose a morphism
f : X −→ Y induces an isomorphism E∗(X) −→ E∗(Y ). Then it induces
an isomorphism H∗(X

′;π0(E)) −→ H∗(Y ;π0(E)).

Proof. First a remark. Let E be any spectrum, not necessarily a
ring-spectrum, and not necessarily connective; then I claim

H ∧ E '
∨
i

Si ∧HGi,

Where Gi = Hi(E). In fact, for each i we can construct a Moore
spectrum SiGi; then we can construct a morphism

SiGi
ai−→ H ∧ E

inducing the identity map

Gi = πi(S
iGi) −→ πi(H ∧ E) = Gi.

Now we can form

H ∧ (SiGi)
1∧ai−−−→ H ∧H ∧ E µ∧1−−→ H ∧ E.
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Finally we form ∨
i

H ∧ (SiGi)
{(µ∧1)(1∧ai)}−−−−−−−−−→ H ∧ E.

This induces an isomorphism of homotopy groups, so it is an equiv-
alence by the theorem of J. H. C. Whitehead.

Now we return to the lemma. From the cofibering X
f−→ Y −→

Z. Then we have E∗(Z) = 0 and it is sufficient to deduce that
H∗(Z;π0(E)) = 0. Since π∗(E ∧ Z) = 0, E ∧ Z is contractible. Therefore
H ∧E ∧Z is contractible. Now πr(E) = 0 for r < 0, so by the Hurewicz
theorem G0 = H0(E) = π0(E). We have just shown that HG0 is a direct
summand in H∧E, so (HG0)∧Z is contractible; that is H∗(Z;π0(E)) = 0.
This proves the lemma.

Lemma 14.13. Suppose E is a commutative ring-spectrum and
πr(E) = 0 for r < 0. Suppose X and Y are connective and f : X −→ Y

induces an isomorphism H∗(X;π0(E)) −→ H∗(Y, π0(E)). Then it induces
an isomorphism E∗(X) −→ E∗(Y ).

Proof. As before, we form the cofibering X
f−→ Y −→ Z. Then Z

is connective; we have H∗(Z;π0(E)), and it is sufficient to prove
E∗(Z) = 0.

Since π0(E) is a commutative ring and πr(E) is a module over
π0(E), we have the universal coefficient theorem in the form of the
spectral sequence

Torπ0(E)
p∗ (H∗(Z;π0(E)), πr(E)) =⇒

p
H∗(Z;πr(E)).

This is a quarter-plan spectral sequence convergent in the naive
sense. We see that H∗(Z;π0(E)) = 0. We now consider the Atiyah-
Hirzebruch spectral sequence

Hp(Z;πq(E)) =⇒
p

Ep+q(Z).
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This is a quarter-plane spectral sequence convergent in the naive
sense. We conclude that E∗(Z) = 0.

Warnings. This condition that X and Y are connective cannot be
omitted (take E = bu, X = pt., Y = BUZp or vice versa).

Proof of 14.5. recall that we wish to show that if E is a commutative
ring spectrum and πr(E) = 0 for r < 0, then for any connective
spectrum Y, [X,Y ]

E
∗ depends only on π0(E). More precisely, we show

that [X,Y ]
E
∗ = [X,Y ]

E′

∗ , where E = Hπ0(E).

(i) By 14.12, we have that any morphism f : Y −→ Y ′ which induces
an isomorphism in E-homology also induces an isomorphism in
E′-homology.

(ii) Consider the directed category used in the construction of
[X,Y ]

E′

∗ . I claim that morphism f : Y −→ Y ′ which induce an
isomorphism in E-homology are cofinal in those which induce
an isomorphism in E′-homology. Once this is proved, 14.5
follows. We need a lemma.

Lemma 14.14. Let Y be a connective spectrum. X any spectrum.
Then any morphism f : X −→ Y factors as

X Y

X ′

Where X ′ is connective and Hr(X
′)

' Hr(X) (r ≥ N)

= 0 (r < N)
for some N ∈ Z

depending only on Y .
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Proof. Let N be such that πr(Y ) = 0 for r < N+1. Then we can factor
f through X/XN−1; this spectrum is connective. However, it need
not have the desired properties in homology. We have

Hr(X/XN−1) ∼= Hr(X) (r > N)

Hr(X/XN−1) = 0 (r < N)

and in dimension N we have an exact sequence

0 −→ HN (X) −→ HN (X/XN−1) −→ F −→ 0,

where F is free since it is a subgroup of HN−1(X
N−1). By the Hurewicz

theorem, we have

πN (X/XN−1) ∼= HN (X/XN−1).

Choose a set of elements

θα ∈ πN (X/XN−1)

which project to a base of F, and form

X ′ = X/XN−1 ∪θα CSN .

X ′ is connective, and X/XN−1 −→ Y factors through x′. We have

Hr(X
′)

∼= Hr(X) (r ≥ N)

= 0 (r < N).

Returning to (ii) above, suppose f : Y −→ Y ′ induces an isomorphism
in E′-homology. Form a cofibre sequence

A −→ Y
f−→ Y ′ −→ . . .
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Here Hr(A;π0(E)) = 0, and so by the ordinary universal coefficient
theorem.

Hr(A)⊗Z π0(E) = 0, TorZ1 (Hr(A), π0(E)) = 0.

By 14.14, we can factor A −→ Y in the form

A Y,

B

Where B is connective and

Hr(A)
∼=−→ Hr(B) for r ≥ N

Hr(B) = 0 for r < N.

Then
Hr(B)⊗Z π0(E) = 0,TorZ1 (Hr(A), π0(E)) = 0

and so
Hr(B;π0(E)) = 0

for all r. Now we can form the following diagram of cofiberings.

A Y Y ′ . . .

B Y Y ′′ . . .

1

f
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Here Y ′′ is connective, and Y −→ Y ′′ is an E′-equivalence, so it
is an E-equivalence by 14.13 proof of (iii) above, and so completes
the proof of 14.5

Now we turn to Theorem 14.6. We have to take Y R, or Y Im, or
Y , according to the case, and show it satisfies the conditions in 14.4.
We have already shown that it will be sufficient to check 14.4 (i),
that is to say that these spectra are E-equivalent to Y , under the
hypotheses given for each case, and E-complete.

Consider the first condition. In case (i), suppose π0(E) is a subring
R of the rationals Q. Consider the product

ΣR ∧ Σ(R/Z).

By the Künneth theorem we have

H∗(ΣR ∧ Σ(R/Z)) = 0;

for R⊗Z (R/Z) = 0,TorZ1 (R,R/Z) = 0, The spectrum is connective, so
ΣR ∧ Σ(R/Z) is contractible by the theorem of J. H. C. Whitehead.

Now we have a cofibering

Y −→ Y R −→ Y ∧ Σ(R/Z).

Here we have

HR∗(Y ∧ Σ(R/Z)) = π∗(H ∧ ΣR ∧ Y ∧ Σ(R/Z)) = 0,

for H ∧ ΣR ∧ Y ∧ Σ(R/Z) is contractible. So

(HR)∗(Y ) −→ (HR)∗(Y R)

is an isomorphism.
We proceed similiarly for case (ii), starting from the fact that

ΣZm ∧ Σ(Im/Z) is contractible.
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In case (iii) it is trivial that Y 1−→ Y is an E-equivalence.

Now we have to check the other condition of 14.4, namely that
E∗(X) = 0 implies [X,Y R]∗ = 0, or [X,Y Im]∗ = 0, or [X,Y ]∗ = 0 according
to the case.

First suppose that we are in case (i), so that π0(E) = R. Suppose
that f : X −→ Y R is a map, and suppose I have already deformed it
until all the stable n-cells map to the base-point. (The induction
starts, because Y R is connective.) I wish to keep it is fixed on the
(n− 1)-cells and deform it until the n-cells and (n+ 1)-cells map to
the base point.

There is an obstruction, and it lies in Hn+1(X;πn+1(Y R)). But R is a
principal ideal ring, and πn+1(Y R) is a module over R, so the ordinary
universal coefficient theorem applies; we know H∗(X;R) = 0, so we
can deduce

Hn+1(X;πn+1(Y R)) = 0

So I can deform f as required. I continue by induction and conclude
that f = 0. This shows that [X,Y R]∗ = 0.

Evidently the obstruction-theory argument will work just as well
in case (ii), provided we prove that

Hn+1(X;πn+1(Y Im)) = 0.

Here we have πn+1(Y Im) = πn+1(Y ) ⊗ Im by 6.9, and πn+1(Y ) is a
finitely-generated group. And in this case we start by knowing that

H∗(X;Zm) = 0.

The exact sequence 0 −→ Z m−→ Z −→ Zm −→ 0 induces a long
exact sequence in homology; it follows that H∗(X)

m−→ H∗(X) is

an isomorphism, hence H∗(X)
mt

−−→ H∗(X) is an isomorphism. Now
consider

HomZ(Hr(X),Zmt), Ext1Z(Hr(X),Zmt).
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On the one hand multiplication by mt is an isomorphism; on the
other hand it is zero. Hence the group must be zero. So by the
ordinary universal coefficient theorem,

Hr(X;Zmt) = 0.

Now we have an exact sequence

0 −→ lim←−−
1(H∗(X;Zmt)) −→ H∗(X; Im) −→ lim←−−

0(H∗(X;Zmt)) −→ 0

Hence we have H∗(X; Im) = 0. Finally, let G be any finitely-generated
abelian group. We have a resolution

0 −→ F1 −→ F0 −→ G −→ 0

with F0 and F1 finitely-generated free. Therefore we have an exact
sequence

0 −→
r∏
1

Im −→
s∏
1

Im −→ Im ⊗G −→ 0.

This yields an exact cohomology sequence, from which we conclude
that

H∗(X; Im ⊗G) = 0.

We conclude that
Hn+1(X;πn+1(Y Im)) = 0.

the obstruction-theory argument works, and

[X,Y Im]∗ = 0.

Finally we consider case (iii). Let f : X −→ Y be a morphism. By
Lemma 14.14, we can factor f as
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X Y

X ′

f

where X ′ is connective; Hr(X
′) ∼= Hr(X), r ≥ N, and Hr(X

′) = 0 for
r < N , for some N ∈ Z.

As above,
m : H∗(X) −→ H∗(X)

is an isomorphism; clearly the same is true for X ′. Since X ′ is con-
nective, the theorem of J. H. C. Whitehead shows that m : X ′ −→ X ′

is an equivalence; so it has an inverse m−1. Consider the following
diagram

X ′ X ′ Y

X ′ Y

1

(m−1)e
me

f ′

me

f ′

Since me · 1Y : Y −→ Y is the zero morphism, we conclude f ′ = 0.

Thus [X ′, Y ]∗ = 0. This completes the proof of 14.6.

Now we have some short lemmas, which will be needed in the
next section

Lemma 14.15. Suppose
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A B

C

is a cofibre triangle and two of A,B,C are E-complete.; then so is
the third.

Proof. Suppose E∗(X) ' 0. We have an exact sequence

[X,A]∗ −→ [X,B]∗ −→ [X,C]∗ −→ [X,A]∗ −→ . . .

Two out of ever three groups are zero, so the third must be zero
also.

Lemma 14.16. If f : X −→ X ′ and g : Y −→ Y ′ are E-equivalences, so
is

f ∧ g : X ∧ Y −→ X ′ ∧ Y ′.

This lemma says that smash products pass to the category of
fractions.

Proof. We are given that E ∧X 1∧f−−→ E ∧X ′ and E ∧ Y 1∧g−−→ E ∧ Y ′ are
equivalences. Then

E ∧X ∧ Y ′ 1∧f∧1−−−−→ E ∧X ′ ∧ Y ′

and
E ∧X ∧ Y 1∧1∧g−−−−→ E ∧X ∧ Y ′

are equivalences; hence so is their composite; that is,

X ∧ Y f∧g−−→ X ′ ∧ Y ′

is an E-equivalence.
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Now we introduce some arithmetical considerations. Let E be
a commutative ring-spectrum such that πr(E) = 0 for r < 0, and
let θ : Z −→ π0(E) be the unique homomorphism of rings. Let S ⊂ Z
be the set of n such that θ(n) is invertible in π0(E). Then S is
multiplicatively closed. Let R ⊂ Q be the localization of Z at S, i.e.,
the set of fractions n/m with m ∈ S. Then there exists a unique
extension of θ to

θ : R −→ π0(E).

Proposition 14.17. If Y is E-complete, then πr(Y ) is an R-module.
More generally, [X,Y ]r is an R-module for any X.

Proof. Let m ∈ S; then m gives a morphism Y −→ Y , which must
be an E-equivalence, since the induced map E∗(Y ) −→ E∗(Y ) is
multiplication by m, which is an invertible element of π0(E). So in
[Y, Y ]

E
0 the morphism m has an inverse. Therefore the canonical map

ϕ : Z −→ [Y, Y ]
E
0

extends to give
ϕ : R −→ [Y, Y ]

E
0 .

So R acts on [X,Y ]
E
∗ for any X. If Y is E-complete, we have [X,Y ]

E
∗ =

[X,Y ]∗.
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15. The Adams spectral sequence

Suppose given a ring-spectrum E and two spectra X,Y such that
E∗(X) is projective over π∗(E). Our object in this section is to prove
the following theorem.

Theorem 15.1. Assume that X, Y and E satisfy the assumptions
listed below. Then

(i) there exists a spectral sequence with the properties which
follow

(ii) its E2 term is given by

Ep,∗2 = Extp∗E∗(E)(E∗(X), E∗(Y )), and

(iii) the spectral sequence converges to [X,Y ]E∗ in the sense that a
suitable analogue of Theorem 8.2 holds. More precisely, it may
be obtained by applying the functor [X,−]E∗ to a decreasing
filtration

Y ' Y0 ⊃ Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . ⊃ Yp ⊃ . . .

such that
lim←−−
p

0
[X,Yp]

E
∗ = U

lim←−−
p

1
[X,Yp]

E
∗ = U

Notes. In (ii), Ext means Ext of comodules over the coalgebra E∗(E).
The rules for its calculation will be explained in due course.
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List of assumptions. For part (i), none; no extra data is needed
to construct the spectral sequence.

For part (ii), two assumptions

(a) Either X = S, or E satisfies 13.3.

(b) E∗(E) is flat as a right module over π∗(E).

Both are satisfied for E = S,HZp,MO,MU,MSp,K,KO.
Of course the spectral sequence may be usable even if (ii) does

not apply, if we can calculate the E1 or E2 term some other way.
For part (iii), three assumptions.

(a) Y is connective; that is, there exists n0 ∈ Z such that πr(Y ) = 0

for r < n0.

(b) πr(E) = 0 for r < 0, and

µ∗ : π0(E)⊗Z π0(E) −→ π0(E)

is an isomorphism. (Examples: π0(E) = Zm; π0(E) is a subring of
the rationals)

Before proceeding, we observe that H∗(E) is a ring, so Hr(E) is a
module over H0(E) = π0(E). Let the subring R of the rationals Q be
as in 14.17, so that we have a homomorphism θ : R −→ π0(E); thus
Hr(E) becomes an R-module.

(c) Hr(E) is finitely-generated over R for all r.

Example. E = S,H,HZp,MO,MU,MSp,bu,bo satisfy (b) and (c); indeed
Hr(E) is finitely generated over Z. However, we might also wish
to introduce suitable coefficients. For example, we might prefer
some account of the Brown-Peterson spectrum in which π0(E) is
Z(p), the integers localised at p. Then R = Z(p), and the groups Hr(E)

are finitely-generated over R but not over Z.
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The basic construction is very easy. We start with Y0 = Y .
Suppose Yp has been constructed. Let Wp = E ∧ Yp. Then we can
form the morphism

Yp ' S ∧ Yp
i∧1−−→ E ∧ Yp =Wp

Construct a cofibering

Yp+1 −→ Yp −→Wp −→ Yp+1

where Wp −→ Yp+1 has degree −1. This completes the induction and
constructs the following diagram:

Y = Y0 Y1 Y2 Y3 Y4 . . .

W0 W1 W2 W3

If we wish we may use a telescope construction to replace Y0

by an equivalent spectrum so that the morphisms actually become
inclusons

Y0 ⊃ Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . ;

but this is not necessary.
Suppose we now apply the functor [X,−]E∗ . Using 14.9 we get a

spectral sequence, and this is the spectral sequence required.
We can also write the specra Yp,Wp slightly differently. Let us

form the cofibering

Ē −→ S
i−→ E −→ Ē . . .

where E −→ Ē has degree −1. Let

Ēp = Ē ∧ Ē ∧ . . . ∧ Ē (p factors).
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Smashing with Ēp ∧ Y , we obtain a cofibering

Ēp+1 ∧ Y −→ Ēp ∧ Y −→ E ∧ Ēp ∧ Y −→ Ēp+1 ∧ Y

where again the last morphism shown has degree −1. So we may
take

Yp = Ēp ∧ Y, Wp = E ∧ Ēp ∧ Y.

This makes it trivial that a morphism f : Y −→ Y ′ induces mor-
phisms of the whole construction, and induces a homomorphism
from the spectral sequence for Y to that for Y ′.

Suppose now that f : Y −→ Y ′ is an E-equivalence. Then all the
induced morphisms Yp −→ Y ′

p , Wp −→ W ′
p are also E-equivalences

(by 14.16) and induce isomorphisms of [X,−]E∗ . Thus an E-equivalence
f : Y −→ Y ′ induces an isomorphism of the whole spectral sequence.

It follows that we may suppose without loss of generality that
Y is E-complete; for if not, replace it by its E-completion Y E .

If Y is E-complete, then we easily see by induction over p that
Yp is E-complete; for Wp is E-complete since it is an E-module
spectrum, and we use 14.15. So in this case everything in the
construction is E-complete, and we could have used [X,−]∗ instead
of [X,−]E∗ .

Now I had better proceed to part (ii) of the theorem, the calcula-
tion of the E2 term. I ought to begin by recalling some facts from
algebra, or perhaps from ”coalgebra”.

Let A be an algebra with multiplication µ over a ground-ring R,
and let N be an R-module. Then we can construct A⊗R N , and it is
an A-module with action map

A⊗R (A⊗R N)
µ⊗1−−−→ A⊗R N.

The most usual case is that in which N is R-free; then A ⊗R N is
A-free. In general A ⊗R N is called an extended module, and it
possesses the following important property, which generalises the
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characteristic property of a free module. Let M be an A-module
with action map γ. Then we have an isomorphism

HomA(A⊗R N,M)
θ−→ HomR(N,M).

It is given as follows. Suppose given

A⊗R N
f−→M ;

then θf is
N ∼= R⊗R N

η⊗1−−→ A⊗R N
f−→M

where η is the unit map R −→ A. Suppose given N
g−→M ; then θ−1g

is
A⊗R N

1⊗g−−→ A⊗RM
γ−→M

In particular, if N is projective over R, then A⊗R N is projective
over A.

We also have the dual situation. Let C be a coalgebra with
diagonal ψ over a ground-ring R. I emphasize that R is allowed to
act differently on the two sides of C. Let N be an R-module. Then
we can construct C ⊗R N , and it is a C-comodule with coaction map

C ⊗R N
ψ⊗1−−−→ C ⊗R (C ⊗R N).

It is called an extended comodule. It has the following property.
Let M be a C-comodule with coaction map γ. Then we have an
isomorphism

HomC(M,C ⊗R N)
θ−→ HomR(M,N).

It is given as follows. Suppose given

M
f−→ C ⊗R N ;

then θf is
M

f−→ C ⊗R N
ε⊗1−−→ R⊗R N ∼= N,
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where ε is the augmentation C −→ R. Suppose given M
g−→ N ; then

θ−1g is
N

γ−→ C ⊗R N
1⊗g−−→ C ⊗R N.

In particular, if N is injective over R, then C ⊗R N is injective over
C.

There is a prescription of homological algebra for computing
Ext∗∗C (L,M) where L and M are comodules over the coalgebra C.
However, it does not demand that we resolve M by absolute injec-
tives. So long as L is projective over R it will be sufficient if we
resolve M by relative injectives. More precisely, if L is projective
over R we have to make a resolution

0 −→M −→M0 −→M1 −→M2 . . .

where each Mi is an extended comodule. Then we form

HomC(L,M0) −→ HomC(L,M1) −→ HomC(L,M2) −→ . . .

and the cohomology groups of this cochain complex are

Ext∗∗C (L,M).

With this in mind, let us return to consider our geometrical
situation. We have

Wp = E ∧ Yp.

So of course we have

E∗(Wp) = E∗(E ∧ Yp) ∼= E∗(E)⊗π∗(E) E∗(Yp);

this is by Lemma 12.5. It is rather trivial to check that this isomor-
phism throws the coaction map ψWp onto ψE ⊗ 1; so E∗(E ∧ Yp) is an
extended comodule.
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Again, consider our cofibering

Yp −→ E ∧ Yp −→ Yp+1

where E ∧ Yp −→ Yp+1 has degree −1. When we smash with E we
have

E ∧ Yp
µ∧1

⇒
1∧i

E ∧ E ∧ Yp −→ E ∧ Yp+1 −→ . . . .

But µ ∧ 1 is a left inverse for 1 ∧ i, so we have the following short
exact sequence, split as a sequence of modules over π∗(E)

0 −→ E∗(Yp) −→ E∗(E ∧ Yp) −→ E∗(Yp+1) −→ 0

‖

E∗(Wp)

Hence the sequence

0 −→ E∗(Y ) −→ E∗(W0) −→ E∗(W1) −→ E∗(W2) −→ . . .

is indeed a resolution of E∗(Y ) by extended comodules over E∗(E).

Now I recall that the E1 term of our spectral sequence is given
by

Ep∗1 = [X,Wp]
E
∗

= [X,E ∧ Yp]E∗
= [X,E ∧ Yp]∗ (since E ∧ Yp is E-complete).

The boundary d1 is induced by the morphism

Wp −→ Yp+1 −→Wp+1

where Wp −→ Yp+1 has degree −1. We have the following commuta-
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tive diagram.

[X,E ∧ Yp] Hom∗
E∗(E)(E∗(X), E∗(E ∧ Yp))

Hom∗
π∗(E)(E∗(X), E∗(Yp))

θ ∼=

α

β

Here α(f) = f∗. The isomorphism θ comes because E∗(E ∧ Yp) is an
extended comodule. The spectrum E ∧ Yp is a module-spectrum
over E, and β is precisely the map which is asserted to be an
isomorphism by 13.5, if we have the data for that, or trivially X = S.
We conclude that α is an isomorphism.

Now we have the following commutative diagram, in which the
horizontal maps are induced by the morphisms Wp −→ Wp+1 (of
degree −1), and Hom is HomE∗(E).

[X,Wp−1]∗ [X,Wp]∗ [X,Wp+1]∗

Hom(E∗(X), E∗(Wp−1)) Hom(E∗(X), E∗(Wp)) Hom(E∗(X), E∗(Wp+1))

d1 d1

∼= ∼= ∼=

The cohomology goups of the top row are Ep∗2 and those of the
bottom row are

Extp∗E∗(E)(E∗(X), E∗(Y )).

This proves part (ii) of 15.1.

We now start work on part (iii). I recall we have assumed that

π0(E)⊗Z π0(E)
µ∗−→ π0(E)
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is an isomorphism. I claim it follows that for any module M over
π0(E),

π0(E)⊗Z M
ν−→M

is an isomorphism. In fact, this follows from the following commu-
tative diagram.

π0(E)⊗Z π0(E)⊗π0(E) M π0(E)⊗Z M

π0(E)⊗π0(E) M M

∼=

1⊗ν

u⊗1 ∼=

ν

∼=

ν

Now I undertake to prove by induction over p that πr(E ∧ Ēp) = 0

for r < 0. This is surely true for p = 0, by assumption. Suppose it is
true for p, and consider the following cofibering

E ∧ S ∧ Ēp E ∧ E ∧ Ēp E ∧ Ēp+1
1∧i∧1

Here E ∧ E ∧ Ēp −→ E ∧ Ēp+1 has degree −1. As we have already
remarked, we have a left inverse for 1 ∧ i ∧ 1, given by µ ∧ 1 :

E ∧ E ∧ Ēp −→ E ∧ Ēp. So the exact homotopy sequence of this
cofibering is split short exact. By the inductive hypothesis and the
Künneth theorem, the first non-zero homotopy group of E ∧ E ∧ Ēp

is
π0(E ∧ E ∧ Ēp) = π0(E)⊗Z π0(E ∧ Ēp).

Therefore πr(E ∧ Ēp+1) = 0 for r < −1 and π−1(E ∧ Ēp+1) is isomorphic
to the kernel of

π0(E)⊗Z π0(E ∧ Ēp) −→ π0(E ∧ Ēp)

But this map is an isomorphism by the remarks above, so its kernel
is zero, and πr(E ∧ Ēp+1) = 0 for r < 0. This completes the induction.
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We have also assumed πr(Y ) = 0 for r < n0. Since we may take
Wp = E ∧ Ēp ∧ Y , we have πr(Wp) = 0 for r < n0.

Now I undertake to prove by induction over p that πr(Yp) = 0 for
r < n0 − 1.This is immediate, from the following exact sequence.

. . . −→ πr+1(Wp) −→ πr(Yp+1) −→ πr(Yp) −→ . . .

So at this stage we have established a uniform bound n0 − 1 such
that πr(Yp) = 0 for r < n0 − 1.

Next we need to construct a spectrum Y∞, the E-homotopy
inverse limit of the Yp. The construction is easy. First we observe
that we can assume without loss of generality that Y is E-complete,
and therefore that all the Yp are E-complete. This requires a word
of justification; we have to see that when we replace Y by Y E, we
do not sacrifice the property that Y is connective. Recall that by
the proof of 14.5, we can find a uniform bound ν and a cofinal set
of E-equivalences e : Y −→ Y ′ such that πr(Y ′) = 0 for r < ν. This
shows that [S, Y ]Er = 0 for r < ν and πr(Y

′) = 0 for r < ν.

Assume then that all Yp are E-complete.Then we can form the

categorical product
∞∏
i=0

Yi in C, and it is E-complete; for if E∗(W ) = 0,

and f :W −→
∞∏
i=0

Yi is a map, then all the components pif :W −→ Yi

are zero, and so f is zero. It follows that
∞∏
i=0

Yi is the categorical

product not only in C, but also in the category of fractions F .

Now we construct a map f :

∞∏
i=0

Yi −→
∞∏
i=0

Yi; the ith component of

f is to be the difference of two maps, that is( ∞∏
i=0

Yi

)
pi−→ Yi
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minus ( ∞∏
i=0

Yi

)
Yi+1 Yi

pi+1

We define Y∞ so that we have the following cofibre sequence.

Y∞ −→
( ∞∏
i=0

Yi

)
f−→
( ∞∏
i=0

Yi

)
−→ Y∞

It follows from 14.15 that Y∞ is E-complete. Apllying [X,−]E∗ , we
see that for any X we have the following short exact sequence.

0 −→ lim←−−
i

1[X,Yi]
E
r −→ [X,Y∞]Er −→ lim←−−

i

0[X,Yi]
E
r −→ 0

Theorem 15.2. let R be a subring of the rationals Q. Suppose Yα, E

are spectra such that

(i) πr(Yα) = 0 for r < n1, for some n1 independent of α.

(ii) πr(Yα) = 0 is an R-module for all r, α.

(iii) πr(E) = 0 for r < n2, for some n2 ∈ Z, and

(iv) Hr(E) is a finitely generated R-module for all r

Then the canonical morphism

E ∧
(∏

α

Yα

)
−→

∏
α

(E ∧ Yα)

Is an equivalence.

The canonical morphism is of course the one with components

E ∧
(∏

α

Yα

)
E ∧ Yα

1∧pα
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It can be shown by examples that the behaviour of ∧ with respect
to
∏

is in general very bad; one cannot hope for a much stronger
theorem.

Now 14.17 shows that πr(Yi) is an R module, where R is as in
14.17. So 15.2 applies and shows that

E ∧
( ∞∏
i=0

Yi

)
−→

∞∏
i=0

(E ∧ Yi)

is an equivalence. This shows that

E∗

( ∞∏
i=0

Yi

)
= π∗

(
E ∧

( ∞∏
i=0

Yi

))
∼= π∗

( ∞∏
i=0

(E ∧ Yi)
)
∼=

∞∏
i=0

E∗(Yi)

under the obvious homomoprhism. It follows that we have the
following short exact sequence.

0 −→ lim←−−
i

1E∗(Yi) −→ E∗(Y∞) −→ lim←−−
i

0E∗(Yi) −→ 0

But by the construction the maps E∗(Yi+1) −→ E∗(Yi) are zero. it
follows immediately that lim←−−i

0E∗(Yi) = 0 (see section 8, exercise 8.)
Therefore E∗(Y∞) = 0. It follows that [X,Y∞]E∗ = 0. Using the exact
sequence above, we have

lim←−−
i

0E∗(Yi) = 0

lim←−−
i

1E∗(Yi) = 0

This is proved in 15.1 (iii). It remains to prove Theorem 15.2

Lemma 15.3. Suppose that R is a subring of the rationals, the Gα

are R-modules and F is a finitely-generated R-module. Then

F ⊗R
(∏

α

Gα

)
−→

∏
α

(F ⊗R Gα)

412



Chapter 15: The Adams spectral sequence

and
TorR1

(
F,
∏
α

Gα

)
−→

∏
α

TorR1 (F,Gα)

Are isomorphisms

Proof. R is a principal ideal ring. Take a resolution of F of the form

0 −→
n∑
1

R
d−→

m∑
1

R −→ F −→ 0

Form the following diagram

0 TorR1
(
F,
∏
α

Gα

) ( n∑
1

R

)
⊗
∏
α

Gα

( m∑
1

R

)
⊗
∏
α

Gα F ⊗
∏
α

Gα 0

n∏
1

∏
α

Gα

m∏
1

∏
α

Gα

∏
α

n∏
1

Gα
∏
α

m∏
1

Gα

0
∏
α

TorR1
(
F,Gα

) ∏
α

(( n∑
1

R

)
⊗Gα

) ∏
α

(( m∑
1

R

)
⊗Gα

) ∏
α

(F ⊗Gα) 0

d⊗1

∏
α(d⊗1)

The result follows.

Lemma 15.4. Suppose that R is a subring of the rationals, E is such
that Hr(E) is a finitely-generated R-module for all R, and the Gα

are R-modules. Then

Hn

(
E;
∏
α

Gα

)
−→

∏
α

Hn(E;Gα)

is an isomorphism
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Proof. First observe that since R is torsion-free, the ordinary uni-
versal coefficient theorem gives Hr(E;R) ∼= Hr(E)⊗Z R; sand since
R ⊗Z R

R−→ is isomorphism, and Hr(E) is an R-module, the argue-
ment given in 15.1 (iii) (applied to R rather than π0(E)) shows that
Hr(E) ⊗Z R −→ Hr(E) is an isomorphism. So Hr(E;R) is finitely-
generated over R. Now consider the following diagram:

0 Hn(E;R)⊗R
∏
α

Gα Hn

(
E;
∏
α

Gα

)
TorR1

(
Hn−1(E;R);

∏
α

Gα

)
0

0
∏
α

Hn(E;R)⊗R Gα
∏
α

Hn(E;Gα)
∏
α

TorR1
(
Hn−1(E;R);Gα

)
0

∼= ∼=

The two vertical arrows marked are isomorphisms by 15.3. The
rows are exact by the ordinary universal coefficient theorem. THe
result follows by the short five lemma.

Corollary 15.5. (of Lemma 15.4). Theorem 15.2 is true in the spe-
cial case in which the Yα are all Eilenberg-MacLance spectra with
homotopy groups in the same dimension q.

Proof. Let Gα be the R module πq(Yα). Then
∏
α

Yα is an Eilenberg-

MacLance spectrum with homotopy group
∏
α

Gα in dimension q. We

have the following commutative diagram:

πr

(
E ∧

∏
α

Yα

)
πr

(∏
α

E ∧ Yα
)

Hr−q

(
E;
∏
α

Gα

) ∏
α

Hr−q(E;Gα)

∼= ∼=
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By 15.4 the lower horizontal arrow is an isomorphism. The result
follows immediately from the theorem of J.H.C. Whitehead.

Lemma 15.6. Suppose Aα −→ Bα −→ Cα −→ Aα −→ Bα is is a cofibering
for each α, where Cα −→ Aα has degree −1. Then

∏
α

Aα −→
∏
α

Bα −→
∏
α

Cα −→
∏
α

Aα −→
∏
α

Bα

is a cofibering.

Proof. Construct a cofibering∏
α

Aα −→
∏
α

Bα −→ D −→
∏
α

Aα −→
∏
α

Bα

So we can construct the following diagram:

∏
α

Aα
∏
α

Bα D
∏
α

Aα
∏
α

Bα

Aα Bα Cα Aα Bα

pα pα pα pα

So we can construct the following diagrams:

∏
α

Aα
∏
α

Bα D
∏
α

Aα
∏
α

Bα

∏
α

Aα
∏
α

Bα
∏
α

Cα
∏
α

Aα
∏
α

Bα

1 1 1 1

Now the five lemma shows that the map D −→
∏
α

Cα induces an

isomorphism of homotopy, and the theorem of J,H.C. Whitehead

415



Chapter 15: The Adams spectral sequence

shows that it is an equivalence. Since the upper line of the diagram
is a cofibering, it follows that the lower line is a cofibering. This
proves 15.6

Proof of Theorem 15.2. We wish to show that

πr

(
E ∧

∏
α

Yα

)
−→ πr

(∏
α

E ∧ Yα
)

is an isomorphism.and we do this by induction over r − n1 − n2. The
result is trivial if r−n1−n2 < 0. Supppose as an inductive hypothesis
that the result is true for smaller values of r − n1 − n2. We can
construct a cofibering

Kα −→Wα −→ Yα −→ Kα −→Wα

In which Kα −→ Wα has degree −1, πr(Wα) = 0 for r < n1 + 1 and
Kα is an Eilenberg-Maclane spectrum for the R-module πn1

(Yα) in
dimension n1. Using (15.6), we see that

E ∧
∏
α

Kα −→ E ∧
∏
α

Wα −→ E ∧
∏
α

Yα −→ E ∧
∏
α

Kα −→ E ∧
∏
α

Wα

and∏
α

(E ∧Kα) −→
∏
α

(E ∧Wα) −→
∏
α

(E ∧ Yα) −→
∏
α

(E ∧Kα) −→
∏
α

(E ∧Wα)

are also cofiberings. Now consider the following diagram:
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πr+1

(
E ∧

∏
α

Kα

)
πr+1

(∏
α

(
E ∧Kα

))

πr

(
E ∧

∏
α

Wα

)
πr

(∏
α

(
E ∧Wα

))

πr

(
E ∧

∏
α

Yα

)
πr

(∏
α

(
E ∧ Yα

))

πr

(
E ∧

∏
α

Kα

)
πr

(∏
α

(
E ∧Kα

))

πr−1

(
E ∧

∏
α

Wα

)
πr−1

(∏
α

(
E ∧Wα

))

1

2

3

4

5

Maps 1 and 4 are isomorphisms by (15.5); maps 2 and 5 are isomor-
phisms by the inductive hypothesis. So map 3 is an isomorphism by
the five lemma. This completes the induction and proves Theorem
15.2
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16. Applications to π∗(bu ∧X); Modules over K[x, y]

I would like to present some applications of the spectral sequence
of § 15, in which we can do the algebra without too much trouble.
For this purpose I will consider the calculation of π∗(bu ∧ X), for
various spectra X. Of course. I am really interested in π∗(bo ∧X);
however, it seems best if I do things for the most elementary case,
which is the case bu, but undertake to use only methods which
extend to the case bo. For a similar reason I will consider mostly
the prime 2, but I will try to say only things which can also be said
for the prime p.

If we apply the spectral sequence of § 15 to compute π∗(bu ∧X),
using say E = HZ2, we obtain a spectral sequence of the following
form.

Exts,tA∗
(Z2, (HZ2)∗(bu ∧X)) =⇒

s
[S,bu ∧X]HZ2

t−s .

However, in this case the Ext group simplifies very greatly. To
explain how it simplifies, recall that in A∗ we have a base consisting
of the monomials ξr11 ξr22 . . . ξrnn . The dual base in A is written Sqr1r2...rn .
This is consitent because Sqr0...0 is Steenrod’s Sqr.In particular, Sq01

is the element of this dual base corresponding to the monomial
ξ2. We have Sq01 = Sq1Sq2 + Sq2Sq1. The elements Sq1 and Sq01

generate an exterior subalgebra of A; we write B for this exterior
subalgebra. It is Hopf subalgebra. The algebra B is of course dual
to a quotient B∗ of A∗, namely the quotient of A∗ by the ideal
generated by ξ21 , ξ

2
2 , ξ3 . . . , ξn, . . . . Just as we can consider (HZ2)

∗(X)

as a module over B, we can consider (HZ2)
∗(X) as a co-module over

B∗.

419



Chapter 16: Applications to π∗(bu ∧X); Modules over K[x, y]

For the case of an odd prime, the analogues of Sq1 and Sq01

are the Milnor elements Q0 and Q1. These are the elements of
the Milnor base for A corresponding to τ0 and τ1 in A∗. We have
Q0 = βp, Q1 = P 1βp − βpP 1. B is then the exterior subalgebra of A
generated by Q0 and Q1; B∗ is a quotient of A∗ and is an exterior
algebra generated by τ0 and τ1.

Proposition 16.1. Assume X is connective. Then we have a spectral
sequence

Exts,tB∗
(Z2, (HZ2)∗(bu ∧X)) =⇒

s
[S,bu ∧X]HZ2

t−s .

For the case of an odd prime we should take the precaution of
splitting buQp into (p− 1) similar summands and using only one of
them on the right hand side.

I will finish stating the results I need before I start to prove
anything.

In order to use this spectral sequence to the best advantage we
have to know something about the structure-theory of comodules
over B∗. As long as our comodules are locally finite-dimensional we
may as well dualise and consider the structure-theory of modules
over B. Even if our comodules are not locally finite-dimensional,
we can consider a B∗-comodule M as a B-module by the following
construction: if

Ψm =
∑
1

b′i ⊗m′′
i , b∗ ∈ B,

set
b∗m =

∑
i

〈cb∗, b′i〉m′′
i

where c is the canonical anti-automorphism of B.
The structure-theory works perfectly well for modules over

the exterior algebra K[x, y] on two generators x and y of distinct
dimension. Here K is supposed to be a field; for some theorems
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one wants K to be a finite field, but not for anything in these
lectures. We assume that the degrees of x and y are odd unless
K has characteristic 2; in other words we want K[x, y] to be a Hopf
algebra, with x and y primitive.

Some of the ideas of the structure-theory work for a finite-
dimensional Hopf algebra A, more general than K[x, y]. Let M and
N be left A-modules. We say they are stable isomorphic if there
exists free modules F and G such that M ⊕ F ∼= N ⊕ G. This is an
equivalence relation. For s > 0 the groups

Exts,tA (M,K)

depends only on the stable isomorphic class of M ; this is one reason
why it is often sufficient to know only the stable isomorphism class
of M .

We can form the sum and the tensor product of two modules.
Here we give M ⊕N the diagonal action, using the fact that A is
a hopf algebra. The sum and product pass to stable isomorphism
classes. The product has a unit, namely the module 1 and K in
degree 0.

We say that a stable class P is invertible if there is a stable
class Q such that PQ ' 1 .

We define Σ to be the module with K in degree 1. Σ is clearly
invertible; its inverse is the module Σ−1 with K in degree −1.

We define I to be the augmentation ideal of A.

Lemma 16.2. If A is a connected finite-dimensional Hopf algebra,
then I is invertible.

We now return to the case A = K[x, y]. We observe that a module
M has two very useful invariants:

H∗(M ;x) = Kerx/Imx

H∗(M ; y) = Ker y/Im y
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These are defined on stable isomorphic classes, and send sums to
sums, products to products. The latter follows from the Künneth
theorem.
Theorem 16.3. Let M be a finite-dimensional module over K[x, y]

such that H∗(M ;x) and H∗(M ; y) both have dimension 1 over K. Then

(i) M is invertible

(ii) the stable class of M is ΣaIb for unique a, b ∈ Z.

Noitce how one proves uniqueness. We have

H∗(Σ
aIb;x) =

K in degree a+ b|x| = c, say
0 otherwise

H∗(Σ
aIb; y) =

K in degree a+ b|y| = d, say
0 otherwise

since |x| 6= |y|, c and d determine a and b.
If we use Proposition 16.1 to compute π∗(bu∧X) we need to know

(HZ2)∗(X) as a comodule over B∗, or equivalently, (HZ2)∗(X) as a
module over B. In particular, if we want to compute π∗(bu∧bu∧· · ·∧bu
) (n+ 1 factors), we need this information for X = bu ∧ bu ∧ . . .bu (n
factors).
Proposition 16.4.

(i) The stable class of (HZ2)
∗(bu), as a module over B, is

(1 + Σ2)(1 + Σ3I) . . . (1 + Σ2r+1I2
r−1) . . .

(ii) Let (bu)n = bu ∧ bu ∧ · · · ∧ bu(n factors). Then the stable class
of (HZ2)∗((bu)n) as a module over B is

(1 + Σ2)n(1 + Σ3I)n(1 + Σ5I3)n . . .

Of course part (ii) follows immediately from part (i).
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For the next section, we need one last fact about bu. Recall
that π2(bu) ∼= Z; let t ∈ π2(bu) be the generator. The homotopy ring
π∗(bu) is the polynomial ring Z[t]. We may identify t ∈ π2(bu) with
its image in H2(bu) or HQ2(bu). The homology ring HQ∗(bu) is the
polynomial ring Q[T ]. We define a numerical function m(r) by

m(r) =
∏
p

p

[
r

p−1

]
.

Here p runs over prime numbers, and [x] means the integral part
of x. For example,

if r = 1 2 3 4.

m(r) = 2 12 24 720.

Proposition 16.5. The image of H∗(bu) in HQ∗(bu) is the Z-submodule
generated by the elements

tr

m(r)
, r = 0, 1, 2, . . . .

This completes the statement of results. Now I turn to the
proofs. Let A once more denote the mod 2 Steenrod algebra.

Proposition 16.6. As an A-module, we have

(HZ2)
∗(bu) ∼= A/A(Sq1 +ASq01) = A⊗B Z2.

For the case of an odd prime, we either write

(HZp)∗(bu) ∼=
p−1∑
1

A/(AQ0 +AQ1),

or we split buQp into (p−1) similar summands and take one of them.

For the case of bo, we have

(HZ2)
∗(bu) ∼= A/(ASq1 +ASq2)
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Proof of 16.6. First we obtain information on the first k-invariant
2 of bu, which lies in H3(H), which is Z2 generated by δ2Sq2. The
k-invariant must be 0 or δ2Sq2. We wish to find out which; and of
course we do it by looking at the terms in the bu-spectrum. For
each term in the bu-spectrum, the first k-invariant is given by the
same stable operation. We choose to look at the third term of the
bu-spectrum, which happens to be the first place where we can
get the required information, The third term of the bu-spectrum is
the space SU . Now δ2Sq2 6= 0 in H6(H, 3) but H6(SU) = 0 We conclude
that the first k-invariant of bu is δ2Sq2 rather than 0.

Now the Bott periodicity theorem gives us the following cofiber-
ing,

S2 ∧ bu i−→ bu j−→ H

This leads to a long exact sequence

←− (HZ2)
n(bu) j←− (HZ2)

n(H)
k←− (HZ2)

n(S3 ∧ bu)←− . . .

Let f0 be the fundamental class in (HZ2)
0(H); then we have (HZ2)

∗(H) ∼=
A/ASq1, under the map which takes a to af0. The class j∗f0 is the
fundamental class in (HZ2)

0(bu);therefore we obtain a fundamental
class f3 in (HZ2)

n(S3 ∧ bu). The information on the k-invariant says
that

k∗f3 = β2Sq2f0 = Sq01f0

since (Sq2Sq1f0 = 0). Thus Sq1(j∗f0) = 0 and Sq01(j∗f0) = 0. So
certainly we get a homomorphism

A/(ASq1 +ASq01) −→ (HZ2)
∗(bu)

defined by
a 7→ a(j∗f0).

We recall that Sq1 and Sq01 generate the exterior subalgebra B ⊂ A,
and A is free as a right module over B. So we have the following
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short exact sequence.

0←− A/(ASq1 +ASq01)←− A/(ASq1)←− A/(ASq1 +ASq01)←− 0

Here the map on the right takes

cls x←− cls xSq01.

Indeed, we have the following diagram.

. . . [A/(ASq1 +ASq01)]n [A/(ASq1)]n [A/(ASq1 +ASq01)]n−3 . . .

. . . (HZ2)
n(bu) (HZ2)

n(H) (HZ2)
n(S3 ∧ bu) . . .

0 0

Suppose as an inductive hypothesis that

[A/(ASq1 +ASq01)]r −→ (HZ2)
r(bu)

is an isomorphism for r < n. Then for (HZ2)
n(S3 ∧bu) the same thing

holds for r < n+ 3. Now the five lemma shows that

[A/(ASq1 +ASq01)]r −→ (HZ2)
r(bu)

is an isomorphism for r = n. This completes the induction and
proves in 16.6

Proof of 16.1. We have a spectral sequence

Exts,tB∗
(Z2, (HZ2)∗(bu ∧X)) =⇒

s
[S,bu ∧X]HZ2

t−s .

Suppose to begin with that (HZ2)∗(bu∧X) is locally finite-dimensional
over Z2. Then Ext of comodules over A∗ is the same as Ext of
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modules over A:

Exts,tB∗
(Z2, (HZ2)∗(bu ∧X)) ∼= Exts,tB∗

((HZ2)
∗(bu ∧X),Z2).

The latter is the classical way of writing the E2 term. Now of
course the Künneth theorem gives us an isormorphism

(HZ2)
∗(bu ∧X) ∼= (HZ2)

∗(bu)⊗Z2
(HZ2)

∗(X).

This is an isomorphism of A−modules, provided we make A act on
the right-hand side by the diagonal action:

a(u⊗ v) =
∑
i

(a′iu)⊗ (a′′i v)

where
Ψa =

∑
i

a′i ⊗ a′′i .

(The isomorphism is A-linear by the Cartan formula.) By 16.6 this
gives

(HZ2)
∗(bu ∧X) = (A⊗B Z2)⊗ (HZ2)

∗(X)

where the right-hand side is again furnished with the diagonal action.
On the other hand, if M is an S-module, then A acts on A⊗M by
the left action

a′(a⊗m) = a′a⊗m

and on (A⊗BZ2)⊗M by the diagonal action. We have an isomorphism

A⊗B M −→ (A⊗B Z2)⊗M

given by
a⊗m 7→

∑
i

a′i ⊗ a′′im.

So we find
(HZ2)

∗(bu ∧X) ∼= A⊗B (HZ2)
∗(X).
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Now by a change-of-rings theorem we have

Exts,tA ((HZ2)
∗(bu ∧X),Z2)

∼= Exts,tA (A⊗B (HZ2)
∗(X),Z2)

∼= Exts,tA ((HZ2)
∗(X),Z2)

Finally, the assumption of local finite-dimensionality is unneces-
sary, provided we dualise the argument and work in homology the
whole time, Using the corresponding lemmas for comodules and
the ”cotheorem” to the change-of-rings theorem, we find

Exts,tA (Z2, (HZ2)∗(bu ∧X)) ∼= Exts,tA (Z2, (HZ2)∗(X)).

This proves 16.1.

The structure-theory for modules I defer for the moment, so the
next thing is to prove 16.4, assuming the results of the structure-
theory. I need one more result not yet stated.

Lemma 16.7 (Adams and Margolis). Let M and N be modules over
K[x, y] which are connective (bounded below), i.e., there exists n0 ∈ Z
such that Mr = 0 and Nr = 0 for r < n0. Alternatively, let M and
N be bounded above, i.e., Mr and Nr are zeroes for r greater than
some n0 Let f :M 7→ N be a map of modules such that

f∗ : H∗(M ;x) 7→ H∗(N ;x)

and
f∗ : H∗(M ; y) 7→ H∗(N ; y)

are isomorphism. Then M and N are stably isomorphic

Now we continue to study bu. in 16.6 we said that by using
the morphism bu f0j−−→ HZ2 we can regard (HZ2)

∗(bu) as a quotient
of HZ∗

2(HZ2) = A. Dually, we can regard (HZ2)∗(bu) as a subobject
of HZ∗

2(HZ2) = A∗. In fact, for calculation it is usually convenient
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to apply the canonical anti-automorphism of A∗; in other words
instead of looking at the morphism

HZ2 ∧ bu
1∧f0j−−−−→ HZ2 ∧HZ2,

and taking the induced map of homotopy we look at

bu ∧HZ2
f0j∧1−−−−→ HZ2 ∧HZ2,

and take the induced map of homotopy

Lemma 16.8. (f0j)∗ identifies π∗(bu∧HZ2) with the subalgebra of A∗

generated by
ξ21 , ξ

2
2 , ξ3, ξ4, . . .

This is immediately equivalent to 16.6;Im(f0j ∧ 1)∗ is the annihilator
of Sq1A+ Sq01A. Similarly, one would identify π∗(bu ∧HZ2) with the
subalgebra of A∗ generated by ξ41 , ξ

2
2 , ξ3, ξ4, . . .

In order to prove 16.4, on the structure of (HZ2)
∗(bu) as a B-

module, an obvious move is to compute the homology of (HZ2)
∗(bu)

for the boundaries Sq1 and Sq01 (acting on the left). It is equivalent
to compute the homology of (HZ2)

∗(bu) for the boundaries Sq1 and
Sq01 (acting on the right); these boundaries may be calculated as
follows.

Regard (HZ2)
∗(bu) as a subalgebra of A∗; let

Ψa =
∑
i

a′i ⊗ a′′i ;

then
aSq1 =

∑
i

a′i〈Sq
1, a′′i 〉

aSq01 =
∑
i

a′i〈Sq
01, a′′i 〉

These boundaries are derivations,
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Lemma 16.9. (i) The homology for Sq1 is a polynomial algebra of
one generator ξ21 .

(ii) The homology for Sq01 is an exterior algebra on generators
ξ21 , ξ

2
2 , ξ

2
3 , . . .

Proof. (i) Decompose π∗(bu ∧HZ2) as the tensor product of the
following chain complexes.

(1) 1, ξ21 , ξ
4
1 , ξ

6
1 , ξ

8
1 , . . . ,

(r) 1, ξ2r ←− ξr+1, ξ
4
r ←− ξ2rξr+1, ξ

6
r ←− ξ4rξr+1, . . . .

(r ≥ 2)

Each chain complex (r) has homology Zr generated by [Ada69].
By the Künneth theorem, the homology of the tensor-product is
the homology of (1).A similar proof works for (ii).

Proof of 16.4. We show that π∗(bu∧HZ2) contains a finite-dimensional
submodule Mr such that H(Mr;Sq1) is Z2, generated by ξ2

r

1 , and
H(Mr;Sq01) is Z2, generated by ξ2r . It is sufficient to indicate the
first few modules

1. ξ21

2.
ξ22 ξ41

ξ3

Sq1

Sq01
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3.

ξ23 ξ42 ξ22ξ
4
1 ξ81

ξ4 ξ22ξ3 ξ41ξ3

Since π∗(bu ∧HZ2) is an algebra over B, we obtain a map

(1 +M1)(1 +M2) · · · 7→ π∗(bu ∧HZ2)

which induces an isomoprhism of H(−;Sq1) and H(−;Sq01), so that
the two sides are stably isomoprhic by 16.7. Dualising, we obtain
the stable class of (HZ2)

∗(bu) as

(1 +M∗
1 )(1 +M∗

2 ) . . . (1 +M∗
r ) . . .

Here M∗
r satisfied the hypothesis of Theorem 16.3, which allows

one to express it in the form ΣaIb.This proves 16.4

All this work carries over to bo.
We now turn to the proof of 16.5. This is done essentially by

the Bockstein spectral sequence, although I will not assure any
knowledge of that, We recall that the Bockstein boundary

β2 : (HZ2)n(bu) 7→ (HZ2)n−1(bu)

is the boundary Sq1 of 16.9

proof of 16.5. We seperate the primes p. Let Qp be the localisation
of Z at p, that is the subring of fractions a/b with b prime to p.
We wish to prove that the image of (HQp)∗(bu) in (HQ)∗(bu) is the
Qp-subalgebra generated by t and tp−1/p. Of course I give the proof
for the case p = 2;the case of an odd prime is similar.
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The spectrum bu has a (stable) cell-decomposition of the form

bu = S0 ∪η e2 ∪ . . .

where η is the generator for the stable 1-stem, and the cells
omitted have (stable) dimension ≥ 4, It follows that the Hurewicz
homomorphism

Z ∼= π2(bu) 7→ H2(bu) ∼= Z

is multiplication by 2 ; that is, H2(bu) is generated by t/2 = T , say. It
follows immediately that the image of H∗(bu) 7→ (HQ)∗(bu) contains
T r = (t/2)r. We wish to prove a result in the opposite direction.

The image of H2r(bu) 7→ (HQ)2r(bu) is a finitely-generated abelian
group, and since it is non-zero, it is isomorphic to Z; let h ∈ H2r(bu)
map to a generator. Let us write h, T for the images of h, T in
(HZ2)∗(bu). Then we have

β2h = 0.

By 16.9, (Kerβ2/Imβ2)2r is generate by ξ2r1 . So we have

h = λξ2r1 + β2k

where λ ∈ Z and k ∈ (HZ2)2r+1(bu). That is

h = λT
r
+ δ2k,

where δ2 = (HZ2)2r+1(bu) 7→ H2r(bu)is the integral Bockstien . This
gives

h = λT r + λ2k + 2L

where L ∈ H2r(bu). For the images in (HQ)2r(bu) we have

h = λ(t/2)r + 2µh
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where µ ∈ Z; that is,
h =

λ

1− 2µ
(t/2)r

where λ
1−2µ ∈ Q2. This proves the result for the prime 2.

Now we turn to the structure theory.

Proof of 16.2. Recall that A is a connected finite-dimensional Hopf
algebra. So if M is an A-module, we can make its dual M∗ =

Hom∗
K(M,K) into an A-module. Also A∗ is free on one generator.Re-

call also that I is the augmentation ideal of A, so that we have the
following exact sequence.

0 −→ I −→ A −→ 1 −→ 0

Dualising, we have the following exact sequence.

0 −→ 1 −→ A∗ −→ I∗ −→ 0

Tensoring the first sequence with I∗, We have

0 −→ I ⊗ I∗ −→ A⊗ I∗ −→ I∗ −→ 0.

Here A∗ and A∗ ⊗ I∗ are free. By Schanuel’s lemma, we have

(I ⊗ I∗) +A∗ ∼= 1 + (A⊗ I∗),

SO I ⊗ I∗ is stably isomorphic to 1, and I is invertible. This proves
16.2

To prove 16.3(i) I need 16.7 the lemma of Adams and Margolis.
First one proves a special case.

Lemma 16.10. Let M be a module over K[x, y] which is connective,
i.e., bounded below; alternatively, let M be bounded above. Assume
H∗(M ;x) = 0, H∗(M ; y) = 0. Then M is free.
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Proof of 16.10. Since H∗(M ;x) = 0 we have a short exact sequence

0 −→M/xM
i
−→M

j

−→M/xM −→ 0

in which i([m]) = xm and j is the quotient map . This leads to a long
exact sequence of homology for the boundary y, namely

Hr(M ; y) −→ Hr(M/xM ; y) −→ Hr+|y|−|x|(M/xM ; y) −→ Hr+|y|(M ; y).

since H∗(M ; y) = 0 we have

Hr(M/xM ; y) = Hr+|y|−|x|(M/xM ; y).

Since M is bounded either below or above, we have Hr(M/xM ; y) = 0

either for r < n0 or for r > n1. Since |y| − |x| 6= 0, we can use the
isomorphism

Hr(M/xM ; y) ∼= Hr+|y|−|x|(M/xM ; y)

to prove by induction over r that

Hr(M/xM ; y) = 0

for all r.
It is immediate that M/xM is free over K[y]. That is, let bα be

elements in M whose images form a K-base in

M/xM

y(M/xM)
;

then the images of bα, ybα form a K-base in M/xM . It follows
that the elements bα, ybα, xbα, xybα form a K-base in M. This proves
16.10.

Proof of 16.7. Let f : M −→ N be a map of modules, say bounded
below such that

f∗ : H∗(M ;x) −→ H∗(N ;x)
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and
f∗ : H∗(M ; y) −→ H∗(N ; y)

are isomorphisms. By adding to M a free module F bounded below,
we can extend f to f ′ = (f, g) : M ⊕ F 7→ N which is onto and also
induces and isomorphism of H∗(−;x),H∗(−; y). Consider Ker f ′; this
is bounded below, and by the exact homology sequence we have
H∗(Ker f ′;x) = 0, H∗(Ker f ′; y) = 0. So Ker f ′ is free by 16.10. But
over K[x, y] the free modules are injective so we have

M ⊕ F ∼= N ⊕ Ker f ′

and M is stably isomorphic to N . This proves 16.7

Proof of 16.3(i). Let M be a finite-dimensional module over K[x, y]

such that H∗(M ;x) and H∗(M ; y) have dimension 1 over K. Then the
same holds for M∗. Consider the evaluation map M∗ ⊗M −→ 1. This
is a map of modules over K[x, y], and (using the Künneth theorem).
it induces an isomorphism of H∗(−;x),H∗(−; y),. by 16.7, M∗ ⊗M and
1 are stably isomorphic; so M is invertible. This proves 16.3 (i).

To prove 16.3(ii) we need some more structure theory. First we
put in evidence several examples of graded modules over K[x, y].
The first is called the lightning-flash. It has generators gi in dimesion
(|y| − |x|)i (i ∈ Z) and relations ygi = xgi+1.

−∞ . . . • • • . . . +∞

• • • •

p y x y
x

y
x
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We can bring the lightning-flash to an end on the left either by
taking the submodule generated by the gi for i ≥ ν or by taking a
quotient module, factoring out the gi for i < ν.

• • • •

• • • . . . +∞

• • •

• • • . . . +∞

yx

x

y

In the latter case xgν = ygν−1 = 0. Similarly, we can bring the
lightning-flash to an end on the right, either by taking the submodule
generated by the gi for i ≤ ν, or by taking a quotient module,
factoring out the gi for i > ν.

−∞ • • • • • •

• • •

−∞ • • • • •

• • •

y
x

y
x

In the latter case xgν = ygν+1 = 0

If we want finite-dimensional modules, we can end the lightning -
flash two ways on the left and two ways on the right, giving four
sorts of module, Of course, for modules of one sort we can alter
the length, , e.g.,

• • • • • . . .

• • • • or • • •

y

x
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Also we might alter the grading, e.g., we might put the generator
g0 in degree 1 instead of degree 0.

We add these four sorts of modules the free modules on the
generator.

Theorem 16.11. Let M be a module over K[x, y] which is finite-
dimensional over K. Then M is a (finite) direct sum of modules of
these fives types.

First step. Suppose xy 6= 0. Then M is the direct sum of some
module N and a free module on one generator.

Proof. Take m0 ∈ Mr such that xym0 6= 0. Then there is a linear
functional θ :Mr+|x|+|y| −→ K such that θ(xym0) = 1. Let F be free on
one generator f of degree r. Define maps of modules

F
α−→M

β−→ F

by α(f) = m0,

β(m) =



θ(m)xyf m ∈Mr+|x|+|y|

θ(xm)yf m ∈Mr+|y|

−θ(ym)xf m ∈Mr+|x|

θ(xym)f m ∈Mr

0 otherwise

.

This shows M ∼= (Ker β)⊕ F .

Second step. M ∼= N ⊕ F , where F is free and N is annihilated by
xy.

Proof. Choose a K-base for xyM . Let mα be elements in M such that
the elements xymα are the chosen K-base in xyM . Either proceed
as in the first step, or remark that this gives an injection F −→M

and F is injective.
In what follows, then, we can assume that M is annihilated by xy,

and we have the prove that M is a (finite) direct sum of modules
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of the four types.
By a base for a graded module, we mean a K-base of homoge-

neous elements.
We will say that a base {bα} for M is good if it satisfies the

following conditions.

(i) For each vector bα in the base, xbα is either zero or a vector
in the base; and xbα = xbβ 6= 0 implies α = β.

(ii) For each vector bα in the base, ybα is either zero or a vector
in the base; and ybα = ybβ 6= 0 implies α = β.

Lemma 16.12. If xyM = 0 and M has a good base, then the conclusion
of Theorem 16.11 follows.

Proof. Suppose M has a good base {bα}. Take the indices α as the
vertices of a graph. It is a finite graph, since we are assuming M

finite-dimensional over K. For each relation xbα = bβ introduce one
directed edge marked “x” and running from α to β. For each relation
ybα = bβ introduce one directed edge marked “y” and running from α

to β. Divide the graph into connected components. It is clear that
a vector cannot have edges arriving and departing, since xx, xy, yx
and yy act as a zero on M . By the definition of a “good base”, a
vector cannot have more than two edges arriving (one x and one
y), and of course it cannot have more than two edges departing
(one x and one y). The connected components of the graph are
therefore zigzags. (A zigzag cannot join up into a closed polygon,
because we assume degx 6= deg y.) Each connected component of
the graph gives a submodule of M , which is one of the 4 types
describes above; and M is their direct sum. This proves 16.12.

We define the indecomposible quotient Q(M) of M by Q(M) =

M/(xM + yM). Over K we can, if we wish, choose a direct sum
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splitting
M = Q(M)⊕ (xM + yM).

Both x and y map xM + yM to 0, since we assume xyM = 0; they also
map Q(M) to (xM + yM).

Let V be a finite-dimensional vector space over K, and let

0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V

be a filtration of V by a finite increasing sequence of vector sub-
spaces. We say that a K-base {bα} for V is adapted to the filtration
if, for every i, those bα which lie in Vi form a base for Vi.
Lemma 16.13. Let M be a module over K[x, y] such that (i) xyM = 0

and (ii) Q(M)r = 0 for r < a and for r > c. Then there are filtrations
of yMr for c − δ < r ≤ c with the following property. For each r in
the range c− δ < r ≤ c let {brα} be a base of yMr which is adapted
to the filtration; then the set of elements brα can be extended to a
good base of M .
Notes. It is assumed that deg y > degx, and δ has been written for
deg y − degx.
Notes. In the range c− δ < r ≤ c we have xMr+δ = 0, and therefore
yMr = xMr+δ + yMr. So the vector space being filtered is the whole
of the decomposable subspace of M in the dimension concerned.
Corollary 16.14. If M is as in 16.13, it has a good base.

Proof. Any filtered vector space

0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V

has at least one adapted base; for one begins by choosing a base
for V1, then extends it to a base V2, and so on by induction. So
16.13 provides a good base for M .

Proof of 16.13. The proof is essentially by induction over c− a; the
result is true if c < a, then if M = 0.
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Choose a direct sum splitting M = Q(M)⊕ (xM + yM). Let N be
the submodule of M generated by Q(M)r for a ≤ r < c. The relations
between N and M are as follows. We have Q(N)r = Q(M)r except
for r = c, in which case Q(N)c = 0. Thus we have xNr = xMr except
for r = c; that is,

(xN + yN)r = (xM + yM)r

except for r = c + d and r = c + e, where d = degx and e = deg y. In
the first case we have

yNc−δ = xNc + yNc−δ ⊂ xMc + yMc−δ,

and in the second case we have

0 = xNx+δ + yNc ⊂ xMc+δ + yMc = yMc.

We assume, as our inductive hypothesis, that the lemma is true
for N . Then there are filtrations of yNr for c− δ ≤ r < c which have
the property stated in the lemma. In particular, let the filtration
of yNc−δ = yMc−δ be

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = yMc−δ.

Adjoin to it the further subgroup

Vn+1 = xMc + yMc−δ.

We have a map x : Q(M)c −→ xMc+yMc−δ; so we can filter the vector
space Q(M)c by the counterimages

0 ⊂ x−1V0 ⊂ x−1V1 ⊂ . . . ⊂ x−1Vn ⊂ x−1Vn+1 = Q(M)c = 0.

We also have a map a map y : Q(M)c −→ yMc. We filter yMc by
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taking the images

0 ⊂ yx−1V0 ⊂ yx−1V1 ⊂ . . . ⊂ yx−1Vn ⊂ yx−1Vn+1 = yMc.

We now have filtrations on yMr for c − δ < r ≤ c; those for
c− δ < r < c arise from the inductive hypothesis, and that for r = c

has already been constructed. Suppose given bases {brα} in yMr

for c− δ < r ≤ c, adapted to the filtrations. We leave the bases as
they are for c− δ < r < c, and start work on the base {bcα} for yMc.

In Q(M)c we may choose elements b′α such that yb′α = bcα and
b′α ∈ x−1Vm if and only if bcα ∈ yx−1Vm. We may also choose elements
b′′β in Q(M)c forming a base adapted to the following filtration.

0 ⊂ Ker y ∩ x−1V0 ⊂ Ker y ∩ x−1V1 ⊂ . . . ⊂ Ker y ∩ x−1Vn ⊂ Ker y ∩ x−1Vn+1

The elements b′α and b′′β together form a base of Q(M)c adapted to
the filtration

0 ⊂ x−1V0 ⊂ x−1V1 ⊂ . . . ⊂ x−1Vn ⊂ x−1Vn+1 = Q(M)c = 0.

From among the elements b′α and b′′β, let us for the moment omit
those which lie in x−1V0 = Ker x and those which do not lie in x−1Vn.
Then the remaining xb′α and xb′′β form a base of yNc−δ compatible
with its filtration. By the inductive hypothesis, the bases in yNr for
c− δ ≤ r < c from part of a good base for N . We now adjoin to this
base for N the elements b′α and b′′β in Q(M)c, the elements yb′α = bcα

in yMc, and the elements xb′α, xb′′β for which b′α, b′′β do not lie in x−1Vn.
We obtain a good base for M , containing the given elements brα.
This completes the induction and proves 16.13.

This therefore completes the proof of 16.14. Theorem 16.11
follows from 16.14 and 16.12, so this completes the proof of 16.11.

Proof of 16.3(ii). Let M be a finite-dimensional module over K[x, y]

such that H∗(M ;x) and H∗(M ; y) both have dimension 1 over K. Then
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by 16.11 it is a sum of modules of the type considered above. By
inspecting H∗(M ;x) and H∗(M ; y), it can have only one summand
which is not free, and this summand can only lie in two out of
the four types. By the same argument applied to ΣaIb, each such
summand is stably equivalent to ΣaIb.
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17. Structure of π∗(bu ∧ bu)

Mahowald and others have been using methods which rely essen-
tially on a calculation of π∗(bo ∧ bo ∧ · · · ∧ bo), where we take (n+ 1)

factors bo. I would like to give an introduction to this calculation;
it seems best if I do things for the most elementary case, which is
the case of bu, but undertake to use only methods which extend to
the case bo. For similar reasons I will mostly consider the case of
the two factors bu ∧ bu; the case of (n+ 1) factors is similar. Again,
I will consider mostly the prime 2, but try to make only statements
which can also be made for the prime p.

Some things can be said for a fairly general connective spectrum
X. My standing hypotheses on X will be as follows. First, assume
that for each r, Hr(X) is a finitely generated group. This may be
unnecessary for some purposes, but it is convenient. Secondly, for
each prime p, consider (HZp)∗(X) as a module over B = Zp[Q0,Q1],
and assume that its stable class is

⊕
iΣ

a(i,p)Ib(i,p), where b(i, p) ≥ 0

and a(i, p) + b(i, p) ≡ 0 mod 2.

Example. Let X = bu ∧ · · · ∧ bu (n factors). We have checked the
condition at the prime 2 by 16.4. We have not checked the condition
at the prime p > 2, but I believe it holds. In any case, the results at
the prime 2 follow from the assumptions at the prime 2.

Our assumptions on X have obvious consequences for the ho-
mology of X with integral coefficients.

Lemma 17.1. (i) H∗(X) is a direct sum of groups Z2 and Zp, and
groups Z in even degree.
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(ii) The same holds for H∗(bu ∧X).

Proof. (i) The argument is essentially by the Bockstein spectral
sequence, but we do not need to assume any knowledge of
that. By assumption, Hr(X) is finitely-generated abelian group;
so it is a direct sum of groups Zpf and Z. A group Zpf with f ≥ 2

will introduce into Kerβp/Imβp two groups Zp in consecutive
degrees, which is impossible; we have assumed Kerβp/Imβp
has one summand Zp in each degree a(i, p) + b(i, p), and that
a(i, p)+b(i, p) is always even. A group Z in degree r will introduce
into Kerβp/Imβp a group Zp in degree r, which is possible only
if r is even.

(ii) The spectrum bu∧X satisfies the assumptions made on X. Of
course we propose to obtain essential information on π∗(bu∧X)

from the spectral sequence 16.1. The two results which we
obtain this way are as follows.

Proposition 17.2. Assume that X is as above.

(i) The Hurewicz homomorphism

h : π∗(bu ∧X) −→ H∗(bu ∧X)

is a monomorphism.

(ii) The Hurewicz homomorphism

h : π∗(K ∧X) −→ H∗(K ∧X)

is a monomorphism.

(iii) The homomorphism

π∗(K ∧X) −→ π∗(K ∧X)⊗Q

is a monomorphism.
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Part (ii) follows immediately from part (i), by passing to direct
limits.

Part (iii) follows from part (ii); we have H∗(K) ∼= H∗(K)⊗Q, and
therefore H∗(K ∧X) ∼= H∗(K ∧X)⊗Q.

Given this proposition, one obviously tries to get a hold on
π∗(K ∧ X) by describing its image in π∗(K ∧ X) ⊗ Q. It is also very
reasonable to try to get a hold on π∗(bu∧X) by describing its image
in π∗(bu ∧X)⊗Q; the kernel of

π∗(bu ∧X) −→ π∗(bu ∧X)⊗Q

may contain elements of order p, but no elements of order p2; this
follows of course from 17.1 and 17.2. The p-torsion subgroup of
π∗(bu ∧X) maps monomorphically to (HZp)∗(X).

We shall also need another result. Consider the following dia-
gram.

π∗(bu ∧X) H∗(bu ∧X)

π∗(K ∧X) H∗(K ∧X) π∗(K ∧X)⊗Q

Theorem 17.3. Let X be as above. Suppose an element h ∈ H∗(K∧X)

lies both in the image of H∗(bu ∧X) and in the image of π∗(K ∧X).
Then it lies in the image of π∗(bu ∧X).

The usefulness of this result will appear later.

I said it was reasonable to try to get a hold on π∗(K ∧ X) by
describing its image in π∗(K ∧ X) ⊗ Q. In the case X = bu we see
that π∗(bu∧bu)⊗Q is the polynomial algebra Q[u, v], where u ∈ π2(bu)
and v ∈ π2(bu) are the generators for the two factors. Similarly, we
have

π∗(K ∧ bu)⊗Q = Q[u, u−1, v]
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We wish to describe the images of the maps

π∗(K ∧ bu) −→ π∗(K ∧ bu)⊗Q = Q[u, u−1, v]

π∗(bu ∧ bu) −→ π∗(bu ∧ bu)⊗Q = Q[u, v]

Theorem 17.4. In order that a finite Laurent series f(u, v) ∈ Q[u, u−1, v]

lie in the image of π∗(K ∧ bu), it is necessary and sufficient that it
satisfy the following condition.

Condition (1): for all k 6= 0, l 6= 0 in Z we have

f(kt, lt) ∈ Z[t, t−1, k−1, l−1]

Theorem 17.5. In order that a polynomial f(u, v) ∈ Q[u, v] lie in the
image of π∗(bu ∧ bu), it is necessary and sufficient that it satisfy
the following two conditions.

Condition (1): as in 17.4

Condition (2): it lies in the subgroup additively generated by the
monomials

ui

m(i)

vj

m(j)

Here m(r) =
∏
p p

[
r

p−1

]
, as in section 16. Of course, the subgroup

specified is actually a subring.

It is very easy to prove that the conditions given in 17.4 and
17.5 are necessary, so I will do that now.

proof that Condition (1) is necessary. Consider the following com-
mutative diagram.
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π∗(K ∧ bu) π∗(K ∧ bu)⊗Q Q[u, u−1, v]

π∗(K ∧ bu)⊗ Z[k−1, l−1] π∗(K ∧ bu)⊗Q

π∗(K)⊗ Z[k−1, l−1] π∗(K)⊗Q

Z[t, t−1, k−1, l−1] Q[t, t−1]

Ψk⊗Ψl Ψk⊗Ψl

µ µ

The right-hand vertical arrow carries f(u, v) into f(kt, lt). This
proves that Condition (1) is necessary.

proof that Condition (2) is necessary. Consider the following com-
mutative diagram.

π∗(bu ∧ bu) π∗(bu ∧ bu)⊗Q

H∗(bu ∧ bu) H∗(bu ∧ bu)⊗Q

Here H∗(bu ∧ bu) is described by the Künneth theorem, and the
terms
TorZ1 (Hi(bu),Hj(bu)) map to zero in H∗(bu ∧ bu)⊗Q, so the image of
H∗(bu ∧ bu) in H∗(bu ∧ bu)⊗Q is the same as the image of H∗(bu)⊗
H∗(bu). By 16.5, this is the subgroup additively generated by the
monomials

ui

m(i)

vj

m(j)

This proves that Condition (2) is necessary.

Proof of 17.5 from 17.3 and 17.4. Suppose a polynomial f(u, v) sat-
isfies Conditions (1) and (2). Consider f as an element of Q[u, u−1, v] =

π∗(K ∧ bu) ⊗ Q = H∗(K ∧ bu). According to the proof we have just
given, Condition (2) ensures that f lies in the image of H∗(bu ∧ bu).
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By 17.4, Condition (1) ensures that f lies in the image of π∗(K ∧ bu).
Now 17.3 shows that it lies in the image of π∗(bu ∧ bu). This proves
17.5.

Remark. When we replace bu by bo, we replace Q[u, v] by Q[u2, v2]

and Q[u, u−1, v] by Q[u2, u−2, v2]; that is, we only use functions which
are even in both variables. We also replace the ring Z[t, t−1, k−1, l−1]

by π∗(KO) ⊗ Z[k−1, l−1]; since we only need the components of de-
gree congruent to 0 mod 4, this is essentially Z[2t2, t4, t−4, k−1, l−1].
Condition (2) is unchanged.

In order to do calculations it is often desirable to know exactly
what functions do satisfy the condition given. In such calculations
it is usually convenient to separate the primes and consider the
images of

π∗(K ∧ bu)⊗ Z(p) −→ π∗(K ∧ bu)⊗Q

π∗(bu ∧ bu)⊗Q −→ π∗(bu ∧ bu)⊗Q

Of course, I consider the prime 2. The analogue of Condition (1)
reads as follows.

(1’) For each pair of odd integers k, `, f(kt, `t) ∈ Z(2)[t, t
−1]. The

analogue of Condition (2) reads as follows.

(2’) f(u, v) ∈ Z(2)[u/2, v/2].

Proposition 17.6. (i) The subring of finite Laurent series which
satisfy (1’) is free over Z(2)[u, u

−1] on generators

1,
v − u
3− 1

,
(v − u)(v − 3u)

(5− 1)(5− 3)
,
(v − u)(v − 3u)(v − 5u)

(7− 1)(7− 3)(7− 5)
. . .

(ii) The subring of polynomials which satisfy (1’) and (2’) is free
over Z(2) on the following generators.

u4,
u4(v − u)

2
,
u4(v − u)(v − 3u)

23
,
u4(v − u) . . . (v − 5u)

24
,
u4(v − u) . . . (v − 7u)

27
. . .
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u3,
u3(v − u)

2
,
u3(v − u)(v − 3u)

23
,
u3(v − u) . . . (v − 5u)

24
,
u3(v − u) . . . (v − 7u)

27
. . .

u2,
u2(v − u)

2
,
u2(v − u)(v − 3u)

23
,
u2(v − u) . . . (v − 5u)

24
,
u2(v − u) . . . (v − 7u)

26
. . .

u,
u(v − u)

2
,
u(v − u)(v − 3u)

23
,
u(v − u) . . . (v − 5u)

24
,
u(v − u) . . . (v − 7u)

25
. . .

1,
v − u
2

,
(v − u)(v − 3u)

22
,
(v − u)(v − 3u)(v − 5u)

23
,
(v − u)(v − 3u)(v − 5u)(v − 7u)

24
, . . .

The principle in part (ii) is that one takes each product (v −
u)(v− 3u) . . . (v− (2n+1)u), multiplies it by ui, and then divides by the
greatest power of 2 which will still leave it satisfying (1’) and (2’).
The greatest power of 2 which leaves it satisfying (1’) is read from
(1), and is the 2-primary factor of 2n(n!). The greatest power of 2

which leaves it satisfying (2’) is 2n+i.

Remark. For an odd prime p we replace the arithmetic progression
1, 3, 5, 7 . . . of 17.6 by the sequence of positive integers prime to p.
Alternatively, if one takes the precaution of splitting buZ(p) into
(p− 1) similar summands and taking one of them, one replaces (v −
u)(v−3u)(v−5u) . . . by (vp−1−up−1)(vp−1−(p+1)up−1)(vp−1−(2p+1)up−1) . . ..
When one replaces bu by bo, one replaces (v − u)(v − 3u)(v − 5u) . . .

by (v2 − 12u2)(v2 − 32u2)(v2 − 52u2) . . ..

The proof of 17.6 is straight algebra, and will be given later.
We begin the proof of these results with a simple result on the

homology of X, essentially comparable with 17.1.

Lemma 17.7. Let X be as in 17.1–17.3, and let {ci} be any Z2-base
for the subquotient Kerβ2/Imβ2 of (HZ2)2r(X) (e.g. arising from our
assumed decomposition (HZ2)

∗(X) ∼=
⊕

Σa(i,2)Ib(i,2).) Let hi ∈ H2r(X)

be any element whose image in (HZ2)2r(X) is ci. Then the elements
hi yields a Z(2)-base for the image of (HZ(2))2r(X) in (HQ)2r(X).

Proof. Let kj be a Z-base for H2r(X) mod torsion; then in H2r(X)

mod torsion we can write h =
∑
j

aijkj where aij ∈ Z. When we pass

to (HZ2)2r(X), both the hi and the kj yields Z2-base for Kerβ2/Imβ2.
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So the hi and kj are equal in number, and det(aij) is odd. The result
follows.

Next I recall some results of homological algebra over K[x, y].
Consider the following short exact sequences.

0 −→ Σ|x| x−→ K[x, y]

yK[x, y]
−→ 1 −→ 0

0 −→ Σ|y| y−→ K[x, y]

xK[x, y]
−→ 1 −→ 0

They represent elements

ξ ∈ Ext1,|x|K[x,y](K,K),

η ∈ Ext1,|y|K[x,y](K,K).

Lemma 17.8. Ext∗∗K[x,y](K,K) is a polynomial algebra of K[ξ, η].

This is a completely standard calculation.

Lemma 17.9. We have an epimorphism

Exts,tK[x,y](I ⊕M,K) −→ Exts+1,t
K[x,y](M,K)

which is an isomorphism for s > 0.

This is trivial, since we have an exact sequence

0 −→ I ⊗M −→ A⊗M −→M −→ 0

with A⊗M free.
Now observe that as a matter of formal algebra, I can construct

a free module over K[ξ, η] on various generators, where I may assign
bidegrees to the generators at will. In particular, given M as a
locally-finite sum M ∼=

⊕
i

Σa(i)Ib(i) with b(i) ≥ 0, I take F to be a free

module over K with generators ai of bidegrees s = −b(i), t = a(i).
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Lemma 17.10. In degrees s ≥ 0 we have an epimorphism

Ext∗∗K[x,y](M,Z2) −→ F

which is an isomorphism in degrees s > 0.

The case of one factor ΣaIb follows immediately from 17.8 and
17.9; the factor Σa causes a trivial shift in the t-grading. Then one
passes to sums.

Now I specialise to the case p = 2, K[x, y] = B, a(i) = a(i, 2), b(i) =
b(i, 2). Then Lemma 17.10 computes for us the E2-term of the
spectral sequence 16.1, which converges to π∗(bu ∧X) at the prime
2.

Lemma 17.11. (i) There is a homomorphism Es,tr −→ Es+t,t+1
r of

the spectral sequence 16.1 which for r = 2 is multiplication
by ξ and for r = ∞ is obtained by passing to quotients from
multiplication by 2 in π∗(bu ∧X).

(ii) There is a homomorphism Es,tr −→ Es+1,t+3
r of the spectral se-

quence 16.1 which for r = 2 is multiplication by η and for r =∞
is obtained by passing to quotients from multiplication by the
generator t ∈ π2(bu) in π∗(bu ∧X).

For an odd prime we use tp−1 in part (ii). For bu we use the
generator π8(bo), and replace η by the generator in Ext4,12K[x,y](Z2,Z2).

Part (i) is absolutely standard. For part (ii), consider the morphism
S2 ∧ bu −→ bu which corresponds to multiplication by the generator
π8(bu), consider its effect on the spectral sequence 15.1, and chase
that effect through the change-of-rings theorem.

Lemma 17.12. Let X be as in 17.1–17.3. Then the spectral sequence
of 16.1 has all its differentials zero.

Proof. From 17.10 and our assumption that a(i) + b(i) ≡ 0 mod 2, it
follows that Es,t2 = 0 for s > 0 and t−s ≡ 1 mod 2; therefore the same
holds for Es,tr . So it is sufficient to consider dr(e), where e ∈ Es,tr and
s = 0, t− s ≡ 1 mod 2.
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We suppose, as an inductive hypothesis, that dm = 0 for m < r so
that

Es,tr
∼= Es,t2

∼= Exts,tB ((HZ2)∗(X),Z2).

Argument (i).
ξdr(e) = dr(ξe) = 0,

but multiplication by ξ is a monomorphism on Exts for s > 0, there-
fore on Es,tr , so dr(e) = 0.

Argument (ii).
ηdr(e) = dr(ηe) = 0,

but multiplication by η is a monomorphism on Exts for s > 0, there-
fore on Es,tr , so dr(e) = 0.

This completes the induction, and proves 17.12.

Remark. Argument (ii) becomes better than argument (i) when we
replace bu by bo.

Proof of 17.2 (i). Let α ∈ π∗(bu ∧ X) be an element in the kernel
of the Hurewicz homomorphism. Then certainly α maps to zero
in (HZp)∗(bu ∧ X), i.e., α has filtration at least 1 in the spectral
sequence 16.1, and similarly for odd primes p. Also α maps to zero
in (HQ)∗(bu ∧X) ∼= π∗(bu ∧X)⊗Q, so α is a torsion element. But by
17.10, 17.1 and 17.12 multiplication by 2 induces a monomorphism
Es,t∞ −→ Es+1,t+1

∞ for s > 0, i.e., multiplication by 2 is a monomorphism
on the subgroup of elements of filtration at least 1; and similarly
for odd primes p. Therefore α = 0. This proves 17.2 (i).

Remark. If we tried to compute bu∗(X), by using the Atiyah-Hirzeburch
spectral sequence

H∗(X;π∗(bu)) ==⇒ bu∗(X)

we would encounter non-trival extensions; it would not be obvious
how multiplication by 2 acts in bu∗(X).
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In order to prove 17.3, we pursue the proof of 17.2 a bit further.
Let Y be a connective spectrum; then we may filter π∗(Y ) by the
filtration subgroups Fs of 15.1 (with E = HZ2). Also we may filter
H∗(Y ) by the groups F ′

s = 2sH∗(Y ).

Lemma 17.13. (i) The Hurewicz homomorphism

h : π∗(Y ) −→ H∗(Y )

maps Fs into F ′
s.

(ii) h−1F ′
1 = F1.

Proof of (i). Let Ys be as in §15, α ∈ π∗(Ys). Suppose as an inductive
hypothesis that in Ys−τ we have h(α) = 2σkσ for some kσ ∈ π∗(Ys−σ).
The map

Ys−σ −→ Ys−σ−1

induces the zero homomorphism (HZ2)∗(Ys−σ) −→ (HZ2)∗(Ys−σ−1), so
kσ maps to zero in (HZ2)∗(Ys−σ−1), and in H∗(Ys−σ−1) we have kσ =

2kσ+1, h(α) = 2σ+1kσ+1. This completes the induction and shows that
in H∗(Y ) = H∗(Y0) we have h(α) = 2sks.

Proof of (ii). Suppose h(α) ∈ F ′
1. Then α maps to zero in (HZ2)∗(Y ),

so α ∈ F1. This proves 17.13.

Lemma 17.14. Take Y = bu ∧X, where X is as above. Then

(i) Es∗∞ = Fs/Fs+1
h−→ F ′

s/F
′
s+1 is a monomorphism for all s.

(ii) Fs = h−1F ′
s; in other words, the filtration in π∗(bu∧X) is obtained

exactly by pulling back the filtration in H∗(bu ∧X).

Proof. First we show that (ii) follows from (i). Suppose (i) true, and
let α ∈ π∗(bu ∧ X), hα = F ′

s. Suppose, as an inductive hypothesis,
that α ∈ Fσ for some σ < s. Consider Fσ/Fσ+1

h−→ F ′
σ/F

′
σ+1. We are

assuming that this homomorphism is a monomorphism; it maps α
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to zero, so α ∈ Fσ+1. This completes the induction, and shows that
if hα ∈ F ′

s, then α ∈ Fs. This proves part (ii).
We note part (i) is true for s = 0, by 17.13(ii). It is therefore

sufficient to prove it for s ≥ 1. It will now do no harm to replace F ′
s

by the image of 2s(HZ(2))∗(bu∧X) in (HQ)∗(bu∧X); for this does not
alter F ′

s/F
′
s+1 for s ≥ 1, for 17.1.

We now divide the proof into three parts. First we exhibit a
base for Fs/Fs+1; secondly, we exhibit a base for F ′

s/F
′
s+1; thirdly we

show that with respect to these bases h is given by a non-singular
triangular matrix.

The base for Fs/Fs+1 is easy; if s ≥ 1, then Es∗∞ has a Z2-base
consisting of the elements ξmiηnigi with mi + ni = s + b(i), by 17.10
and 17.12. We turn to the base for F ′

s/F
′
s+1.

Take an element γi ∈ π∗(bu∧X) representing ξbigi. We can consider
its image in H∗(bu∧X); we can see that there is an element hi ∈ H∗(X)

such that the images of γi in (HQ)∗(bu ∧X) and (HZ2)∗(bu ∧X) both
have the form

h(γi) = 1⊗ hi mod lower terms

where “lower terms” means terms

bj ⊗ xj

with
bj ∈ (HQ)∗(bu) or (HZ2)∗(bu), deg bj > 0,

xj ∈ (HQ)∗(X) or (HZ2)∗(X), |xj | < |hi|.

Now by construction, the image of hi in (HZ2)∗(X) is the ith basis
element for Kerβ2/Imβ2. By 17.7, the elements hi form a Z(2)-base
for the image of (HZ(2))∗(X) in (HQ)∗(X). Let t/2 be the generator
for H2(bu), as above. Then F ′

s/F
′
s+1 has a Z2-base consisting of the

elements
2s(t/2)νhi (ν ≥ 0).
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I claim that if mi+ni = s+b(i), then the image of ξmiηnigi in F ′
s/F

′
s+1

is
2s(t/2)nihi mod lower terms.

Here “lower terms” means terms 2s(t/2)νhj with ν > ni, deghj <
deghi. By construction, γi represents ξb(i)gi, and its image in
(HQ)∗(bu∧X) is hi mod lower terms of filtration ≥ 0. So 2mitbiγi rep-
resents ξb(i)+miνnigi, and its image in (HQ)∗(bu ∧X) is 2mi+ni(t/2)nihi

mod lower terms of filtration ≥ ni +mI . Now multiplication by ξ or
2 is a monomorphism on Fs/Fs+1, and on F ′

s/F
′
s+1. So the image of

ξmiηnigi is 2s(t/2)nihi mod lower terms of filtration ≥ s. This proves
17.14.

Corollary 17.15. (of the proof): Suppose α ∈ π∗(bu ∧ X) ⊗ Z(2) has
filtration ≥ q and its image in (HQ)∗(bu ∧X) lies in

∑
i≥q

(HQ)2i(bu) ⊗

(HQ)∗(X). Then the class of α in E∗∗
∞ can be divided by ηq.

Proof. The result is empty for q = 0, so we may assume q ≥!. Then
the class of α in Es∗∞ is a linear combination of the basis elements

ξmiηnigi.

I claim that every element appearing with a non-zero coefficient
has ni ≥ q. For let the highest term appearing be∑

λiξ
miηνgi

where not all the λi are zero; then in (HQ)∗(bu ∧X), α maps to∑
i

λi2s(t/2)νhi

mod 2s+1(HQ)∗(bu ∧X) and lower terms, and hence ν ≥ q.
Since α has a filtration ≥ q, each term

ξmiηnigi
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which appears has mi+ni ≥ b(i)+ q, and there is an element of Es−q∗∞

mapping onto ξmiηni−qgi. Therefore the class of α in Es∗∞ can be
divided by νq. This proves 17.15.

Lemma 17.16. Let α ∈ π∗(bu ∧X)⊗ Z(2), and suppose

(i) α has filtration ≥ q,

(ii) the image of α in (HQ)∗(bu ∧X) lies in∑
i≥q

(HQ)2i(bu)⊗ (HQ)∗(X).

Then α = tqβ for some β ∈ π∗(bu ∧X)⊗ Z(2).

Proof. Conisder the subgroup of α which satisfy (ii), modulo the
subgroup
tqπ∗(bu ∧X)⊗ Z(2). The quotient is evidently finite in each degree,
for when we tensor with Q the result is zero. In particular, for each
degree there is a filtration s such that all elements of filtration ≥ s
in π∗(bu ∧X)⊗ Z(2) which satisfy (ii) lie in tqπ∗(bu ∧X)⊗ Z(2). Now we
argue by downward induction over the filtration of α. Suppose the
result is true for elements α′ of filtration > σ, and α has filtration
σ ≥ q. Then by 17.15 the class of α in Eσ∗∞ can be divided by ηq; that
is, α = α′+tqβ′′, where α′ has filtration ≥ σ+1 and β′′ ∈ π∗(bu∧X)⊗Z(2).
Here α′ also satisfies (ii), so by the inductive hypothesis, α′ = tqβ′.
Then α = tq(β′+β′′). This complets the induction and proves 17.16.

Proof of 17.3. Suppose an element h ∈ H∗(K ∧ X) lies both in the
image of H∗(bu ∧X) and in the image of π∗(K ∧X). Then it comes
from an element

α ∈ π∗(K(−2n, . . . ,∞) ∧X)

for some sufficiently large value of n. The image of α in H∗(K ∧X)

lies in the image of H∗(bu∧X). Now H∗(K(−2n, . . . ,∞∧Z) −→ H∗(K∧X)
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is not a monomorphism, but the image of

H∗(K(−2n, . . . ,∞) ∧X) −→ H∗(K(−2n− 2, . . . ,∞) ∧X)

does map monomorphically to H∗(K ∧ X). So by replacing 2n

with 2n + 2 if necessary, we may assume that the image of α in
H∗(K(−2n, . . . ,∞) ∧X) lies in the image of H∗(bu ∧X).

Now K(−2n, . . . ,∞) ' S−2n ∧ bu. By 17.14, the element
α ∈ π∗(K(−2n, . . . ,∞) ∧X) has filtration ≥ n. Also its image in
(HQ)∗(K(−2n, . . . ,∞) ∧ X) lies in the image of HQ∗(bu ∧ X). Now
17.16 applies to show that α = tnβ, that is, α lies in the image of
π∗(bu∧X)⊗Z(2). We proceed similarly for the odd primes. Therefore
α lies in the image of π∗(bu ∧X). This proves 17.3.

To prove 17.4, we give means independent of the Adams spectral
sequence for constructing elements in π∗(K ∧ bu). Consider CP∞.
We have a canonical map from CP∞ to bu, which we can consider as
term 2 of the bu-spectrum. We get an element x ∈ bu2

(CP∞). Then
the Atiyah-Hirzebruch spectral sequence shows that bu∗(CP∞) is
free over π∗(bu) on generators βi ∈ bu2i(CP∞) such that

〈xi, βj〉 = δij .

Consider again the canonical map from CP∞ to bu, considered as
term 2 of the bu spectrum. Applying this to βi+1 we obtain an
element

bi ∈ bu2i(bu).

For more detail see [Qui69].

Lemma 17.17 (Adams, Harris and Switzer). The image of bn in
π2n(bu ∧ bu)⊗Q is

(v − u)(v − 2u) . . . (v − nu)
(n+ 1)!

The proof is essentially that of [Qui69], Lemma 13.6, except for
changes of detail.
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Proof of 17.4. Separating components, we can assume that f is ho-
mogeneous, say of degree d. On multiplying f(u, v) by a sufficiently
high power of u, we can ensure that

g(u, v) = uNf(u, v)

is a polynomial which has the following property:

g(k, 1) ∈ Z for allk ∈ Z.

The argument is essentially given in [Qui69], p.102, but add one more
power of u to take care of the case k = 0. Then it is elementary that
g(u, v) can be written as Z-linear combination of the polynomials

u(u− v)(u− 2v) . . . (u− nv)
(n+ 1)!

vd+N−n−1.

Take Lemma 17.5 and apply c : bu ∧ bu −→ bu ∧ bu; we see that

(u− v)(u− 2v) . . . (u− nv)
(n+ 1)!

lies in the image of π∗(bu∧bu). Clearly also u and vd+N−n−1 lie in the
image of π∗(bu∧bu). Therefore g(u, v) lies in the image of π∗(bu∧bu).
Dividing by uN , we see that f(u, v) lies in the image of π∗(K ∧ bu).
This completes the proof of 17.4, which therefore completes the
proof of 17.5.

Proof of 17.6(i). First I claim the given polynomials do satisfy (1’).
Consider the special case ` = 1. Let f be the given product of
degree n; then

f((2k + 1)t, t) = tn
(2k)(2k − 2)(2k − 4) . . . (2k − 2n+ 2)

(2n)(2n− 2)(2n− 4) . . . 2

= tn
k(K − 1)(k − 2) . . . (k − n+ 1)

1 · 2 · 3 · . . . · n
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which lie in Z[t]. Now consider f(kt, `t) with k and ` odd. The
denominator of f contains only a finite number of powers of 2, say
2m, so we may solve `λ = 1 mod 2m; then λn(f(kt, `t)) = f(kλt, `λt) =

f(kλt) mod Z(2)[t], so this lies in Z(2)[t] by the special case λ = 1.
Hence f(kt, `t) lies in Z(2)[t] and f satisfies (1’).

It is now clear that Z(2)[u, u
−1]-linear combination of the given

polynomials also satisfy (1’).

Conversely, let f(u, v) ∈ Q[u, u−1, v] satisfy (1’). We wish to write
it as a Z(2)[u, u

−1]-linear combination of the given polynomials. By
separating homogeneous components, it is sufficient to consider
the case in which f(u, v) is homogeneous, say of degree n. Then we
may write f(u, v) as a Q-linear combination

f(U, v) = λ0u
n + λ1u

n−1 v − u
3− 1

+ λ2u
n−2 (V − u)(v − 3u)

(5− 1)(5− 3)
. . . .

Suppose as an inductive hypothesis that λ0, λ1, . . ., λr−1 lie in Z(2).
Then the sum of the remaining terms

g(u, v) = λru
n−r (v − u) . . . (v − (2r − 1)u)

((2r + 1)− 1) . . . ((2r + 1)− (2r − 1))
+ . . . .

satisfies (1’). We may find λr by substituting v = (2r + 1)t, u = t; we
see that

g((2r + 1)t, t) = λrt
r.

and λr ∈ Z(2). This completes the induction and proves 17.6(i).

Proof of 17.6(ii). We first observe that the given polynomials do
satisfy (1’) and (2’), and so do Z(2)-linear combinations of them.

Conversely, let f(u, v) ∈ Q[u, v] satisfy (1’) and (2’), we wish to
write it as a Z(2)-linear combination of the given polynomials. By
separating homogeneous components, it is sufficient to consider
the case in which f(u, v) is homogeneous, say of degree n. Then we
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may write f(U, v) as a Q-linear combination

f(U, v) =
λ0
2q0

un +
λ1
2q1

un−1(v − u) + λ2

2Z(2)
un−2(v − u)(v − 3u) + . . . ,

where λr ∈ Z(2). Here 2qr divides r!2r by part (i); we wish to prove it
also divides 2n. Suppose, as an inductive hypothesis, that this is
true for r′ > r. Then the sum of the remaining terms

g(u, v) =
λ0
2q0

un + . . .+
λr
2qr

un−r(v − u) . . . (v − (2r − 1)u)

also satisfies (1’) and (2’). But now λr
2qr

is the coefficient of un−rvr,
so qr ≤ n. This completes the induction, and proves 17.6(ii).
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Čech-type cohomology theory, 317

Base of a graded module, 437
BO spectrum, 180
bo/Connective real K-theory, 263
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bu/Connective K-theory, 261

closed subspectrum, 201
cofibre sequence, 202
commutative ring-spectrum, 314
connective, 375
CW-spectrum, 185

exact couple, 274
extended module, 404

function (between spectra), 187
fundemental class, 336

generator of ring-spectrum, 322

H/Eilenberg-Maclane spectrum, 180

Internal products, 311

K/BU-spectrum, 62, 180
Kronecker product, 296
KSC/Self-conjugate K theory, 263

map (between spectra), 188
homotopic maps, 190

Module-spectrum, 314
Moore spectrum, 255
morphism (of spectra), 189
MU/Milnor spectrum, 62

orientation, 322
Orientation for tangent bundle,
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Poincaré duality, 333
primitive element of a comodule,
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Puppe sequence, 202

ring-spectrum, 313

spectrum, 177
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stable homotopy groups, 181
stable phenomenon, 169
Steenrod algebra mod p, 349
subspectrum, 183
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of a CW-spectrum, 186

suspension spectrum (Σ-spectrum),
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sphere spectrum, 181

Telescope functor, 222
Thom Spectrum MO, 181
Thom Spectrum MSO, 181
Thom Spectrum MSpin, 181
Thom Spectrum MSU, 181
Thom Spectrum MU, 181
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J. F. Adams, the founder of stable homotopy theory, gave a lecture
series at the University of Chicago in 1967, 1970, and 1971, the
well-written notes of which are published in this classic in algebraic
topology. The three series focused on Novikov’s work on
operations in complex cobordism, Quillen’s work on formal groups
and complex cobordism, and stable homotopy and generalized
homology. Adams’s exposition of the first two topics played a vital
role in setting the stage for modern work on periodicity phenomena
in stable homotopy theory. His exposition on the third topic
occupies the bulk of the book and gives his definitive treatment of
the Adams spectral sequence along with many detailed examples
and calculations in KU-theory that help give a feel for the subject.

J. F. Adams (1930-1989) was born in Woolwich,
London. He received his Ph.D. from the
University of Cambridge in 1956. His thesis,
written under the supervision of Shaun Wylie,
was titled On spectral sequences and
self-obstruction invariants.

Adams was a pioneer in the field of stable
homotopy theory. The Adams spectral sequence
is one of the most important computational tools
in the field. He used this to classify the division
algebras over R. He also invented Adams
operations in K-theory, and used it to solve the
famous vector fields on spheres problem.
Adams received a lot of awards for his work. To
list a few: the Sylvester Medal of the Royal
Society of London in 1982, the 1963 junior
Berwick Prize and the 1974 Senior Whitehead
Prize from The London Mathematical Society

(Sources: U.Chicago press, MacTutor History of
Mathematics Archive; Mathematics Genealogy
Project)
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