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Preface

This Symposium, sponsored by the American Mathematical Society, took
place in New York on April 10th and 11th, 1968. The organizing committee
consisted of Hyman Bass, John C. Moore, and the editor.

If categorical algebra may be said to have been born with the article of Eilenberg
and MacLane on the “General theory of natural equivalences,’” published in 1945,
it scems reasonable to assume that it has by now attained its majority. Nowadays
in fact it is widely studied in its own right; a number of conferences and colloquia
in recent years have adequately shown this to be so. The organizing committee
for the present symposium felt that it was now appropriate to devote attention to
the applications of categorical algebra rather than to its autonomous development.
It was of course explicit problems in topology and algebra which led to the en-
gendering of category theory, which in turn has continued throughout its existence
to serve in such applications. That they continue to be numerous and lively, we
hope that this symposium has helped to show.

Indeed, the applications are now so widespread that it seemed impossible to
cover all of them. In particular, the manifold uses of category theory in algebraic
geometry are almost unrepresented in this symposium. Topology and algebra are
the staples here, as they traditionally have been. But even within these fields there
is some indication of the diversity which now exists.

With two exceptions the papers appear below in the order in which they were
to be presented at the symposium. That of Eilenberg, on categorical methods in
the theory of computation, does not appear here. Mazur’s paper “Finite flat
structures,”” which he was unable to read in person, has been placed at the end
of the list.

ALEX HELLER
New York, April 1969
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Equality in hyperdoctrines and comprehension schema
as an adjoint functor

F. William Lawvere

0. The notion of hyperdoctrine was introduced (Adjointness in Foundations,
to appear in Dialectica) in an initial study of systems of categories connected by
specific kinds of adjoints of a kind that arise in formal logic, proof theory, sheaf
theory, and group-representation theory. It appears that abstractstructures of this
kind are also intimately related to Godel’s proof of the consistency of number
theory (Dialectica 1958) and to Liuchli’s complete semantics for intuitionistic
logic (to appear in Proceedings of the Buffalo Conference on Intuitionism and
Proof Theory), although the precise relationship is yet to be worked out. Since then
the author has noticed that yet another “logical operation”, namely that which
assigns to every formula ¢ its “‘extension’ {x: ¢(x)} is characterized by adjointness,
and that the **same” adjoint in a different hyperdoctrine leads to the notion of
fibered category (or in particular the covering groupoid of a permutation group).
The second part of this article is devoted to a preliminary discussion of this sort of
adjoint, which we call tentatively the Comprehension Schema. The first part of
the article concerns two kinds of identities which a hyperdoctrine may satisfy, and
which lead in particular to a more or less satisfactory theory of the attribute
*“equality”. One of these kinds of identities is formally similar to, and reduces in
particular to, the Frobenius reciprocity formula for permutation representations
of groups. Actually our definition of “‘equality” is not satisfactory when these
identities do not hold, though from examples one surmises that a satisfactory
theory could be developed by introducing still more structure into the already
rather rich notion of hyperdoctrine.

We recall the basic ingredients of a hyperdoctrine: there is to be a category T
of “types”, whose morphisms are called “‘terms”, and which is assumed to be
cartesian closed. For each type X there is a cartesian closed category P(X) of
“attributes of type X”’, whose morphisms are called “deductions over X, and
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for every term f:X — Y there is a functor f- ( ) P(Y)— P(X) called “sub-
stitution of fin ( )” for which it isassumed that /- (g - ¢) =(fg) - pforg: Y > Z
a term and ¢ an attribute of type Z (or a deduction over Z). Actually we should in
principle only give natural isomorphisms f-(g-( ))= (fg)-( ) and assume
that these are coherent, but actual equality holds in the examples which we consider
here. Finally there are given, for each term f: X — Y, two functors () Zf and
() TIf respectively left and right adjoint to substitution, called “existential,
respectively universal, quantification along . By general properties of adjoints
we have then canonical natural isomorphisms

(PTNZg =~ ¢3(fg), (¢l NIg =~ ¢l(fp)

for any attribute ¢ of type X.

All the adjointness relations involved in a hyperdoctrine are supposed to involve
given front and back adjunction maps, so that the theory of hyperdoctrines is a
purely equational calculus. Nevertheless, we shall mostly use only the hom-set
bijections induced by the adjunction morphisms, and in fact we will indicate these
bijections in the manner usually used for rules of inference. Thus the cartesian
closed structure of T, for example, involves three adjoints: First there is the
terminal object 1, right adjoint to T — 1, whose characteristic property is

X—->1(nT)

o (in1)
where the horizontal line indicates the canonical bijection of the morphisms of
the sort above the line with those of sort below the line, and the dot denotes the
unique morphism of the category 1. Secondly there is the cartesian product, right
adjoint to the diagonal functor T — T x T, whose adjunction morphisms are the
diagonal X6:X — X X X and the projections (Y,, Yy)m: Y, X Y, — Y,, and
whose characteristic property is expressed by the bijection

X—>Y, xY,
X—>Y,X—>Y,

where the ordered pair below the line may be thought of as a morphism in
T x T. Finally, for each type 4, we have the right adjoint to 4 x (), called
exponentation by A, whose adjunction natural transformations 1, and €, can be
“deduced” from the basic bijection
X— Y
A XY

by setting ¥ = A x X and considering the identity term below the line, respectively
by setting X = Y-' and considering the identity term above the line.

In the cartesian closed category P(X) of attributes of type X, we call the terminal
object 1 - the “identically true attribute of type X’ (deductions over X with domain
1, will sometimes be called “proofs over X™), and we denote product and
exponentation as conjunction and implication, respectively. Thus the “evaluation™
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natural transformation ¢ could instead be called “modus ponens”, and the
adjointness relations become bijections of deductions over X as follows.

PP AY, @ — (e =)
Py PPy xAp—>yp

Finally the adjointness property for existential (and dually for universal) quanti-
fication along f: X — Y is expressed by the bijection

vy

p—Sy
between deductions over Y above and deductions over X below for each attribute
@ of type X and attribute y of type Y. Here we have not bothered to give names to
the adjunction transformations. This neglect, and our use of the “rule of inference”
notation, indicates in particular that we are ignoring coherence questions; that is,
in our assertions below in which we assert the existence of a canonical natural
deduction ¢, — ¢,, we have not verified that there do not exist several such,
Lambek, in the Proceedings of the Batelle Conference on Categorical Algebra and
Homology Theory, has made ahealthy start on the coherence problem by establishing
Cut-Elimination for certain categories closely related to cartesian closed categories.
In the same place, Gray, by introducing the appropriate notion of 2-dimensional
adjointness, has shown that all the features of a hyperdoctrine, including our
comprehension schema, can be obtained by defining a type to be an arbitrary
category and an attribute of type B to be any fibration over B.

As pointed out in our Dialectica article, terms corresponding to all higher-type
primitive recursive functions can be guaranteed by assuming a left adjoint to the
forgetful functor T — T (the domain being the usual category whose objects are
endo-terms). However we have not here included this adjoint in our general
definition as it plays no role in this paper.

We mention now some examples of hyperdoctrines. Given any theory (several
sorted, institutionistic or classical) formulated in the language of finite types,
define T to have as objects all type symbols 1, V;, V;, V,, . . . (one V; for each sort),
Vix Vi, VVi, (Vo x Ve x Vc‘"""", ... (ie. all expressions obtained by
closing the V; with respect to product and exponentation) and as morphisms
suitable equivalence classes of (tuples of) terms from the theory. The adjunction
equations force certain identifications of terms, and additional identifications may
be forced by axioms of the theory if there are terms provided by the theory in
addition to those guaranteed by the requirement that T be cartesian closed (for
instance, in higher-order number theory, the recursion-adjoint F of the preceding

paragraph exists, and the natural numbers | —» 1F, thesuccessormap, 1 F 2> 1F,
etc. are such additional terms, while the distributive law is such an additional
identification). As objects in P(X) take all formulas of the theory whose free
variables correspond to the type X. For deductions over X, one may take
provable entailments (so that the category P(X) reduces to a preordered set) or one



4 F. W. LAWVERE

may take suitable “homotopy classes” of deductions in the usual sense. One can
write down an inductive definition of the “homotopy” relation, but the author
does not understand well what results (some light is shed on this question by the
work of Liuchli and Lambek cited above). Thus, although such syntactically
presented hyperdoctrines are quite important, it is fortunate for the intuition that
there are also semantically-defined examples, as below.

There are two basic examples in which T = & the category of all (small) sets
and mappings. One has P(X) = 2% = the partially-ordered set of all propositional
functions defined on X; if we confuse propositional functions with the corre-
sponding sybsets, we then must have that ¢; A ¢, = @, N @, and that gXf'is the
direct image of ¢ along f (understanding that substitution is defined by composition,
so that, under the confusion, f - y is the inverse image by f of ). Every model of a
higher-order theory induces a morphism from the corresponding hyperdoctrine
to this set-hyperdoctrine, and conversely. The other example has P(X) = X, so
that an attribute ¢ of type X is any family x - ¢ of sets indexed by x € X and a

deduction ¢, 2 @, over X is any family x - ¢, 2 x- @, of mappings. Thus
P(1) = & is the “category of truth-values” for this hyperdoctrine. The relations

x (@a=>9) ==, y () =T x- o,

zf=v
y (@Zf) = > x- ¢ (disjoint sum)
Tf=v
follow (from the definition of substitution as composition). By our general
definition of *proof over X it follows that the proofs (over 1) of x: ¢ for

1 Z» Xare precisely the elements of the set x - . Thus, this hyperdoctrine may be
viewed as a kind of set-theoretical surrogate of proof theory (honest proof theory
would presumably also yield a hyperdoctrine with nontrivial P(X), but a
syntactically-presented one). For example, by the above equations, a proof over

X of @ = y is a function which, for each 1 = X assigns to every proof that x - «
a corresponding proof that x - y, while a proof over Y of ¢ fis a function assigning
to every 1 ~ > Y an ordered pair consisting of an x such that xf = y and a proof
that x has the attribute ¢.

The functor — 2 taking the empty set to 0 and every other set to 1 induces a
functor from the “proof”” hyperdoctrine on T = setstothe “propositional-function”
hyperdoctrine on T = sets which commutes with all the mentioned logical opera-
tions. The fact that it commutes with universal quantification is equivalent to the
axiom of choice, or in the language of proofs, to a strong form of w-completeness.

We will consider three examples in which types are small categories and terms
are all functors between them. Here of course exponentiation of types must be the
usual functor-category construction. One has P(B) = 2P = the category of all
functors from B into the arrow category =~ the Brouwerian lattice of all sets ¢ of

objects of B with the property that if B—> B'inBand Be pthen B’ € ¢; we leave
as an exercise the computation of implication and quantification. The second
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example has P(B) = %®. Hence one has
@ = p:Bw>nat (HB x a,p) = FPHE A o, p),
@Zf:C w> lim [(f, C) - B 2> &]
—

for B > C a functor and «, @, p:B—.%. The third example also has P(B) =
B, but we restrict the category T of types to consist only of those B which are
groupoids i.e. categories in which all morphisms are isomorphisms. T is still
cartesian closed since in fact B* is a groupoid for any category A if Bis. 1fB and C
have one object (i.e. are groups) then P(B) is the category of all permutation
representations of B and ¢Zf isthe so-called induced representation of C. (Actually,
there are two induced representations, the other being ¢Ilf, calculated roughly as
the fixed point set of ¢€ rather than the orbit set of ¢ x C. If fis of finite index
the analogous constructions for /inear representations yield isomorphic results,
which is perhaps why there seems to be no established name for “universal
quantification” in representation theory.)

Since we have not taken recursion as part of the definition, hyperdoctrines are
also obtained if in the last five examples we replace small set, category, functor, etc.
by finite set, category, functor.

Finally we remark that although our discussion below of comprehension
hinges on the operation Z, there is at least one structure, namely with types =
Kelly spaces and attributes = set-valued sheaves in which all features of hyper-
doctrines except Z exist (f+ () is only exact, not continuous in general) but in
which there is clearly a kind of “extension”, namely the espace etalé.

1. We define, for each type X, an attribute of type X x X as follows

The adjunction then provides a canonical deduction 1y — (X6) - ©®x which we
interpret to mean that “reflexivity” holds for “equality” so defined. We wish to
investigate what other expected properties of equality hold, and more generally to
study the interaction of existential quantification of attributes and cartesian
products of types.

There are other expected properties of equality which we have not investigated;
for example, considering the projections p, my, m,, and the evaluation adjunction
€in

Xx YXx Y¥X 2 5 yXxyX

XxYX__° vy

one might expect © )y = ((m,€)0 - (w,€))I1p to hold. The intuitive interpretation of
this equation, f; = f, <> ¥Yx[xf; = xf;] does not quite reflect it adequately, for it
does not necessarily mean that 1 is a generator for T; for example, the equation
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holds in the hyperdoctrine derived from a higher-order theory, even though there
may be no morphisms x:1 — X in T. However for what we are able to prove in
this paper neither exponentiation of types nor universal quantification of attributes
plays any role. Thus we only assume that we work in an arbitrary eed (elementary
existential doctrine, defined like a hyperdoctrine except that Y-¥ and ¢Ilf are not
necessarily assumed to exist).

Reasonable relationships in an eed between products and equality as we have
defined it turn partly on implication being strictly preserved by substitution.

PROPOSITION (SUBSTITUTIVITY OF EQUALITY). In any eed in which, for every
term f: X — Y and any two attributes a, y of type Y, the canonical deduction
o=y —fa=fy
over X is an isomorphism, one also has, for any attribute ¢ of type X, a canonical
deduction
Ox—>m g=>m ¢
over X X X,

Proor. The identity deduction ¢ — ¢ yields a canonical
Iy >g=>@=0n)p=>(0m) ¢ge—205 (m - g=>my- @)

which by the adjointness of existential quantification along the diagonal used to
define equality yields the conclusion: Thus in fact we only used the assumption
for the case f = 0.

DEFINITION-THEOREM.  In any eed, the following are equivalent:

(1) Frobenius Reciprocity holds.

Q) Foranyf:X— Y, a,pyin P(Y) f-(a=>%) —>f-a=fv.

(3) Forany f:X— Y, g € P(X), a € P(Y) ((f* ) A 9)=f —> a A (¢Z).
Proor. The second condition means that the diagram of functors

a=>( }

P(Y)2Z11s p(y)
7)) )

PX) o POX)

commutes up to canonical natural equivalence. Hence replacing each functor by
its left adjoint also yields a diagram which commutes up to canonical natural
equivalence:

P(Y) <22 p(y)
¢ )Ty ( )Xy

P(X) (ra)al )P(X)
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But the latter is just the third condition. Conversely if the third condition holds, we
can replace the functors in the latter diagram by their right adjoints, yielding the
second condition.

It is clear that Frobenius Reciprocity holds in both the 2-valued and set-valued
hyperdoctrines with sets as types. However it does not hold in the set-valued hyper-
doctrines with small categories as types. We provide a

COUNTEREXAMPLE. Let f:1 — 2 be | and consider «, y:2 — & represented as
A2 B, US> Ving. Theningeneralf- («=>y) > f+ a=f- pis not aniso-
morphism in &.

PROOF. [ { is just the value of { at | for any { € &2, We do have

(x=>9)g = U = 0y =>y,
but, since H! = 1,,
(a=>y) = S, p) = U4 x VE
Va4

while

a =y, = VL5
Nevertheless, group theory is simpler than category theory.

PROPOSITION.  [n the groupoid-permutation hyperdoctrine, Frobenius Reciprocity
holds.

ProoF. We need only show that substitution preserves implication. But in
fact we have for any groupoid C and object ¢ € C and any two functors «, p:C > &
that

,VC(HC X o, w)_> (Cw)(Ca)

defined by evaluating a natural transformation at the identity in (C)H® = C(C, C),
is a bijection. The inverse sends any mapping: g:Coe — Cy into the natural trans-
formation g for which

Dg:{u, x) - x(uta)g (uyp)

for any C—» D in DHC and x € De. This actually shows that for 1-5>c,
C-( )€ > S = preserves implication, that implication is defined
objectwise. (C w»> (Cy)'€? becomes a functor by means of u w> (uy)® '®),
Thus for any f/: B — C the sets involved in an implication-representation are pre-
served, and it is clear that the action is also preserved.

In order to prove the theorems we are aiming at in this section, we need to
consider another condition, which first came to the writer’s attention in un-
published work of Jon Beck on Descent Theory but which was surely considered
earlier in topology.
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DErINITION.  An eed satisfies the Beck condition iff for every diagram

Xx——x

YT) Y’

of types and terms which is a meet (pullback, fibered product) diagram and for any
attribute p of type Y, the canonical deduction (f* y)Zx — f” - (pZy) (induced by
the identity deduction on pZy) is an isomorphism. (We should require the same
for [1if it exists.) Since we have notassumed that T has meets in general, we are led
to ask

QUESTION.  What is the form of the diagrams which must be meet diagrams in
any category with products? Only two forms enter into our theorems; we do not
know whether there are essentially different forms.

PROPOSITION.  For any morphism (term) f : X — Y

X2 xxy

(a) ’l l/xl’

Y— Y XY
Y

is a meet diagram.
Proorf. Clear.

Case (a) of the Beck condition enables us to settle the following, which may
have puzzled some readers. Our notion of quantification along an arbitrary term
seems a considerable generalization of the usual quantification with respect to a
variable x, which corresponds to the case when the term f quantified along is a
projection wy: X X Y — Y. The greater generality was used in defining equality,
since there we quantified along a diagonal term, which is not reducible to quanti-
fication along a projection. But perhaps that is the only essential case gained by
the generalization: that is, perhaps the general case of ¢Zf can be expressed in
terms of @, and ( )Zwy. In fact, that is true in the basic set-propositional
function hyperdoctrine where y- (¢Zf) = 1iff Ix[xf =y Ax- @ =1]. More
generally, this relation (suitably translated into our variable-free language) holds
in many eeds, as asserted below. First we introduce a slight abbreviation of
notation: if f;:X — Y, i = 1,2, denote by £,0f, = (f;, f3) - Oy the attribute of
type X obtained by substituting (fi. fo): X — Y X Y into the equality attribute
of type Y x Y. Then

THEOREM. [In any eed in which Frobenius Reciprocity and case (a) of the Beck
condition holds,

PS> (mx - @ A (mxfOTY)Emp.
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PROOF. We show first that Frobenius Reciprocity implies
PLf — (mx - @ A (1xZ(X, ) Zmy.

PEf = QZ((X, fimy) == (pZ(X, [))ZEnyp

so we are reduced to showing that

Indeed,

XX, ) > my - o A (155X, f)),

which is equivalent to

(X (rx @) ADEX, ) "> 7x - ¢ A 1xZ (X, ));

but the latter follows from our statement of Frobenius Reciprocity by making the
substitutions a w7y * @, ¢ 4> 1y, v (X, ).
To complete the proof we show that Beck’s condition applied to diagrams of

form (a) yields a canonical isomorphism 1xZ(X, f) = 7y fOmy (note that both
of the expressions intuitively express the attribute of type X X Y which corre-
sponds to the graph of f). In fact Beck (a) is explicitly (f- ¢)X(X,f) —>

(f X Y)- (w=(¥3)); noting that f X Y = (nxf, 7y)and that £+ 15 = lx, the
stated isomorphism follows by setting ¢ = 1y and using our definition of equality.

PROPOSITION.  For any type A and term f:X — Y, the following is a meet
diagram
Ax X2 s axy

o

Proor. Special case of the following, whose proof is clear.

PROPOSITION.  For any pair of terms f;: X, - Y, i =1, 2 the following is a
meet diagram

PP LNV A

(c) f1XX2i lf]XYz

Y, X,—— Y, XY,
1 X 2 e 1 2

Our other theorem concerning the interaction of products and quantifications
will have a corollary concerning equality of vectors, and will be based on Beck’s
condition applied to diagrams of form (b). The theorem itself states in effect that,
though conjunction and existential quantification do not usually commute, they
do in a certain sense if the quantified variables are “‘independent” of each other
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inside the matrix. First, to make the notation more readable, we define the functor

P(Xy) X P(Xy) 2> P(X, X Xy
by @, ® @, = @1 A 7 @a, the conjunction being of course the product in
P(X; X X,).

THEOREM. In an eed in which Frobenius Reciprocity and Beck (b) hold, one has
Jorany term f:X — Y and type A, and for any attributes ¢ and o of types X and A
respectively, a canonical natural isomorphism (x ® @)Z(4 X f) —> « ® (¢Zf) of
attributes of type A X Y.

ProoF. Let wx:A X X— X, wp:A X Y— Y denote the projections.
Then Beck (b) yields explicitly

(mx * PEA X f)—> my * (PEf).
Thus
% ® (PZf) «— 7y a A (mx * 9)E(4 X f)
<« ((AXf) (mqg a)Amx - ¢)Z(4 x f) by Frobenius
= (2 ® 9)Z(4 X f)
since (A X f)my =74,
COROLLARY. Ifg:B— A, f:X — Y are any two terms, f§ and ¢ attributes of

types B and X respectively, then under the hypotheses of the foregoing theorem, one
has a canonical natural isomorphism

(8 ® P)Z(g x f) — (BZg) ® (pZf).

PrOOF. Set « = fXg in the foregoing theorem, use also the symmetrized
form

(B® Pi x B) "> (I ® ¢
of the theorem and the fact that g X = (g x B)(4 X f).

COROLLARY. Under the hypotheses of the theorem, one has for any two types
Xy, X, an isomorphism

Ry
Ox,xx,—> 0 (Ox, ® Ox)
where 0 is the term “‘middle four exchange isomorphism™ :
0:(X; X X,)* = X? X X2
Thus our culminating result states that two ordered pairs are equal iff their first
components are equal and their second components are equal.
PROOF. Setting f = | x,, ¢ = lx,,g = Xi6,f = X,dinthe previous corollary,
one obtains
(Ix, ® 1x )Z(X16 X Xp0) —> Ox © O..
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But 1x, ® lx, = lx yx,, since both conjuncts are m, - 1x, = 1x ,x,. Finally
(X, X Xp)8 = (X160 X X,06)6

but since & is an isomorphism
£X61 =5 6 &,
so the statement follows.

Even these meager theorems apparently do not hold in the doctrines whose
attributes are set-valued functors on small categories or groupoids. Counterexample
(albeit to the hypotheses, not the conclusion, of the theorems). Let G be the
groupoid

f

with only four morphisms and consider the two constant endofunctors 04, 05
of G. Then

O—G

| b

G——G
7
is a meet diagram (where O is the empty category) and yet the Beck condition
applied to this diagram does not hold at any nonempty attribute ¢.

Proor. Obviously (O — G) - ¢)%(0 — G) = 0 and yet, since
yc(aB : ¢: 'P) &y6(¢’ aA : 'P)

2 v

S B-o, A y),

we have that 0« (¢920,) =0 - (0 ¢) =04 - ¢ =0p- ¢ #0.

This should not be taken as indicative of a lack of vitality of &%, B € Cat asa
hyperdoctrine, or even of a lack of a satisfactory theory of equality for it. Rather,
it indicates that we have probably been too naive in defining equality in a manner
too closely suggested by the classical conception. Equality should be the *“graph”
of the identity term. But present categorical conceptions indicate that, in the
context of set-valued attributes, the graph of a functor f:B — C should be, not
1gX(B, ), but rather the corresponding “profunctor”, a binary attribute of
mixed variance in P(B°® x C). Thus in particular “equality” should be the
functor homy (rather than the rather uninformative attribute ®5 in P(B x B),
given by our present definition). The term which would take the place of § in such
a more enlightened theory of equality would then be the forgetful functor

B>B® x B
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from the “twisted morphism category”, as follows from the “‘extensional” con-
siderations of the following section. Of course to abstract from this example would

require at least the addition of a functor T =2» T to the structure of an eed.
2. In any elementary existential doctrine we have a functor
(T, B)1VE0, P(B)
for each type B, defined on objects by
E

P | w>1.Zp

B

The morphisms in the category (T, B) are of course arbitrary commutative tri-
angles

E—L L F

N

of terms, and it is easy to verify that the above definition can be canonically
extended to these morphisms to become a functor. For example, in the hyper-
doctrine with T =%, P(X) = 2%, our functor

(¥, B)—28
assigns to any mapping p with codomain B the propositional function j defined
on B such that b5 = 1iff b € image (p) or in the example P(X) = & ¥, our functor
takes p: E — B into the family E,, b € B of sets in which E, is the fiber of p over b.
When the functor defined in the previous paragraph is equipped with a right
adjoint
P(B)— (T, B)
we say that the eed satisfies the Comprehension Schema and denote the adjoint by
{B:y}
P AW Py

B
The new rule of inference is then expressed by the adjointness bijection

E\T?w}
B

lgXp—y
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between terms E > {B:y} for which fp, = p and deductions 1 zZp — y over B.
We may call p,:{B:y} — B the “‘extension” of y, justified by the fact that in the
hyperdoctrine 2%, X € &, p,, reduces to the inclusion j, of that part of B whose
characteristic function is the propositional function y. For since j, is then mono-
morphic, there is for any p at most one f such that fp, = p; there is such an f'iff
the image of p is contained in the part of B in question, which holds iff there is a
“deduction” 1zZp — ¢ in 2F; hence p, ~ p,, in (¥, B).

Similarly the set-valued hyperdoctrine on T = & satisfies the comprehension
schema; for a family ¢ of sets indexed by the elements of B, {B:y} = > by,
the disjoint sum, with p  the obvious projection. Thus in this case the Compre-
hension Schema is more nearly the Replacement Schema.

Given f;:X — Y, i =1, 2 one would expect that the extension {X : f,0f,} of the
attribute of type X expressing that f; and f, are equal should in fact give the
equalizer in the category T of f;, f,. This is true under certain conditions.

THEOREM. Suppose that in a given eed in which the Comprehension Schema
holds, we have further the following conditions for any two terms h;:E — Y

(i) There is at most one proof 15 — h,Oh,
(ii) If there is such a proof, then h; = h,.

Then if f;: X — Y are any two given terms and we set ¢ = f,0f,, it follows that

f1
X:i9}—X_—35Y
po f2
is an equalizer diagram.

Note. It would be too restrictive to replace (i) by the assumption that all
attributes have at most one proof. An equality statement tends to be a very special
sort of attribute; consider for example P(X) = &%, X € &, where (i) holds but
most attributes have many distinct proofs. Condition (ii) seems difficult to guarantee
by other kinds of assumptions.

Proor. Consider any “test” term E —» X as an object in (T, X). We must
show that there is at most one term E — {X:f;0f,} which when composed with
P, gives p, and that there is such a term iff pf; = pf,. By adjointness

E—{X:£,0f)}

X
1,Ep — /10f,
lp—p - (/19

But p - (/,Of)) = pifi. f2) - © = (pfr, pfa) - © = pfL0pf, so the result follows by
setting /1, = pf;.
The notation of “extension’ surely belongs to logic, yet its own extension is
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considerably broader than the case traditionally considered by logicians. For
example

THEOREM. The hyperdoctrine with T = Cat, P(B) = %® satisfies the Com-
prehension Schema. Indeed, if p:B — & is any functor, its extensionp .:{B: ¢} — B
is the op-fibration with discrete fibers associated to .

Proor. We need only show that the op-fibration ¢ — B in question, has the

required universal property. Recall that ¢ has as objects pairs (B, x) with | <> By
in &, and as morphisms (B, x) — (B’, x") the morphisms B— B’ in B which
under the action ¢ take x w» x’. For any p:E — B one has clearly that the
commuting diagrams

N

correspond to the elements of projlim (p - ¢). But on the other hand for de-
ductions (i.e. natural transformations) one has

1gZp > ¢
lg—>p-9
and the deductions of the sort below the line also correspond canonically to the

elements of proj lim (p - @) since the terminal object represents the inverse limit
functor on &E. Thus

E——¢
B
1g2p — ¢

canonically for all E, p, and hence

¢ = {B: g}

Itis clear that if :B — & is a functor whose domain B is a groupoid, then the
corresponding cofibered category ¢ is also a groupoid; it is in fact the “covering
groupoid’ used by Higgins in his proof of the subgroup theorem and, in a measure-
theoretic context, by Mackey in his theory of virtual subgroups. Thus

COROLLARY. The hyperdoctrine with T = groupoids, P(B) = B satisfies the
Comprehension Schema, with {B: @} = the covering groupoid of ¢ for any per-
mutation representation @ of the groupoid B.

CUNY GRADUATE CENTER

FORSCHUNGSINSTITUT FUR MATHEMATIK
ETH ZURricH, SWITZERLAND



Homology of simplicial objects

Michel André

The aim of the following pages is to give a naive approach to the part of
homological algebra involving simplicial objects. This is an expository paper hav-
ing much to do with [1]and with [5], and I hope it is general enough as background
for most of the applications in algebra. This approach is naive in the sense that I
use classical homological algebra {2] as much as possible and combinatorial homo-
topy theory [4] as little as possible. First we define the framework of the exposition,
the notion of a simplicial category; a simplicial category is a set of categories, one
in each dimension n > 0, glued together in a simplicial way. Then we consider
simplicial objects in a simplicial category (a simplicial module over a simplicial
ring is an example) and models that are simplicial objects with a good behaviour
with respect to the simplicial structure of the simplicial category (a simplicial free
module over a simplicial ring is an example). Then if a functor from the simplicial
category to an abelian category is given, homology objects are defined for any
simplicial object. The definition involves a double complex; thus there are two
spectral sequences. The first one shows that a first approximation of the homology
at the level of the simplicial category is the homology at the level of the different
categories which are components of the simplicial category. The second one shows
that, sometimes, a morphism of simplicial objects gives an isomorphism of the
corresponding homology objects. Then the two preceding facts show that the
homology objects can be computed by means of so-called simplicial resolutions,
when they exist. Actually they exist in most cases appearing in algebra and the
existence is proved by attaching cells: it is the only point where homotopy theory
is needed.

1. Introduction. A brief survey of the beginning of [1] will play the role of an
introduction. We consider a model category N, a good abelian category A and a
covariant functor F from N to A. A model category is a category plus a set of
objects in this category, named the models: M*, A € A. A good abelian category

15
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is an abelian category for which all direct sums exist and are exact. Then derived
Sfunctors L .F or homology objects

H,(N,F)= L,F(N)

are defined. For each n > 0 we get a functor from N to A. Let us do the construc-
tion for a fixed object N in N, the naturality being clear.

First we consider a set of indices K,,(N). An element of this set is a set of n + 1
models plus a set of n 4 1 morphisms

0
MY 0 MY and o, ...,a"

satisfying the following conditions:
(i) the composition a? - - - x™ exists,
(i) the domain of &' is equal to M*,
(iii) the codomain of «° is equal to N,

YN VO b Ny VARG Y
Such an element is denoted by
(a0, 2%, 2, AL, ..., 2, A7),
Then we consider a set of objects in A indexed by K, (N) and depending on F:
Flao, ..., A"] = F(M*").
Finally we consider the direct sum of the objects just defined:

C.N,F)= 3  Fl,..., 2

(@®,..., A" eK n(N)

We denote by [« . .., A"] the natural morphism
Fla®, ..., A" > C,(N, F).

Furthermore we define a differential d of degree —1 by the following equalities:
d, = 3 (~1)'s4: C,(N, F) = C, o (N, F)
=0

ol . A =[a ..., A alat A 2] i O i<n
[« ..., 2" e Fa™) if i=n.
Now we have a complex C,(N, F)and we may consider its homology:
H,(N, F) = H,[C,(N, F)].

2. Simplicial category. The preceding definition of derived functors/homology
objects is simple, but we have to make the following two remarks. On the one
hand, simplicial objects are involved, as soon as we try to compare those homology
objects with other ones (singular homology of a topological space, derived functors
of an additive functor, for example). On the other hand, the background of a
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model category does not suffice in general (simplicial modules over a simplicial
ring, for example). Thus we have to go a little further and use simplicial theory.

We denote by S the basic category of simplicial theory: an object [m] is an
ordered set (0,1,...,m), and a morphism o:[p] — [gq] is an order preserving
map (0,1,...,¢9) = (0,1,...,p). A simplicial object N, in a category N is a
covariant functor from S to N; in other words there is an object N,, foreachm > 0,
and there is a morphism @:N, — N, for each morphism w: [p] — [g].

Now let us introduce the notions of a simplicial category and of a simplicial
object in a simplicial category. A simplicial category is a pair (N, T) where N
is a category and T a covariant functor from N to 8. A simplicial object in this
simplicial category is a covariant functor N, from S to N such that T'- N, is equal
to the identity functor of S. In other words it is a simplicial object N, in the cate-
gory N, in the usual sense, fulfilling the following condition:

T(N,) =[{m] and T(&)= w.

For a simplicial category (N, T)itis convenient to introduce the following notation:
if w:[p] — [g] is a morphism in S and if P and Q are two objects in N with T(P) =
[p] and T(Q) = [g], then by definition Hom, (P, Q) is the set of morphisms
o:P— Q with T(a) = w.

A simplicial model category is a simplicial category (N, T) plus a set of simplicial
objects in this simplicial category, named the models: M}, € A. We suppose that
any model M, satisfies the following condition: if w:[p] — [g] is a morphism in S
and if Nis an object in N with T() = [q], then the morphism &: M, — M, givesa
bijection:

Hom, (M,, N)— Hom,, (M, N).

A model category gives a trivial example of a simplicial model category. The
model category consists of the category N and of the set of objects M%, 1 € A.
Then the category of the simplicial model category is the product category S x N,
the functor of the simplicial model category is the projection functor § x N — S,
and the models M} of the simplicial model category correspond to the models M*
of the model category in the following way:

Mi = ([n], M}) and & = (w, 13;4).

A simplicial ring R, gives another example of a simplicial model category. An
object of the category is a pair ([m], N) where N is an R,,-module and a morphism
of the category is a pair (w, «):

w:[pl—I¢g] and «:P—Q

where Pis an R -module, where Q is an R,-module and consequently an R -module
through &: R, — R,, and where « is an R -homomorphism. With the functor T
mapping ([m], N) onto [m] we get a simplicial category. Then a simplicial object
in this simplicial category is nothing but a simplicial module over R,. The set of
models is a set (large enough) of direct sums of copies of the simplicial module R,,.
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3. Homology. We consider a simplicial category (N, T) with models M},
A€ A, a good abelian category A and a covariant functor F from N to A. Then
homology objects A, (N,., F)are defined. Foreachn > 0we get a functor from the
category of simplicial objects (in the simplicial category) to the abelian category.
Let us do the construction for a fixed simplicial object N, in (N, T).

First we consider a set of indices K, ((N,) withp > 0andq > 0. Anelement of
this set is a set of p + 1 models plus a set of p + 1 morphisms

MY, .. MP and of,...,a”

satisfying the following conditions:
(i) the composition «® - - - «? exists,
(i) the domain of ' is equal to M%,
(iii) the codomain of «° is equal to N,,
(iv) the morphism T(a?) is equal to 1,,

19

a? -1 a® ™t 0
My — My — - M} — N,

[9] 2 [g] 2 - -+ [g] = [q]
Such an element is denoted by
(a®, A% al, AL, ..., a?, AP).
Then we consider a set of objects in A indexed by K, ,(N,) and depending on F
Flo®, ..., 27] = F(M%).
Finally we consider the direct sum of the objects just defined

CpuNy, F) = h Floo, ..., 27].

(a,...,A")eR o(V4)

We denote by [«f, . .., A?] the natural morphism
Flo®, ..., 2] = C, (N,, F).

Then we define two differentials, d' of degree —1 in p and of degree 0 in g,

and d” of degree 0 in p and of degree —1 inq. We define the first differential by the
following equalities:

» o - -
dyq =2 (=1)s) 1 Cp o(Ny, F) = Cyy o( Ny, F)

=0
sioofa . A7 = (a0 .., A i A, A7) i 0 <i<p
[2%, ..., 4" o F(a®) if i=p.
We define the second differential by the following equalities:
n gz i M =~ -
;o= (—1s}i:Ch Ny, F)— Cp g 1(Ny, F)
7=0

i 0 » » . ~
Sle0 [0, 2%, &, AL, ..., &P, A?] = [€a0, 2 &al, 21, ..., &uar, 7] o F(&)
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where the symbols € and &’ are described below. We denote by ¢/ the morphism of
the basic category S given by the injection of (0, 1,...,9 — 1)into (0,1,...,9)
avoiding the element j (the jth face in dimension g). Thus a morphism & is defined
for any simplicial object, for example N, or M}. Then the symbol & is completely
described by the following equalities:

T(éin') =1, , and (&a)oél =éloa’

(remember that a model satisfies a nice condition). In order to have a global view
of the component 577 of the differential d’ , let us consider the following diagrams:

M;'p a® M;_v—l a?"1 . M;'O a° N,
Ea’l Eqi € l Ea’
» o . ;zav—l 0 g;ao
M}, My ——ss M, — N,
o a 1q
] —— [g —— - [ —— I[q]

o ) ! e
11— g 1122 0 -1 s g—1]

F(&)): F(M¥"y — F(MZ")).

It is long and easy to verify that we get a double complex Cy,, (N, , F).
Now we denote by C,(N,, F) the complex associated to this double complex
and we consider its homology:

I‘?,,(N*,F) = Hn[C*(N*’ F\’]

The purpose of the following pages is to learn a little more of those homology
objects.

4. Comparison theorem. We consider two simplicial objects N, and N, in a
simplicial category (N, T) and a morphism », : N, — N, between them, that is, a
collection of morphisms

Vp'Np — N, m=20,1,...

satisfying the following conditions: T(»,,) = 1,, and for any w: [p] — [¢] the morph-
isms @ o v, and %, - @ are equal. Out of the definition of the homology objects it
is clear how to define a morphism

Ay, F):A,(Ny, F)—~ (N}, F)
as soon as we have a simplicial model category and a functor with values in a good
abelian category: in dimension (p, ) replace the index («°, 4° «!, ..., A%) by the

index (v, 0 «°, 1%, o}, ..., 7). Our problem is to show that sometimes the morph-
ism H,(v,, F)is an isomorphism.
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Now we consider two simplicial objects M, and N, in the simplicial category
(N, T') and we suppose that M, satisfies the condition used in the definition of a
model: if w:[p] — [g]is a morphism in S and if Nis an object in N with T(N) =[q],
then the morphism @: M, — M, gives a bijection:

Homlq(Mq, N)— Hom,, (M, N).
We can define a useful simplicial set (M, N, ), in the following way:
(M, N,), = Homy (M,, N,);

in other words, a p-simplex is a morphism «: M, — N, with T(«) = 1,, and for the
morphism w: [p] — [¢] the map
D:(My, Nydp— My, Nyo
is defined by the equality @(a) = @« where @a is uniquely determined by the follow-
ing commutative diagram:
M,—* >N,

w0 £}

(703

M,—— N,

We are specially interested by the singular homology, of this simplicial set with the
rational integers as coefficients:

H#(M*, N*) = Hiil]g((M*’ N*>#: Z)

Now we consider a simplicial category (N, ) with models M}, A€ A and a
morphism v, : N, — N, of simplicial objects in the simplicial category. We say
that », is an equivalence if the following condition is satisfied: for any model
M}, the homomorphism

H*(Mia V*):H*(Mi, N*)_’ H*(Mi’ N;)
is an isomorphism.

THEOREM. Let v,:N, — N, be an equivalence in a simplicial model category
and let F be a functor from this category to a good abelian category. Then the
morphisms

H,0,,F):H,N,,F)>H,N,, F), n>0
are isomorphisms.

Proor. If Cis a double complex with differentials d’ and d”, we know that the
three different types of homology (H' for the first differential, H” for the second
differential, and H for the total differential) are related by a spectral sequence

H,[H}[Cl) = H,[C]
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having the best properties we can imagine. In particular a morphism of double
complexes giving an isomorphism for the homology with respect to the second
differential gives an isomorphism for the homology with respect to the total
differential. Thus we can prove that the morphisms
H,(v,, F):H,(Ny, F)— H,(N,, F), n=0
are isomorphisms in proving that the morphisms
HIIC, ,(Ny, Pl H![C, .(Ns, )], p,g >0

are isomorphisms,
Let us have a look at the definition of the double complex we are using:
CpoNy, F) = > Flao, ..., 4%
(@,...,A") €K, ¢(N4)
We can rewrite the index:

(«°, 2%, ..., a2, A7) = (A%, ..., A?)(a) (o, . . . , aP)
and remark the following: (4%, ..., 4?) is not involved directly in the definition
of the second differential and does not depend on N,, (a!, ..., «a?) is involved

directly in the definition of the second differential and does not depend on N, , (%) is
involved directly in the definition of the second differential and depends on N, , and
Fle®, ..., A?]is involved directly in the definition of the second differential and
does not depend on N, :

CoaNe )= 2 2 2 Flat.... &

Consequently, in the proof of the 1somorphlsm
Hy[C, o(Ny, )l > HJ[C, o (Ny, F)]

the index (4°, . . . , A?) can be fixed, the morphism », : N, — N, appears at the level
(«°), and the part
> Fo, ..., 4]
(a'sesa®)

plays the role of coefficients. To be more precise, let us remark the following.

Let us consider a simplicial set £, and a simplicial object A, in the abelian
category A. Then singular homology objects HS™(E,, A,) are defined in the
following way (usually the simplicial object A, is trivial A, = A) the object
HEM8(E, , A,) is the nth homology object of the complex C$™8(E, , 4,) defined as
follows:

C,sling(E*’ Ay) = z Ay,
En

the direct sum of as many copies of A, as there are elements in E,, and

1

d =

n

M=

(—1)si:CS"8(E,, Ay) — CS"8(E,, A,)

i=0
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where s¢ can be described componentwise by the following commutative diagrams,
one for each n-simplex e € E, :

A, ofe —Eﬂ—> A,_, of é(e)

S4, —>S4,,
Ey Ex_1

as usual € denotes the ith face morphism of any simplicial object. Now we have
the following result: let w,:E, — E, be a morphism of simplicial sets and A4,
be a simplicial object in a good abelian category; if the morphisms

H3 (w0, Z2): Hy "¥(E,, Z) > HY"(E,, Z)

are isomorphisms, m =0,1,... (Z being the group of rational integers), then
the morphisms

HE™(w,, A): HEP(E,, Ay) — HI™(Ey, Ay)

are isomorphisms, 7 =0, 1, .. .. The proof uses standard arguments; a summary
of them will suffice. First remark: any simplicial object A, is isomorphic to a
quotient of a direct sum of simplicial objects of a special type

Ag(Fy, A) =3 A
F.
(F, being any simplicial set, A being any object in the abelian category). Conse-

quently, it suffices to prove the result for 4, = A,(F,, A). Second remark:
there is a canonical isomorphism

HME(E,, Ay (Fy, A)) = H™(E, X Fy, A).
Consequently, it suffices to verify that the morphisms
H™(E, X Fy, A)—> H"(Ey X Fy, A)
are all isomorphisms. Third remark: the morphisms
HYM(E, X Fy, L) —> H"M(E, X Fy, Z)

are all isomorphisms. Consequently, replacing E, x F, by E, and E, < F,
by E,, it suffices to verify that the morphisms

HM™(E, , A) — H"8(E,, A)

are all isomorphisms. Fourth remark: the morphisms above are all isomorphisms
if the morphisms

HE (E,, Hom (4, B)) — H} (E., Hom (4, B))

are all isomorphisms (B being any object in the abelian category). Consequently,
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it suffices to verify that the morphisms
H:ing(E:F’ G) - H:ing(E* ’ G)

are all isomorphisms (G being any abelian group). This conclusion is well known;
and now we can use the isomorphisms

H"8(E,, A,) ~ H"(E,, Ay).
Now let us come back to the proof of the isomorphism
H3[C, o (N, F)] > H[C, (N}, F)]
which will prove the comparison theorem. Let us use the decomposition
@A ..., A2 (a%(a, ..., a?)

of the index and the preceding long remark on singular homology. Rewriting
completely the double complexes we are using, we see that it suffices to prove that

AF) = 5 Floo, ..., 4],

the direct sum of as many copies of F(M}?) as there are elements in the product
set
Hom, (MZ', M¥) x - -+ x Hom, (M¥", M¥™).

We know enough on singular homology to assert that it suffices to prove that
HYM (MY 1), Z)
is an isomorphism; but that is the hypothesis of the comparison theorem.,

5. Spectral sequence. In the proof of the comparison theorem we have used
one of the two spectral sequences associated to the double complex Cy (N, F);
and now let us study a little the second one, which relates the homology theory of a
simplicial model category to the homology theory of different model categories.

Once more, we consider a simplicial category (N, T') with models M}, 4 € A.
The *fibre” N, over [g] is a model category, and the set of all those model categories
is a good approximation of the simplicial model category. An object in N, is an
object Nin N with T(N) = [g], a morphism in N, is a morphism « in N with T{(a) =
1,, and a model in N, is an object M}, 4 € A. Now let us consider a simplicial ob-
ject N, in the simplicial category (N, T) and a functor F from the category N
to a good abelian category. By restriction to the fibre, we get an object N, in the
category N, and a functor (still denoted by F) from the category N, to the abelian
category. The category N, has models. Consequently, the homology object
H,(N,, F)is well defined (see the introduction) for any p > 0. But there are rela-
tions between the different fibres N, since they are parts of one category, and there
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are relations between the different objects N, since they are parts of one simplicial
object. From those relations we can deduce that, for a fixed p, the object H,(N,, F)
is the g-dimensional part of a simplicial object in the abelian category.

This simplicial object in the abelian category is denoted by H,(N,, F), (quite
different from the object H (N, F) we are studying in this paper). We have the
equality

H,(N,, F)y = H,(N,, F)

and there remains to define the morphism
@:H,(N,, F)—> H,(N,, F)

corresponding to the morphism :[g] — [¢']. This morphism is defined by a
morphism of complexes

®:Cy(N,, F) = C4(N, F).
In dimension p, the morphism
&: Cy(No, F) = Cy(Ny, F)
is defined by the following equality
@o [0, A% at, AL, ..., 0P, A7] = [@a®, A°, ety AL, . .., @u?, AP] o F(®)
of the commutative diagram

F(M:p) F(w)

F(MZ)

Cy(N,, F)—=—> C,(N,, F)

(as we know, the morphism @o is completely defined by the equality Ga’o @ =
@ o ). Thus the simplicial object H,(N,, F), in the abelian category is defined.
We shall see that its homology H [H (N, F),] (the homology of the complex
S0
v»—> H(Ny, F)y ——> H, (N, F)yy— -
where &, is the ith face morphism in dimension ¢) is an approximation of the object

H,(N,, F).

THeoReM. Let (N, T) be a simplicial category with models M}, A€ A, let N,
be a simplicial object in (N, T), and let F be a functor from N to a good abelian cate-
gory. The homology objects H,(N,, F) are defined for n > 0. Then let N, be the
Sibre of (N, T) over [q] with models M}, 2 € A. The homology objects H ,(N,, F) are
defined for p,q > 0. Then there exists a spectral sequence

H,[H,(Ny, Pl = B, (N, F)
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where H [H (N, F),] is the qth homology object of a simplicial object H (N, F),
in the abelian category, such that

Hy(N,, F), = H,(N,, F).

Proor. If Cis a double complex with differentials d” and d”, we know that the
three different types of homology (H' for the first differential, H” for the second
differential, and H for the total differential) are related by a spectral sequence

HY[H,IC1) = H,[C].

The theorem is the special case C = C, (N, F).
The comparison theorem and the spectral sequence theorem give the following
corollary.

CoroLLARY. Let (N, T) be a simplicial category with models M}, A€ A, let
P+ Py — N, be an equivalence of simplicial objects in the simplicial model category,
and let F be a functor from N to a good abelian category. Let us suppose that for
each m >0, there exists an index A, € A with P, > M*~. Then for each n >0
the homology object H,(N,, F) is isomorphic to the nth homology object of the
Sollowing complex:

E(-1)'F(E)
> FP)———> F(P, ) —>--.

PrOOF. By the comparison theorem there is an isomorphism
H,(Ny, F)= H,(Py, F).
By the spectral sequence theorem there is a spectral sequence
HJ[H,(Py, FY]=> A, (P, )

But since P, is isomorphic to one of the models of the fibre N, there are the follow-
ing equalities
H,(Py, F), = H,(P,, F)

=FP,) ifp=0

=0 if p#0.
Consequently, the spectral sequence degenerates and there is an isomorphism

ﬁn(P*’ F) >~ H,[F(P,)].
6. Generalization. There are several ways of generalizing the homology objects
H,N,F) and H,(N,,F).

Let us describe one of them, which is convenient for the applications: the functor
F will be a little more general.

As in the introduction of this paper where the homology object H,(N, F) is
defined, we consider a category N with models M*, 1 € A, and an object N in N.
Now let us define the category N/N in the following way: for each morphism
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:P — N in N there is an object (7, P} in N/N and for each commutative diagram
in N

7 P—>N

7 P—— N

there is a morphism (7', ) in N/N. If Fis a functor from N/N to a good abelian
category (for example a functor from N to a good abelian category), the homology
object H,(N, F)can still be defined. It suffices to generalize the complex C, (N, F)
by the following equalities:

Fla®, ..., A"l = F(e® - a®, M*"),
shofal, L AN = [a ., AT e F(a® - 2™ e,

As in the paragraph of this paper where the homology object H,(N,, F) is
defined, we consider a simplicial category (N, T) with models M}, A€ A, and a
simplicial object N, in (N, T). Now let us define the category N/N, in the follow-
ing way: for each morphism =:P — N, in N with T(P) = [p] and T(=) =1,
there is an object (7, P) in N/N,, and for each commutative diagram in N

m:P—>» N,

x

el

with T(a) = @

P N,

N

there is a morphism (#', @, ) in N/N,. If F is a functor from N/N, to a good
abelian category (for example a functor from N to a good abelian category), the
homology object A,(N,, F) can still be defined. It suffices to generalize the double
complex Cy,4(N,, F) by the following equalities:

Fla®, ..., A7) = F(a® - a?, MY,
sPoofal . APl = [a0 ..., AP o F(&® - a7t 0, a0 ),
s o e, AP = [Ea, ..., AP) o F(E(a® - - a?), &, o - - o).

Now let us consider the simplicial category (N, T) with models, a morphism
v : Ny — N, of simplicial objects in the simplicial category, and a functor F from
the category N/N, to a good abelian category. From F and v, we get a functor,
still denoted by F, from the category N/N, to the abelian category:

Fa',e,7)=Fy,a',0,v,m) if T(@)=1, and T(=")=1,.

Consequently, there is a canonical morphism H(N,,, F) — H,(N,, F). Our problem
is to show that sometimes it is an isomorphism (comparison theorem). By defini-
tion the functor F is sweet if it satisfies the following condition. For each i€ A,
there exist a simplicial object A} in the abelian category, an isomorphism for each
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object (w, M%)
F(m, M:)_,,Aﬁ ‘n':M;'—»N;

and a commutative diagram for each morphism (#', @, )

A ~ i . A !

F(m, M%) 5 A} M} —— N,
Fir'om s @ b
4 A ~ A ‘. A ’

F(=', M}) > A% 7 My ——>N,

A functor F given by a functor from N to the abelian category is sweet since
F(m, M%) = F(M?). There is the following comparison theorem.

THEOREM. Let v4: N, — N, be an equivalence in a simplicial category (N, T)
with models and let F be a sweet functor from the category N[N, to a good abelian
category. Then the morphisms

ﬁ"(i’*,F):ﬁ"(N*,F)—Pﬁn(N;,F) HZO
are isomorphisms.

Proor. It is a copy of the proof of the comparison theorem we already know.
It is obvious as soon as we know that the simplicial object A3+ is well defined.
Here we use the fact that the functor F is sweet and we write

@, ..., %)y »
4 L

one copy of Aﬁ” for each (a!, a2, ..., «?). Then for each «°, there is an isomor-
phism
Au° ..... %) ~ E F[a", Y L

and we can reproduce the proof step by step.

There is no problem for generalizing the spectral sequence theorem. We con-
sider a simplicial category (N, T) with models, a simplicial object N, in the simpli-
cial category, and a functor F from N/N, to a good abelian category. The fibre
N, is a category with models and by restriction the functor F gives a functor from
N,/N, to the abelian category. Thus the homology object H,(N,, F)is well defined.
It belongs to a simplicial object H (N, , F), in the abelian category:

H,(N,, F), = H,(N,, F).
The morphism
&:H,(N,, F) > H,(N,, F)

is deduced from the morphism

—1:C,(N,, F) > C(Ny, F)
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defined by the following equality:
o [0 A% ..., ar, AP] = [@a®, 2%, ..., &u?, AP] o F(&(x® + - - aP), , —la® - - - &P).
There is the following spectral sequence theorem.

THEOREM. Let (N, T) be a simplicial category with models M}, A€ A, let N,
be a simplicial object in (N, T), and let F be a functor from NN, to a good abelian
category. The homology objects H,(N,, F) are defined for n > 0. Then let N, be
the fibre of (N, T) over [q] with models M}, i € A. The homology objects H,(N,, F)
are defined for p,q > 0. Then there exists a spectral sequence

H[H,(Ny, F)\]=> (N, F)

where H,|H,(N,, F),] is the qth homology object of a simplicial object H (N, , F),
in the abelian category such that H (N, F), = H (N, F).

The comparison theorem and the spectral sequence theorem give the following
corollary.

CorOLLARY, Let (N, T) be a simplicial category with models M}, 2 € A, let
P« P, — N, be an equivalence of simplicial objects in the simplicial model category,
and let F be a sweet functor from NIN, to a good abelian category. Let us suppose
that for each m > 0, there exists an index A, € A with P, ~ M?~. Then for each
n =0 the homology object H (N, F) is isomorphic to the nth homology object
of the following complex:

S(—1) F(pn_1,€h,pn)
'—’F(Pn,Pn)——> F(p'n—I’P'n~1)_>' o

7. Simplicial resolutions. We have seen in the preceding corollary that it is
easier to compute the homology objects H (N, , F) if there is a simplicial object P,
with some good properties: P, is “almost’” a model and P, is “‘almost” N,. Thus
it seems natural to introduce the following definition. In a simplicial category
(N, T) with models M%, A e A, a simplicial resolution of a simplicial object N,
is an equivalence p, : P, — N, , the domain of which has the following property:
for each m > 0 there is an isomorphism P,, >~ M= for an index 4,, € A. As we
know, a morphism p, : P, — N, of simplicial objects is an equivalence if the follow-
ing condition is satisfied for any model M{: the homomorphism

Haskmg(<Mi’ Py, L)— Himg«Mi’ Noder, L)
is an isomorphism. The simplicial set (M,,, Q,), is defined by the equality
<M*, Q*>n = Homln (Mm Qn)

Our problem is to find a method for the construction of simplicial resolutions.
To solve it, it seems more adequate to use homotopy groups instead of homology
groups in the definition of an equivalence. Let us now summarize what we have to
know of homotopy theory.
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Let us consider a simplicial abelian group G,. The mth homotopy group
7,.(Gy) of G, is by definition the mth homology group of the complex

-0
fm
.. c1 . o & =1 e gm—1 “ e
— Ker é}, N N Ker é2 —> Ker é, | N N Kerén 1 —

In other words, an element of =,,(G,) is represented by an m-simplex g € G, with
(g =0,..., & g =0 and two m-simplices g’ and g” represent the same ele-
ment of 7, (G,) if there is an m 4 1-simplex g € G,,,, with

@) =8 — g5 (@ =0,..., &g =0.

The mth homotopy group =, (G,) is also isomorphic to the mth homology group
of the complex
Ty,
-G, > Gy —> "
Now let us consider a morphism w, : G, — K, of simplicial abelian groups and the
corresponding homomorphisms:

H™(wy, 2):H}™(Gy, Z) > H"(Ky, Z)
77-m(w:l:) : 77-m(G*) - 77'm(I('alc)'

They are related by the following assertion: H"(w,, Z) is an isomorphism for
any n > 0 if (and only if) 7, (w,) is an isomorphism for any m > 0.

8. Construction of simplicial resolutions (PartI). The definition of a simplicial
resolution of a simplicial object N, involves only the following objects: N, and
M%,q >0 and 1€ A. Consequently, to solve the problem of the existence of a
simplicial resolution, we can suppose that the category Nis small; let the morphisms
form a set of cardinality € (infinite and greater than the cardinality of A).

In a simplicial category (N, T), a direct sum is defined in the following way. For
a set of objects N*, k € K, with T(N*) = [n], the direct sum consists of an object
V..x N' and of morphisms g*¥:N*—V N, ke K, with T(V N°) = [n] and
T(*) = 1,,. The following universal property is satisfied: all the canonical mor-
phisms

Hom,, (V N*, N)— Il Hom, (N*, N)

are isomorphisms. If the category N is small of cardinality %, we say that the
simplicial category (N, T') has direct sums, if the direct sums, in the sense defined
above, exist as soon as the cardinality of K is smaller than €. For a set of simplicial
objects Nk, k € K the direct sum is a simplicial object YV N defined by the follow-
ing equality: (V Ni), =V N

A cogroup structure for a simplicial object M, in a simplicial category (N, T)
is a morphism of simplicial objects u,:M, - M, v M, satisfying the usual
cogroup equalities. In other words, it is a morphism g, of simplicial objects such
that u, gives a group structure to the set Hom; (M,, N) for each g >0 and for
each N with T(N) = [q]. If furthermore all the maps

Hom,_ (M,, N) - Hom,, (M, N)
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are bijections, it is easy to verify that u, gives a simplicial group structure to the
simplicial set (M, , N,),.

Now here is a theorem proving the existence of simplicial resolutions in simplicial
model categories of a certain type. This type is not very general but sufficient for
several applications and convenient for an exposition.

THEOREM. Let (N, T) be a simplicial category with models M}, A € A, satisfying
the following conditions:

(1) the category N is small,

(2) the simplicial category (N, T) has direct sums,

(3) the direct sum of a set of models is a model,

(4) each model has at least one abelian cogroup structure.
Then any simplicial object N, has a simplicial resolution p, :P, — N,.

Proor. Before beginning the proof, we choose an abelian cogroup structure
wh for each model M}. In the examples coming from algebra, the models have
much to do with free algebras, free modules and so on, and the choice of one abelian
cogroup structure is equivalent to the choice of one set of free generators.

Now any simplicial morphism p,:P, — N, gives morphism of simplicial
abelian groups

(M, pady (M3, Py)y — (ML, Ny)y , AEA

and consequently morphisms of abelian groups
T (M5, Pada) (ML, Py)y) — m, (MG, Ny, AeA,n>0.

The morphism p, is a simplical resolution of N, if and only if on the one hand all
the morphisms 7,({(M}, p, ) are isomorphisms and on the other hand for each
m >0, there is an isomorphism P, ~ M}» for an index 4,, € A. We are using
homotopy groups; therefore it is quite natural to introduce an algebraic analogue
of the topological procedure of attaching cells. An object M2 will be an n-cell, and
we shall have the possibility of modifying homotopy groups in such a way that the
theorem can be proved.

9. Attaching cells. We consider a simplicial category (N, T), a simplicial
object X, , and a simplicial object M, satisfying the condition we already know:
all the maps

Hom, (M,, N)— Hom, (M,, N)

are isomorphisms. Then the simplicial set (M, , X, ), is well defined. An n-crown
k is a set of morphisms

ki:Mn—l_’Xn*D T(k7) = 111415 0 Sl Sn
satisfying the following equalities:
& () =&ik), 0<i<j<n

(no morphism if » = 0 and no equality if » = 1). Let us denote by S, the set of
all morphisms [p] — [¢] corresponding to the order preserving surjective maps
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from (0,1,...,¢9) to (0,1,...,p). Then we can rewrite the definition of an
n-crown. For each morphism a:[n] —[g], ¢ =0, « ¢ S, , there is a morphism
k[x]:M,— X,, T(k[«]) = 1,, and for each pair of morphisms « as above and
w:[g] — [p] there is an equality @(k[a]) = k[wa]. Then k* is equal to k[e].

Now we can modify the simplicial object X, by means of the n-crown k and get
a new simplicial object kX,. Let us suppose that the simplicial category has suf-
ficiently many direct sums. Then by definition

kX, =X, V( V M©) with M© ~ M,.

0eSn m

For a morphism w: [¢g] — [p], the morphism &:kX, — kX, is defined component-
wise in the following way. On the component X, of kX, this morphism @ is given
by the following commutative diagram:

X, — > X,

.

kX, — > kX,

On the component M of kX,, this morphism & is given by one of the following
commutative diagrams:

Al{la) ~ Ma_—) MD ~ A{f;ua)
kX, i > kX,

if wo belongs to S, ,,, and

® Kool

Ml ~ M, > M, X,
kX, ° kX,

if wo does not belong to S, ,,. Thus the simplicial object kX, is well defined. There
is a natural morphism k,: X, — kX,.

Now let us consider a morphism of simplicial objects x,: X, — N,. A com-
plete n-crown k (with respect to x,) consists of an n-crown k (with respect to X,)
and of a morphism k*: M, — N, T(k™) = I, such that the following equalities
hold:

x,q0ki=¢k" 0<i<n

Then there is a morphism of simplicial objects kx, : kX, — N, defined component-
wise in the following way. In dimension m, on the component X, of kX,,, the
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morphism kx,, is given by the following commutative diagram
X, —™ >N,
11\',,,

£
kX, —™ > N,
In dimension m, on the component M2 of kX,,, the morphism kx,, is given by the
following commutative diagram

M@ ~ M a&") N
m = m > Ny

le

kX, — ™ N,

Thus the simplicial morphism kx, is well defined. We can summarize this construc-
tion in a lemma.

LemMMA. Let (N, T) be a simplicial category with one model M, and sufficiently
many direct sums. Let x,:X, — N, be a morphism of simplicial objects and let k
be a complete n-crown with respect to x,.. Then there is a decomposition of the morph-
ism x,

L ﬁ‘
Xy 255 kX, =2 N,

having the following properties:

(1) for any m =0, the object kX,, is the direct sum of X,, and of a finite number
of copies of M,,;

(2) for m < n, the object kX,, is equal to the object X,,,;

(3) the object kX, is equal to the direct sum X, V M,;

(4) on the component M, the morphism é' kX, — kX, _, is equal to the morphism
kioe:M, -~ X, ,;

(5) on the component M;, the morphism kx,:kX, — N, is equal to the morphism
kt:M,— N,.

ProoF. The set S, ,, has a finite number of elements, only one if n = m and
zero if m << n. The proof of the last two properties is immediate from the defini-
tions.

What we have done with one model M, and one complete n-crown k can be
reproduced with any set of models M%, A € A, and any set of complete n-crowns
k,, y €T (the complete n-crown k, is defined with respect to the model Mv).
It is enough to consider the model

M, =V M}

yel
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and the complete n-crown k defined in the following way: on the component
M?r of M__, the k' is equal to the morphism k; and on the component M}r of M,
the morphlsm k* is equal to the morphism k}. Then we can rewrite the lemma and
we get the following properties of the decomposmon Xy =kxy o ky:

@kX,=X,ifm<nand kX, = X, V(Vyeer),

(b) on the component M}y, the morphism & is equal to k; ° & ;

(c) on the component Mly the morphism fcx is equal to kJr

10. Construction of simplicial resolutions (Part II). Now we have to establish
the existence of simplicial resolutions. All the hypotheses of the theorem are satis-
fied and we shall use the following remark about the decomposition

kzy
X, —>kX*L>N*, fxy o ky = x4,

or more precisely about the homomorphisms

Trfn = "m((Mii x*>*):77m(<Mi1 X*>*) - ‘le((Mi, N*)*)
ke, = m ((MA, kg e ) 7 (M, kX Dx) = 7 ((ME, Nydy)

with A€ A and m > 0. The following four properties are satisfied:

(1) if 74, is an epimorphism (m > 0), then k=, is an epimorphism;

(2) if 4 is a monomorphism (m < n — 1), then k=% is a monomorphism;

(3) itis p0551b1e to choose k such that k=2 is an epimorphism for all A’s;

(4) it is possible to choose k such that fers_ , is a monomorphism for all s.

Here k denotes any set of complete n-crowns with respect to the models M},
A € A, and the simplicial morphism x,.. The first property is formal. The second
property is a consequence of the equality kX; = X, for i < n. The third property
is satisfied if, for example, the set of complete n-crowns we are considering con-
tains all complete n-crowns k_such that k! = 0,0 < i < n. The fourth property is
satisfied if, for example, the set of complete n-crowns we are considering contains
all complete n-crowns fc7 such that k{ =0, 0 <i < n. Actually the third property
involves commutative diagrams of the following type:

@ k‘;‘:)

X, v(VMin— —’X

pel’
(épxen

%, kD) ‘M,,

N,

N,
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The third property is satisfied if for any 4 and any @ with T(a) = 1,, thereisa 8
with T(8) = 1,. In the simplest way of establishing the third property, the morph-
ism g is one of the canonical morphisms of the direct sum. Actuaily the fourth
property involves pairs of commutative diagrams of the following type:

1,11

{é k.,e )
X, v(VMy * X,
yel -n BN
(€4 eyén)
(x, Kkt ) Mfl
a 1]
Y &

N'n — Nn—l
z
and
0

(& 00 a1

€,k €) —_—>
Xnv(va;y)”—”—> Xn—l;)xn-2
el -n—1

€

’ R n—1

\\ B s /'“
. N 4 /
(x., k) M, »

L /e.o

Y
N,—— > N,

n-1

The fourth property is satisfied if for any 4, any & with T(«) = 1, and any  with
T(8) = €, thereisa § with T(B) = 1,.. In the simplest way of establishing the fourth
property, the morphism g is one of the canonical morphism of the direct sum.
Notice the ambiguous use of 0 in the diagrams above.

The four properties of the procedure of atfaching cells give a short proof of the
theorem (existence of simplicial resolutions). The simplicial object N, is given and
a simplicial resolution p,:P, — N, has to be constructed. The construction is
made step by step. Let us describe the nth step. We already have a morphism of
simplicial objects p3~1:P3~! — N, with the following property:

7Tm(<Mi', Piy) = ma((M}, Ny)y)
is an isomorphism if m << n — | and an epimorphism if m =n — 1. Then we
choose a set of complete n-crowns with respect to pZ~* such that the properties

described at the beginning of this section are satisfied. We use this set of complete
n-crowns for attaching cells and we get a new morphism of simplicial objects
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pi: P2 — N, with the following property:
Tu((ME, P1)x) = mu((My, Nids)

is an isomorphism if m << nand an epimorphism if m = n. The Ot step begins with
P = 0. Putting all steps together, we get the following picture:

P! —>P,—>P.—> P! —P}—>

ST

and we define P, = lim_, P? and p, =lim_, pj. This is well defined since the
morphism P%* — P isanisomorphismif n > m. Furthermore, this remark shows
that p, :P, — N, is a simplicial resolution and the theorem is proved.

Actually we can prove a little more than the preceding theorem, without any
further work.

THEOREM. Let (N, T)be a simplicial category with models M}, A € A, satisfying
the following conditions:

(1) the category N is small,

(2) the simplicial category (N, T) has direct sums;

(3) the direct sum of a set of models is a model,

(4) each model has at least one abelian cogroup structure.

Let b, : B, — Ny be a simplicial morphism such that for each m > 0 there exists
an isomorphism B, ~ M} for an index A,, € A. Then there is a decomposition of
the simplicial morphism

B, ~>P, >N, Paix = by
such that

(1) the simplicial morphism p, is a simplicial resolution of N, ;

(2) for each n = O there exists an isomorphism P,~ B, v M* for an index
A, € A such that the morphism i,:B, — P, corresponds to the canonical morphism
B,—~B,vM f‘ﬂ. .

Furthermore, the decomposition (iy, p,) can be obtained in a natural way out of
the morphism b,.

Proor. We get a decomposition (iy, p,) of by if we repeat the preceding
proof in beginning with Pz* = B, and p* = b,. Now the naturality is understood
in the following way. For each simplicial morphism b,., a decomposition (iy, p,) is
given, and for each commutative square of simplicial morphisms

by:B, — > N,

b.:B,—— N,
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a morphism P, — P, is given such that the following diagram is commutative:

B, — Py — N,

B, »P, — >N,

It suffices to prove that each step of the proof of the existence of a decomposition
can be done in a natural way. One of the possible natural ways can be described
as follows. Let us use the diagrams appearing at the beginning of this section, for
the dimension n. The set of complete n-crowns we use consists of one complete
n-crown for each « appearing in the general diagram corresponding to the third
property and of one complete n-crown for each pair o/ appearing in the pair of
general diagrams corresponding to the fourth property, and that in such a way that
B in both cases is nothing but the corresponding canonical morphism of the direct
sum.
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On completing bicartesian squares

P. J. Hilton and 1. S. Pressman

The completion of a filtration in an abelian category &/ was studied in [2, 4].
Thus given a filtration of an object X in o, together with its annihilating co-
filtration,

e XTlc X X X, X, —0 < p < 400,
so that X/X? = X, we may obtain the diagrams
X <X » X, X» cX » X,
Fi L P
xr < X° » X7 X2, < X_ o » X,
4
p® A_wo
Y
Xr < X2, » X7 X, € X%, » X7

where the (common) third line represents the completion of the original filtration,
X® = lim X?, X_, =limX,
— «—
and
XZp =lim X7 = lim X7,
«— —

Moreover it was proved in [2] (and stated in Theorem 2.3(iii) of [4]) that the

square

x> — 5 x
(0) p® p

A_
@
X% — X

37
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is bicartesian (that is, a pull-back and a push-out; see [3]). If we look at a
particular aspect of this result we see that it asserts that, starting with any
filtration and constructing the limits X*, X__,, the composable pair of morphisms
(4, p) can be embedded in a bicartesian square. This therefore suggests the
question: given any composable pair of morphisms (f, g) in &/,

A—_ B

Ey

to find necessary and sufficient conditions under which we can find a bicartesian
square

7 B

A
(1 ld )

D— >E
The theorem on filtrations also raises the cognate question of how to characterize
the ‘completions’ (1) of the pair (f, g), and, in particular, how to pick out, in a
canonical way, the completion (0). We do not discuss this question in this note
beyond remarking that it is a natural generalization of the construction of the
Ext group. For there is a very obvious and natural way to collect the completions
(1) of (f, g) into equivalence classes, and if B = 0 then a completion (1) is just

a short exact sequence (s.e.s.) A >—> D—"»E, and the equivalence classes
are precisely the elements of Ext! (E, 4). This observation suggests the plausibility
of looking for some natural algebraic structure in the set of equivalence classes of
completions (1), and we hope to return to this question later.

Another obvious special case of our problem is that in which £ = 0. Then we
see (and, indeed, it follows immediately from Theorem 2 of this note) that a
completion (1) exists if and only if f'is a projection of 4 onto a direct summand
B, and that d:4 — D is then an arbitrary projection onto a complementary
summand D. Thus the set of completions is equivalent to the set of complements
of B; the dual statement holds, of course, if 4 = 0.

In this note we obtain necessary and sufficient conditions for the existence of
(1). These conditions imply, of course, properties of the terms involved in the
completion process of a filtration in &7; we hope also to study these propertiesin a
subsequent note.

We also remark that the question of the existence of a completion (1), for
special cases, has been considered in [5,111. 3.8 and XII. 5] and [6].

In the second part of this note we establish necessary and sufficient conditions
for the uniqueness of the completion (1) of (f, g), given that such a completion
eXists.
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We now establish notation. All objects and morphisms mentioned will belong
to a fixed abelian category «7. A short exact sequence (s.e.s.) of

0>A4—=>B">C—0

will be written as b[Ja or 4 LI LN C; its class in Ext (C, A) is {6 [] a}.
b a means that the morphism a is the kernel of b; b a means that b is the co-
kernel of a. Every map f:A — B gives rise, canonically, to the sequence
v
K,>'I>A ul » I, "I>B » C,

where A [J«’ V' [Qu', WA =f, fl«’, VIf, K, =kerf, I, =imf, and C, =
cok f.

In [7] it was shown that there was an E-H functor (r, 0):e#? — & which to each
pair of composable maps (f, g) assigned the exact sequence

@) 0K 2>k, 5k 25 C, 55 C,,S>C, >0
where 74(f) = Ky, 7_1(f) = Cy, and 7,(f) =0 for j # 0, —1. k' was described
as 7o (;,), etc., and 0y(f, g) = 0, = »'x*. When (f, g) = (&, /), k" and ¢” are

taken to be the identity maps of K, and C; respectively.
The composable pair (f, g) gives rise to the commutative diagram (3),

« A o o
K, A »l > B » Cy
vV
k i g c
x9 2 ! Y N4
3) K> A » I > E » Cyy
k" f Fid s
x7 y Af ug v 3
K, > B » I, > E »C,

Ifd, e, fand g in (1) are each factored canonically into an epic 4 and monic g,
then (1) gives rise to a commutative diagram (4) with four commutative squares.
The center of the diagram can clearly be taken to be I, because gf : 4 — E factors
through it, is epic onto it, monic from it, and 224" = j"i’. This last follows because
in (3) A% = A°f = "4 =j"i’/, and ¥ is epic.

b 7

A— 51 -* B

A I T Fy

v . < e

4 I,——» I, >—>1I
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By [3, Theorem 3.7] if each I'? is bicartesian, then so is (1). Conversely, by
[3, Corollary 3.11]if (1) is exact, then I'! is cocartesian, I'? and I'? are bicartesian,
and I is cartesian. If (1) is bicartesian, so is each I',

LEMMA 1. K, > K,, > K, is a split s.e.s. if (1) is cartesian.

Proor. Theorem 3.5 [3] gives an isomorphism ker d =~ ker g. That is,

To ({ ) rold) 3 mofg).

) o) i i)

Therefore, k" has a right inverse

1 —1
5= To( )To(i) .
LemMa 2. If (1) is bicartesian, then
(i) 9o(f,g) =¥'«* =0,
(ii) ¢"[J ¢’ is a split s.e.s.
(iii) k" [ &’ is a split s.e.s., and
(iv) the exact sequence (5) represents the zero class of Ext® (C,, K}).

But

i3 v

lakf “z
(5) 0K, > I, >, > C, — 0.

Proor. Lemma 1 and its dual establish the first three conditions. Consider,
the Ext-sequence (6) given by the s.e.s.j' [] A%, that is, a! = (4%),, B! =/,
(6) -+ —Hom (C,, L)) > Ext* (C,, K)) “» Ext! (C,, I,)

2 Ext (C,, I,) > Ext® (C,, K)) — - - -

We have {1 [ u} € Ext! (C,, 1) and v7e [] u? pushes out under j to »7ue [] i".
This passes over to (5) by the action of the boundary operator. By the exactness of
(6), (5) must represent the zero class.

Lemma 2 gives the clue to our main theorem. We say that the pair (f, g) is

completable if a bicartesian square (1) exists, and we then call (d, €) a completion
of (f,g). Now we may form the diagram

! 7
A—2 51 >~ >B
i I a9
)] I:f>L’Z1
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Then in view of the relation of (1) and (4) it is clear that (£, g) is completable if and
only if the following four conditions are satisfied:

(i,) ' is bicartesian;

(iip) (j", u®) is completable;

(iii)) (¥, i") is completable;

(ivy) for some completion® (44,;") of (#,i"), and some completion (i, u?) of
(", u9), (j',i") is completable.

Thus the following theorem establishes necessary and sufficient conditions that
(f, g) be completable.

THEOREM 1.  Conditions (o) hold if and only if conditions (o) of Lemma 2 hold,
o =1, ii, iii, iv.

PRrOOF. Lemma 2 shows that conditions («.) imply conditions (x). Conversely
suppose conditions () hold. It is easy to see that condition (i) implies condition
(i;). We then have A:I,—» C; such that A2 =/, 1[]j", and u:K, >—> I,
such that y'u = «?, i’ [] 4.

Consider the diagram

i

I, I, » Cy
%
1“1 °
vor

E » Cyy
v c”

<

C, C,.

This diagram shows that in the exact sequence
Ext! (C,, I,)) 2> Ext! (C,, I,) 2> Ext! (C,, C,)

we have A, {7 [Ju?} ={c"[]¢’}. Thus if (i) holds, A,{»*[Ju?} =0, so that
{v* Q u?} =j{»°ue []i"} for some push-out, and hence bicartesian square,

-
L, > 1,

v v
li, l“a
1

ue
, >——>E.

This establishes condition (ii)). Similarly condition (iii) establishes condition

(iii,).

! This notation is legitimate since the completion of (%, i’) consists of epics; that of (j*, u?)
of monics.
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Now suppose further that condition (iv) holds. Reversing the steps of the
argument in Lemma 2, we see that {»u[]i"} passes to zero under y!, so that
{iue i) €, Extt (C,, 1), say,

(e )i} = {vope s I

for some push-out, and hence bicartesian, square

I; » I,y
v v
l“d l
D al » I,.

This establishes condition (iv.) and hence the theorem.

ReMARK. The logical relation between the conditions (x) and («,) is as
follows. Conditions (i) and (i) are equivalent. Condition (ii) includes condition
(i) and is equivalent to conditions (i) and (ii;); similarly condition (iii) is
equivalent to (i.) and (iii;). Finally if we assume (i), (ii), (iii) (or (i), (ii.), (iii.))
hold, then conditions (iv) and (iv,) are equivalent.

The proof of Theorem 1 itself suggests the following reformulation of condition
(iv). Condition (ii) is equivalent to the assertion that {»° [] u%} € Ext* (C,, /,;)
and condition (iii) is equivalent to the assertion that {4’ [] '} €i’* Ext! (/,,, K,).
By taking the set of counterimages in Ext! (C,, /,,) and Ext! (/,;, K,) and forming
the Yoneda product we produce an obstruction set in Ext? (C,, K;). Then

condition (iv,) asserts that 0 € obstruction set < Ext* (C,, K}).
Summing up, we have proved

THEOREM 2.  The composable pair (f, g),

A—' . B

E
is completable if and only if
(@) ¢"[Jc’ isa split ses., C; <, Cg,i> C,s
(b) k" [J k' is a split s.e.s., K,L» Kg,i» K,, and
(c) 0 € obstruction set = Ext® (C,, K,).

CoRrOLLARY 1. (i) If K, is injective then condition (a) is necessary and sufficient
Sor the completability of (f, g).

(ii) If C, is projective then condition (b) is necessary and sufficient for the
completability of (f, g).

(iil) If of is a category of modules over a ring of dimension | then conditions (a)
and (b) are necessary and sufficient for the completability of (f, g).
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COROLLARY 2. Iffis epic and g is monic then we may identify I, I ,, I, with B,
{1 g} e Ext' (C,, B), {f[]«'}€Ext*(B,K))
and (f, g) is completable if and only if the Yoneda product {»* [] g}{f[] «’} vanishes.

ReMARKS. (a) Case (i) of Corollary I covers the case when f is monic,
case (ii) the case when g is epic.

(b) Case (iii) of Corollary 1 covers the case when & is the category of abelian
groups. The ‘second obstruction’ then automatically vanishes. That the second
obstruction does not always vanish is easily seen; as an obvious example, let = be
free abelian of rank 2, A = Z[«], &/ the category of (right) A-modules. Since
Exti(Z,Z) =Z ® Z and the two generators may be chosen so that their Yoneda
product generates Ext} (Z,Z) = Z, we simply choose f epic, g monic so that
{v"Og}, {f0]«'} are these chosen generators. Corollary 2 then shows that
(f, g) is not completable in this case.

Of course no claim is made that the completion is unique. Since our problem
generalizes that of obtaining Ext! (E, 4) (the Case B =0), it follows that, in
general, no uniqueness is to be expected. We now proceed to study the problem of
when, in fact, we do have uniqueness.

It will be assumed henceforth that (£, g) has a completion and that the bicartesian
square (BCS) (1) is a fixed completion of the pair of morphisms (f, g). We now
explain what we should understand by the uniqueness of (1).

Let

s
—_—

A B
Jdr Jg
D—2 >E r=12

be BCS. We say that they are congruent (or that the completions (d,, e,) are
congruent) if there exist automorphisms a:4 — A, 7:E— E, and a morphism
h: D, — D, such that fa = f, ng = g, and the diagram

L ex

A D, E
a h LJ
A—" >p, " F

is commutative. It is easy to see that A is then an isomorphism, so that congruence
is an equivalence relation among the completions of (f,g). We say that the
completion of (f, g) is unique if all completions belong to the same congruence
class. We now prove some results about the congruence relation.

PROPOSITION 1. The following three statements are equivalent: (i) the
completiohs (d,, e,), (ds, e;) are congruent; (i) there exists an automorphism
w: 4 — A and an isomorphism h: Dy — D, such that fo = f, hd; = dya; (iii) there
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exists an automorphism n:E— E and an isomorphism h: D, — D, such that
ng =g, exh = ney.

Proor. It is evidently sufficient to show that (ii) =~ (i). Now since (ds, ;)
completes (f,g), it follows that (d,x, e;) completes (fu,g), that is, (hdy, e;)
completes (f, g). It then follows that (d;, e;h) completes (f, g). But (dy, e;) com-
pletes (£, g), so we have two push-outs of (f, d;). Thus there exists an automor-
phism #: E — E such that g = g, ne; = esh.

Now we may regard (7) as the fixed part of (1). Writing A%, 4 for i’, j”, we may
draw the following diagram representing two completions of (f, g).

o o
A »I, > > B
AT A e Fu
r
h ;" I ¥
8) I, » L, > I, r=1,2

Ag He
D, »l, > > E
PROPOSITION 2. If the completions (d.,e), r = 1,2, are congruent, then I'!
is congruent to T'} and T'4 is congruent to T'}.

Proor. By splitting down the middle we deduce from the given congruence
a commutative diagram

a5 P PR PRt
A » Iy D~ oy, >t L E
(9) a % h v J'I
A » I > D, » I,y E

44’ a2 #a® a2 ¢ I

with all vertical arrows isomorphisms. Also A’a = A’ since fa = f, and nu® = u?
since ng = g. We now apply Proposition 1 to the ‘outside’ squares of (9). This

completes the proof and establishes the commutative diagram

it pi
1, » 1, > Iy

(10) % v
.2 .2
Iy < » Ly >~ Ly;
for the only automorphism 0 of I, such that 61' = 1! is the identity and, likewise,
w0 = p’ forces 6 = 1. Diagrams (9) and (10) also serve to describe the relation
between the squares I'! and I'} when the completions (d,, e,) are congruent. It is,
moreover, clear that the function (u, 1) — (uu™1, vd) then sets up a one-one
correspondence between congruence classes of completions of (4, 4i) and
congruence classes of completions of (4, u3).
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We now prove a converse of these results. Suppose in (8) that I'} is congruent
to I'y and that I'? is congruent to I';. Thus we have a diagram

gt it gt R
A »ly——»1I, 1, * > E
(11) a u M "
A » 1, 1 1 E
" -y o > lee > )

Mo = lf’ n‘ug — ‘ua_
Let us further suppose that I'3 and I'] are (u, v)-congruent, meaning that the com-
pletions (ug, A2) and (udu™, vA?) of (4], uf) are congruent. We then prove
PROPOSITION 3. Under these hypotheses the completions (d,,e,), r = 1, 2, of
(f, g) are congruent.
PrOOF. We have fa = f, g = g. Further we have a diagram

1 1
Ha Ad
I, D, » Iy
su h tv
2 2
Hd Ad
I, D, » 1,5,

where 4 is an isomorphism and s, f are automorphisms of I, I, such that Ajs =
A, ty;‘_: ui. Now (4g, 43)is a completion of (47, 4). Since Ajs = 4] it follows that
(sA2, A2) is also a completion of (47, A%). Thus (4, %) and (4, sA%) are both pull-
backs of (4%, 4}, so that there exists an automorphism & of A such that 17§ = A
and A3¢ = sA%. Consider the square

42 D

éa lh
A—2 D,

Then féa =f and hdy = hufld = plsudd = pisiia = piidto = d,fo. We apply
Proposition 1 to complete the proof.

We now approach the congruence problem from a different point of view. Let
us suppose that g is monic and consider the diagram

A—' B

7
g

Q'Q «
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Then f induces f, :Ext! (C,, A) — Ext! (C,, B), and if ¢ = {»* [] g} € Ext! (C,, B)
then the completability of (f, g) simply states that ¢ is in the image of f,. Let
Aut, 4 be the group consisting of those automorphisms « of 4 for which fa = fand
let Aut, E be similarly defined. Plainly Aut, E acts as a group of automorphisms
of C,, so that Aut; 4 and Aut, E both act as a group of automorphisms of
Ext! (C,, A). Indeed, the actionscommute,sothat Aut, 4 X Aut, E actsasa group
of automorphisms of Ext! (C,, A). We will write *07 for the effect of («, )
on 0 € Ext! (C,, A).

PROPOSITION 4. If [, (0) = o then f, (*0") = 0.

PrROOF. Since fa = fit is immediate that £, (*0) = £, (0). Now Aut, E acts as
the identity on o, so that £, (0") = f,(0)" = ¢" = 0.

ProPOSITION 5. Let 0,, 0, €f}(0). Then we have diagrams
4L 5B
v
ldr
er Y
D,——F

T L

where 0, = (v [1d.},r = 1, 2; and the completions (d,, e,) are congruent if and only
if O, = 07 for some o € Aut; 4, 5 € Aut, E,

Proor. If 6, = *07 we have a diagram

@

A A > A
A\

dzl dy
D2 12 D Iy Dl

va?

-
- 3

c,—C, c,

where all horizontal morphisms areisomorphismsand f« = f. Apply Proposition 1.
Conversely, if the completions (d_, e,) are congruent, r = 1,2, then we have a

diagram
A
A

da eg E
>—> E
n

l,.
31 D

>—2— D ——E, fa=f, 1g=g

S
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inducing
dg

2
A> D,—< »C

a h 10
d N C

A>—= > D,

and it remains to show that the square
E—" >E

g 7

v v

(12)

Cc,——¢,

commutes. Now 6»’g = 0and»'ng = »%g = 0; also 6v¥e, = Oy} = v$h = ve,h =
v"ne,. Thus the commutativity of (12) follows from the push-out property of a
BCS.

Plainly Propositions 4, 5 have duals (when fis epic) which we will not enunciate
explicitly. Together they provide a complete answer to the congruence classi-
fication and hence to the uniqueness problem when g is monic or fis epic.

We now revert to the general case. It follows from Proposition 2 that if
(I't, T'Yy and (I'}, I'?) both permit the construction of a I'* completing a BCS, then
the completed square cannot be unique unless I'}, I'} are congruent and I'4, I'4 are
congruent. It also follows from the remark following the proof of Proposition 2
that the uniqueness of I'® depends only on the congruence classes of I't and I, We
now prove

PROPOSITION 6. Given I't, I't, I'%, the constructability of I'® depends only on
the congruence classes of I'* and T,

ProOF. Suppose we consider (8) without I'}, r =1, 2, and let T'}, T} be
congruent, I'?, T'3 congruent. Let 6,, = {v![J ui}, & = (»* Qu}, 62 = (4[] 1},
& = {¥[Q«},r=1,2,s0 that p%(6,,) = &, 2**(6}) = . By Theorem 2 we may
construct I'? if and only if 616, = 0. Now, by Proposition 5, 6,, = 6],, n € Aut, E,
and, by the dual of Proposition 5, 61 = #0}, « € Aut, 4. Thus 630,, = *(016,,)"
and the proposition is proved.

Now for any morphism k: M — N in &/ we may construct the exact sequence

Kk vk
Kk>—>ML>N—»Ck
determining {k} € Ext? (C, K,). Moreover if x € Hom (X, C,) there is an induced
element {k}x in Ext? (X, K,) and if y € Hom (KX, Y) there is an induced element
yik} € Ext? (G, Y).
We extract from (3) and (4) the s.e.s’s
(13) I,>*>1,2»c,

(14) K>“>1, 51,
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which depend only on fand g, and the induced sequences

(15) Hom (C,, 1,) > Hom (C,, C,) =*> Ext* (C,, I,;) “*> Ext! (C,, 1,),

(16) Hom (I,, K) "> Hom (K,, K,) ~*> Ext! (I, K;) > Ext* (I,, K,).
We suppose (1) constructed and set 6, = ([ u%}, & = [Qu}, 0! =
{A ] &}, & = {A'[] '} as in the proof of Proposition 6, so that
ph(6) =&, A*(OY=4£, and 69, =0

(since (1) exists).
Let ¢ € Hom (C,, Cy), ¥ € Hom (XK,, K,). We make some computations of
Yoneda products.

PROPOSITION 7. (3*)(0,¢) = 0.
PROOF. We obtain (0*y)(d,4) from the diagram

>
R-
4
-
h
=
v
"~
-«
Y

¢
}
C,.
But since (4, p?) is completable, {u74’} = 0 by Theorem 2, so (9*y)(d,¢) = 0.

PROPOSITION 8.  0%(0,4) = {f 14, (0*y)b, = v{g}.

Proor. It is plain from the definition of d,¢ and of the Yoneda product that
0'(0,9) = {j}¢. Butplainly {j} = {f}. Similarly, (3*y)0, = v{i}and {i} = {g}.

From these last propositions we infer

PROPOSITION 9. (0! 4 0*p)(0;, + 0,¢) = { f}¢ + v{g}.

We saw in Proposition 6 how Aut; 4 operates on Ext! (I,;, K,) by acting on K,
and likewise how Aut, E operates on Ext! (C,, I;). From Propositions 6 and 9
we infer

ProposITION 10. {f}¢ + p{g} =0 if O,dc(Aut, E—1)10 and 0O*ype
(Aut, 4 — 1) 16.

We may now state the main theorem on uniqueness.

THEOREM 3. There is a unique congruence class of completions (1) of (f, g) if
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and only if the following two conditions are satisfied:

@ (19 + g} = 0= 0,8 € (Aut, E— 1) 16,
F*ype(Aut, 4 — 1) 16

(b) (¥, u) has a unique completion.

Proor. It follows from (10) that noncongruent completions of (4, u?) lead
to noncongruent completions of (f, g). Thus if the completion of (f, g) is unique
(b) must hold. But also, by Propositions 2 and 5, it must be impossible to find
¢,y such that 0, + 0,4 ¢ (Aut, E)0,) or 0+ 9%y ¢ (Aut, A)6Y) and
(6 + 0*y)(6, + 9,6) = 0. This is guaranteed by (a).

Conversely if (a) holds we are forced into the choices made, up to congruence,
or 't and I™, in order that I'® can be constructed. In the light of Proposition 3, (b)
then guarantees the uniqueness of the congruence class of (1).

Naturally, the validity of (b) in any particular case may be tested by applying
Proposition 5 or its dual.

ReMArk. Of course, Proposition 5, or its dual, is much easier to apply than
Theorem 3 if g is monic or fepic. However, it should be noted that the congruence
class of (1) may be unique without (¥, %) or (@’, u¢) admitting unique completions,
so that Proposition 5 cannot be applied directly to the general case. However,
and rather paradoxically, it can be applied when fis monic or g epic! For since I'?
is always unique, the uniqueness of (1) hinges only on the uniqueness of I'* if £ is
monic (and we may then apply Proposition 5 to u? and j:I,,— I,), or on the
uniqueness of I'* if g is epic (and we may then apply the dual of Proposition 5 to
Mand i:l, — I;).
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A categorical setting for the Baer extension theory

Murray Gerstenhaber®

The purpose of this paper is to describe a class of categories C within which the
Baer extension theory is meaningful. That is, within C we may speak of a *singular
extension of an object 4 by an 4-module M”’, and the equivalence classes of these
will form an additive group, denoted £&(4, M). The present theory is actually
adequate to discuss the next higher cohomology group, &&(4, M), which contains
the obstructions to extension problems, but this will be deferred to a later paper.

The major problem in the Baer Theory is to choose a set of axioms weak enough
to hold simultaneously for all the known cases where singular extensions can be
made into a group. In particular, the axioms must admit the categories of sheaves
of groups, sheaves of rings (associative, Lie, and commutative associative) and
topological groups as models. In doing this we have been aided by unpublished
work of John Moore and have elected to call the categories defined by the present
axioms “Moore categories”. The axioms are probably not the most efficient
possible, but are at least workable.

Since most of the principles are very well known, many of the minor proofs are
omitted.

1. The axioms. A Moore category C is one which is pointed, has kernels and
cokernels, and which satisfies four additional sets of axiom grouped as follows:

1. Two self-dual axioms: The 3 X 3 lemma, and a criterion for a morphism
to be normal.

2. Three axioms on fibered products (the first of which assures their existence).

3. An axiom on split extensions.

4. A foundational axiom insuring that certain classes are sets.

A zero-sequence A— B — C is one in which the composite morphism is zero.
The sequence is an extension (of C by A) if A — B is the kernel of B— C and

1 The author gratefully acknowledges the support of the NSF through grant GP-8648 to the
University of Pennsylvania.
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B — C is the cokernel of A — B. Following the terminology of MacLane, a mono-
morphism of C will be called briefly a “‘monic’” and an epimorphism an “epic”. A
monic 4 — B which is the kernel of some morphism B — C is normal. An epic
B — C which is the cokernel of some morphism 4 — B is conormal, but for
simplicity, we call this, too, “normal”.

It is a simple consequence of the fact that C is pointed and has kernels and
cokernels, that every morphism 4 — B has an essentially unique analysis,

(1.1) K>A—>I—>I'—>B—J

in which the composite A — I — I’ — B is the original morphism, K — A is the
kernel of A — Band B — Jits cokernel, and K — A — I, I — B — J are extensions.

AxioM 1. (The 3 X 3 lemma). Suppose that we have a commutative diagram:

A > A A"
v l

B’ > B > B”
|
|
|
[

c’ C > C”

If all three rows and any two columns are extensions, and if the third column is a
zero-sequence, then it, too, is an extension.

The 3-x 3 lemma has in particular the following consequences, whose proofs
are easy exercises in diagrams.

(i) Let the solid part of the following diagram be given and commutative,

A A A"
4 A
Bl B Brl
Y
C,_—)C—————)C”,

and suppose that the first two rows and columns are extensions and that 4” — B”
and C’ — C are normal epic and normal monic, respectively. Then the dotted part
can be filled in (in an essentially unique way) to make the diagram commutative
with all rows and columns extensions. Since the 3 x 3 lemma is self-dual one has
an analogous result when the upper left corner of the diagram is missing.
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(ii) Suppose that we have a commutative diagram

’
a a "

A > A
g

l,.
b'Bb

f
B > > B”

(1.2)

in which the rows are extensions and f'is an isomorphism. If g is a normal epic
and k:K — A4 a kernel of g, then 4 is a normal epic and ak is a kernel for h. If
h is a normal monic and j: B” —J a cokernel for A, then g is a normal monic and
Jb is a cokernel for g.

There is an obvious dual statement in which the diagram is the same but 4 is
assumed to be an isomorphism. Concerning diagram (1.2) we now assume the
following:

Axiom 1.2. In the diagram (1.2) with exact rows, if 4 is an isomorphism and f
a normal monic, then b'f is normal monic. Dually, if fis an isomorphism and 4 a
normal epic then hg is normal epic.

The axioms on fibered products will imply that a composite of normal epics is
normal, so the second part of Axiom 1.2 need not be assumed independently. In
general, of course, a composite of normal monics is not normal.

Axiom 2 on fibered products (pull backs) has three parts.

AxioM 2.1.  There exist fibered products.

The fibered product of two morphisms u: U — A and »: ¥ — A4 will be denoted
U x 4V, the associated map U x 4 V' — U being denoted py;, and similarly for
pr- When U = V we write p,, p., respectively. If we have morphisms f:B — U
and g: B — V such that if uf = vg, then the associated morphism B — U X 4 V'is
denoted fv g. When A is zero, the fibered product U x 4 V is just the direct
product U x V. It is a familiar fact that the existence of fibered products implies
that every finite diagram has an inverse limit.

We do not assume that the fibered sum of morphisms 4 - U and 4 — V
exists, but if it does, then the object in it is denoted U =, V.

One can show without difficulty that if we have a commutative diagram

A—2 4" sy
! g hl
B/ 13 B b N BI/

in which the rows are extensions, / is an isomorphism, and f is monic, then the
natural morphism f'v a’:4" — B’ x y A is an isomorphism. Dually, if fis an iso-
morphism and & a normal epic, then the right square of the diagram is a push out,

”

so B” will serve for B+, A",
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Axiom 2.2, Pull-backs of normal morphisms are normal. That is, in the
diagram

Bx,C——>C

B — 4

if B— A is normal monic or normal epic, then B x , C — C is normal monic or
normal epic, respectively.

Axiom 2.2 implies, in particular, that we can pull back extensions, i.e. that if
in the following commutative diagram

K- B XAC’,—0>C

|

K—> B ——4

the bottom row is an extension, then so is the top. Itis clear that i v 0 = ker p.
Axiom 2.2 also implies that if we have an extension B — B — B” and a
morphism 4 — B then there is an essentially unique commutative diagram

B xpA—"t 54" 4
(1.3) v w
B * ,B—2 B

whose top row is an extension. It is easy to verify that if 4 — B is a normal epic,
and k:K — B’ X p A a kernel of pp. then p 4k is a kernel of v, and therefore w is an
isomorphism. From this one concludes that a composite of normal epics is normal.
For if we have normal epics v:4 — B and b': B — B", let b: B’ — B be a kernel of
b’, arrange the morphisms as in the diagram (1.3), and take a’ to be a cokernel of
pa- Then wexists and by the preceding remark is an isomorphism, so wa': 4 — B”
is also a cokernel of p,. But wa' = b'v.

Concerning diagram (1.3), we must assume

AxioM 2.3. Intersection of normal subobjects is normal. If in (1.3),
v:A — B is normal monic, then so are bpg., and w.

A sequence A —> B 25 Cis split if a = ker b and if there is a splitting morphism
§:C — B such that sb = 1o. For brevity, we denote Hom¢ (X, Y) simply by

b
(X, Y). If 42> B> Cisasplit sequence and U arbitrary, then there is a natural
set map $

B, U)—~(4,U) x (C,U)
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defined by u 1— (ua, us).
Axiom 3. If 4 — B — Cis split then the natural set map

(B, U)— (4, U) x (C, U)is 1-1.

b
It follows that the split sequence 4 —» B > C is an extension and that b =

coker a. For if we have B—> U with ua = 0 then the images of u and usb in
(4, U) x (C, U) are identical, namely (0, us). Therefore u = usb.

The morphism 14 v 0: 4 — A4 x C will be denoted simply i,,; similarly we set
0v lg =ic. The sequence 4 4> 4 x C 2> C trivially has kernel iy and is
split by i, hence is an extension. (Note that if 4 and C have a coproduct 4 « C
then Axiom 3 implies that the natural morphism 4 * C — 4 x C is an epic.)

A morphism of extensions (of B by A) is a commutative diagram:

A—> X—> B
(1.4)

A Y B

Applying the 3 x 3 lemma to the diagram obtained by prefixing a row of zeros to
(1.4), one concludes that 0 > X — Y is an extension and hence, since 0 > X
already has one cokernel, namely Iy, that X — Y is an isomorphism. The
relation of having a morphism between two extensions is therefore an equivalence.
As part of the foundational axioms, we assume:

AxioM 4.1. There is a representative set under this equivalence relation for the
extensions of B by A.

Loosely, the equivalence classes of extensions of B by A form a set. It is usual
to define two monics X — 4 and Y — 4 to be equivalent if there is an iso-
morphism X — Y making the diagram

X—— Y

A
commute. We require:

AxioM 4.2. The equivalence classes of monics X — A form a set, and dually,
the equivalence classes of epics 4 — X form a set. (These are the “subobjects”
and “quotient objects” of A4, respectively.)

Here are some elementary consequences of the axioms: Suppose we have
morphisms #:U — A and v: ¥V — 4. Then we also have u X v:U x V-4 x A
and A:4 — A x A where A denotes the diagonal morphism i, v i,. It is then
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trivial from the definition of the fibered product that there is a canonical iso-
morphism U X 4 V — (U X V) X 4,4 A. It is even more trivial that if we have a
commuting diagram

A——V

U——B

where 4 — U is monic, then 4 — U X z ¥ is also monic.

LemMa 1.1. If A'—>A—> A" and B'—~ B— B" are extensions, then so is
A XB —>AXB—>A"XxB.

Proor. Apply the 3 X 3 lemma to the diagram whose first and last rows are
the two given extensions and whose middle rowis 4" X B'—~A4 x B—>A" x B". ||
The following is fundamental.

LemMMA 1.2.  Suppose that we have a morphism of the form K X L — A such
that the composite morphisms
KEH>KxL—>4
and
L™K x L—4
are both normal monics. Suppose further that the fibered product of K— A and
L — A is zero. Then there is a commutative diagram

k

(1.5) L——>4 > B
4

L > D

in which the rows and columns are all extensions; K X L — A is then the kernel of
the composite morphism A — B — D, and in particular, K X L — A is a normal
monic.

ProOF. Let A — B be a cokernel of L > 4 and A — C be a cokernel of
K — A. Then the composite morphisms K — 4 — Band L — A — C are normal
by Axiom 2.3. The first two rows and columns of diagram (1.5) can then be filled
in to be exact, after which the lower right corner can be added, as remarked after
Axiom 1.1.
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Now pull back the extension L — A — B by the morphism K — B, getting a
commutative diagram

L——AXxgK——K

L— A ———> B

in which the rows are extensions and the vertical morphisms are normal monics.
The upper row is split by the morphism k v 1;.:K—> A4 X g K. Letting A — D be
the composite morphism 4 — B — D, we have a commutative diagram

L——> A Xy K——>K

L— 4 —>8B

| ,

in which all rows and the two outer columns are extensions and the center column
is a zero sequence. It, too, is therefore an extension. It is sufficient, therefore, to
show that there is an isomorphism j:K X L — A4 X K such that the composite

KX L >A4xpK"> 4 is our original morphism i:K x L—> A. Define
J KX L—>AxpKtobe (kv lx) x (Iv0). Thatp, jisidentical with / follows
immediately from Axiom 3. To see that j is an isomorphism, observe that we have
a morphism of extensions:

L———> KXL ——K
)
L— > AxzK——K

As remarked earlier, the 3 x 3 lemma then implies that j is an isomorphism. |

The class of Moore categories includes the categories of sheaves of (1)
associative algebras (2) Lie algebras (3) commutative associative algebras, and
(4) groups over a fixed topological space X, which may, of course, be a point. It
includes also the category of topological groups, where a morphism f:G — H is a
continuous group morphism such that the relative topology of fG in H is the same
as the topology induced from G.

If Cis a Moore category and D a subcategory which contains kernels, cokernels,
and fibered products (in C) of D-morphisms 4 — B, C — B, then D is trivially
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again a Moore category. This yields many more examples, e.g. sheaves of finite
groups, solvable groups, and nilpotent associative algebras, compact topological
groups, and many others.

2. Abelian objects. An abelian object of C is a group in the category, i.e. an
object M such that (7, M) is an abelian group for all objects T of C and T -w»>
(T, M) is a contravariant functor from C to the category of abelian groups. We
shall see that the full subcategory of abelian objects is an additive category with
certain additional properties but is not necessarily abelian. Trivially the zero
element of (T, M) is the zero morphism 7 — M.

Lemma 2.1. If M is abelian and U, V arbitrary, then the canonical set map
(U XV, M)— (U, M) x (V, M) is a bijection.

Proor. It is 1-1 by Axiom 3. If we have u:U— M and v:V — M, then
(u, v) is the image of u* pyy -+ v - pp. |

Observe that there exist natural morphisms —1:M — M (the negative of
1y € (M, M)), add: M x M — M defined by add = p, + p, (the sum of the
projections on the two factors), and /: M X M — M X M, the interchange of
factors. One has add - ¢ = add. All the axioms for an ordinary abelian group
can be expressed in terms of commutative diagrams involving the underlying set of
the group and its products with itself two and three times. Precisely the same
axioms hold here, except that M x M is now the product in the category C.
Conversely, an object M of C endowed with morphisms 0, —1 € (M, M) and
add: M x M — M which formally satisfy the group axioms and the equation
add - t = add is easily seen to be an abelian object. (In particular, if we have
S, g€ (U, M), then f -+ g is the composite Ul M ox M2 M.) It is further
easy to sec that if M, N are abelian, then so is M X N, and (U, M X N) =
(U, M) x (U, N).

When necessary to distinguish, we write add,, for the ‘“addition map”
M X M- M.

LemMA 2.2. If g:M — N is a C-morphism with M, N abelian, then

2.1) addy (g x g) =g-addy:M X M —> M.

Proor. By Axiom 3itis sufficient to show that if both sides of (2.1) are preceded
by i;:M — M X M then the composites are the same, and similarly for i,: M —
M x M. All these composites are just g.

The lemma says that any C-morphism g: M — N preserves addition, hence is
a “categorical group morphism”.

COROLLARY. If M and N are abelian and U arbitrary, then the canonical
composition map
(M, N) x (U, M)~ (U, N)

given by (g, ) gf is biadditive.
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Proor. Additivity as a function of g is part of the “functoriality” in the
definition of a group object, additivity as a function of f follows from the
preceding. |

Lemma 2.3.  If M is abelian then

MY M M2 M

is an extension.

PrOOF. Define m:M x M —M x M by m = p, X add; this is an auto-
morphism, for m™1 = p; X (1 v —1). The following diagram commutes:

M——)MXM———)M

M—" s MxM-—2 >M

The bottom row is an extension, hence so is the top. ]

An object M is a monoid in the category C if (U, M) is an additive monoid
(i.e. has a commutative, associative addition with zero element) which is contra-
variant as a functor of U. It is trivial to verify that all the results of this section
which are meaningful for monoids are in fact true for them.

LEMMA 2.4. Let U —> M —2> V be an extension with M a monoid. Then U and
V are monoids.

Proor. The composite morphism
Ux U M x M2 m sy

is zero, using Axiom 3. Therefore, we can fill in the dotted arrows uniquely to make
the following diagram commute:

Ux U2 s Mx M2 s yxv

1 |
addy | add 3 { addp
(
Voo L
u — M — VvV
The commutativity and associativity of add,, and add,- are easy exercises. ]

THEOREM 2.1.  Suppose that we hare K2» M2 N-2157 where M and N
are abelian and k = ker m, j = coker m. Then K and J are abelian.

Proor. From the preceding it remains only to show that there exists a
morphism —15:K — K such that I + (—1x) = 0, and similarly for J. Since
—1yisan automorphism of N, k also serves as a kernel for —1y -m = m- (—1,)).
In the following diagram, k is therefore the kernel of both rows, so the dotted
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arrow can be filled in uniquely:

K >M ¥ LN
]
—lxi =1y
¥
K >M—_ >N

The existence of —1; follows similarly. Finally,
k(g + (—1g) =k + k- (—1g) =k + (—1y) k=0,

as k is a monic, it follows that 15 + (—1g) = 0, and similarly for —1,. ]

It follows that the class Ab C of abelian objects of C, together with all C-
morphisms between them, is an additive category which in addition satisfies
Abel-1 of MacLane {1, p. 254]. Further, in the analysis (cf. (1.1)) of a morphism
M — N with M, N abelian, namely

(2.2) Ko>M—>I>I'>N—>J
all objects are abelian.
THEOREM 2.2. In the analysis (2.2), I — I' is a monic.

Proor. It is sufficient, since Ab C is additive, to prove that if a composite
morphism T — I — I"is 0 then T— I'is 0. In the diagram

Mx; T——T

K—s M — 71— 7T

the morphism M — I is a normal epic, hence, by Axiom 2.2,s0is M x; T—T.
It is therefore sufficient to show that the composite M X ;T —>T—1=
M x; T— M —1Iis zero. But composing the former with / — I’ gives 0 and
K — M is the kernel of both M — N and M — I, hence of M — I — I, so the
morphism M X ; T— M can be factored through K. Therefore M X, T— M
— I 'is indeed zero. |

It follows that every morphism M — N of abelian objects has a factorization
(normal epic) - (monic), and therefore Ab C satisfies also Abel-2, of MacLane. Of
the axioms for an abelian category, only Abel-2 (all monics and epics are normal)
fails. As an example, let C be the category whose objects are topological groups
in which, as in §1, f:G — H is a morphism if it is continuous, a group morphism,
and if the canonical map G/ker f — fG is an isomorphism of topological groups.
This category satisfies the axioms and Ab C is the full subcategory of abelian
groups. The inclusion of an abelian group into its completion is both monic and
epic, but not normal.
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3. Structures and Modules. An A-structure on an object C is a split extension
C — B — A, together with a definite choice of splitting morphism s:4 — C. We
identify the A structures defined by this split sequence and another C — B’ 2 A4
if there is a commutative diagram:

C——>B —>4

C——B——>A4

By abuse of language we may speak of “the A-structure C” when all else is under-
stood. To reduce the number of symbols, a split sequence may be denoted by some
notation as C — CA > A to suggest that CA is a semidirect product of C and A.
If C and D are A-structures, then an “A-structure morphism ¢:C— D is a
commutative diagram: .

C — CA — A

D DA > A
With these definitions, A-structures form a pointed category whose zero element
is0—A=A.

THEOREM 3.1.  Kernels and cokernels exist in the category of A-structures.
Specifically, if C — D is a morphism of A-structures, then there is a commutative
diagram

K > KA —> A

-~

J——> JA — A4

in which all rows are split extensions and K— C, D — J are kernel and cokernel
respectively, of C — D.

Proor. There are given, in particular, morphisms CA — DA and 4 — D4,
the latter being the splitting morphism. Set KA = CA X, A. InK— CA x4
— A the fact that the first morphism is the kernel of the second follows by
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diagram chasing. The sequence is split by s v 14, where s is the splitting morphism
A — CA, hence is an extension. It is easy to verify that this is the kernel of the
given A-structure morphism., Now factor the morphism CA — DA into
CA —1I—1I'—- DA where CA — I is a normal epic and I’ — DA a normal monic.
Then we have a diagram:

C > CA A
Y 4

D Xp,l I > A
v v

D Xpal' I > A
D ——>DA——4

It is easy to check that in each of the middle rows the first morphism is a kernel of
the second. The sequences split, the splitting morphism of the second now being,
for example, the composite morphism 4 — CA — I. Since CA — I and I’ — DA
are normal, it follows that the left column of the diagram is actually the canonical
factorization of C — D.

Finally, by virtue of the preceding, to exhibit cokernels it is sufficient to show
that the bottom A-structure morphism in the diagram has a cokernel. But by
Axiom 2.3, the composite morphism D Xp,I'— D — DA has a cokernel;
denote it by DA —JA. ThenJ —JA — A is the desired sequence. ]

Note that if we have A-structures C and D and a morphism C — D which can
be extended to an A-structure morphism (i.e. to a commutative diagram) then by
Axiom 3 that extension is unique. Therefore the set (C, D), of A-structure
morphisms from C to D is a subset of (C, D). We may therefore, by abuse of
language, speak of an “A-structure morphism C — D’ and the analysis of this
morphism may also, without ambiguity, be viewed as belonging to 4. If we have
A-structure morphisms C — B and D — B then it is easy to check that their
fibered product is C X D — CA X, DA — A, which is split by s v s" where
s:A— CA and s’: 4 — DA are the respective splitting maps. Verification that the
category of A-structures and morphisms satisfies the remainder of the Moore
category axioms is tedious but essentially trivial.

An A-module is an A-structure M — MA 2 A in which M is abelian. This is
the same thing as an abelian object in the Moore category of A-structures, so all
the results of §2 apply. An A-structure morphism M — N between abelian
objects will be called briefly an A-morphism.
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4. Singular extensions; the Baer theory. An extension M Lt>B>4dis
singular if M is abelian. If we form the extension M X M =B X B— A X A
and pull back by the diagonal morphism A:4 — 4 X A, then since (B X B) X 44
= B x B, we obtain an extension of the form M X M — B X, B— A.
Together with the original extension this gives a commutative diagram

M EE— B — > A
AM AE
MXM———>BXxX,B—— A4

where Ap = 15 v 1. Now Ay, is a normal monic so it follows from Axiom 1.2
that the composite monic M - M X M — B X B is normal; we denote this
also by A. We can therefore form a commutative diagram

1v—1 A
Y iz—i
MxXM——

add %

¥
M — U ——A4

where —i = i+ (—1,;), U is the cokernel of A, and where all three columns and
the first two rows are extensions. Since the last row is a zero sequence, it follows
that it, too, is an extension. This extension splits. For the composite morphism

Ap U
M—>B—->BX,B—U

is zero, which permits the composite morphism B — U in the foregoing to be
factored through 4. Writing U = M A, to the singular extension M — B — A4 we
have thus associated, as usual, an A-module structure on M. If an A-module
structure on M is understood in advance, then we say that M — B— 4 is an
extension of A by the A-module M if the module structure just obtained is the same
as that given in advance.

The Baer Theory asserts that if an A-module structure M — MA 2 A is given,
then the equivalence classes of extensions of 4 by the module M form a group, the
zero element of which is the class of the given split extension M — M4 2 4.

Addition of classes having representatives M ~“s>B—>Adand M > C—> 4,
respectively, is defined by filling in the dotted parts of the diagram
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1v-1 iv—j

M -——-> U -—->4

and taking the class of the bottom row, assuming, of course, that it is an extension.
To be able to do this, it is necessary and sufficient to know that i v —j is a normal
monic; one then takes u to be a cokernel of i v —j. The negative of the class of

M > B—> A will then be the class of M ~*» B—» A. There are a number
of tedious but essentially trivial things which must be verified, the proofs of all of
which depend on the same basic principles. Most important of these is the fact
that if we have three extensions Eg:M —> B—» C, Eo:M —> C —> A and
ED:ML> D—> AdAand if Egz + Eq, E; + Ej are defined, then

4.1) (Eg + E¢) + Ep = Eg + (E¢ + Ep)

in the sense that both sides are defined and are equal, at least up to equivalence
class. We confine ourselves to a sketch of the proof of this one fact.

Denote (B X C X D) X 4 (4 X A X A)by B X 4 C X4 D; this is the inverse
limit of the diagram consisting of the three morphisms B — 4, C — Aand D — A.
Then we have an extension

MxXMXM—>BXx,Cx,4D—A.

The kernel, f, of the addition map
prtpetp)MXMXM->M
is isomorphic to M X M in such a way that the composite

Mi—‘>M><ML>M><M><M—+B><AC><AD

isiv —j v 0, and such that replacing i, by i,, one has 0 v j v —k. Now, denote
an extension in the class of Eg + E; by M — (BC) — A, and similarly for (CD).
By the hypothesis that Ez + E exists we know thativ —jandj v —k are normal,
Therefore, by Lemma 1.2, we have a commutative diagram of extensions:

Oviv—k
M2 s Bx,Cx,D—»(BC) X4 D
M——> Bx,(CD) ——> (BCD)
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Here (BCD) is for the moment an object determined by the diagram but it is easy
to see that (4.1) is equivalent to the commutativity of the lower right corner of the
diagram and that (BCD) appears in Ez + E¢ + E: M — (BCD) — A.

At this point the remaining verifications necessary to show that we actually
have a group of extension classes follow standard lines.

It is trivial to observe that we can define the derivations of 4 into an 4-module
M. These are the automorphisms of the split extension M — MA — 4, ie. the
morphisms MA — MA such that the following diagram commutes:

M > MA — A

M-—>MA— A4

The description of the next higher cohomology group after the Baer group is
deferred to another paper.
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On the (co-) homology of commutative rings

Daniel QuillenV)

This paper is devoted to a summary of the main results of a (co-) homology
theory of commutative rings due independently to André [1] and the author [19].
The theory has reached a degree of completeness that there is little doubt that it is
the correct cohomology theory for commutative rings. It is perhaps worthwhile
to relate this theory to definitions made by other authors.

For any morphism 4 — B of commutative rings and B-module M, let
Der, (B, M) be the B-module of A4-algebra derivations of B with values in M,
and let Exalcomm (B, M) be the B-module of infinitesimal 4-algebra extensions
of B by M ([11, Chapter IV]). It is known that the functors Der and Exalcomm
possess the following two properties:

0.1.  (Transitivity). Given morphisms 4 — B — C of commutative rings and
a C-module M there is a six-term exact sequence

0 — Derg (C, M) — Der, (C, M) — Der, (B, M)
— Exalcommpg (C, M) — Exalcomm  (C, M) — Exalcomm, (B, M).

0.2. (Flat base change). Given morphisms A — B, A — A’ of commutative

rings and an A" ® 4, B module M, there are isomorphisms
Dery (4" ®4 B, M)~ Der, (B, M)
Exalcomm,, (4" ® 4 B, M) ~ Exalcomm (B, M) if Tord (4’, B) = 0.

The cohomology theory to be presented here associates to each morphism 4 — B
of commutative rings and B-module M cohomology B-modules D?(B/A, M) for
each integer ¢ > 0, coinciding with Der 4 (B, M) and Exalcom (B, M) forq = 0
and 1 respectively, and extending in the obvious way the properties 0.1-0.2.

In [13] Harrison gave a definition of commutative ring cohomology using a
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subcomplex of the Hochschild complex for computing associative algebra co-
homology. Harrison restricted himself to the case where the ground ring 4 is a
field; his definition does not extend to a general morphism 4 -— B since one needs
at least that B be projective as an A-module in order that Harrison’s H? coincide
with Exalcomm (B, M). However, it can be shown (§9 below) that Harrison’s
complex may be used to compute the correct cohomology D*(B/A, M) when B
is projective as an A-module and when B is of characteristic 0, that is, an algebra
over the rational numbers.

In [16], Lichtenbaum and Schlessinger define a satisfactory cohomology theory
in dimensions g < 2 in the sense that their cohomology extends the exact sequence of
0.1 to nine terms. Their method uses a free differential graded anticommutative A4-
algebra resolution of B. It may be shown that their cohomology group T%B/A, M)
coincides with our DY(B/4, M) for ¢ < 2 and that free differential graded anti-
commutative A-algebra resolutions of B may be used to compute D*(B/4, M)
when B is of characteristic zero (§9).

In [21] it is shown how the transitivity and flat base change properties of the
Lichtenbaum-Schlessinger 79(B/4, M) for g < 2 (hence also of our D?(B/A, M))
yield a satisfactory deformation theory for commutative algebras. Moreover the
Lichtenbaum-Schlessinger cohomology is known to be the same as the theory of
Gerstenhaber [8] specialized to commutative rings.

The cohomology groups D*(B/A, M) are defined as suitable nonabelian
derived functors of the functor X+ Der, (X, M) on the category of A-algebras
over B, where the derived functors are defined by applying the functor dimension-
wise to a free (semi-) simplicial 4-algebra resolution of B and taking the cohomology
of the associated cosimplicial B-module. A particular example of such a resolution
is furnished by the standard construction associated to the (sets)—(A-algebras)
cotriple. Thus the cohomology D*(B/4, M) is a kind of cotriple cohomology
[5], however, from the cotriple point of view one loses sight of the possibility of
choosing a resolution for computing the derived functors with special properties,
a technique vital for proving the transitivity and flat base change properties of
the commutative ring cohomology.

1. Derived functors. In a category closed under finite limits and having
enough projective objects, it is possible to define left derived functors of any
functor from the category to an abelian category generalizing those of Dold-
Puppe [7]. We give the construction of these derived functors in this section.

An object P of a category % is said to be projective if for any effective epimorph-
ism p: X — Y, Hom (P, p):Hom (P, X) — Hom (P, Y) is surjective. ¥ is said to
have enough projective objects if for every object X there is an effective epimorphism
P — X with P projective. When ¥ is closed under finite projective limits and has
enough projective objects, then the effective epimorphisms are the maps p for which
Hom (P, p) is surjective for all projective objects P [18, II, §4, Proposition 2]; in
particular the effective epimorphisms are universally effective.

Let s% be the category of (semi-) simplicial objects over €. We always identify
an object X of € with the constant simplicial object whose simplicial operators are
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all equal to the identity morphism of X. For X, Y € Obs%, let Hom (X, Y) be
the “function complex’ simplicial set of morphisms from X to Y; a homotopy
from a morphism f: X — Y to g is thus an element 4 of Hom (X, Y), withdih = f
and dyh = g. Assuming € is closed under finite limits, it is possible to define
[18, 11, §1, Proposition 2] for each object X of s and simplicial set X having only
finitely many nondegenerate simplices generalized “cylinder’ and ““function-space”
objects Xx and XX satisfying the formulas

(1.1) Hom (Xg, Y) = Hom_,,, (K, Hom (X, Y)) = Hom (X, YX).

In particular if 7 is the standard 1-simplex, there are canonical mapsdyX, dX: X7 — X
such that to give a simplicial homotopy joining f: ¥ — X to g is the same as giving
amap h: Y — X7 such that dih = fand dyh = g. Also there is a canonical map s,:
X — X7 representing the constant homotopy from idg to itself.

We say that a morphism i: 4 — B in ¥ has the left lifting property (LLP) with
respect to a morphism p: X — Y, or that p has the right lifting property (RLP) with
respect to I, if the dotted arrow exists in any commutative square of solid arrows

A—> > X
(1.2) i /’ ?

A morphism of simplicial sets will be called an acyclic fibration (“acyclic”” is much
preferable to the term “trivial”” used in [18]) if it has the RLP with respect to any
monomorphism of simplicial sets, or equivalently if it is a Kan fibration which is
surjective and whose fibers are contractible. A morphism of simplicial objects over
a category & will be called an acyclic fibration if for any projective object P, the
induced morphism Hom (P, X) — Hom (P, Y)is an acyclic fibration of simplicial
sets. Finally we call a morphism in s a cofibration if it has the LLP with respect
to all acyclic fibrations.

PROPOSITION 1.3.  Assume ¥ is closed under finite projective limits and let
i: A— B be a cofibration and p:X — Y an acyclic fibration in s€. Then given a
commutative square 1.2 any two choices for the dotted arrow are homotopic under A
and over B. More generally given homotopies %:A — X', : B — Y compatible with
iandp (i.e. p'a = Bi), and given dotted arrows 0, 0: B — X with 0i = d\&, 0'i = da,
pb = d,f, po = dof, there is a homotopy 6:B — X7 joining 0 to &' compatible
with & and B (i.e. 0i = & and p'6 = B).

§ is obtained as the dotted arrow in the square
A —= > X!
i @X.ad, o)

B— sxlx

1
(0,0, ‘YI)( Y
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where X! = X x X. To see that (d¥, dX, p’) is an acyclic fibration one applies
the functor Hom (2, ?), P a projective object of €; using 1.1 one is reduced to the
case of simplicial sets which may then be handled by means of the formula Ly =
L x K.

PROPOSITION 1.4. Let € be a category closed under finite limits and having
sufficiently many projective objects. Then any morphism f of s€ may be factored
S = pi where i is cofibrant and p is an acyclic fibration.

This factorization is constructed by a simplicial analogue of the familiar process
in algebraic topology of killing homotopy groups by attaching cells. For details
see [18, 11, §4, Proposition 3]. By standard arguments using 1.3, the factorization
is unique up to homotopy equivalence, and up to homotopy depends functorially
on the morphism f.

Suppose now that € satisfies the hypotheses of 1.4. If X is an object of €,
we may define a simplicial resolution of X to be an acyclic fibration Q — X. A
simplicial object P will be called cofibrant if the map ¢ — P is a cofibration where ¢
is the initial object of €. (The term “projective’ instead of cofibrant is perhaps
more in keeping with tradition except that a cofibrant P need not be projective
in the category s%.) By 1.3 and 1.4 cofibrant resolutions of X exist, are unique up
to homotopy equivalence, and up to homotopy depend functorially on X. There-
fore if F:€ — o7 is a functor, where & is an abelian category, we may define left
derived functors by (L,F)(X) = H,F(P), where as usual the homology of a simplic-
ial object in an abelian category is the homology of the associated chain complex
with d = Z(—1)%,, or of the normalized subcomplex.

If € is an abelian category with enough projectives, then by [7] the normaliza-
tion N:s% — Ch (%) is an equivalence of s€ with the category of chain complexes
of €. One may show (see [18, II, §3, Proposition 3]) that a map /-X — Y in s%
is an acyclic fibration iff Nfis surjective inducing isomorphisms on homology, and
that f'is a cofibration iff Nfis injective with cokernel having projective objects of €
in each dimenson. Therefore a cofibrant resolution of X in the sense described above
is the same as a projective resolution of X in the usual sense, so the derived
functors just defined coincide with those of Dold-Puppe [7].

2. Homology and cohomology for universal algebras. Let X be an object in a
category % closed under finite projective limits and having sufficiently many pro-
jective objects. Let M be an abelian group object of the category €/X of objects
over X and let P be a cofibrant simplicial resolution of X as in §1. We define the
cohomology groups of X with values in M by the formula

2.1 DY(X, M) = H'{Homy, x (P, M)},

where H¢denotes the homology of a cosimplicial abelian group with respect to the
differential 6 = X (—1)!,. By 1.3 the cohomology is independent of the choice of
P and depends functorially on the pair (X, M), where a morphism (X, M)—
(X', M')is a pair consisting of a morphism X' — X in % and a morphism X’ X M
— M’ of abelian group objects over X",
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Suppose now that € is an algebraic category by which we mean a category
closed under inductive limits and having a set of small projective generators. For
example if € has a single small projective generator, % is equivalent to the category
of universal algebras defined by a set of operations and relations [15]. Then it
may be shown that for any object X of €, the category (¢/X),, of abelian group
objects over X is an abelian algebraic category and that moreover the abelianiza-
tion functor Ab:€/X — (€/X)y, left adjoint to the forgetful functor, exists. Choos-
ing a simplicial cofibrant resolution P of X, we define a simplicial object of (€/X),,
by the formula

2.2) LAb(X) = Ab(P).

LAb (X) depends up to homotopy equivalence only on X and therefore gives rise
via the normalization functor to an object of the derived category of (¥/X),,.
LAb (X) should be thought of as being analogous to the complex of chains of a
space X since one may calculate the cohomology of X with values in M by the
formula

(2.3) D'(X, M) = H'{Hom,, (LAb (X), M)}.

We define the gth homology object of X to be D (X) = H {LAb (X)}.
The following proposition summarizes the properties of homology and co-
homology in this general setting.

ProPosITION 2.4. (i) D*(X, M) is a cohomological functor of the object M of
(%/X)ab'

(ii) There is a universal coefficient spectral sequence
E3? = Extly, v, (D(X), M) = D** (X, M).

(iii) If X is a projective object of €, then Dy(X) = DX, M) =0forallq > 0
and abelian group objects M over X.

(iv) D°(X, M) = Homg, (X, M), D (X, M) = isomorphism classes of objects
Y over X which are torsors for M, i.e. endowed with a right action Y X x M — Y
of M such that there exists an effective epimorphism Z — X such that Z X x Y is
isomorphic to Z X x M with its natural right Z X x M action.

) If X;, i € I is a filtered inductive system of objects of €, then lim D (X;) ~

—

D,(lim X,).
—_—

If P;, i € Iis a set of small projective generators for €, then one obtains a sim-
plicial cofibrant resolution of any object of € by taking the standard construction
relative to the functor X — [ [; Homy (P;, X) from % to Sets/I and its left adjoint.
Thus the cohomology groups (2.1) are a kind of cotriple cohomology [5] and they
coincide with the ones defined by André [1] using the set of P; for models.

The cohomology groups DY(X, M) are also a special case of a very general
definition of cohomology due to Grothendieck [26] as follows. The class of effec-
tive epimorphisms of % is stable under composition and base change and thus we
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obtain a pretopology in € by defining a covering of X to be a family consisting of a
single effective epimorphism ¥ — X. Representable functors are sheaves for the
associated topology, so if M is an abelian group object over X, the functor h,; =
Homg, 4 (?, M) is a sheaf on €/X with the induced topology and sheaf cohomology
groups HY%|X, hy,) are defined. A proof that D¥(X, M)~ H¥%|X, hy,) is given
in [18, I1, §5]; alternativelyit follows from a general result of Verdier on the calcula-
tion of sheaf cohomology by a modified Cech procedure [26, Appendix]. The
advantage of the Grothendieck definition is that it applies even when there are not
enough projectives in €, e.g. categories of sheaves of algebras, provided the effec-
tive epimorphisms are closed under base change. When this last condition fails
one may still consider other topologies e.g. (see [12, Exposé 1V, 3.4]).

3. Associative algebra cohomology. Let 4 be a commutative ring with identity
and let ¥ = A-Ass be the category of associative not necessarily commutative
A-algebras with identity. In this section we will compute the cohomology of an
object B of € in terms of Ext functors.

Let M be a B-bimodule, i.c. a left B (9, B*module where B® is the opposed
algebra to B, and let B ® M denote the semidirect product A-algebra with multi-
plication (b; ® m)(b, @ my,) = bb, © (bym, + myb,). Then if C is an A-algebra
over B we have canonical isomorphisms

Homg,;, (C, B® M) = Der, (C, M)
3.1 = Homgg 00 (D40 M)
=~ Homyg 50 (B ®4 B°) Qe 0 Pojas M)

where Der, (C, M) is the abelian group of derivations of the A-algebra C with
values in M regarded as a C-bimodule via the structural map C — B of C, and
where D, is the C-bimodule of differentials of the 4-algebra C. There is a canoni-
cal A-algebra derivation d:C — D, which is universal for all derivations; one
may prove that there is an exact sequence of C-bimodules

(3.2) 0—> Doy —>CRC°L>C—>0

where p(x ® y) =xyandid(x) =1@x —x® 1.

As C— Der, (C, M) is a functor from €/B to abelian groups, it follows from
3.1 that B ® M is naturally an abelian group object of €/B. Conversely one shows
easily that any abelian group object (more generally any monoid object) X of
% /B is isomorphic to B ® M with M = kernel of structural map X — B. Moreover
in this way one obtains an equivalence of (¢/B),, with the category of B-bimodules.
Identifying these categories, 3.1 shows that the abelianization functor Ab:%/B —

(¢/B),y is given by C— (B @ 4 B°) ® 0,0 Dy y» hence
(3.3) DY g (B, M) = HY{Homp g 1o (D, ,, M)}
(3.9 LAb (B) =~ (B ® 4 B%) ®pe,ry Dpr

where P is a simplicial projective 4-algebra resolution of B.
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In order to put 3.3 in a more agreeable form, one shows that the right-hand side
(since Dp,, is a free P-bimodule) is isomorphic to the group Exty g, po “(Dp 4 M)
of morphisms from Dp 4 to the gth suspension XM of M in the homotopy
category of simplicial P ® , P°-modules [18, T1, §6]. From the exact sequence 3.2,
with C replaced by P, one obtains a long exact sequence yielding isomorphisms

(3.5) DY p(B, M)~ Extp,p o '(B, M) ifg>0.

Since P — B induces isomorphisms on homology the right-hand side is isomorphic
to Ext,g po (B, M). Now the homotopy category Ho (.#%) of simplicial
modules over a simplicial ring R depends only on the weak homotopy type of R
in the sense that if R — R’ is a map of simplicial rings inducing isomorphisms on
homology, then the adjoint functors of extension and restriction of scalars induce
an equivalence of Ho (.#3) and Ho (#x.). Consequently Extpg po* (B, M)~
Ext, g po* (B, M), where B & 4 B° denotes any simplicial ring of the same weak
homotopy type over B ® 4 B® as P ® 4 P°. In particular if Tor? (B, B) = 0 for
q > 0, then we maytake B (>I§A B°tobe B @4 B, whence the category Ho (A ;5 , o)
is by Dold-Puppe just the full subcategory of the derived category of B-bimodules
consisting of chain complexes, and hence Ext;, g 0*(B, M) is isomorphic to the
usual Ext, o *(B, M) of homological algebra. Thus combining 3.5 and 2.4 (iv),
we have

PROPOSITION 3.6. If B is an associative A-algebra and M is a B-bimodule, then
D% ss(B, M) =~ Der 4 (B, M) ifq=0,
=~ Extgg po®(B, M) ifq >0,
where we may take B é)ABgB ® 4 B if Tord (B, B) = 0 for ¢ > 0.

Therefore if A4 is a field the associative algebra cohomology D%, is with minor
alterations the same as the Hochschild cohomology. This result should be com-
pared with Barr [3], which indicates that the groups ExthABo*(B, M) may be
calculated by the differential graded algebra constructed by Shukla [23].

By essentially the same method used to prove 3-6 one may prove the following,
where A-Lie is the category of Lie algebras over A, and where one identifies
(4-Lie/3),, with the category of J-modules.

ProposITION 3.7, If'3 is a Lie algebra over A and M is a J-module, then
Dgl-Lie(«oS’ M) = DerA (39 M) I,fq = 0’
= Ext%, (4, M) ifqg>0,

where P is a simplicial cofibrant A-Lie algebra resolution of 3 and where U is the
universal enveloping algebra functor. Furthermore if 3 is flat as an A-module, then
U(P) may be replaced by U(3J).

4. Cohomology of commutative rings, the relative cotangent complex. For the
rest of this paper all rings shall be understood to be commutative with unit. Let
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A be a ring, let € be the category of A-algebras and let B be an A-algebra. If M
is a B-module let B @ M be the trivial 4-algebra extension of B by M given by the
formulas (b, ® my)(by, ® my) = b1b, ® (bym, + bymy), a(b ® m) = ab @ am. Then
there are canonical isomorphisms

(4.1)  Homy,3(C, B® M) = Der, (C, M)= Homp (B Q¢ QC/A, M)

where Der, (C, M) is the B-module of derivations of the A-algebra C with values
in M, and where Q¢4 = JJ*,J = Ker {C ® 4 C— C}, is the C-module of Kahler
differentials of the 4-algebra C. The first formula shows that B ® M is an abelian
group object of €/B, in fact a B-module object. One shows easily that the functor
M B® M is an equivalence of the category of B-modules with (€/B),.
Identifying these two categories, the second part of 4.1 shows that the abelianiza-
tion functor Ab:€/B -~ (€/B),, is given by € B ® 4 Qg 4-

In accordance with §2 the cohomology of the A-algebra B with values in the
B-module M is given by

(4.2) DYBJA, M) = H*{Der, (P, M)}

where P is a simplicial cofibrant 4-algebra resolution of B and where the expression
on the right is the cohomology of the cosimplicial B-module &k — Der ; (P, M).
D*(BjA, M) is a cohomological functor of M and in low dimensions is, after
interpreting 2.4(iv) given with the notation of the introduction by

D°(B/A, M) = Der, (B, M)
DY(B|A, M) = Exalcomm, (B, M).

The homology B-modules D,(B/A) of §2 are defined to be the homology of the
simplicial B-module

(4.4) LAb (B) =B ®pQ

(4.3)

rla’

We shall denote this simplical B-module by Ly, in the following and call it the
cotangent complex of the A-algebra B or of Brelativeto 4. Itisa cofibrantsimplicial
B-module, whose normalization is a chain complex of projective B-modules inde-
pendent up to homotopy equivalence of the choice of P, and which therefore repre-
sents an object unique up to isomorphism of the derived category of the category of
B-modules. Combining 4.1 and 4.2 we have

(4.5) DU(B[A, M) = H*{Homy (Lg .4, M)}

Using the tensor product operation on B-modules, it is possible to introduce the
homology of the A-algebra B with values in M

(4.6) D,(B/A, M) = H,(Ly 4 @, M)

related to the homology D (BfA) = D,(B/A, B) by a universal coefficient spectral
sequence

4.7 E%, = Tor? (D(B/A), M)= D, (B[4, M).
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However, one sees from 4.5 and 4.6 that the cotangent complex is a finer invariant
than either the cohomology or homology functors, and is therefore the basic
object of study. This point of view is due to Grothendieck [9].

Suppose now that

A —8B
(4.8)

A —>F
is a commutative square of rings and that P (resp. P’) is a cofibrant simplicial 4-
(resp. A’-) algebra resolution of B (resp. B’). By 1.3 there is a morphism P — P’
of simplicial 4-algebras over B’ unique up to homotopy, hence a morphism of B’
modules B’ ®py (B Qp QP,A) — B Qp Q Thus there is a morphism of
simplicial B’-modules
(4.9) B' ®pLpq— Ly

unique up to homotopy associated to 4.8 and consequently for any B’-module M’
restriction homomorphisms

DY(B'|A', M)~ DY(BJA, M")
D,(BjA, M')y— D(B'|A’, M’).
If {4,— B;, i€} is a filtered inductive system of morphisms of rings, then for
each /let P; be the cofibrant 4,-algebra resolution of B; obtained using the standard
construction associated to the pair of adjoint functors: ‘“‘underlying set of an

A-algebra’ and “free 4-algebra generated by the set.”” Using these resolutions to
calculate the cotangent complex, one obtains the formulas

Pla-

(4.10)

Liim Bpima, = limLg 4,

(4.11)
D,(lim B,lim 4,, lim M,) = lim D,(B,/4,, M,)

where i — M, is a module for the functor / i B;.

By analyzing the construction of a cofibrant A4-algebra resolution P of B, one
sees that if 4 is noetherian and B is an A-algebra of finite type, then P may be
chosen so that P, is a polynomial ring with finitely many variables for each k > 0.
Using this P to calculate the cotangent complex one obtains

PROPOSITION 4.12.  If A is noetherian and B is an A-algebra of finite type, then
Ly, 4 is isomorphic in the derived category of B-modules to a complex which is a free
finite type B-module in each dimension. Consequently if M is a B-module of finite
type, then for each q, D'(B/A, M) and D (B|A, M) are B-modules of finite type.

5. The transitivity, flat base change, and vanishing theorems. In this section we
give the basic properties of the cohomology of commutative rings signaled in the
introduction. These will be stated also as properties of the relative cotangent com-
plex Lg, 4, which is identified via the normalization functor with an object of the



74 DANIEL QUILLEN

derived category of B-modules. We recall that the derived category [25] is endowed
with a “suspension’ or “translation’ functor, here denoted by X, and that any
exact sequence of complexes gives, via an analogue of the Puppe sequence con-
struction in algebraic topology, a “distinguished triangle” in the derived category.

THEOREM 5.1.  (Transitivity) If A— B — C are morphisms of rings, then there
is a canonical distinguished triangle in the derived category of C-modules

E
C ®pLps—> Loy —> Lop—> Z{C ®pLg.}

Consequently if M is a C-module, there are exact sequences

0 —> DYC/B, M) —> D*(C|A, M) —> D(B/A, M) —> D'(C/B, M) —> - - .

The proof uses in an essential way the possibility of calculating the cotangent
complex using any cofibrant resolution. Thus let P be a cofibrant simplicial A4-
algebra resolution of B and let Q be a cofibrant simplicial P-algebra resolution of C,
i.e. P— Q — C s a factorization into a cofibration followed by an acyclic fibration
of the composition P — B — C. Then we have a diagram of simplicial rings

Q

|

0Q®pB

A

and an exact sequence of C-modules
0> C®p(BRpQp) > C Qs C Roo,526e.88>0

The first and second term may be identified with C ®p Lg, 4 and L, 4 respec-
tively, the distinguished triangle associated to this exact sequence is the desired
one in 5.1 once we identify the last term with L, g. For this it suffices to show that
Q ®p B is a simplicial cofibrant B-algebra resolution of C. B—~Q ®@p B is a
cofibration since it is the base change of the cofibration P— Q. To see that
Q ®p B — C induces isomorphisms on homology, it suffices to do the same for
the map Q — Q ® p B, which results by applying the functor Q & ? to the acyclic
fibration P — B. Now the homological properties of the tensor product may be
analyzed in terms of Kiinneth spectral sequences [18, II, 6]

L
(5.2) EZ, = H,{Tor® (X, Y)} = H . (X ®p Y)L
B2, = Tor® (H(X), H(Y)),= H, (X ®g ¥)

where X (resp. Y) is a left (resp. right) simplicial module over a not necessarily
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commutative simplicial ring R. Applying these we get a diagram

H,{Tor? (Q, P) = H,,(Q ®p P) <= Tor!™ (H(Q), H(P)),

H,(Tor? (0, B)} = H,,(Q ©p B) <= Torl!'" (H(Q), H®B)),

As P— Q is a cofibration, Q in each dimension is a retract of a free P-algebra,
hence Q is projective as P-module and the Tor's on the left vanish for ¢ > 0.
Thus the spectral sequences on the left degenerate showing that H,(Q)_~
H,(Q ®p B) and concluding the proof of the theorem.

THEOREM 5.3.  (Flat base change.) If B and C are A-algebras such that Tor(B, C)
= 0 for g > 0, then there are isomorphisms in the derived category of B ® , C-
modules
Lgg,cic=8 ®4 Lea

Lpg,cra= (Lpa @4 C) O (B ®, Lc4)-
Consequently if M is a B &4 C-module, there are isomorphisms
DY(B ®4 C/C, M)~ D*(B|A, M)
DYB ®, C/A, M)~ DY(B/A, M) ® DY(C/A, M).

If P is a cofibrant A4-algebra resolution of B and Q is a cofibrant A-algebra
resolution of C, then using the Kiinneth spectral sequences 5.2 and the fact that P
and Q are projective as A-modules, one sees that B ® 4 Q (resp. P ®,4 Q) is a
cofibrant B-(resp. A-) algebra resolution of B @4 C. Using these resolutions one
obtains the formulas of the theorem.

The following vanishing properties of the cotangent complex may be deduced
with the aid of the spectral sequence of §6. However, André has shown by very
beautiful arguments that they follow directly from the transitivity and flat base
change theorems, so we state them here. Recall that a chain complex K of B-
modules is said to have projective (resp. Tor) dimension < nif H{Homy (K, M)}
= 0 (resp. H,(K ®@p M) = 0) for ¢ > n and all B-modules M.

THeoReM 5.4. (i) If S is a multiplicative system in A, then Lig- 4, 4 = 0.

(ii) If Spec B — Spec A is étale [11, 1V], then Ly, =0

(iii) If Spec B —> Spec A issmooth [11,1V], then Ly, 4, is isomorphic in the derived
category to Qp, 4 and has projective dimension 0.

(iv) If Spec B — Spec A is a local complete intersection morphism [10], then
Lg, 4 has projective dimension < 1.

The assertions (ii)-(iv) admit the following partial converses.

THEOREM 5.5. If A is noetherian and B is an A-algebra of finite type, then
(i) Spec B — Spec A is smooth (resp. étale) <= D%(B|A, M) = 0 for all B-modules
M of finite type and g = 1 (resp.q = 0, 1).
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(if) Spec B — Spec A isalocal complete intersection morphism<= D*(B/4, M) =
0 for all B-modules M of finite type.

5.5 (i) is Grothendieck’s infinitesimal criterion for smoothness {11, 1V, §17],
(ii) is due to Lichtenbaum-Schlessinger [16].

Unsolved Problem. Characterize the morphisms 4 — B, where A4 is noetherian
and B is an A-algebra of finite type, for which the cotangent complex is of finite
projective dimension. What computations we have been able to make show that
this is rare and support the following conjectures:

Conjecture 5.6. 1f Ly, is of finite projective dimension then it is of projective
dimension < 2.

Conjecture 5.7. If Ly, is of finite projective dimension and if B is of finite
Tor dimension as an A-module, then Spec B — Spec A is a local complete inter-
section morphism.

6. The fundamental spectral sequence. In this section we retain the notations
of the preceding two sections except that certain algebras of homology such as
Torg (B, B) are not commutative but rather anticommutative with respect to the
grading. With this exception which will always be clear from the context, rings are
understood to be commutative.

If A— B is a morphism of rings and M is a B-module, and if we express B
as a quotient of a polynomial ring P over A, then the transitivity exact sequence
5.1 applied to 4 — P — B combined with the fact that cohomology vanishes on
projectives (2.4, iif) yields isomorphisms

(6.1) DYBIP, M) ~, DY(B/4, M) g 2.

This shows that the calculation of the cohomology in dimensions > 2 reduces to the
case in which B = A4/I where I is an ideal in 4. In this case there is a spectral
sequence relating the cotangent complex L, to the algebra Tor{ (B, B) which
may be used to obtain information about the former.

If R is a simplicial ring and X is a simplicial R-module, and if Fis a functor on
the category of pairs (B, M) consisting of a ring and a module with dihomomorph-
isms for morphisms in the category, then by F(R, X) we denote the simplicial
object obtained by applying F dimension-wise. Examples of such F are the sym-
metric and exterior algebra functors

SPM = @ SPM

(6.2) "z"
APM = @ ABM
n=0

where the latter is anticommutative.

THEOREM 6.3. If A — B is a morphism of rings such that B @ 4 B ~ | B(for
example if B = S7(A[l), [ anideal in A, S a multiplicative system in A[I), then there
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is a first quadrant homological spectral sequence

E?, = H,, {SPLy,} = Tor4, (B, B)

pt+a rtq

of bigraded algebras, anticommutative for the total degree p + q. This spectral
sequence has the following properties:
Low dimensional isomorphisms:

Dy(BjA) =0

(6.4)
D\(BJA) ~ Tor: (B, B)

Edge homomorphisms:
(6.5) Tord(B, B) — D, (B/A4)
(6.6) AP D, (BfA) — Tor! (B, B),

where 6.5 annihilates the decomposable elements of the algebra Torg (B, B) and
where 6.6 is the unique anticommutative B-algebra morphism extending the isomorph-
ism 6.4.

Five term exact sequence:

(6.7) TorA(B, B)— Dy(B/A) 2> AP D,(B/A) — Tord(B, B) — D,(B/A) — 0.

THEOREM 6.8. [fB ® 4 B ~ , Band M is a B-module, then there is a first quad-
rant cohomological spectral sequence of B-modules

E?? = HP*Y{Homg (SBLy, ,, M)} = Ext%te (B, M).
2 B Wy Lpa 4

The spectral sequence of Theorem 6.3 is an analogue for simplicial rings of the
lower central series spectral sequence for simplicial groups of Curtis [6] and is
derived in the following way. Let P be a simplicial cofibrant 4-algebra resolution of
Bandlet Q =P ®,4 B,J = Ker {P ®, B— B}. Filtering Q by the powers of the
simplicial ideal J, one obtains a (possibly nonconvergent) spectral sequence
6.9) El, = H, (JJ*"") = H  (Q)== Tord, (B,B),

e

which converges provided the connectivity of J? goes to infinity with g. Now by
definition J/J* >~ B ® pQp, 4 = Ly, ,, and moreover J/J%1 = SB(J/J?); in effect P
may be taken to be a polynomial ring in each dimension, whence Q is a polynomial
ring and J is the ideal generated by the variables. Thus 6.9 is the spectral sequence
of Theorem 6.3. The convergence of the spectral sequence follows from the formula
H,(J*) = 0 if ¢ < k, which may be proved either by the arguments of Curtis [6,
§4] or by using Theorem 6.12 below, which applies since B @4 B _~, B implies
that Hy(J) = 0 and since for each k, J, is a regular ideal of Q, in the sense of the
following definition.

DEFINITION 6.10. An ideal [ in a ring A will be called quasiregular (resp.
regular) if I/I? is a flat (resp. projective) 4/I-module and if the canonical morphism
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of anticommutative algebras

AU — Tory (/1. AJD)
is an isomorphism.
It may be proved that if I is quasiregular, then the canonical algebra morphism

(6.11) S > o I

is an isomorphism. Furthermore if 4 is noetherian then / is regular iff it is quasi-
regular iff it is generated locally by an A-regular sequence. For nonnoetherian
rings in general the terminology used here differs from that of [11, 1V], but seems
better adapted for the cohomology theory of commutative rings. For example we
have the following connectivity result.

THEOREM 6.12. Let J be a simplicial ideal in a simplicial ring Q such that
Jy is quasiregular in Q, for each k = 0. If Hy(J) = 0, then H,(J") = 0 for k < n.

We now give some applications of the spectral sequence 6.3. If M is a B-module
and g is an integer, we denote by M|[q] the object of the derived category of B-
modules determined up to isomorphism by the condition that its homology groups
are M in degree ¢ and zero elsewhere. Here is a characterization of regular and
quasiregular ideals using the cotangent complex.

THEOREM 6.13.  Suppose B = A|l. Then the following conditions are equiralent:
(i) 1is a quasiregular ideal of A

(ii) D(B/A, M) =0 for all g > 2 and all B-modules M

(iii) I/1%is a flat B-module and Ly, , ~ I/I*[1].

COROLLARY 6.14. If B = A|I, the following are equiralent:
(i) Tis a regular ideal of A

(ii)) D¥B/A, M) = 0 for all ¢ > 2 and all B-modules M
(iii) I/1? is a projective B-module and Ly, ~ I/I* [1].

Another application of the spectral sequence is the following Artin-Rees type
theorem and its corollaries which was suggested by the fact that D*(B/4, M) is
the sheaf cohomology of a site (§2).

THEOREM 6.15. Let A be a noetherian ring, let I be an ideal in A, and let A, =
A/I"T, n > 0. Then for each q > 0, there exists an N such that the natural homo-
morphism

Dq(An+A\'/A’ AO) g Dq(An/A’ AO)
is zero for alln > 0.

COROLLARY 6.16. Let A be a noetherian ring, let B be the localization of an
A-algebra of finite type C with respect to a multiplicative system in C, and let M be
a B-module (not necessarily finitely generated). Then given ue D'(B/A, M) with
q > 0, there exists a surjective morphism p: B’ — B of A-algebras, where the kernel
of p is a finitely generated nilpotent ideal of B', such that p*u = 0, where p* is the
natural homomorphism D%(B|A, M) — D(B'|A, M).



ON THE (CO-) HOMOLOGY OF COMMUTATIVE RINGS 79

CoRrOLLARY 6.17. Suppose A is noetherian, B is an A-algebra of finite type
and M is a B-module. Let T be the category of finite type A-algebras over B endowed
with the topology [26] associated to the pretopology in which the covering families are
single morphisms B” — B’ which are surjective and have nilpotent kernel. Then
DY(B|A, M) is isomorphic to the cohomology of the sheaf B’ — Der (B'|A, M) on
the site T.

For g > 2 the noetherian hypotheses of 6.15-6.17 are essential. 6.17 was
originally proved in order to define as sheaf cohomology global groups D*(X/Y, F)
generalizing the D*(B/A, M) for any finite type morphism f: X — Y of noetherian
schemes and any quasi-coherent sheaf F on X. However Illusie [14] has recently
found a general definition of the cotangent complex for any morphism of ring
objects in a topos, rendering this method of little interest.

7. Degeneracy of the fundamental spectral sequence in characteristic zero. Sup-

pose that B is an A-algebra such that B ® ; B-—> B and such that Tor{ (B, B) is
flat as a B-module. Then [2] Tor4 (B, B) has a natural structure of a commutative
Hopf algebra over B. In particular if B is of characteristic zero, that is, an algebra
over the rational numbers, then there is a canonical Poincaré-Birkhoff-Witt iso-
morphism

(7.1) §5{Q4} =~ Tor{ (B, B)

of graded anticommutative B-algebras, where Q, is the indecomposable quotient
B-module of Tor{ (B, B), and where § = ® S? is the anticommutative sym-
metric algebra functor on graded B-modules. This isomorphism is not in general
compatible with the coalgebra structures.

Also when B is of characteristic zero, the functor M +— SEM on the category of
B-modules is a direct summand of the functor M — M®™, Consequently by the
Kiinneth spectral sequences 5.2, the natural map

(1.2) SB{H,(K)} — Hy{SEK}

is an isomorphism in dimensions < ¢ if K is a simplicial B-module such that K,
and H,(K) are flat B-modules for n < ¢. Using this fact and the isomorphism 7.1,
one may analyze the fundamental spectral sequence and obtain the following results.

THEOREM 7.3.  Suppose that Bis an A-algebra such that B @ 4 B > B. Assume
that B is of characteristic zero and that Tor4 (B, B) is flat as a B-module. Then the
spectral sequence 6.3 degenerates and yields an isomorphism of D, (B[A) with the
indecomposable quotient B-module of Tor4 (B, B). Furthermore there is a canonical
B-algebra isomorphism

SB{D,(B|A)} >~ Tor4 (B, B),

D, (B/A) is a flat B-module, and D,(B|A) has a natural (anticommutative) graded
Lie coalgebra structure over B.



80 DANIEL QUILLEN

CoROLLARY 7.4.  Let A be alocal noetherian ring with residue field k of character-
istic zero. Then D*(k[A, k) is isomorphic to the subspace of primitive elements of the
cocommutative Hopf algebra Ext% (k, k). In particular D*(k[A, k) has a natural
structure as a (anticommutative) graded Lie algebra.

COROLLARY 7.5. Let A and B be local noetherian rings with the same residue
field k of characteristic zero, and let A X, B be their fibre product over k (geometric-
ally Spec (A x; B) is the wedge of Spec A and Spec B). Then

D*(k|A, k) v D*(k/B, k) —> D*(k/4 x, B, k)

where v denotes the direct sum in the category of (anticommutative) graded Lie
algebras.

ExaMPLE 7.6. Let 4 = k ©® m where m? = 0. Then Ext* (k, k) is the tensor
algebra over k generated by Extl, (k, k) = m’, so D*(k/A4, k) is the free graded
Lie algebra generated by m’ in degree 1.

ExaMPLE7.7. Let A4, B be regular local rings of dimensions p and g respectively
with common residue field k. Then D*(k/4 x, B, k) is the graded Lie algebra
with generators x,, ..., x,, y;,...,», of degree 1 and subject to the relations
[x;, x;J=0for 1 <i,j<p, [y, y;]=0forl <i,j<gq.

When Tor4 (B, B) fails to be flat over B, it is easy to find examples where the
conclusions of 7.3 fail to hold, e.g. B = A4/I where A is a regular local ring and /
is not a regular ideal. However we have the following degeneracy theorem proved
by the techniques of §9.

THEOREM 7.8. Suppose that A is an augmented B-algebra and that B is of
characteristic zero. Then the spectral sequences 6.3 and 6.8 are degenerate; in
fact there are canonical isomorphisms

® H,(SPLy.4} == Tord (B, B)
g=0
@ H"{Homy (SBLy, 4, M)} = Ext?, (B, M).
q=0
8. Relations with associative algebra cohomology. Let 4 — B be a morphism
of (commutative) rings and let M be a B-module. If R is a simplicial 4-algebra
resolution of B which in every dimension is flat as an A-module, then by the
Kiinneth spectral sequences 5.2. the weak homotopy type of the simplicial B-
algebra R ® 4 B is independent of R. This means that if R is another such resolu-
tion of B, then R ® 4 B and R’ ® , B are canonically isomorphic in the homotopy
category Ho (s4-alg) of simplicial 4-algebras, which is the category obtained from
the category of simplicial 4-algebras by formally 1nvertmg the morphisms which

induce 1somorphlsms on homology. We denote by B ®A B the object R®@4 B
unique up to canonical isomorphism, of the category Ho (s4-alg). Accordmg
to 3.6, the cohomology of B as just an associative A-algebra with values in M
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may be calculated as certain Ext groups of morphisms in the homotopy category
L

of simplicial modules over B ® 4 B. Therefore the following spectral sequences
may be regarded as a relation between the cohomologies of B as a commutative
A-algebra and as just an associative 4-algebra.

THEOREM 8.1. There is a spectral sequence of B-algebras
(8.2) El = H {APLg,} = Tor,,, B* @, B(B, B)

anticommutative for the total degree p 4 q, where A is the exterior algebra functor.
There is also a spectral sequence of B-modules

L

8.3) Eg* = H*{Homg (APLy, 4, M)} = Ext ,® ,,""B, M)

L
Furthermore if Tor;;1 (B,B)=0forq >0, then B ®, B may be replaced by B @ 4+ B
in these spectral sequences.
We sketch the proof. If R is an augmented B-algebra, let Z(R) be the total
bar construction of R, and let Z(R) = B Q5 #(R). Let P beacofibrant simplicial
L

A-algebra resolutionof Bsothat » ® 4B = B ®4 B. Let #(P ®4 B) be the result
of applying the functor # dimension-wise to the simplicial augmented B-algebra
P ®, B. It is a chain complex of simplicial P ® 4 B modules. Let us think of the
simplicial structure of Z(P ® 4 B) as being in the vertical direction and the differ-
entials of the bar construction as running horizontally, and let (N*)'%#(P ®, B)
be the simplicial object in the category of simplicial P 4 B modules obtained by
applying the inverse of the normalization functor in the horizontal direction. Then
the diagonal A(N)1 (P @4 B) of this double simplicial object is a ﬂatP ®4 B-

module resolution of B, hence A(N?)~ l.,6‘(P ® 4 B) is isomorphic to B ®BO,4B
The double simplicial object (N*)~ 1B(P ® 4 B) gives rise to a spectral sequence
with abutment

L L
H,(BQ®yg, 5 B) = Tor,B®4B(B, B)
and whose E? term is
E:a = H;HZ'@(P @y B) = Hp Tora P®AB(B’ B) = Hp{AfLB/A},

thus giving the spectral sequence 8.2. The other is derived by applying the functor
Homg (7, M) to A(NH)1B(P Q4 B).

The bar construction Z(R) has the structure of a commutative differential
graded Hopf algebra over B when R is a commutative augmented B-algebra,

hence if B is of characteristic 0, there is a canonical Poincaré-Birkhoff-Witt
isomorphism of differential graded algebras

(8.4) B(R) =~ §5(Q),
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where Q is the indecomposable part. Using this fact one can show that there is a
canonical isomorphism

L
(8.5) SB{Lp, 4} = B @pg 5 B

in the homotopy category of simplicial B-algebras. In slightly more concrete terms
this amounts to the following result.

THEOREM 8.6.  If Bis of characteristic zero, then the spectral sequences of 8.1 are
degenerate and in fact there are canonical isomorphisms

L
@ H,{APLy,} = Tor,B%4B(B, B)

pHa=n
@ H°{Homp (APLy, 4, M)} =~ Exty§ ,"(B, B).
pta=n
CoroLLARY 8.7. When B is of characteristic zero, then commutative algebra
cohomology D(BJA, M) is canonically a direct summand of the associative algebra
cohomology Extgg » (B, M).

The corollary in the case where 4 is a field is due to Barr [4]. His proof uses an
explicit formula for the projection operator of Z(R) onto Q in 8.4.

9. Differential graded algebra resolutions in characteristic zero. In this section
we give an example of what appears to be a rather general phenomon, that in
characteristic zero simplicial objects can be replaced by differential graded objects
(see also [20]).

Let & be the abelian category of chain complexes of abelian groups. The
tensor product of chain complexes is a coherently associative and commutative
tensor product operation in the sense of MacLane [17], where the isomorphism of
commutativity 7: X ® Y~ Y ® X is that of Koszul: T(x ® y) = (—1)*y ® x
if x and y have degrees p and q respectively. Much of the following discussion may be
generalized to a class of such abelian categories with tensor product.

A ring R in & with respect to the tensor structure is just a differential graded
(DG) ring in the usual sense. If M is an object of 2 which is a left R-module,
i.e. aleft DG module over R, and if N is a right R-module, then the tensor product
N ®x M and its derived functors are also objects of 2. If R is a commutative ring
in 2, that is, an anticommutative DG ring in the usual sense, and if M is an R-
module, then the symmetric algebra SR{M} = @ , S®M is defined by the standard
universal mapping property relative to commutative R-algebras. (When R is the
DG ring which is the ring B concentrated in degree zero and M is a complex of B-
modules, then this symmetric algebra is also denoted by § in this paper.) We may
also define the exterior algebra AEM = @2, AFM by means of the standard
universal mapping property relative to graded anticommutative R-algebras in &
(thus ARM = ® (AEM), is a bigraded ring anticommutative for the degree
q + n). ’

One may prove that if 4 — B is a morphism of commutative rings in 2, then
Tord (B, B) is a graded anticommutative ring in &. Hence if B = A/, there is a
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canonical isomorphism of graded anticommutative B-algebras in %
(9.3) AB{/?) — Tor{ (B, B).

We now carry over the definition 6.10 to this context and say that I is quasiregular
if I/I* is B-flat and if 9.3 is an isomorphism.

ProposiTION 9.4. Suppose that B is a commutative ring in & and M is a
B-module. Assume that M is B-flat and that n: M — M is an isomorphism for each
integer n % 0. Then the augmentation ideal of SBM is quasiregular.

In effect the Koszul complex SBM @z AEM is a flat resolution of B as an
SBM-algebra and hence can be used to calculate the Tor in 9.3.

Let u:A — B be a morphism of (ordinary) commutative rings and regard u
as a morphism of DG rings concentrated in degree zero. By a DG anticommutative
A-algebra resolution of B we mean a factorization u = pi, i:A— R, p:R — B in
£ such that p induces isomorphisms on homology.

THEOREM 9.5. Suppose A — B is a morphism of commutative rings and that B
is of characteristic zero. Let R be a DG anticommutative A-algebra resolution of
B such that R is A-flat and such that the augmentation ideal J of the DG ring R X 4 B
is quasiregular. Then there is a canonical isomorphism J[J? = Ly,  in the derived
category of B-modules.

If R is a free DG anticommutative A4-algebra, i.e. ignoring differentials R is
isomorphic to S4{N} where N is a free complex of 4-modules, then the augmenta-
tion ideal of R ®, B is quasiregular because of 9.4 and the fact that Tor’s in &
do not depend on the differentials. Therefore Theorem 9.5 implies that the co-
tangent complex can be calculated by using free DG anticommutative 4-algebra
resolutions of B, provided B is of characteristic zero. One may show that this is
equivalent to the method used by Lichtenbaum-Schlessinger [16] to define
D*(B[A, M) for g < 2.

We now apply this theorem to the bar construction of an augmented B-algebra
A where B is of characteristic zero. Let #(A) be the total bar construction and
B(A) = B R4 B(A). If Ais B-flat, then H(4) is a flat DG anticommutative
A-algebra resolution of B. Moreover Z(A) is a commutative DG Hopf algebra over
B so by the Poincaré-Birkhoff-Witt isomorphism 8.4 it is isomorphic as a DG
B-algebra to SQ, where Q is the indecomposable part. Using 9.4 it follows that the
augmentation ideal of #(4) is quasiregular. By the theorem the cotangent
complex Ly, is Q. Thus we have

COROLLARY 9.6. If A is a flat augmented B-algebra and if B is of characteristic
zero, then Ly, ~ J|J? where J is the augmentation ideal in the bar construction
B(A). Therefore

8.7 Lp.a =~ L'(A[1)
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where A1 is the augmentation ideal of A situated in degree 1, where L' is the free
anticommutative graded coLie algebra functor, and where the differential on the right
hand side of 9.7 is the unique degree —1 coderivation which in dimension 2 is the
map SEA — A given by the multiplication of A.

Suppose now that B is a flat A-algebra of characteristic zero and consider
B @, B as an augmented B-algebra where the maps B — B (X, B~ B are given
byb—b® 1, x ® yr> xy. Applying 9.6 one obtains the following result allowing
one to calculate the commutative algebra cohomology by the cochain complex of
Harrison [13].

CoROLLARY 9.8. [f Bis a flat A-algebra of characteristic zero, then there is an
isomorphism Ly >~ X71(J|J?) in the derived category of B-modules, where X is the
suspension functor, and where J is the augmentation ideal of the bar construction
#(B @, B). Moreover if B is projective as an A-module, then

(9.9) DY(B/A, M) = H*'{Harr* (B/A, M)}, where

Harr? (B/A, M) = {f € Hom (®¢% B, M), { vanishes on decomposable elements
Sfor the shuffle product}

(df)(bla AL | bqa‘l) = blf(bg, vy ba+1)
F 3 NG bbby

+ (=118, f(by, ..., b,).
When A is a field, the formula 9.9 is due to Barr [4].

10. Local noetherian rings. Let A4 be a local noetherian ring with residue field &
and maximal ideal m . Suppose that A4 is the quotient of a regular local ring R,
for example if A is complete. R may be chosen to be of minimal dimension, in which
case mp/mi, = m4/m* ~ D,(k[A). Moreover the minimal number of generators
for the ideal Ker {R — A} is then dim, D,(k/A4). These results may be generalized
as follows.

ProposITION 10.1. (i) If A is a local ring which is the quotient of a regular local
ring, then there exists a simplicial resolution P of A such that each P, is a regular
local ring and such that each simplicial operation P, — P, is a local homomorphism.
Moreover there is a canonical isomorphism

(10.2) mJmt, =~ XL,

in the derived category of k-modules, where X is the suspension functor and m , is the
simplicial maximal ideal of P.

(ii) It is possible to choose P to be minimal in the sense that all the differentials of
the normalized subcomplex of m ,[m}, are zero. The completion P of such a minimal
P is unique up to noncanonical isomorphism.



ON THE (CO-) HOMOLOGY OF COMMUTATIVE RINGS 85

Such a P as in (i) will be called a simplicial regular local ring resolution of A.
It follows from 10.2 that the number of nondegenerate parameters in dimension
g — 1 of P is at least dim, D, (k/A) with equality if P is minimal.

If 4 is an arbitrary local noetherian ring, then its completion A is flat as an
A-module, so by the flat base change theorem we have that L, =~ L;, ;. Choosing
a simplicial regular local ring resolution P of A and filtering P by the ideals m?,,
we obtain a spectral sequence:

ProposITION 10.3.  If A is a local noetherian ring with maximal ideal m, ard
residue field k, there is a spectral sequence of anticommutative k-algebras with
Ezzyq = Hm.q{S:(Z‘] Lk/A)}
and
E;=0 ifp+q#0

= m4my* ifp+q=0.

This spectral sequence is not a first quadrant spectral sequence. To remedy
this defect, define the Koszul homology K, (A4) of 4 to be the homology of the
Koszul complex K.(x, A), where x = (x,, ..., x,) is a minimal system of genera-
tors for m,. This Koszul homology depends only on A and is isomorphic to
TorE (k, A)ifA is the quotient of a regular local ring R such that m ,/m%, ~ m ,/m?,.
If P is a simplicial regular local ring resolution of 4, then filtering P &p, k by powers
of its augmentation ideal yields a spectral sequence relating the cotangent complex
and Koszul homology.

ProroSITION 10.4.  There is a first quadrant spectral sequence of k-algebras
E}, = H, . SHET T ;L 43 = Kpio(4)

where T, ,Ly, ( is the “Postnikov’ subcomplex of Ly, 4 with the same homology groups
in dimensions >2 and zero homology groups in dimensions <1. This spectral se-
quence has the following properties:

Low dimensional isomorphism:

(10.5) K\(A) = Dy(k/A4)
Edge homomorphisms:

(10.6) K.(4)— D, (k]4)

(10.7) AED,(k[A) — K, (A4)

where 10.6 annihilates the decomposable elements of K, (A) and where 10.7 is the
unique algebra homomorphism extending the isomorphism 10.5.
Five term exact sequence:

Ky(A) = Dy(k|A) — A*K\(A) — Ky(A) — Dy(k/A) — 0.

CorOLLARY 10.8. A is a “local-complete-intersection” local ring [24] if and
only if the map A*K,(A) — K,(A) induced by the algebra structure of K,(A) is
surjective.
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11. Euler characteristics for graded rings. Let 4 = @7 A, be a graded ring
and let B be a graded A-algebra. Then the cotangent complex has a natural struc-
ture as a simplicial graded B-module, for it may be calculated using simplicial

cofibrant resolutions in the category of graded A-algebras. Consequently

Dy(B|A) = @ Dy(B[A),
n=0
is a graded B-module.
Tueorem 11.1. Let A= @ , A, be a graded ring such that A, is a field
k and such that each A, is a finite-dimensional vector space over k. Then D (k[A),
is finite-dimensional for each q and n and

(11.2) D,(kj4), =0 forn<g,

so that the integers
In = z (_ l)q d]mk Dq(k/A)n
q

are defined. Furthermore there is an identity of formal power series

(11.3) S(dim A )" =T (1 — 1)
n=0 n>1
This is proved by analyzing the fundamental spectral sequence 6.3 with respect
to the grading induced by that of 4. The key point is the following connectivity
assertion for the symmetric algebra functor.

Lemma 11.4.  If M is a simplicial k-module such that H(M) = 0 for q > n, then
H (SEM) = 0 for g > mn.

When 4 is a graded local noetherian ring with residue field & and Dy(k/4) =0
for g sufficiently large, 11.3 becomes an identity of rational functions of 7. Equating
orders of the pole at t = 1 we have the

CoROLLARY 11.5. Let A be a graded local noetherian ring with residue field k.
Suppose that D,(k|A) = 0 for q sufficiently large or equivalently that Ly, 4 is of finite
projective dimension as a complex of k-modules. Then

—dim A = 3 (—1)?dim, D (k/A)

where dim A is the dimension of A [22].

REmARK 11.6. We do not know .if the corollary remains valid without the
hypothesis that A4 be graded. This would follow from the following special case
of the conjecture 5.6:

Conjecture 11.7. 1f A is a local noetherian ring with residue field k£ and if
D (k/A) = 0O for ¢ sufficiently large, then A4 is a local-complete-intersection.

ExampLE 11.8. Let A be the graded Artinringd =k @ V@ k ®0..., where
the multiplication is given by a nondegenerate quadratic form on the k-vector
space V. Then A is a Gorenstein ring, however the Poincaré series of A4,
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1 + (dim V)t + t2, for dim V > 3 has roots which are not roots of unity. Thus
by 11.3 there are infinitely many nonzero g, and so Dy (k/A) # O for infinitely
many q.

Since previous work in local algebra has not produced a class of local noetherian
rings intermediate between the local-complete-intersection and Gorenstein rings,
we consider the above example evidence for the conjecture 11.7.
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Nonabelian homological algebra and K-theory

Richard G. Swan

The main purpose of this paper is to propose a possible definition of the functors
K, (R) for arbitrary rings R and all integers n > 0. It is as yet too early to tell
if this theory will prove to be useful and whether it should be considered to give
the “correct” generalization of the functors K, and K. It does seem to have some
useful properties and the methods used to define it may prove useful in other situa-
tions. Recently, a different definition of K,(R) was proposed by O. Villamayor.
His theory is obtained in quite a different way and his K; differs somewhat from
that of Bass [6]. In the theory I will present here, the K is the same as that of Bass
and the K, is closely related to (and probably the same as) the one defined by
Milnor [30], [36].

The method used to define this theory is that of simplicial resolutions. It has
been known for some time [11] that ordinary chain complexes and projective
resolutions do not behave properly in the nonabelian case. In fact, the reason they
work so well in the abelian case is that in this case, the category of chain complexes
is equivalent to the category of simplicial abelian groups [11]. In the general case,
it is always the simplicial object which behaves correctly.

The method I will use to construct these resolutions was directly inspired by the
work of André [1], [2]. André shows that his cohomology is independent of the
choice of resolution by using a standard complex and a spectral sequence argument
to compare the cohomology obtained from any resolution with that obtained from
the standard complex. This does not seem to work in the general case where there
is no abelian structure. Instead, I will prove a comparison theorem analogous to
the usual one [7], [26] in the abelian case. This theory is developed in §§1 to 4.
In §§5 and 6 we apply it to generalize the theory of acyclic models to the nonabelian
case. In §7 we give some topological motivation for the definition of K,. This
definition is then given in §8. In §§9 and 10 we give some remarks and conjectures
concerning these functors.

One remark should be made about the notation. If% isa category, I willdenote
the set of morphisms from A4 to B in € by (4, B). However, if the category in

88
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question has not been assigned any symbol, I will just write Hom (4, B) for this
set. The category intended should be clear from the context.

1. Simplicial sets and complexes. In this section we will collect some results,
mostly well known, which will enable us to avoid making long calculations with
face and degeneracy operators.

Let & be the category whose objects are the sets [#] = {0, 1, ..., n} for inte-
gers n > 0 and whose morphisms are the monotone nondecreasing functions. If ¢
is any category, a simplicial object inn % is, by definition, a contravariant functor 4
from Ft0%,ie. A:F° > €. Wewrite A, = A([n]). Lete,:[n — 1] — [n] be the
unique monotone map with image [n] — {i}, i =0,...,nand é;:[n + 1] — [n]
the unique monotone map with 7 as the only element with two pre-images, i = 0,

.,n Let 9, = A(e;), s; = A(9,). It is a standard result [29] that there is a one-
to-one correspondence between simplicial objects in € and sequences A,, A,
Ay, . . . of objects with maps 0,:4, — A,_y, 5;: 4, — A, satisfying the relations

0,0; = 0,10, for i < j, s;5, = 5,8 fori <j,

|
M 0,5, = 5,40, fori <j, 0;5,=0;.5;, =id, 05, =15,0,_1fori >j+ 1.

A morphism of simplicial objects is a natural transformation of functors. Equival-
ently, it is a sequence of maps f,: 4, — B, which commute with the face and de-
generacy operators 9; and ;.

If € is the category of sets, groups, etc., we refer to a simplicial object in €
as a simplicial set (semisimplicial complex), simplicial group, etc.. We shall assume
the reader is familiar with the properties of such objects. A good exposition may
be found in {29].

A simplicial complex (in the classical sense) is a collection K of nonempty
finite subsets of some set X such that c e K, 7 < 0,7 = & implies r € K. Let K,
be the set of those o € K with [¢| =n -} 1, i.e. o has n 4 ] elements.

We say L is a subcomplex of K if L © K and L is itself a simplicial complex.
Clearly unions and intersections of subcomplexes are again subcomplexes.

We shall consider here only ordered simplicial complexes [17]. By definition,
this means that each set ¢ € K is totally ordered and that if r < ¢, the ordering of =
agrees with that of ¢. To every such ordered complex we associate a simplicial
set S(K) as follows: Let S,(K) consist of all (n + I)-tuples (v,, . . . , v,) such that

{vgs ..., v, =0€Kand v, <v; <--+ < v, in the ordering of 6. The v, need
not be distinct. If a: {m] — [n] in &, define &:S,(K) — S, (K)by a(vy, . . ., v,) =
(Uy(oys - - - » Ugemy)- I s trivial to verify that this makes S(K) a simplicial set. Note
that
(2) a,-(L’o, R | vn) = (UO’ s Uity Ui e e v v‘n),
$5.(Ugy o oo 0,) = (Ugy « o« Vg Uy o, U,).

I L < K, clearly S(L) = S(K) and S(L) is a subsimplicial set of S(X).

Let K be an ordered simplicial complex. If o € K, then ¢ = {vg, v4, ..., v,}

where vy << vy << -+ < v,. Define 0,0 = {vg, - - - s Vi1s Viyys - - - 5 Uy}, 1.€. OMit v,
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Then 0,6 K, ;,i =0,1,...,n Let A be a simplicial set. We define a map f
from K to A to be a collection of maps f,:K, — 4, such that d,f, =f, 0, for
i=0,...,n,n=0. Let Map (K, 4) be the set of such maps. We have an obvious
map u = uy: K — S(K) by u({ry, ..., v,}) = (vy, . . . , v,). We will show that this
is a universal such map. In other words, if f: K— B is any map into a simplicial
set B, then there is a unique g: S(K) — B with f = gu. Let Hom (4, B) denote the
set of morphisms 4 — B of simplicial sets. Define 0: Hom (S(X), B) — Map (X, B)
by 6(g) = gu-
Prorosition 1.1.  0:Hom (S(K), B) - Map (K, B) is a bijection.

Proor. It is clear that there is some map w:K — U which is universal, i.e.
Hom (U, B) — Map (X, B) by g — gw is a bijection. This follows from the ad-
joint functor theorem [18] or by general results of universal algebra [8]. Let
h:U — S(K) be the unique map with iw — u. We claim that & is an isomorphism.
Any element of S(K) can be obtained by applying degeneracy operations to the
nondegenerate elements (v, . . . , 0,) With vy < - - - < v,. These elements have the
form u({v,, . . ., v,}) and so lie in the image of h. Since A isa map of simplicial
sets, this shows that # is onto. If we let U’ be the subsimplicial set of U generated
(with respect to the operations 0,, s;) by w(K), then U’ clearly has the same universal
property as U, so U’ = U. Using the relations (1) we can put any composition of
d;sand s;’s in the forms; - - +s; 9; - - 0; . But w(K)is stable under the 9,’s since
w:K — Uisamap. Therefore any element of U has the form s; - - -5, w(o) where
o € K. Using the relations (1) we can assume j; > j, > - -+ > j,.. Now the ele-
ments of S(K) which are nondegenerate, i.e. not of the form s;x for some i, are
precisely the elements of the form u(s) with o€ K. Since A(s; ---s; w(0)) =
s;, **+s;, u(o), the fact that A is an injection follows from the following lemma of
Eilenberg-Zilber [21].

LEMMA 1.2. Let A be asimplicial set. Then any element x € A can be put uniquely
in the form x = s; - s; y, where j > j, >+ > j, and y is nondegenerate.

PrOOF. It is clear that x has this form. The only problem is to show the
uniqueness. Suppose we apply a face operator d, to x. The relations (1) show that
we can commute the 0; past each s; (with changes of index) except that at some
point the 9; may cancel some s5;. Thus 0;x is either of the form 5, - - -5, 9,y or
Sk, """ Sk,_ . Thelatter case will occur, e.g. if i = j;. From this it is clear that we
cannot reach a nondegenerate element by applying fewer than m face operators
to x but we can get a nondegenerate element by applying m face operators. This
shows that m is unique. Write m = dgn (x). If m = 0 there is nothing to prove.
We proceed by induction onm. 1f i < j,,, relations (1) show that 9, will commute
past all the 5; and so d;x = s, -5, ;y. Thus dgn (d;x) > m for i <j,. If
I =jn, however, 0.x =5, "8 05, y =5 "5  y s0dgn(dx)=m— 1
Therefore j, is characterized as the first i for which dgn (d,x) =m — 1. By
induction, y and the remaining j, are uniquely determined by d; x. (Note that
kv =jv - 1')
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We now apply Proposition 1.1 to the following situation. Let K be an ordered
simplicial complex and let L, M be subcomplexes of K (with the induced ordering)
such that L U M = K. If A is simplicial set and h: K — A is a map, then f =
h|L,g =h|M are maps such that f| L "' M =g | L N M. Conversely, if we
are given f1L — A, g:M — B with f| L "M =g |L N M then it is trivial to
verify that we get a unique map h: K — A by setting h(o) = f(0) or g(o), which-
ever is defined. Applying Proposition 1.1 we get

COROLLARY 1.3. If K= L U M, the diagram
S(LN"M)——— S(L)

S(M) ——> S(K)
is co-cartesian, i.e. a pushout diagram in the category of simplicial sets.

We can reformulate Proposition 1.1 as follows. To give a map f:K — A, we
give maps f,:K, — A, with 9,f, =/, ,0,. Since K— S(K) is a universal such
map we have

COROLLARY 1.4,  S(K)is the simplicial set generated by symbols & corresponding
to the simplexes of K with the relations

a,&:a_,.t;anddegﬁzn{fael(ﬂ.

A precise definition of these terms may be found in [8]. We must keep in mind
the fact that a simplicial set is a graded algebra of a certain type.

If K is finite-dimensional we can find a much smaller presentation of S(K).
If dim K = N, each simplex ¢ of K is contained in a maximal one 7 since |7| <
N+ lforallTe K. Clearly ¢ = 0, - - d; 7 forsome iy, ..., i, Therefore S(K)
is generated by the maximal simplexes of K.

ProrosITION 1.5. Let K be a finite-dimensional ordered simplicial complex.
Then S(K) is generated by symbols G, one for each maximal simplex o of K, with
the following relations: For each pair of maximal simplexes o, T, choose expressions
Jfor e 01 of the form o N7 =0; ---0,0 =20, ' 0;7. Then the relations
0y, + 0,6 =0, - 0;7 for each pair o, 7 suffice to define S(K).

ProOF. We have already observed that these o generate S(K). It is clear that
the given relations hold. Suppose 4 is a simplicial set and fis a map from the maxi-
mal simplexes of K to A, preserving degree, such that if ¢, 7 are two maximal
simplexes and we express + M o as Proposition 1.5 then

3,0, f(0) =9, - 9, ().

We must show that f extends to a morphism S(K) — 4. The uniqueness
of this extension is clear since the & generate S(K). By Proposition 1.1 it will
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suffice to extend f to a map g: K — 4. Let o € K and let 7 be a maximal simplex
containing o. Write 0 =0, ** 0,7 and define g(o) = 0, - 9, f(r). We
must show that this is independent of the choice of r and k,, ..., k.. It will then
be clear that g(d,0) = 0,g(0). Let « = ¢, * " &,:[m] — [n] where o € K,, and
7€ K,. Then a is injective and if 7 = {vy, ..., 0,}, vy <+ < v, then 0 =
{Vyio)s - + + » Ug(my)- Therefore the map « is unique and does not depend on the
choice of ky,...,k,. On A4, 0, -0, = A(a) so g(o) = A(a)f(r) does not
depend on the choice of ky, ..., k,. Suppose now ¢ < 7" where 7’ is another
maximal simplex. Let r N +' =0, ---0d,7 =0, -+ 9;7 be the expressions
chosen in Proposition 1.5. Since 0 < 7 N 7" we can write ¢ = 0, - * 0, (r N 7')
SO 0 =0, "+ 0,0; 0,7 =000, 09 7. The values for g(o)
obtained are 0y, - - 0,0, -0, f(7) and 9, -0, 0; ‘- 9, f(), but these are
equal by the hypothesis on f.

We now apply this result to some special cases. Let " be the n-simplex, con-
sisting of all subsets of a set with n + 1 elements. Let A® = S(¢"). Since ¢" has
a unique maximal simplex, we see that A is the free simplicial set on one element
* of dimension n. Therefore if A is any simplicial set, Hom (A", 4) = 4, where
[:A" — A corresponds to f(:") € A,. By Yoneda’s lemma [18] the representable
functor Hom ( , [#]) on S has the same property. Therefore we can identify
A" with the functor Hom ( , [n]):S° — Sets.

Let ¢" be the boundary of ¢”, i.e. 6" = " — {o"}. Then ¢ has as maximal
simplexes the d,6", i =0, ..., n. By the relations (1) we have 0,0,6" = 0,_,0,0"
for i < j. This clearly is the simplex 9,06" M 0,6™ since it lies in 0,6" and 0,6" and
has dimension n — 2. Let A" = S(¢”) = A". Then A" is generated by the ele-
ments ¢; = 9;t, i =0, ..., n with the relations 0,;; = 9,_,¢, for i <.

Let K and L be ordered simplicial complexes formed by certain subsets of sets
X and Y respectively. The product K x L is defined to be the collection of subsets

of X x Y of the form {(vy, wy), . . . , (v,,, w,)} Where
{vg, ..., v, EK,, {Wos ..., Wy EL,, (5, wy) 7= (Vig1s Wig)
and
Ug <° 0 < Uy, Wo <00 S w,.

We order this subset by (vg, wg) < - -+ < (v,,, w,)). It is clear from the definition
that S(K X L) = S(K) x S(L). LetI = A! and consider A" X [ = S(&" x &').

This has maximal simplexes 7, = {(0,0), ..., (/,0), (i, 1), . .., (n, 1)} [17] where
we denote the vertices of 3" by 0, 1, ..., nand those of G by 0, 1. Hereirunsfrom
Oton. ;

COROLLARY 1.6. A" X I is generated by the elements t, ..., T, of degree
n + 1 with the relations 0,7, = 0;z7, fori =0,...,n— 1.

ProOOF. 1t is easier to apply the proof of Proposition 1.5 here. Only the very
last part needs to be modified. We first note that 9,,,7; = 0,,,7,,, is the intersec-
tion =, N 1,,;. Suppose ¢ is some simplex of ¢* x & and o < 7, N 7, where
i <J. Wemustshow that g(o) defined in the proof of Proposition 1.5 is the same for
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7, and 7,. This is clear for j =i+ 1. Now for i < j, 7, n7; ={(0,0),...,
(i,0), (j, 1), ..., (j,n)}. Thisliesinall 7, fori < k <j. Therefore if 7, 7, give
the same value of g(o) for all k we see that =, and =, will give the same g(o).

This result is often useful in constructing homotopies.

We conclude this section by pointing out a consequence of Corollary 1.3. Let
K be a finite ordered simplicial complex and let L be a subcomplex of K. Let o
be maximal among the simplexes of K not in L. Let M = K — {o}. This is
clearly a subcomplex of K and L © M. Let & be the subcomplex of K consisting
of all faces of 0. Then K = M U G while M N 6 = &, the subcomplex consisting
of all proper faces of 6. Suppose o € K, so S(3) = A", S(6) = A". By Corollary
1.3, the diagram

An 3 An

S(M) ——> S(K)

is co-cartesian. By induction on the number of simplexes in K — L we see that we
can obtain S(K) from S(L) by a finite number of such pushouts. These pushouts
are the simplicial version of the familiar process of attaching cells to a space. They
will form the basis for our construction of simplicial resolutions.

2. Simplicial homotopies. Let € be a category having finite direct sums which
we denote by 4 « Bor [ 4;. Let & be the category of finite sets and all functions.
If Ae¥ and Se€ & define § x A4 =[] 4, the direct sum of |S| copies of 4
indexed ‘'by S [31]. Let i;;4 — S x A be the sth injection. Clearly S X A4 is a
functor in 4. If f:S — T, define f X A:S X A>T X A by (f X A, = iy
This gives us a functor # X % — € characterized by the adjunction property

1) %(S x A, B) = Hom (S, €(A, B))

where Hom denotes maps of sets here. This property shows that if we regard § x 4
as a functor in S, holding A fixed, it will preserve direct limits.

Suppose S is a simplicial object of &, i.e. $:F°— F. If Q € ¥ the composi-
tion 90 2, 7 X% ¢ gives us a simplicial object § X Q of €. If Bisa simplicial
object of €, the naturality of (1) shows that

(2 Hom (S x Q, B) = Hom (S, €(Q, B))
where the Hom’s now denote maps of simplicial objects and €'(Q, B) is the simplic-

ial set defined by the composition ¥ 2y 6 19T Gets. Again it follows that the

functor —x Q preserves direct limits.
If §'is a simplicial object of # and 4 is a simplicial object of €, the composition
SO F X —>C

gives us a simplicial object § x 4 of €. We leave the formulation of the appropri-
ate adjunction property to the reader since it will not be needed here. We use this
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construction here to formulate the notion of homotopy. Using the notation of §1,
let @ be a 1-simplex, and @®a O-simplex. Let ] = A! = S(d') and * = A® = S(3).
There are two inclusions iy, i;: 3 — @' which induce iy, i,: * — I. By the definition
(or by (1)), * x A is canonically isomorphic to 4. We will identify them. The
two maps * — I give ip, ij:A = * X A>T X A.

DEeFINITION.  Let 4, B be simplicial objects of €. We say two morphisms
/> g:A — B are homotopic if there is a morphism A:1 X A4 — B such that f = hi,,

= hi,.

5 This agrees with the usual definition for simplicial sets. However, even for
simplicial groups it looks quite different because if G is a simplicial group and G’
its underlying set then clearly (/ X G)" # I x G’. Therefore we must show that
this definition agrees with the usual one.

PROPOSITION 2.1. Let A and B be simplicial objects in €. Let f,g:A— B.
Then there is a one-one correspondence between homotopies h:I X A — B between f
and g and collections of maps hﬁ"’ A, —~ B, fori =—1,0,...,n,n >0 satisfying

@ /] Au = K3 g | Ay = K,
(b) 94" = hiryV0, if i < j, O.h = A"V, if i > j,
(c) s A = hFVs, if i < j, s:h™ = K™ sif i > j.

ProoF. The l-simplex G has two vertices 0 and 1. We order it by 0 < 1.
Now I, consists of all sequences (0,...,1,...,1). We number these x‘_"l’, e,
x{" where x{™ has exactly i -+ 1 entries 0. The simplicial set * has one element =,
in each dimension n and iy(*,) = x%, ij(*,) = x{. 1f K is a simplicial set, a map
h:K x A— B is given by a collection of maps h™:K, x A, — B, commuting
with 0,, s;. By (1) amap A'™:K, x A, — B, is equivalent to a collection of maps
h'":A, — B, indexed by the elements x € K,. The condition 9;4'" = A" 19,
is expressed by the diagram

A, x K, —> B,

3 3 LR

An—l X Kn—l I Bﬂ~l

and so is clearly equivalent to the set of conditions 0/, = /,,0,. Similarly the
condition si'" = h"*Vs, isequivalent to s, = h, .5, 1f K = I, define Al = p{™
for x = x{". A trivial computation shows that our conditions translate into (b)
and (c) and that the conditions f = hiy, g = hi, translate into (a).

The conditions of Proposition 2.1 make sense in any category even without
direct sums. We may use them as the definition of homotopy in the general case.
It should be remarked that homotopy in this sense is not an equivalence relation
even for simplicial sets [29]. However this will not cause any difficulty.
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If F:¢ — 2 is a (covariant) functor and A4 is a simplicial object of %, the

composition P L& s P defines a simplicial object F(A4) of &. Since the
conditions of Proposition 2.1 are preserved by F we get

COROLLARY 2.2. If f, g: A — Bare homotopic, so are F(f), F(g): F(A) — F(B).

The conditions of Proposition 2.1 are not the usual ones [29]. However, it is
easy to see they are equivalent.

PropoSITION 2.3.  Let A and B be simplicial objects of €. Let f,g:A— B.
Then there is a one-one correspondence between collections of maps h{™ satisfying
the conditions of Proposition 2.1 and collections of maps k\{":A, — B, ., for i =
0,...,n,n > 0satisfying the conditions

(@) Qki” =f|A,, 0,k =g | A,,

(b) 0km = k"0, if i <j, 0,k = 0,k and 0k = kin0,_, for
i>j+1,

(€) kW = kiiVs, if i <j, sk = kimtUs, if i > ).

This correspondence is giren by ki = h\"'s; and ki" = 8, or 0,,h%},
whichever is defined.

The proof consists of verifying all the assertions by direct (and very easy)
computations.

3. Simplicial cofibrations. We now define the analogue of the process of
attaching cells to a space. We begin with a few simple lemmas.

LEMMA 3.1, Let Q €€ and let A be a simplicial object of €. Then there is a
natural isomorphism Hom (A" x Q, A) = €(Q, A,).

ProoF. By (2), Hom (A" x Q, A) = Hom (A", 6(Q, 4)). By §1, A" is free
on one generator ¢ of dimension n so Hom (A", X) = X, for any simplicial set X.
By a finite system D in % we will mean an indexed collection of objects D, and
morphisms ¢2,:D, - D,. If € has finite inverse limits we can define D =
lim D. However, we shall avoid this assumption by simply defining €(Q, D) for

-«—
Q €% to be the set of all collections ( ;) such that f,:0 — D, and ¢}, f, = fs for all
«, f3, y. Therefore if D = lim D exists we have 4(Q, D) = €(Q, D) by definition.

-<—

DErFINITION.  Let A be a simplicial object of €. By Z,(A4) we will mean the
finite sy'stem with objects D, fori =0,...,n 4 tand D, for0 <i<j<n+1,
where D; = A, for all iand D,; = A, for all i, j, with maps 0,: D, —> D,,
0,.1:D;,— D, givenby 0,24, > A, ,,0; 1:4,—~ A4, ;.

Thusamap @ — Disequivalent to a collection of mapsf,:Q — A4,,i =0, ...,
n + 1 satisfying the conditions 0,f; = 0, ,f; for i <j. In particular, we have a
canonical map 0:4,., — Z,(A4) given by the maps 0,:4,.; — A,. If% has finite

inverse limits we may define Z,(A) = lim Z,(A4). For simplicial sets, Z,(A) is the
-«
set of all sequences (xg, . . ., x,,4) with x; € A, and 0,x; = 0, x, for i < j.
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LemMMA 3.2. Let Q €% and let A be a simplicial object of €. Then there is a
natural isomorphism Hom (A™ x Q, A) =€(Q, Z,_,(A)). Also, the map

Hom (A" x Q, A) - Hom (A" x Q, A)
given by A" = A" coincides with the map €(Q, 0):6(Q, A,) > €(Q, Z,_(A)).

ProoF. By (2), Hom (A" x Q, 4) = Hom (A", 4(Q, 4)). In §l we showed
that A" is generated by ¢, ..., ¢, € (A™),_, with relations 9,t; = 0,14 for i < j.
Thus an element of Hom (A*, €(Q, 4)) is a collection of maps fo, ..., fn €
€(Q, A,_,) satisfying the corresponding relations, i.e. a map Q —Z,_,(4). Since
0,4 = 1; where « generates A”, the last part follows immediately.

We now give a simple condition for the existence of pushouts.

LEMMA 3.3. Letf:A — B, g: A — C be maps of simplicial objects in€. Suppose
for every n, the pushout D, of the following diagram exists:

A,—" s B,

|
(D), u,i ibn
\

Cp————>D,.

Then the pushout D of the diagram

A—L -8

cC—° D

in the category of simplicial objects of € exists, and in dimension n the diagram (2)
coincides with the diagram (1),. The same holds for more general direct limits.

Prook. If a:[m]— [n] in %, it induces a map &:(1), — (1), of diagrams and
hence a map &: D, — D,,. Itis trivial to verify that this assignment of maps makes
(D,) a simplicial object and yield a co-cartesian diagram (2).

We will call a co-cartesian diagram (or pushout) (2) normal if each resulting
diagram (1) is co-cartesian. If € has pushouts, this will always be the case by
Lemma 3.3. In particular, it is true for simplicial sets.

COROLLARY 3.4. The functor S x A, where S is a simplicial object in # and A
is a simplicial object in€ , preserves normal pushouts in either variable. In particular,
a pushout F becomes a normal pushout in€ under the functor —x A. The same holds
Jor more general direct limits.

ProoF. The functor % x € —% preserves pushouts by the adjunction
property (1), §2. Apply Lemma 3.3.
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LemMma 3.5, Ler T be a finite set, S< T,and U=T—S. Let Q,C€%.
Then the diagram
SXQ—>TxQ

1

C
(withS x Q =T x Q by S < T and any f) has a pushour in6 given by
SXQ—>T xQ

@) '
C — >ClUWxQ)

where i is the injection of C in the direct sum, p | Sx Q=if,andp | U x Qis the
injection of U x Q in the direct sum.

PrOOF. The functor — x Q preserves direct sums so T x Q@ = (S x Q) I
(Ux Q). Let A =58 xQ,B=Ux Q. Then (4) is just

A—————> A1l B

C—>C1B.

This is trivially co-cartesian.

We now come to the main construction. Let A4 be a simplicial object in €,
let Qe¥, and let n:Q — Z,_,(A) be given. By Lemma 3.2, # gives us a map
A" x Q@ — 4. Consider the diagram

At Q—> A" X Q
(5)
A.

By Lemma 3.5, this has a pushout in each dimension. By Lemma 3.4, it therefore
has a pushout

A" X Q— > A" X Q

A — 5 AxQ.
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DErFINITION. The map 4 — A4 * Q is called an elementary cofibration obtained
by attaching Q to 4 by means of the map 7.

It is easy to determine the structure of (4 * Q),, for each m. Clearly (A™),, —
(A™),, consists of all elementss; - - -s; ¢where j; >+« > j,,m =r + n. Referring
to Lemmas 2.7 and 2.8 we see that (4 * Q),, is the direct sum of 4,, and one copy
of Q for each s; s, ,j1 > >j, m=r+ n Therefore A + Q agrees with
the complex defined by André [1]. In particular, (4 * Q), = A4, 11 Q, (4 * 0),, =
A, form < n.

We can now iterate the above construction.

DEFINITION. A map f: A — B of simplicial objects in € will be called a co-
fibration! if B has a filtration B < BW < - .- by simplicial subobjects such that

(1) f:A — B* is an isomorphism

(2) B « BW+ js an elementary cofibration obtained by attaching an object
Q') to BY by a map 1,1 Q1 — Zy (BY)

(3) For each m, B¢ = B,, for sufficiently large i.

Clearly any cofibration can be constructed by starting with B® = A4, forming
BV from B as in (2) and insuring that (3) holds by making sure only a finite
number of attachments are made in any given dimension, i.e. n; — .

Suppose now that Z is some class of objects of €. We say that a cofibration is a
P-cofibration if each attached Q; lies in Z.

DEFINITION.  Let 2 be a class of objects of €. Let D be a finite system in €
and f€€(X, D). We say that fis a #-epimorphism if (1, /): € (P, X) > €(P, D)
is onto for all P € Z.

Note that a #-epimorphism need not be an epimorphism in general [16].

DEFINITION. Let 2 be a class of objects in €. A simplicial object C of € is
said to be P-aspherical in dimension n if 9:C,; — Z,(C) is a P-epimorphism.

Remark. For each Qe Z, X(Q) =%(Q, C) is a simplicial set. Clearly
C is P-aspherical in dimension # if and only if for all Q € 2, X(Q) is aspherical in
dimension .

Using these notions we can now formulate the basic comparison theorem.

THEOREM 3.6. Let A— A*Q be the elementary cofibration obtained by
attaching Q to A in dimension n by a map n:Q — Z,_,(A). Let C be a simplicial
object of €. Let P be a class of objects of € with Q € P. Then

(1) If C is P-aspherical in dimension n — 1, then any map A — C extends to a
map A « Q —~ C.

(2) Let C be P-aspherical in dimensionsnandn — 1. Letf,g:A+«Q—C. If
f|A=g| A, then f~ g and we can choose the homotopy = g to extend the
homotopy f| A ~ g | A.

! 1t is not clear whether the theory presented here can be considered part of a homotopy theory
in the sense of (33). If this is so it is not clear that the present definition will be the correct choice
for cofibrations. If not, the concept defined here should probably be given another name.
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Proor. Since A * Q is defined as a pushout, we can prove (1) by producing a
map A" x @ — C making the diagram

ArxQ— A" xQ

|

A— C

commute. In other words we must extend the map A" x Q> Cto A" x Q. We
must show that Hom (A® x Q, C) — Hom (A" x Q, C) is onto. By Lemmas 3.1
and 3.2, this is just the map (1, 0):4(Q, C,) >~ 6(Q, Z,_,(C)). Thisisonto by the
definition of P-asphericity.

To prove (2) we make use of the obvious natural isomorphism § x (T x 4) =
(S X T) x A. By Corollary 3.4 and the definition of A * Q we see that the diagram

IXA"x Q—>IxA"x Q

|

IXA ——— IX(AxQ)

is co-cartesian. Since f| 4~ g| A4, we have h:I X A— C with hiq=f| 4,
hiy =g | A. Composing with the first vertical map in (9) we get I x A" x Q0 — C.
Suppose k:I X A" x Q — C extends this. Since (9) is co-cartesian, we get
ril x (A=Q)—C with r|I X A =h. Let

S =rigAxQ—~C, g =rij:AxQ—C.

Clearly f'|A =f|A,g' | A =g| A. The definition of 4 * Q as a pushout and
Lemma 3.1 show that a map of 4 * Q is completely determined by its restrictions
to A and A" x Q. Therefore to have f' =f, ¢’ =g we must choose k so

kig:A" x Q — C agrees with A" x Q >A*Q > C and kij:A" x Q—~C

agrees with A" X Q — A * Q "> C. Call these latter maps f, and g,. Therefore
we have the maps shown in the following diagram:

ArxQ — A" xQ

ip fo

(10) IxXA"xQ— > ¢
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We must find a map of 7 X A" X @ into C factoring these maps as follows:

AvxQ ——— A"xQ

. 4
(11) IXA"X Q——>Ix A" x Q > C

i1 iy

Anx Q@ —» A" x Q.

Now let ¢" be an n-simplex and ¢” its boundary. Let J be the l-simplex with
vertices 0, 1. Let £ be the complex (J X ¢") U ({0} x ¢") U({l} X ¢"). Let
S = S(2) be the associated simplicial set. By Corollary 1.3, § is the direct limit
of the diagram

2

Ar

Y

—_———e———— >

IXA" —

|
Ar—— > A"

By Corollary 3.4, S x Q is the direct limit of the diagram (10) (with C omitted)
so we get a unique map S X Q@ — C. We must now extend this to / X A" xQ—
C. Now every simplex of J X ¢" of dimension < n — 1 liesinJ X ¢". In fact the
vertices of J X ¢™are (0, v), (1, v) where v runs over the vertices of *. A simplex of
dimension < n — 1 can involve at most n different v. These v lie in a simplex of ¢".
Thus J X ¢ is obtained from X by adding n and n 4 1 simplexes as at the end of
§1. Therefore we can find subsimplicial sets

S:S(O)CS(I)C...CS(k):IxAﬂ
where we pass from S to S%+! by forming pushouts (with v =norn + 1)
Ar— > Av

(12)

St > S(i+1).

By Corollary 3.4, the product of (12) with Q is co-cartesian, so ' x Q — §G+1) x
Q is an elementary cofibration obtained by adjoining Q in dimension n or n + 1.
By part (1) of the theorem, the map S x Q — Cextends to I X A" x @ — C.
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COROLLARY 3.7. Let A — B be a P-cofibration in € and let C be a simplicia,
object of € which is P-aspherical in all dimensions. Then

(1) Any map f:A — C extends to f': B — C.

2 Iff,g:A— Cextendtof',g':B— Cand f= g then f'~ g’

PROOF. We have 4 —» B® < B c --- < B. By Theorem 3.6 we can extend
maps and homotopies one stage at a time. Since B, = B'? for large /, the maps
and homotopies so obtained clearly give the required maps and homotopies on B.

4. Simplicial resolutions. Let A be an object of €. By a simplicial resolution
of A we mean a simplicial object X of € together with a map £: X, — A such that
€0y = ¢0,. We write ¢: X — A by abuse of notation. Such a resolution may also
be regarded as an augmented simplicial object X by setting X, = X,, for n >0,
X, = Aand 9, = e:X,—> X_;. We say that the resolution is P-aspherical if X
is P-aspherical in all dimensions > 0 and in addition the diagram

[
0] X\ 3T X, >4

4

is P-exact, i.e. for all P € 2, the diagram

1,30) Le
) (P, X) == (P, X9) -2 (P, 4)
(1,2))

is exact ((1, &) is the difference cokernel of (1, 9,) and (1, 9,)). This is equivalent
to the condition that 8: X, — Z,_;(X) is a P-epimorphism for all n > 0, where

Zy(X) is the finite system X, —> A <— X,, where 3: X, —> Zo(£) is given by
X, —2 > X,
CH 3

Xo— > A

and where 0: Xy — Z_,(X) is 04: Xy — X_;.

REMARK. Clearly X'is Z-aspherical if and only if the simplicial set Hom (Q, X)
is aspherical for all Q € 2. An augmented simplicial set K is aspherical if and only
ifforeachset x,, . . ., x,,, € K, with 8,x; = 0,_,x,fori < j, thereissome y € K,
with 8,y = x;, n > —1. This is equivalent to the requirement that K satisfies
the Kan condition {29] and m,K =0, i > —1. In fact, given »n faces of a
potential n-simplex, we fill in the (n + 1)st face by asphericity in dimension n — 1
and then fill in the n-simplex by asphericity in dimension n.

DerINITION.  The resolution €: X — A is called #-cofibrant if X has a filtration
X < ¥ < ... such that

(1) X0 — A0 Q(o) with Q(o) c g,

(2) For each i> 0 either (a) X9 = XU II(A® x QY¥), QW e P, or
(b) X'V — X js an elementary cofibration obtained by attaching some Q¥ € &
to X"V by a map 4:Q") — Z, (X"V), n; > 0.
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(3) Only a finite number of attachments occur in any given dimension, i.e.
case (a) occurs only a finite number of times and in case (b), n; — .
We can now state the main comparison theorem.

THEOREM 4.1. Let A, Be €. Let P be a class of objects of €. Let e: X — A
be a P-cofibrant simplicial resolution of A and let ¢ :Y — B be a P-aspherical
simplicial resolution of B. Let f:A — Bin6. Then

(1) There is a map g: X — Y of simplicial objects such that the diagram

X0:—>A
[ f
Yo— > B

commutes (i.e. g extends f).
(2) If g, h: X — Y satisfy (1) (for the same ), then g ~ h.

PrOOF. Let X < X® < --- be the filtration given by the definition of
P-cofibrant. Then X = A? x Q9. Clearly X{* = Q. Todefine g : X — Y
we must give a map y:Q'® — Y,. This satisfies the condition that the diagram

Q' f 4
7 s

Y, — 2 B
commutes. Since &’ is a P-epimorphism and Q' € 2, such a map y will exist.
Suppose now that gi-1: XtV — ¥ is defined. In case (a), X' = X V]
(A° x Q). As in the case of X there is a map A® x Q' — Y such that the
diagram
A x QW s 4

!

|

Y— > B

commutes. This map together with g“~*) defines g'?’. Incase (b), we apply Theorem
3.6. Since Q'? is attached in a dimension > 0, X{" = X{*" in this case and the
commutativity of the diagram is automatic.

Suppose now we have g, h:X — Y. Let g™ =g|X™ and '™ =h|X™.
To show g'® ~ h® we must find a map k:/ x A® x Q' — Y with g'® = ki,
A = ki;. Let o! be a I-simplex with vertices 0, 1. Then I = S(¢"). Let E =
S({0,1}). Then E=A°IIA° and k | E x A® x Q' is uniquely defined by the
conditions g'® = ki;, h'® = ki;. We must extend this to I x A® x Q'®. But
I x A%~ Iis obtained from E X A’ ~ E by attaching one simplex of dimension 1.
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Therefore, as in the proof of Theorem 3.6, E X A® X Q@ — I x A% x Q@ is
an elementary cofibration. Theorem 3.6 now gives the necessary extension.

Next we must extend a homotopy between g!i-1 and A1) to one between g'*)
and A‘?. [n case (a) we have X' = X1 [] (A® x Q). In thiscase] x X' =
(I x XYL x A® x Q') since I Xx— preserves direct limits. Take the
homotopy g’ ~ At~ on the first summand and define the homotopy on the
second by the same method used for g'@ ~ A‘®, In case (b), apply Theorem 3.6.

Finally, once we have the map or homotopy defined for all X, we get the
required map or homotopy on X by X = lim X,

—

COROLLARY 4.2. Let Ac¥. Let e:X—> A and ¢:Y — A be P-aspherical,
P-cofibrant resolutions. Then there are maps f:X — Y, g:Y — X extending id 4,
and fg~ idy, gf >~ idy.

We can now define derived functors as in the abelian case, getting homotopy
classes of simplicial objects [2]. Itfollows directly from the definition or Proposition
2.1 that f ~ f” implies gf ~ gf", fh ~ f’h for maps of simplicial objects. Using the
equivalence relation generated by the relation of homotopy, we can define homo-
topy classes of maps. Let H(%) be the category of simplicial objects of € and
homotopy classes of maps. Suppose each object A of € has a P-aspherical,
P-cofibrant resolution £:X — A. Choose one for each A4 and define a functor
L, € —>H@®)by L,(A) = X. Iff:A— B, liftittog:X — Y (where Y = L,(B))
and define L,(f) to be the homotopy class of g. By Theorem 4.1 this is a well-
defined covariant functor. By Corollary 4.2 it is unique up to unique isomorphism.
Now if F:€ — £ is any covariant functor, it defines a functor H(F): H(¥) — H(2)
by (H(F)(X)), = F(X,). By Proposition 2.1 this preserves homotopy classes of
maps.

DerINITION. L,F = H(F) - L;:%4 — H(2).

If D is the category of sets, groups, abelian groups, etc. we can define homotopy
groups and sets L, F = =, LF.

To apply this construction we need to show the existence of resolutions.

DerINITION.  Let & be a class of objects of €. We say that & is adequate if
for each finite system D in €, there is a Z-epimorphism Q — D with Q € Z.

If € has finite inverse limits, it will clearly suffice to check this condition for
objects De¥.

PROPOSITION 4.3, If & is adequate every object of € has a P-aspherical,
P-cofibrant resolution.

ProoF. Let A€®. Let Q' — A be a P-epimorphism with 0 e &, Let
X0 =A% x Q© with £:X{» =Q® — 4 the given map. Let D be the finite
system X,—> A<—X,. Let y:0V — D be a Z-epimorphism with QV € 2.
Then y is determined by a pair of maps 7y, 7,: Q" — X,, i.e. a map n:Q" —
Z,(X). Attach 0"V to X' by 7, getting X'V. The sequence

60
1 —> yn _©
X} a’X" —> A
1
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is now clearly P-exact. Suppose X™ has been defined such that £: X — 4 is
P-aspherical in dimensions < n. Let 5:Q"V — Z (X)) be a Z-epimorphism
with Q*+1 e 2. Attach Q") to X™ by # getting X"+ Finally, let X = U X®,

REMARK. Suppose & is a class of morphisms in €. Define P €% to be &-
projective if €(P, f) is onto for all f€ &. The relation “€ (P, f) is onto” sets up a
“galois connection” [8] between objects and maps in % as in [16]. Therefore if $*
is the class of Z-epimorphisms and &* the class of &-projectives, we have con-
travariance: &, < P,implies ZF > ¥, & < &, implies 6F = &F; and we have
the adjunction: & < &* ifandonlyif & © P*. Thus £* = £***, P* = Pr*x*
just as in [16). It is often convenient to choose & first and then set & = &*.

REMARK. Suppose, for convenience, that € has finite inverse limits. We say
that a class of maps & is nearly adequate if for any 4 €% and finite set of maps
Sisoo fo€&, thereisamapg:Q — Asuchthatg € £and€(Q, 1), . . . , €(Q, f.)
are all onto. For such an &, we can construct resolutions which are &-aspherical
and cofibrant, the attached Q'’s being &'V-projective, where the &£ are any
preassigned finite subsets of &. The arguments above show that these resolutions
form an inverse system up to homotopy. Thus we obtain a functor L:% —
pro H(%). This is clearly very closely related to Verdier’s theory of hypercoverings
[3], [37]. 1 have not yet checked to see whether the two theories yield the same
results.

5. Aspherical models. We first consider the abelian case (acyclic models)
obtain some motivation. Suppose &/ and & are abelian categories and S: o/ — 4,
T:% — o are adjoint functors, #(SA, B) ~ </(A, TB). Suppose also that T
is exact. Since S is right exact it is reasonable to look at its left derived functors
S, = L,S. We can then define a homology theory on # by setting H, = §,° T
# — #. Similarly if S is exact we let T = R"T and define a cohomology theory
on./ by H* = T" S:.o/ — /. The idea of defining a cohomology theory in this
way is suggested by the following remark due to P. Freyd. Let % be an abelian
category. Let &/ consist of all additive covariant functors ¥ — /£ and let %
be the full subcategory of left exact functors. Leti: % — .o/ be the inclusion. This
has an exact left adjoint R®: .o/ — # [18], [20]. Freyd’s remark is that we may
calculate the higher derived functors of some Fe ./ by R*F = i"(R°F) where
i" = R™i).

We now apply the above idea to the following special case. Let .#, € be
categories and i:.# — € a covariant functor. Define res: &/£% — o/ by res F =
Fei,i.e.if iisaninclusion, res is just restriction to .#. This functor is clearly exact.
It has a leftadjoint adj: &/£¥ — o7% [24]. We shall see below that sZ¢# has enough
projectives so we can consider the derived functors adj, = L,(adj) and define
H,: 6% — o/£% to be adj, °res. If we are given some F:% — /¢, we may
define H,(C, F) = H, (F)(C) for C € €. This point of view has been noted inde-
pendently by Oberst [32], who has shown that most of the standard cohomology
theories can be obtained in this way.

The usefulness of this point of view for the present work is that it leads very |
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directly to the theory of acyclic models. This has been observed independently
by Ulmer and will appear in a set of notes which he is preparing. We think of .#
as the category of models. Let F e &//%. To calculate H,(F), we choose a pro-
jective resolution P, — res F in 2//%, apply adj getting a chain complex C, =
adj P, in &//%, and then take homology. Now it is easy to see that res adj is the
identity on /4. Therefore res C, = P,. Thus the condition that C, be acyclic
on models is equivalent to the exactness of the resolution P,. Now, assuming .#
is a full subcategory of &, the condition that a functor C € &//% be “representable”
in the sense of acyclic models turns out to be equivalent to the condition that
C ~ adj P where Pis projective in 2/4%. Thisin turnisequivalent to the conditions
(a) res Cis projective in /4% and (b) C ~ adj res C. The proof is the exact ana-
logue of that given below for the nonabelian case. We now obtain the comparison
theorem for acyclic model theory [14] as follows. Let C,, D, be chain complexes
in &Z¢% augmented by Cy — A, D, — B. Assume C, is “representable” and D, —
B is acyclic on models. Given 4 — B, apply the functor res and invoke the usual
projective-acyclic comparison theorem getting res Cy, — res D, unique up to
homotopy. Then apply the functor adj and get C,, = adj res C,, — adjres D, —
D, unique up to homotopy. Any two maps C, — D, over the given 4 — B are
homotopic by the same argument.

We now generalize to the nonabelian case. Let % be a right complete category.
Let i:.# — € be as above. Define res: %% — &% by res F = Fei. This again
has a right adjoint adj: %% — %% given by adj G(C) =1im G | # where A4

—

is the category whose objects are pairs (M, f) with f:i(M) — C and the obvious
morphisms {24]. We want to define left derived functors L, adj as in §4. This
requires us to choose some class & and show that it is adequate. One standard way
to do this is as follows. The notation introduced here will be used constantly
throughout the rest of this paper.

For simplicity, we assume % has finite inverse limits. This implies the same
property for all functor categories ¥#, %*. With this assumption, a class &
will be adequate if and only if each object admits a Z-epimorphism Q — X with
Qe .

Let & be a class of objects of & and & a class of maps of 4 such that #* = &,
&* = P asin §4,

DerINITION.  The class &’ in %% consists of all maps %:F — G such that for
each M € .4, the map #,,: F(M) -~ G(M)isin & Define #' = &'*.

PROPOSITION 5.1.  We have '* = &'. If P is adequate, so is P'.

Proor. We use the following general construction. let .#, be the discrete
category consisting of all objects of .# and all identity maps. The inclusion
My < M gives a functor ¥ — %"+ which has a right adjoint as above. Ex-
plictly, this functor can be described as follows. An object of %% is just an
indexed collection (Q;,);,c » of objects of 4. Under the adjoint, this is sent into an
object P € ¥-# where P(X) = [[,,_.x @i This follows immediately from Kan’s
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general construction. The adjunction property is

) Hom (P, F) = T] Hom (Q,;, F(M)).
Me#

It should be noted that if .# is a full subcategory of € and i/ is the inclusion, then
the inclusion .#, = .# < € gives us a functor 9% — ¥4 whose right adjoint is
given by exactly the same formula as P above (using all X € ¥). The composition
G4 — 4% — G s thus the same right adjoint of ¥# — G4,

Suppose now all Q,, € #. If 5:F— G lies in 6’, then each F(M)— G(M)
lies in &, so Hom (Q 4, F(M)) — Hom (@ ;, G(M)) is onto. Therefore, by (1),
Hom (P, F)—~ Hom (P, G) is onto. Thus P € # by definition. Conversely, if
F— G lies in #'*, then (1) shows that Hom (Q,,, F(M)) — Hom (Q,,, G(M)) is
onto for all @, € P so F(M)— G(M) lies in & for all M. Thus #'* = &,

Finally, suppose & is adequate. Given F e %, choose vy;: Q4 — F(M)in &
for each M, with 0, € . Construct P as above. By (1), there is some v:P — F
so that v induces »,,: Q4 — F(M). We have just seen that v € " and Pe &',

As an example we may let ¢ be an abelian category with enough projectives,
let & consist of all epimorphisms, and let & consist of all projectives. This gives
us the usual theory of acyclic models by virtue of the equivalence between chain
complexes and simplicial abelian groups [11].

We now examine the case where # is a full subcategory of €. In this case we
can follow the method of [10]. As above, let Z be a class of objects of ¥ and &
a class of maps of ¥ with &* = &, #* = &. We continue to assume that ¢
has finite inverse limits. The notation introduced in the following definition will
also be used constantly throughout the rest of this paper.

DEFINITION. Let &” be the class of maps F— G in %¥ such that for each
object M € .4, the map F(M) —> G(M)isin &. Let " = &"*.

PROPOSITION 5.2. We have P"* = &". If P is adequate, so is F".

ProOF. Define the functor P(X) for X € % as in the proof of Proposition 5.1.
The formula (1) continues to hold. The rest of the proof of Proposition 5.1. goes
through without change.

Suppose Fe 9%, Assume 2 is adequate. Using the method first considered,
we form res F € 4%, choose a #'-aspherical, ’-cofibrant resolution &: P’ — res F.
We then apply the adjoint adj: %-“ — %¥ getting adj P’ — adjres F— F. This
leads to the same result as the second method.

PROPOSITION 5.3.  The resolution adj P’ — F is P"-aspherical and P"-cofibrant.

PrOOF. Since .# is a full subcategory of €, it is trivial to check that res adj =
id. Now, by the definition of §”, a resolution P* — F in % is #"-aspherical if
and only if res P” — res F is & ’-aspherical. But res adj P’ — res F is just P’ —
res F. Since adj is a right adjoint, it preserves all direct limits. Now P’ is obtained
by starting with some A® x Q‘® and adjoining various Q) € &’ successively, either
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by forming P™ = P~V [ (A® x Q™) or letting P™ be the pushout of
Ar x QW — 5 AT x QW
|

v

Py, pm

Now if Qe %*# and K is a simplicial set, we have adj (K x Q) = K x adj Q.
This follows from Corollary 3.4. To show that adj P’ is #"-cofibrant we need only
show all adj Q'™ € .

LEMMA 5.3. Let G € 9%. Then G € #" if and only if G has the form G = adj Q
where Q € 9% and Q € P’ or equivalently, if res G € &' and adjres G — G is an
isomorphism.

Proor. If Q € # and f:F— F'in ¥, we have Hom (adj Q, f) = Hom (Q,
res ). Butfe & ifand onlyifres f€&. ThusadjQ e #"if Q € #'. Conversely,
suppose G € #”. Construct 7:P — G as in the proof of Proposition 5.2. Since
G € #" and n € &, 7 splits, i.e. there is some v:G — P such that n» = id;. Now
P is obtained from (Q,) € ¥4 by applying the adjoint ¥#¢ — %*_ This is the
composition of the two adjoints ¥#¢ — %% — &% The first of these, applied to
(Q 1), yields the P of Proposition 5.1, but this is just res P. Therefore adjres P = P,
Now applying adj res to the maps », 7 gives

adjresG ——— adjresP———adjres G

G —— P —— G
Both horizontal compositions are the identity. Therefore the composition G —
P = adjres P — adj res G is an inverse for adj res G — G, so this map is an iso-
morphism. Also res G is a retract of res Pe &', so res G € &'
A similar argument works in the other direction. Let Fe ¥ and lete: #" — F
be a P"-cofibrant, #"-aspherical resolution of F.

PROPOSITION 5.4.  The resolution res P” — res F is #'-cofibrant and &'-aspheri-
cal, and adjres P" = P".

Proof. Clearly fe & implies res f€ &’ and Lemma 5.3 shows that @ € &7
implies res Q € #'. Also res preserves all direct and inverse limits. It is clear
from this that res P” — res F is Z'-cofibrant and #’-aspherical. Now, in each
dimension, P” is a direct sum of various Q, € #". Therefore, the definition
P" = &"* shows that P] € #". Lemma 5.3 shows that adj res P" — P is an iso-
morphism.

Therefore the simplicial resolutions P” — F obtained by applying L, adj to
res F are the same as the &"-aspherical, #’-cofibrant resolutions of F.
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REMARK. Suppose we consider the case where & consists of all objects of ¥
and & consists of all split epimorphisms. Clearly £ is adequate. This caseisclosely
related to the work of André [2]. In fact the standard resolution used in [2] is
easily shown to be P-cofibrant. If % is abelian, it is also very easy to show that the
standard resolution is #-aspherical. This shows that André’s method leads to the
same cohomology as the method used here. However, if % is not abelian, it is not
clear whether the standard resolution will be Z-aspherical.

6. Group valued functors. We now assume & = %4, the category of all groups.
The results obtained here will also hold for the case ¥ = /¢, the category of
abelian groups, but in this case we merely recover the classical theory of acyclic
models.

LEMMA 6.1. A map n:F— Gin% ¥ isan epimorphismifandonly if 1,1 : F(M) —
G(M) is onto forall M € A .

PrOOF. Let F'(M) = imn; < G(M). Let H(M) be the pushout of the
diagram.

F'(M)——> G(M)
|
|
| u

v
G(M) ———-> H(M).

v

If M — M'in .# we get a map of diagrams and hence a map of their pushouts. Thus
H is a functor, He % and u, v:G — H, un = vy. If 5 is an epimorphism, this
implies ¢ = ». But H(M) is the free product of two copies of G(M) with amalga-
mated subgroup F'(M). Therefore 4 = v can only happen if F'(M) = G(M). The
converse is trivial.

It follows from this that if £ is the class of epimorphisms in 4/, then &' defined
in §5, is the class of epimorphisms in ¥##. Thus &' is the class of projectives in
Y s*. The existence of free groups shows that 2 is adequate. Therefore so is
Z'. This class & will be the only one we will use for the rest of this paper.

Now if G is a simplicial object of ¥/, we have a simplicial group G(C) for
each C € 4. Therefore we can consider the groups m,,(G(C)). This gives a sequence
of functors =,G € .(9/1@ Given Fe 9/#, let P'— F be an & -aspherical, Z'-
cofibrant resolution in %'#. Then adj P’ is a simplicial object of ¥/°.

DeriNiTION.  Let adj, (F) = m,(adj P'). Clearly adj,:%/" — %/° is a co-
variant factor.

DEFINITION.  Let H,: %% — &% be given by H, = adj,, ° res.

Since =, of a simplicial group is abelian for n % 0, adj, F and H,(F) lie in the
subcategory &/£¢ < ?//‘ forn # 0.

We can also define augmented homology groups as follows. We have
e:P' — res F so adj P’ — adj res F — F. Define H,(F) to be =, of the augmented
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simplicial object obtained from adj P’ by adding F in dimension —1 and letting
dy:adj Py — F be the map induced by adj P’ — F. Clearly A,(F) = H,(F) for
n > 1, while A(F), A_,(F)are the kernel and cokernel of the map &: Ho( F) —F.
Of course H_(F) will only be defined if the image of ¢ is normal in F.

We now show how to obtain a long exact sequence for each map C — C’ in
€. If G is a simplicial group, the Moore subcomplex of G is defined by letting
M, (G) be the subgroup of G, consisting of all x € G, such that d.x =1 for i < n.
The map 0: M, (G) — M, (G)is given by 0,. Itis well known [29] that M, (G) is
a nonabelian chain complex whose homology gives the homotopy =, (G).

LeMMA 6.2, Let f:G — H be a map of simplicial groups. Let N = ker f i.e.
N, =kerf,:G, — H, for each n. Then N is a simplicial subgroup of G and

0 — My (N)—> M (G) > My(H)
is exact. If f,:G, — H, is onto, then

I - M, (N)—> M(G) > M, (H)— 1
Is exact.

PrOOF. Only the last assertion is nontrivial. Let # € M, (H). There is an
element g € G, with f(g) = . Suppose we have such an element with d,g = 1 for
i < m where m < n. Thisisclearif m = 0. Letg’ = g(s,,0,g)". Thend,g' =1
for i <m and f(g') = (s,9,/) =h. Repeating this we eventually find an
element g € M, (G) with f(g) = /. Note that 5,0, is only defined for m < n,
since there isno s, on G,_;.

CoRoOLLARY 6.3. Let f:G — H be a map of simplicial groups which is onto.
Let N = ker f. Then there is along exact sequence

-—>a,N—->=7,G—->m,H>7, N> >7G—>mH—>0

The proof is the same as that in the abelian case.

To get a long exacl sequence when f is not onto we must use an auxiliary con-
struction.

DerFINITION.  Let G be a simplicial group. Define PG to be the simplicial group
given by (PG), = ker 0'1:G,,, — G, with the same 0, and s, as for G. Define
p:PG—>Gbyp,=0,,:G,.,—G, Let s :(PG),—(PG),., bes,, :G
G

n+1° 7 n+1 -

LEMMA 6.4. PG is a simplicial group, p is a map of simplicial groups. The map
$x :(PG), — (PG),,, satisfies the conditions 0,5, = 540, for i <n, 0,,,5, =id if
n>0. Ifn =0, we have 8454 (x) = 1 for all x and 0,5, = id.

This follows by easy calculations. We also have 5,5, = 545, fori < n,s, 54 =
5S¢
A\]

LEMMA 6.5.. Let G be a simplicial group. Suppose there is a homomorphism
S$:G,—G,,, for a given n > 0 satisfying 9,S = S0,,i =0,...,n, 0,,5 =id.
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Then G is aspherical in dimension n. The same is true in dimension n = 0 if we have
0oSx =1 for all x.

Proor. Let x€ M, (G), 0x = 1. Then &;x =1 fori =0, ..., n Therefore
Sx € M, ,1(G) but 0S(x) = 9,,,5(x) = x.

LEMMA 6.6.  For any simplicial group G, the simplicial group PG is contractible.
The map M, (PG) — M ,(G) induced by p: PG — G is onto for n > 0.

Proor. By Lemma 6.5, PG is aspherical in all dimensions. Since it satisfies the
Kan condition [29], it is contractible [29]. If x € M (G), n > 0, then fpx = 1.
Let y = s,x. Then 07*ly = 0pd,y = dpx =1, so y € (PG),. We have p(y) =
0,,,y=x. Butd,y =9;s,x =5, ,0,x =1fori<n,soyeM,(PG).

PRrOPOSITION 6.7.  To each map of simplicial groups f:G — H, there is associated,
in a functorial way, a long exact sequence

o (G H) = 7, (G) > 7 (H) = 7, (G — H) =+« — 7o(G) — mo(H).

Proor. Consider the direct sum (free product) G 11 PH. Map this into H by
fon G and p on PH, getting | - N— G I PH — H. Since PH is contractible,
G 11 PH has the homotopy type of G LI 1 = G so the inclusion G — G LI PH

induces isomorphisms 7, G s m,(G I PH). We have
1> M, (N)—-> M (Gl HP)—> M (H)— 1,

the exactness at the right being a consequence of Lemma 6.6. The long exact
sequence follows as in Corollary 6.3, except that there is no 0 at the right since
My(G 11 PH) — My(H) need not be onto.

To conclude this section, we observe that there is a somewhat simpler construc-
tion for cofibrant aspherical resolutions in the case of group valued functors.

Suppose G is a simplicial group. Then Z, ,(G) = {(x,,...,x,) | x;€G,_,,
0,x; = 0, yx, for i < j}. We can embed ZM, (G) ={x€G,,|0x =1,i <
n—1} in Z, (G) by sending xeZM, ,(G) to (1,1,...,1,x)eZ (G). This

extends immediately to simplicial objects in &% (or 9/*). Suppose now G is such
an object, Q is an object of ¥/# and 1:Q —ZM,_,(G) < Z,_,(G). We may use
7 to attach Q to G getting G * Q. As always (G x Q), = G, fori < nand in
particular M, (G * Q)= M, ,(G). Now on(Q)=1 for i<n, so Q<
M, (G * Q). If we choose %:Q —ZM,_(G) to be in &'(or &), then Q(M)—
ZM, (GYM)isontoforeach M € 4. Thereforen,_,(G * Q(M)) = OforM e A,
sn G * O is aspherical in dimension n — 1. Thus it suffices to attach our Qs by
maps 1:Q — ZM,_(G) rather than by the more complicated maps Q — Z,_(G).
Similarly, in starting our resolution, when we attach a 0V to A® x Q' in dimen-
sion I, our aim is to make

oW I, 0O 5 F
n
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P'-exact, i.e. for each M € #, we want F(M) to be the difference cokernel of
QW(M) 3 Q(M). For this it will clearly suffice to let N be the kernel of Q' —
F, find QW e &’ and a & -epimorphism 5:Q% — N and define 7,(QV) =1,
7, = 5. In other words, we find 7:0QY — ZMy(A® X Q) = My(A® x Q) =
Q' such that QW e &’ and Q'Y — ker [Q® — Flisin &".

It is quite easy to determine m, of the resulting simplicial resolution. In fact,
mo(G,) is the difference cokernel of G, = G,. Now, after attaching QV), we get
Gy, = 09, G, = QW II 9V, Since 0,, 0, are the same on the summand Q'@ of G,
mo(G,) Will be the difference cokernel of QW = Q9. Since we chose Q) so that
0y | QW is trivial and 8, | QW is ), this shows that my(G,(C)) is the quotient of
Q'9(C) by the normal subgroup generated by the image of 5: QW (C) — Q(C).

7. Topological K-theory. In this section we comsider topological K-theory in
order to get some motivation for the definition given in §8. The reader who is not
familiar with topological K-theory may skip this section with no essential loss.

Let X be a finite CW-complex with base point. Let G = GL(C) = li_rr>1 GL(n, C)

be the infinite general linear group over C with the usual topology. Then
K-(X) = [X, G]and K- = [S"'X, G]for n > | [4]. We can easily obtain these
groups as the cohomology groups of a nonabelian cochain complex. Let PX
denote the path space of X. Let C"(X) be the set of all maps (not homotopy
classes) of X into PQ*G. This has a natural group structure obtained from that of
G. Define 0:C—™(X)— C"*(X) to be the map induced by PQ"G — PQ"G,
this latter map being obtained from the diagram

PQG PQG

NN\

If fe C*(X) and 9f = 1, then the composition X — PQ"G — "G must be trivial,
since Q*G — PQ" G is 1 — 1. Thus f maps X into Q"HG. If f, g: X — Q"G
and f=>~g, then ¢ lifts to a map X — PQ"*'G, since PQ*1G — Q™G is a
fibration. Conversely if f~'g lifts then f~ g, since PQ"'G is contractible. It
follows that K~*(X) = H-"+2(C*(X))for n > 2. To get the same result for n = 1
we must augment the complex, defining C1(X) to consist of all maps of X into G.

If we repeat the above construction replacing G by an Eilenberg-MacLane space
K(m, n), we get a portion of the ordinary cohomology of X. This suggests that the
main differences between K-theory and ordinary cohomology theory are: (a) the
use of nonabelian groups, and (b) the choice of G = GL(C) as the initial group in
place of K(, n).

This construction is easily modified so as to agree with our simplicial point of
view. The functor P is defined to be P(X) = {w:] — X| w(0) = *} where * is the
basepoint. Let 1 be the identity functor and define P — 1 by w — w(1). Define
P > Po Pbysending w to f:1 x I — X where f(x, t) = w(st). Itis trivial to verify
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that these two maps make P into a comonad [15], [27] which is right adjoint to the
usual monad structure on the cone functor. Associated with this comonad, there
is a simplicial functor P, defined in the usual way. Applying this functor to
G = GL(C) gives us a simplicial topological group P,(G). If X is any space, let
G.(X) be all maps of X into P,(G). Then G, = (G,) is a functor from spaces to
simplicial groups. Now if 4 is a simplicial group, the Moore subcomplex M(A)
is a nonabelian chain complex and = (4) = H,(M,(4)). If X is a topological
space, it is trivial to verify that M, (G, (X)) = C™(X)as defined above. Therefore
K(X) =7, o(G,(X)). To get K-2and K~ we must assume G, (X)is augmented,
having GL(C)¥ in dimension —1.

I will now try to give an analogue of this in the algebraic case. As mentioned
above the main difference between K-theory and cohomology seems to lie in replac-
ing abelian cochain complexes by nonabelian ones and starting with GL(C).

8. Algebraic K-theory. Let us first recall briefly the definitions of K; and X,
given by Bass and Milnor respectively. Let R be a ring with unit. Let GL(R) =
lim GL,(R)be the infinite general linear group over R and let E(R) be the subgroup
—

generated by all 1 + re,; where r € R and ¢,; is the matrix with 1 in the (i, j)-place
and 0 eclsewhere. Then E(R) = [GL(R), GL(R)]. Bass defines K (R) =
GL(R)/E(R). Let ST(R) be the group generated by symbols e (r) for r e R,
i,j > 1integers, i # j, with the Steinberg relations [35]

(1) ey(r + 5) = e;(r)e;;(s),

(2) [ei(n), €] = 1if i £ m,j %k,
(3) [eis(r), e;m(8)] = e;m(rs) if i 7= m,
(4) [e;5(r), ()] = eps(—sr) if j # k.

Note that (4) is a consequence of (3). Define ST(R) - GL(R) by sending e(r)
to 1 + re;;. The image is E(R). The kernel turns out to be the center of ST(R)
[30], [36] and we define Kp(R) = ker [ST(R) — GL(R)].

In each case we take the obvious generators or relations (1 4 re;; for generators
of GL(R), the Steinberg relations for relations in E(R)) and let Ki(R),i=1, 2
be whatever is left over. This is very close to the well-known prescription of Eilen-
berg-MacLane for defining cohomology [13]. This suggests defining K, (R) by the
same procedure. Since we are using nonabelian chain groups, this agrees with the
point of view of §7.

The main difficulty with this approach is that it is not at all obvious what the
“‘obvious” generators and relations should be. One way of deciding this in ordinary
cohomology theory is to choose some category of models and define the “obvious”
relations to be those which hold for models. This leads to the theory of acyclic
models. Therefore we will define K, using the theory developed in §5 and §6.

The only problem remaining is the choice of models. In the topological case,
the usual choice is the class of contractible spaces. The algebraic analogue is the
class of free rings. However this is still not quite correct. If X is a contractible
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space with basepoint x, we do not have K—(X) = 0forn # Obut only K—*(X, x) =
0. The algebraic analogue of a basepoint is an augmentation. This suggests con-
sidering the category of augmented Z-algebras. We use instead an equivalent
category. Let Z be the category of all associative rings, not necessarily with unit
and ring homomorphisms (which need not preserve units). Let .o/ be the category
of augmented Z-algebras. An object of .27 consists of a ring 4 with unit and a unit
preserving ring homomorphism &: 4 — Z. Define a functor from &/ to # by
sending (4, ¢) to ker &. If R € # we can adjoin a unit to R by letting R, =Z ® R
as abelian group, with multiplication given by (m, r)(n, s) = (mn, ms + nr -+ rs).
Define e: R, — Z by e(m, r) = m. Then (R,, €)isan augmented Z-algebra. Clearly
the functors (4, €) — ker ¢, R — (R, €) define an equivalence between .o/ and Z.

Let #, be the subcategory of £ consisting of rings with unit and unit preserving
homomorphisms. Note that %, is not a full subcategory of #. The inclusion
it A, < X has a left adjoint which sends R to R,. The fact that R, = R even
for R € &, shows again that Z, is not full in #. Let F: #, — o// be a covariant
functor from #, to the category of abelian groups. We define a functor
F: R — o/ by setting F(R) = ker [F(R,) > F(Z)].

LemMa 8.1.  For R € &y, there is a natural isomorphism R, ~ R x ZL.

PrOOF. Send R, to R by (m, r) —ml + r and to Z by &(m, r) = m.
COROLLARY 8.2. If F:R, — /¢ preserves finite direct products then F'| R, = F.
In this case we can write F for F without any confusion.

LemMA 8.3,  The functors K,, K,: R, — /¢ preserve finite direct products.

ProoF. Clearly GL(R X R") = GL(R) X GL(R’). We must show the same for
ST. We have a map ST(R x R')— ST(R) x ST(R’). Now identify R X R’
with R ® R’ so Rand R’ are embedded as R X 0,0 x R’. ThenforreR,r' € R’
we have e (r, r') = e;(r)e;;(r'). The e,(r) for r € R satisfy all the relations for
ST(R) and no more, since the subgroup they generate maps onto ST(R) under
ST(R x R)— ST(R) x ST(R’). Thus these elements generate a subgroup
ST(R) < ST(R x R"). Similarly we have a subgroup ST(R) < ST(R x R').
If we can show that these subgroups commute we will have a map ST(R) X
ST(R") — ST(R x R’) which is clearly an inverse for ST(R x R")— ST(R) x
ST(R'). Now e;;(r) and e, (r') commute by the Steinberg relations except when
k =j, m =i. In this case, choose n # i,j. Let ¢ be the unit of R". Then
e;(r') = le;,(€"), e,;(r')]. But both terms of this commutator commute with
e;;(r) by the Steinberg relations.

It follows from this that we can extend the functors K; and K, to # by setting
K,(R) = ker [K,(R,) — K,(Z)]. Similarly we can extend GL and ST. It is very
easy to describe GL(R) directly for Re #. It is, by definition, the kernel of
GL(R,)— GL(Z) and so consists of all invertible matrices I + Q where Q has
entries in R. Consider all matrices Q@ = (q,;), i,j > 1 integers, with only a finite
number of nonzero entries. Define an operation by Po Q =P 4+ Q 4+ PQ. Let
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GL(R,) consist of all such matrices Q for which thereisa PwithPo Q = Qo P ==0.
The operation P < Q makes GL(R) into a group. It is isomorphic to ker [GL(R,) —
GL(Z)] by the map sending P to I + P. In fact, if A — B is any map in £ with
kernel R then GL(R) ~ ker [GL(A) — GL(B)]. If R has a unit, the map P>
I + P identifies the present GL(R) with the usual one. Since GL(R,) is a split
extension with kernel GL(R) and quotient GL(Z), we see that GL(Z) acts naturally
on GL(R). In terms of the above representation, this is simply given by 4 - Q =
AQA for A € GL(Z), Q € GL(R).

The group ST(R) is not as easy to describe. As in the case of GL(R), the group
ST(Z) acts naturally on ST(R). We can describe ST(R) in terms of this action.

LEMMA 8.4. For any R € Z, the group ST(R) can be presented as a group having
ST(Z) as group of operators and, with respect to these operators, the generators
e (r)fori,j>1,i#j,reR. The relations are

(1) e;,(r)e;;(s) = e;(r + 5)

(2) lei(r), @) =1 ifj #£ k, i m

(3) [eis(r), en(s)] = eylrs)

(4) ey(z) - e,(r) = e (r) forze L

(5) e;(2) - eem(s) = €S forz €L, i #£=m,j#k
(6) e;(2) - e (s) = ey(zs)es(s) forze L, i # k
(7) e;(2) - eyi(s) = ex;(—zs)ey(s) for z€ L, j # k.

Here a - b denotes aba™ for a € ST(Z), b € ST(R).

Proor. This is an easy consequence of the Reidemeister-Schreier theorem
[28]. The only difficulty is to make sure that no relations are overlooked. As a
check, we may verify the result as follows. Let ST'(R) be the group defined by the
above relations. Since it is given with an action of ST(Z) we may form the semi-
direct product ST(Z) X ST'(R). Define ST(Z) x ST'(R) — ST(R,) by sending
(e;5(2), 1) to e;;((z, 0)) and (1, e;;(s)) to e;;(0, s). We check easily that all relations
are satisfied. Define ST(R,)— ST(Z) X ST'(R) by sending e,;((z, r)) to (e;;(z),
e;;(r)). Again all relations are satisfied. Both compositions are clearly the identity.
Therefore ST(R,) = ST(Z) X ST'(R). This clearly identifies ST'(R) with ST(R).

We now define the map 6:ST(R) — GL(R) as follows. The map ST(Z) —
GL(Z) makes ST(Z) act on GL(R). Let 6 be the ST(Z)-homomorphism sending
e,;(r) to re;;, where re;; is the matrix having r in position (i, j) and O elsewhere. We
now have K,(R) = ker 6, K,(R) = ckr 6. This follows from the diagram

| —— ST(R) ——> ST(R,) — > ST(Z) ——> 1

|

1 — > GL(R) ——> GL(R,)) ——> GL(Z) ——> 1.

'
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By the usual snake lemma, this gives a long exact sequence
0 — ker 0 — Ky(R,) — Ky(Z) — ckr 0 — Ky (R,) — K\(Z) — 0,

which yields our result since R, — Z splits.

For each n, let R\ be the free associative ring with unit on n noncommuting
indeterminates xy, . . . , x,. Define ¢:R{¥ — Z by &(x,) = 0 for all i. This makes
R'™ an augmented Z-algebra. The kernel R'™ of ¢ consists of all noncommutative
polynomials in xy, . .. , x,, with integral coefficients and zero constant term. It is
clearly the free associative ring (without unit) on x,...,x,. By [22], [34], ¢
induces an isomorphism K;(R™™) — K;(Z). This shows K,(R"™) = 0. This is the
algebraic analogue of the fact that K~'(X, x) =0 for a contractible space X.
This makes it reasonable to expect that K,(R"™) = 0. This has not yet been proved
but recent work of P. M. Cohn and his students on GL(R") should make this acces-
sible. At any rate, it suggests again that the R"™ should be reasonable as models.

We therefore let .# be the full subcategory of # whose objects are the R'™.
Consider the fungtor GL: # — % 4. As in §6, we can define AA(GL): % — G4 for
n > —1. We make the following tentative definition.

DEFINITION.  Let K, = H, o(GL):# — %4 forn > 1.

By the remarks of §7 and those of the present section, this appears to be a
reasonable choice. Further justification is given by the following result.

THEOREM 8.5. The above definition of K, agrees with Bass’s definition. If we
denote Milnor’s K, by K, there is a natural map K, —~ K,. For every Re X,
K;(R) — Ky(R) is onto and the kernel is generated by the images of all K,(R™),
n > 1 under all maps R"™ — R.

COROLLARY 8.6. If K,(R™) = 0 for all n, then K, — K, is an isomorphism.

Before giving the proof, we give a general method for constructing elements of
P in 94*. Suppose we are given sets S, for n >0, n€ Z. For each ring R,
let P(R) be the free group generated by all R® X §,, i.e. P(R) has one generator
e(ry,...,r,,s) for each n >0, se8§,, r,...,r,eR If fiR—~ R define
P(f):P(R) — P(R’) by sending e(r,,...,r,,s) to e(fry, ..., [fr,,s). Clearly P
is a functor from % to ¥4. Let &” be as in §6.

LeMMA 8.7.  The functor P lies in Z".

PROOF. Let 7:F— G lie in &”, i.e. : F(R™) — G(R™) is onto for each n.
Let 9:P - G. Wemustlift ptoy:P—F. Forr=(r,...,r,),let F:R"™ > R
be the unique map sending x; tor,, i =1, ..., n. Then P(f)sendse(x,, ..., x,, 5}
to e(ry, ..., r,, s). Foreach n >0 and s € S, choose an element a,(s) € F(R"™)
which maps onto ¢(e(x,, . . ., x,,, 5)) under 5. Define pz: P(R) — F(R) by sending
e(ry, ..., r,s)to F(fa,(s). Itis a routine matter to check that y is natural and
lifts ¢.

Proor oF THEOREM 8.5. We must construct a simplicial resolution for GL.
For the first step we need to find some G, € #” and a map G, — GL in ”. Let
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Go(R) be the free group on generators e;;(r, «) fori,j >1,i # j,re R, « € ST(Z).
Then G, € 2" by Lemma 8.7 with S = {(i, ) | i,j =1, i%j} x ST(Z). Define
an action of ST(Z) on Gy(R) by f:e;(r, «) = e;(r, f- o). Define £5:G(R) -
GL(R) by sending e;(r, «) to & - re,; where & is the image of « in GL(Z) and & - x
denotes ax& ! (formed in GL(R,)). This defines ¢:G,— GL. This map factors
through ST by G, _* , ST _® | GL where ¢y, sends e,;(r, &) to « - e;;(r). Clearly
Go(R) — ST(R) is onto for all R. For R = R™, ST(R) — GL(R) is also onto
since K;(R) =0. Therefore £:G,— GL lies in &”. We can now extend G, to a
simplicial resolution G, — GL without changing the O-dimensional part G,, i.e.
we form A® X G,— GL and attach higher dimensional material. Therefore
o(G4) is a quotient of Gy, so A _,(GL) is the cokernel of G, — GL. Since G4(R) —
ST(R) is onto, A_|(GL) = ckr (ST — GL), but this is just Bass’s K.

To calulate H,(GL) we must now attach some Q € " to A® x G, in dimension
1 as the end of §6. Let N be the kernel of G, — GL. We must find Q € 2" and a
map Q — N such that Q(R"™) — N(R™) is onto for n = 1. Now each element
y € N(R'™)can be written in the form y = []* e,;,(u,, ,)* where

u, = wv(-xh et -Xn)

is an element of R™, «, € ST(Z), and ¢, = +1. For each such y, Q(R) will
have a generator

-1 (/YRR Sy MUY SO SUSRUNE- - SPUPIRE - SY ST )

where ry, ..., r, € R. Send Q(R) — Go(R) by sending this generator to

k
y’ = H eiij(wv(rl, MR ] rn)y a)sv.
1

Nowr = (ry, ..., r)defines a map 7: R"™ — R sending x; to r,. The induced map
N(R™) — N(R) sends y to y". Thus the image of Q(R) in G,(R) is the subgroup of
Go(R) generated by the images of all N(R™) under all maps R — R. This sub-
group clearly lies in N(R). It is also stable under ST(Z) since all N(R™) are.
Now Q€ & by Lemma 8.7. Also Q- — N and Q(R"™)— N(R™) is onto, so
Q — N is a &"-epimorphism. Therefore attaching Q in dimension 1 gives us a
simplicial resolution which is aspherical in dimension 0. We can now calculate
Hy(GL) by the remark at the end of §6. This shows that Hy(GL)(R) = my(G.(R))
is the quotient of Gy(R) by the normal subgroup B(R) generated by the image of
Q(R) in Gy(R). In other words it is the quotient of Gy(R) by the normal subgroup
B(R) generated by the images of all N(R'™) in Gy(R). This subgroup is
clearly stable under ST(Z). Now every relation given in Lemma 8.4 lies in this
subgroup. For example, the element (e;;(z) - €;,,(5))e,(s)? (from relation (5)) is
the image of the element (e;;(2) * e,,,(x1))e;,, (X)) in N(R™Y) under the map §.
The elements clearly lie in N since all the relations hold in GL(R). Thus Hy(GL)(R)
is a quotient of the group obtained by reducing Gy(R) modulo these relations, i.e.
of ST(R). It is clear that Hy(GL)(R) is the quotient of ST(R) by the normal sub-
group generated by the imagesin ST(R)of all the kernelsker [ST(R™) — GL(R"™)].
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But this kernel is K,(R'™) and its image in ST(R) lies in K,(R). The theorem follows
immediately from this.

We now investigate the existence of exact sequences. If f:R— R’ we get
G (f):G4(R) — G4 (R’). The results of §6 gives us an exact sequence

Mians Kn(R - R,) - Kn(R) - Kn(R,) - anl(R - R’) -
-+ — Ky(R) - K4(R') - ST'(R— R) — ST'(R) —» ST'(R'),
where we write ST'(R) = H,(GL)(R). It is not clear how to include K, and K,

in this sequence since our method does not give us K;(R — R’). However, in
case f is onto, everything works well even in low dimensions.

THEOREM B8.8. Let I be a 2-sided ideal of R. Then there is a natural exact se-
quence

Mg Kn(R, 1) - Kn(R) - Kn(IQ/I)_> K —I(R’ 1)_>
“+ — Ky(R) — Ky/RUI) — Ky(R, I) — Ky(R) — Ky(R/D).
Also Ky(R, I) agrees with the relative K, defined by Bass (at least if R has a unit).

Proof. Let G, be a #"-aspherical, 2"-cofibrant resolution of GL. Each G, isa
direct sum of various Q’s in #”. Therefore G, € Z".

LEMMA 8.9. Suppose G € 94*. If Ge€ 2" and f:R — R’ is onto, then G(f):
G(R) — G(R') is onto.

ProoF. Define P(R) to be the free group with one generator e(u, a) for each
u:R™ — R and a € G(R™). For f:R— R’ let P(f):P(R) — P(R’) by sending
e(u, a) to e(fu,a). Then P 94* and P 2. In fact P is the functor given by
Proposition 5.1 using the free groups generated by the elements of the G(R™)
asthe Q,,. The #"-epimorphism P — G is given by sending e(u, a) to G(u)a € G(R).
Since G € #", this splits; thus G(R) is naturally a retract of P(R). If we show that
P(R) — P(R’) is onto, it will follow that G(R) — G(R') is also onto. Let u:R™ —
R’ and a € G(R'™). Since R'™ is free, we can lift u to v: R — R and e(v, a) maps
to e(u, a). This shows P(R) — P(R’) is onto.

This lemma shows that G,(R) — G,(R/I) is onto. Let G,(R,) be its kernel.
Corollary 6.3 gives us a long exact sequence

> Ku(R, 1) > K,(R) > K, (RII) - - — Ky(R)
— K3(R/I) — ST'(R,I) - ST'(R) — ST'(R/I) —~ 0.
Applying the snake lemma to the diagram
Ky(R) - Ky(R/I) — ST (R, I) > ST'(R) - ST'(R[) > 0

) !
0 — GL(R, I) — GL(R) — GL(R/I)



118 RICHARD G. SWAN

then gives us the sequence
Ky(R) — Ky(RII) —~ Ko(R, I) — Ky(R) — Ko(R/I) — K\(R, I) — Ky(R) — Ky(R[D).

To identify K (R, I) with Bass’s K{(R,I) when R has a unit, note that ST'(R)
and ST'(R/I) are quotients of ST(R), ST(R/I) by Theorem 8.5. The definition of
ST shows that ST(R) — ST(R/I) is onto. Let N be its kernel. We have then a
diagram

l— > N —— > ST(R)——> ST(R/[) ——> |

|

{ ——> GL(R,I)——> GL(R) ——> GL(RJD).

By definition of ST we see that N is the smallest normal subgroup of ST(R) con-
taining all e;;(u) for u € I. The image of ST(R) in GL(R)is just E(R). Therefore the
image of N in GL(R,I) is the smallest normal subgroup of E(R) containing all
1 + ue;;, uel This group is E(R,T) by definition. Bass defines Ky(R,[]) =
GL(R,DJE(R,T). Let E'(R, ) be the image of ST'(R, I) in GL(R, I). We must
show that E'(R, I) = E(R, I). Now it is easy to see that E'(R, I) is the image of
ker [ST'(R) — ST'(R/)] in GL(R, I). Consider the diagram

ST(R) ——> ST(R|I)

0 9

ST'(R)—— > ST'(R/I)

4
GL(R) —— GL(R/I).

Since E(R, 1) is the image of kerj in GL(R) and E’(R, ]) is the image of kerj’,
we see that E(R, I) = E'(R, I). Conversely, let x € kerj'. Since ST(R) — ST'(R)
is onto, we can lift x to y € ST(R). Let z be the image of y in ST(R/I). Then
z e ker 0. If there is some ¢ € ker @ which maps onto z, we use 11y to lift x. Since
t~ly € ker j, its image in GL(R) lies in E(R, I). Thus E'(R,I) < E(R,I). Now let
K,(R), be the sum of all images K,(R'") — K,(R) induced by maps R" — R,
n = 1. By Theorem 8.5, K,(R), = ker 0 and K,(R/I), = ker 6. We must show
Ky(R)y — Ky(R[I)y is onto. If frR™ — R/I, we can lift f to g:R"™ — R, since
R™ isfree. Therefore Ky(f) factorsas Ky(R"™) — K,y(R) — Ky(R/I),s0 theimage of
K5(f) lies in the image of K,(R), in Ky(R/I).

REMARK. The exact sequence of Theorem 8.8 can be continued down to
Ky(RID) by [6].
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9. Excision and Mayer-Vietoris sequence. Milnor [30], [5] has shown that one
can define a Mayer-Vietoris sequence for K, and K. Suppose we have a Cartesian
diagram in %,

(*) h !

with f onto. Milnor shows there is an exact sequence
K\(R') > K\(R) B Ky (Rp) = Ki(R) — Ky(R') = Ky(Ry) @ Ko(Ry) — Ko(R).

In [5], Bass shows that one can define K, for all n <0 and that this Mayer-
Vietoris sequence extends to all negative dimensions. It would be very useful to
have such a sequence also for positive dimensions. 1 have not yet been able to
establish this. In this section, 1 will discuss some of the problems involved in
proving this. Suppose first that there is such a Mayer-Vietoris sequence. Let R
be a ring with unit and [ a 2-sided ideal of R. As above, let [, be the ring obtained
by adjoining a unit to I. It is trivial to verify that the diagram

I,—— R

Z— R/l
is cartesian. This will then give an exact sequence
"+ KoL) — K(Z) © K. (R) > Ky(R[I) = - - .

Since [, — Z splits, we have K, (I,) = K,(Z) @ A, where A, = ker [K, () —
K, (Z)]. If we send the summand K, (Z) to K,(Z) © K, (R) and project on K, (Z),
the result is clearly the identity map. Therefore we may remove the terms K, (Z),
getting a sequence

"> A, > K(R) > K(RID—> A,y — -~

Comparing this with the sequence of Theorem 8.8 we see that 4, and K (R, I) can
only differ by group extensions. But A, depends only on [/ so we conclude that
K, (R, I) depends only on I up to group extensions. The most reasonable way for
this to happen is for K, (R, I) to depend only on /. A somewhat stronger formula-
tion of this is given by the excision property. This says that if f:R — R’ is a ring
homomorphism and I and I’ are 2-sided ideals of R and R’ such that f maps /
isomorphically onto I’, then f maps K, (R, I) > K,(R’, I') isomorphically. 1 do
not know whether this property holds. If it does, the Mayer-Vietoris sequence is
an easy consequence. In fact, M. G. Barratt has remarked [12] that it follows
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immediately from the diagram

e Kn(Rli 1)—_) Kn(R,) — KIL(RZ) >

> Ku(Ry, ) —> K,(R) ———> K (R) — -+

and the fact that 0 is an isomorphism.

We now consider the case n = | and show that the various properties considered
above are really equivalent in this case. Recall that K;(R, I) = GL(R, )/E(R, I)
where E(R, I) is the smallest normal subgroup of E(R) containing all elements
1 4-ge;;, ge 1. Now it is obvious that GL(R, I) depends only on /. In fact
GL(R,I) = GL(I). Also the elements 1 + ge,; depend only on I. However, the
normal subgroup generated by these elements and their conjugates seems to depend
on R. The larger R is, the more possible conjugates there are. This makes it seem
very unlikely that E(R, I) and hence Ki(R, ) can depend only on I. However,
I do not known of any counter example and it could conceivably turn out that
excision holds for K,. If this is not the case, the following result shows that it will
not be possible to extend the Mayer-Vietoris sequence without altering K.

ProposiTION 9.1.  The following properties are equivalent.
(1) There is a functor K,: R, — SZ¢ such that for any cartesian diagram (*)
in R, with f onto, the following sequence is exact:

Ky(Ry) ® Ky(Rp) — Ky(R) — Ky(R') — Ki(Ry) @ Ki(Ry) — Ki(R)
(2) For any cartesian diagram (*) in H#, with f a split epimorphism the sequence

0— KI(RI) — Ki(R)) @ Ky(Ry) — K\(R)
is exact. :
(3) Excision holds for K,.
(4) There is a natural isomorphism K\(R, I} ~ K\(I), for R € &,.
(5) If R — R/I splits, the map K,(I,, I) — Ki(R, I) is an isomorphism.

Proor. If f'is a split epimorphism, so is 4. Therefore K,(R,;) — K,(R) is onto.
This shows that (1) implies (2). Clearly (4) implies (3). Also (3) implies (1) by
Barratt’s argument using either Milnor’s K, or the K, defined here. The K (R)
at the right comes from the known Mayer-Vietoris sequence [30], [S]. Given any
I < R, consider the map I, — R. If (3) holds, we get an isomorphism K(/,, ) —
Ki(R, I). Now I, — Z splits. By the exact sequence of Theorem 8.8 or by Milnor’s
exact sequence for his K,, we get an exact sequence 0 — K,(I,, ) - K\(1,) —
K(Z) — 0. But we have defined K,(7) as the kernel of K,(/,) - K\(Z). Therefore
Ki(l,, ) ~ Ky(I). This shows that (3) implies (4). It remains to show that (2)
implies (5) and (5) implies (3). Given { < R, R € #,, consider the map I, — R
as above. This gives (I,, I) — (R, ), which induces GL(I,, ) — GL(R, I). This
map is just the identity if we identify GL(I,, I) and GL(R, I) with GL(I). The
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map sends E(I,,I) into E(R,I), so we have E({,,I) = E(R,I) = GL(I). Let
F(R, )= E(R, D|E(U,, I). To prove (3) it will suffice to show that F(R,I) =0
for all R, I. Inother words E(R, I) = E(I,, [)forall R, I. Letx e F(R, I). Choose
a representative y for x in E(R, I). By the definition of E(R, I}, y will be a product
Nz, (1 + g,e;,;,)2,7* where g,€ 1, and z,€ E(R). Write z, = II(1 + rlVe;,,, ).
Since there are only a finite number of ¢, and r{", we can find a map f: R*» — R
such that the images of x,, . . ., x,, include all the g, and the images of x4, ...,
X,+pinclude all the r{. LetJ be the 2-sided ideal of R{***’ generated by xy, .. . , X,.
Clearly f(J) = 1. By the choice of f, we can lift each g, to ¢, €J and each r"
to ri € R"*?. Form the product y’ analogous to y using ¢, and r;*". Then y’
represents x' € F(R{"*# J) and this maps to x under F(f). Therefore it will
suffice to show that F(R{**» J) = 0. But R"*?»'[J ~ R{™ and this is free in Z.
Thus R("® — Rt/ [ splits. If (5) holds then F(R{",J) = 0. Itfollows that (5)
implies (3).

Finally, to see that (2) implies (5), let R -— R/I be split. Form the cartesian
diagram

L—>

R
Z— R/L
By (2), we have 0 — K (1) = K{(Z) ® K,(R) — K,(R[I). Now K,(I,) — Ky(Z)
splits and its kernel is K;(/,, I). As in the remarks about K, above, the sequence
gives 0 — K,({,, I) = K,(R) — K(R/I). But R — R/I splits, so the exact sequence
of Theorem 8.8 or of Milnor shows that we have 0— K(R,I)—

K, (Ry— K,(R/I) —~ 0. This gives a natural isomorphism 0:K,({,, I) ~ K\(R, I).
Consider the map ¢:(I,, I) — (R, I). This gives a commutative diagram

KLy D) ——> Ky(I,, 1)

1 K\ ()
Ky(L, ) —2— Ky(R, I,

which shows K,(f):(1,, I) = K\(R, I) is an isomorphism.

REMARK. As we have seen in the proof, it will suffice to require (5) to hold for
pairs (R{"#¥_ J) where J is the 2-sided ideal generated by xy, ..., x,. In this case,
the sequence 0 — K, (R, J) — K (R*7) — K (R{?) — 0, together with the fact
that K,(e): K,(R{»**) — K,(Z) is an isomorphism[34], shows that K,(R!"*"), J) = 0.
Thus to prove that all the assertions of Proposition 9.1 hold, it will suffice to show
that K,(J,,J) = 0 for these particular J, or, equivalently, we must show that
K,(J,) = Ki(Z) is an isomorphism. Perhaps this could be done by modifying the
methods of [22], [34].
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If the answer to this is affirmative, one might hope to extend the result by show-
ing that K, (R, I) ~ K, (I)for all n. This would be a very useful result. Even if this
turns out to be false, the analogue might hold in Villamayor’s theory.

10. Further problems. In [5] Bass defines a functor L on 74#1 as follows. Let
T be an infinite cyclic group with generator . Let T, and T_ be the submonoids
with unit generated by ¢ and ¢~ If F: #, — &//, define LF(R) to be the cokernel
of F(R[T.]) © F(RIT_]) — F(R[T]). Bass shows that LK, = K, and proposes
defining K_, = L"K,. 1t would be very interesting to know if the functors K,
defined here satisfy LK, = K,_,. If this is true, it might also be possible to define
a simplicial spectrum [25] G4 in g/r" such that = G, = K, for all n€ Z. This
would give a weak analogue of Bott periodicity (with the period presumably being
0). In the topological case, this periodicity implies that we can regard GL(C) as an
infinite loop space and so define K"(X) for all n € Z. .

Another very important problem is to extend the definition of K, to abelian
categories and subcategories of abelian categories. This is well known for K,
and K, (6] but does not seem to be known for K, or even for the relative K;. The
method used here does not seem to be very useful for this since there is no
definition of GL(2#) for an abelian category 7.

1t would also be interesting to compare the methods used here with other forms
of nonabelian homological algebra [9], [19], [23]. I have not yet tried to do this.

Finally, we remark that if it turns out that Milnor’s K, does not satisfy
K,(R™) = 0, it might be better to define K, using “generically” aspherical models
(cf. (13]). The theory of [13] is easily included in that of the present paper. We
use the notion of [13]. Let ® be a class of maps as in [13]. Let .# 4 be the category
whose objects are the R and whose maps are those in ®. Then . is a sub-
category of Z. The corresponding theory of aspherical models yields the cohomol-
ogy theory of [13]. To see this, let K( ) and K( , ®)be as in [13). For Fe .# 4,
we have an inclusion K(F, ®) = K(F). This gives a map K( ,®)—res K( ),
and so adj K( ,®)— K( ). Itis an easy exercise to show that K( ,®)e &’
and that adj K( ,®)— K( ) is an isomorphism (consider the obvious map
K( )—adj K( ,®)). Therefore, if we choose a Z-aspherical, &'-cofibrant
resolution in %/ “® and apply adj, we get a ®-acyclic resolution in 9% in the
sense of [13].
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Groups of cohomological dimension one

John Stallings

In [2], we showed that a finitely generated group of cohomological dimension
one is necessarily a free group. In this note we outline the ideas in that proof
together with some more recent improvements.

1. A graph-theoretic result, Here we prove a lemma on graphs which
resembles a theorem of Bergman [1]. Our proof was inspired by a private com-
munication from M. Dunwoody.

A graph T’ is a set of vertices and edges, such that each edge has one or two
endpoints which are vertices; local finiteness and connectedness are defined as
usual. A set A of vertices of I is said to be connected, if some subgraph A, having
A as its set of vertices, is connected. The complement A* of a set of vertices A4 is
the set of all vertices of I' not in 4; the coboundary d4 is the set of those edges e
having one endpoint in 4 and one in 4*.

1.1. (A VERsION OF KONIG'S THEOREM.) Let I' be a ocally finite graph. Let
A, D Ay, > - D A, D - be adecreasing sequence of infinite, connected sets of
vertices, each containing a fixed vertex v. Then (\\ A, is infinite.

The proof is simple.

Suppose the graph I' is connected and there is a subset 4 of vertices such that
both 4 and 4* are infinite, but 44 is finite; then we say I" has more than one end;
the definition of ends in general is the usual one. The number of edges in 04
will be called the complexity of A; if this number is minimal over all 4 such that
both 4 and A* are infinite but d4 finite, we call 4 minimal.

1.2. Inaconnected graph I' with more than one end, if A4 is minimal, then both
A and A* are connected.

Otherwise, some infinite component of 4 or 4* would have less complexity.

1.3. In a connected, locally finite graph with more than one end, if 4, > - - -
) An o I

124
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is a decreasing sequence of minimal subsets of vertices of I', each containing some
fixed vertex v, then (| A4, is minimal and in fact is some A4,; in other words, the
sequence stops decreasing at some point A,.

We note first that B = (| A4, is infinite, by 1.1 and 1.2. B* is obviously infinite.
Each edge e of 0B belongs to some 84;; if e belongs to 04, then it also belongs to
dA4; for all j > i. Hence if ¢ is the minimal complexity, B contains at most ¢
elements; in particular, 4B is finite, and hence contained in some d4,. Since 04,
is minimal, we have 0B = 04,. Since B < A,, and I'is connected, and 6B = 04,
it follows that B = 4,.

1.4. In a connected, locally finite graph I" with more than one end, there is B
minimal, such that if 4 is any minimal set of vertices, then some one of the sets

*) ANB, ANB* A*NB, A* N B*

is finite.

This is proved by constructing B as a smallest minimal set containing a vertex v.
Such a B exists by 1.3. If 4 N 4B = & and all four of the sets (*) are infinite,
then a simple computation would show that all the sets (*) are minimal, and then
the one that contains v would be smaller than B. On the other hand, if 64 N 0B #*
@, a computation shows that one of the sets (*) has coboundary with fewer
elements than a minimal set, and hence that particular set must be finite.

We can, in particular, apply this result to the graph of a group G with respect
to a finite set T of generators. This graph I has for its vertices the elements of G;
an edge connects every pair (g, tg) for r € T. The graph I is connected, since T
generates G; it is locally finite since T is finite. The ends of I can be identified
with the ends of G. Finally, G acts, as a group of automorphisms, on the right of T".

1.5. In a finitely generated group G with more than one end, there exists a set
A < G, such that 4 and A* are both infinite, but (in the graph I') 44 is finite, such
that for every g € G, at least one of the sets:

Ag N A, Ag NA* -A¥g N A, A*g N A4*
1s finite.

For, we take A to be the set B of 1.4, and notice that Ag is minimal since A is.
Such an 4 will be called a characteristic subset of G.

2. The bipolar structure. Given a characteristic subset 4 of G, there are six
possibilities as to which of the sets

*) Ag NA, Ag N A*, A*g N A, A*g N A*

are finite. This divides G into six subsets F, S, A4, AA* A*A, A*A* as follows:
ge Fif Ag N A* and A*g N A are finite.
geSif Ag N Aand A*g N A* are finite.
g€ XY if XAg N YA is the only finite set. In this last description, X and Y
stand for 4 or A* and AQ = Q, A*Q = Q* for any subset Q < G.
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If G has two ends, the explicit structure of G is well known: G is an extension
of a finite group by either the infinite cyclic group or the infinite dihedral group.
If G has more than two ends, then F is finite and the following properties can be
proved:

2.1. Fis a finite subgroup of G.

2.2. S may be empty. If Sis nonempty, then F U Sis a group in which F has
index two.

23. If fe F,ge XY, then fg e XY.

24. Ifse S, ge XY, then sg € X*Y.

25. Ifge XY, he Y*Z, then ghe XZ.

26. If ge XY, theng™' € YX.

2.7. If g€ G, there is an upper bound N(g) to the length n of expressions
g = g8 " * &, Where for some X,, Xy, ..., X,,each g, e X, XX

This division of G into six subsets, satisfying these seven properties, we call a
bipolar structure. An element of G will be said to be decomposable if it can be
written gh for some X, Y, Z, with ge XY, he Y*Z. The other elements, the
indecomposable ones, form a subset P of G. In particular, by 2.7, P generates G,
and, by 2.5, P contains F U S.

It is easily shown that G satisfies a certain universal property with respect to
P. We generalize this circumstance in the next section.

3. Pregroups. A pregroup consists of a set P, an element | € P, a function
xi—>x1of PtoP,aset D<= P x P, and a function (x, y)r> xy of D to P,
satisfying these five axioms:

1. For all x € P, we have (1, x), (x, 1)e D and lx = x1 = x.

2. For all x € P, we have (x, x™1), (x~!, x)e Dand xx ' = xlv = I.

3. If (x, ) € D, then ()71, " e D and (xy)™* = y~x~L

4. If (x,y), (y,z) € D, then: (x, yz) € D if and only if (xy, z) € D, in which
case x(yz) = (xy)z.

5. If (w, x), (x, ¥), (v, 2) € D, then either (w, xy)e D or (xy, z) € D.

It is easily shown that the set of indecomposable elements, in a group with a
bipolar structure, forms a pregroup.

Now, van der Waerden’s proof [3] of the structure theorem for free products
of groups can be extended, with care, to pregroups. In this proof, Axiom 5, which
may seem rather ad hoc, must be applied several times. We shali just state the
result.

A morphism of pregroups is a function ¢ : P -> Q, compatible with the structure,
in particular with multiplication. Thus pregroups form a category containing the
category of groups. By abstract nonsense (the Adjoint Functor Theorem), there
is to each pregroup P, a universal group U(P). Thatis, U(P)is a group; there is a
specific morphism ¢:P — U(P); such that, for any group X and morphism
@:p — X, there is a unique consistent homomorphism U(g): U(P) — X.
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It is easy to see that a group with bipolar structure is the universal group of
its pregroup of indecomposable elements.

The structure theorem states that every element g of U(P) can be written
g =upy) - dp,) where the word (p,,...,p,) satisfies the condition that
(ps» piv1) ¢ D for all i. Two words (py,...,p,) and (qy, ...,q,) give the same
g, if and only if:

ND)n=r

(2) There are a;,...,a, ; €P such that (pyay,...,a,_ipa;, ... ,a;t.p,) is
definable and equal to (q;, . .. , q,).

This allows us, in certain instances, to describe U(P) in more classical ways,
e.g. as a free product with amalgamation. Applying this analysis to groups with
bipolar structure, we can show:

3.1. Let G have a bipolar structure (F, S, A4, AA*, A*A4, A*A*). Define
H=Fu§s; and G, = F U {indecomposable elements of A44}; and G, =
F U {indecomposable elements of 4*4*}. These are subgroups of G.

Case 1: If S = &, then G = H xp, G,.

Case 2: If S= @ and there is no indecomposable element of 4A4*, then
G = G, *5 G,.

Case 3: If S = o and there is an indecomposable element x € A4*, then
xFx~! < Gy; let ¢ F — G, denote f+— xfx7!; then G = [G;; F, ¢].

In this result A4 *, B denotes the free product of 4 and B with amalgamated
subgroup C. [A4; B, f]is defined, when B is a subgroup of 4 and f an embedding
B — 4, to be the group obtained from 4 by adjoining a new generator x and
relations f(b) = xbx~ for all b € B.

4. The characterization of infinitely-ended groups. A few more computations
can be made. In 1.5, we could add that there exists an element g € G such that
Ag N A* is finite, but no other of Ag N A4, A*g N A, A*g N A* is finite; hence
in our bipolar structure, AA4* is nonempty. It is also easy to compute the number
of ends of groups of the form 4 5z B and [A4; F, ¢] for F finite. This leads to the
following result:

4.1. Let G be a finitely generated group. Then G has infinitely many ends, if
and only if:

Either (a): G can be written A4 5z B, where F is a finite group, contained
properly in both 4 and B, and of index greater than two in B.

Or (b): G can be written [4; F, @], where F is a finite, proper subgroup of A.

It should be remarked that for G to have exactly two ends, it is necessary and
sufficient that either (a) G = A *p B where the finite group F has index two in both
A and B, or (b) G = [F; F, ¢] where F is finite.

This, of course, generalizes our earlier result on torsion-free groups with
infinitely many ends. From here on, we use the simple cohomological fact that a
finitely generated, nontrivial group of cohomological dimension one has more than
one end. Then, since we have such groups under control, we know that such a
group is either infinite cyclic or a nontrivial free product. Thus, such a group can
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be decomposed ultimately into a free product of infinite cyclic groups; i.e., it is
a free group.
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Hopf fibration towers and the unstable Adams
spectral sequence

Larry Smith

Let X be a Hopf space. In [9] we introduced the coprimitive fibre square
(mod p)
X(—1) —— L(QH (X; Z)))

m{-1>

KL K(QH(X; Z,)

X

and indicated some of its elementary properties. By iterating this construction we
obtain a tower of fibrations

X(—n)
m—nd

X(—n+1)

X(—1)

7(-1>

Y
X = X(0)
129
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over X. The exact homotopy sequences of this fibration tower may then be pasted
together to form an exact couple

AX) ——— A(X)

N

E(X).

It is reasonable to expect that this couple provides information about the p-primary
part of the homotopy of X. However, a major difficulty has been the proof of a
convergence theorem for the associated spectral sequence.

In the sequel we will avoid this convergence question by introducing a slight
modification of the construction of the coprimitive fibre square. Under mild
restrictions on a space X we will obtain a tower of fibrations

X(—n)

m(—n)

X(—1
w(-1)

X = X(0)

over X called the mod-C?-tower of X. From these fibrations we obtain in a
standard way an exact couple by applying the homotopy functor with Z-
coefficients,

A(X) —— A(X)

N

E(X)

The associated spectral sequence {E7(X), d"(X)} behaves somewhat like an unstable
Adams spectral sequence mod p. Indeed we shall show:

THEOREM. If X is a simply connected Hopf space then the spectral sequence
{E"(X), d"(X)} converges in the naive sense to 7 (X; Z,).
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If H(X; Z,) is coprimitive and p is an odd prime then we are able to identify
E*(X). The precise result requires several preliminaries to state and may be found
in §7. It is motivated by the results of [5].

The spectral sequence of the modified coprimitive tower seems closely related
to the unstable Adams spectral sequence constructed by Massey-Peterson in [5].
Indeed we identify E*(X) under the mod p analog of the conditions required to
construct their spectral sequence. I am indebted to Professors Massey and Peterson
for making their work available to me in prepublication form.

It would be of interest to determine what, if any, is the connection between the
spectral sequence of the mod-C?-tower and the unstable Adams spectral sequence
introduced by Rector in [12].

The construction of the modified coprimitive tower forces us to work with
spaces more general then Hopf spaces. The precise definitions are given in §l.
This enlargement of the objects under study has the advantage that the spheres,
S2+41 will satisfy the requirements when p is an odd prime. Several results of a
technical nature concerning constructions made in these larger categories are
deferred to an appendix.

The second section introduces the mod-CP-tower and its associated spectral
sequence. The third section contains some results on homology Hopf algebras
that are used in §4 to study homology properties of the mod-C*-tower. The
fifth section introduces certain functors of unstable modules over the Steenrod
algebra Z*. In the sixth section we introduce a subalgebra J#* of Z* that is
important in connecting mod p homotopy and mod p-homology. This connection
is exploited in the seventh and final section to identify E2(X) when H (X; Z,) is
coprimitive, p-odd.

The formulation that we present here is by no means final. It is merely an
introduction to what may be obtained by way of applications of the results of
(8], [91.

This paper is an outgrowth of my joint work with J. C. Moore and it is a
pleasure to acknowledge my indebtedness to him for untold suggestions, help and
improvements,

1. Some categories and constructions. We will begin by enlarging the category
of Hopf spaces to contain more general objects. As we shall see this enlargement is
forced upon us by the constructions that we wish to make.

The notation and terminology of [8] and [9] will be adhered to.

NOTATION AND CONVENTION. p will denote a fixed prime and Z, = Z/pZ.
We will use the notation H, X for H,(X; Z,) and similarly for cohomology. The
mod p Steenrod algebra will be denoted by & * and its dual by .

DErINITION. A pseudo-Hopf space mod p consists of a pair, (X, ¢), where X
is a space and

¢:H,X® H, X~ H,X

provides H, X with the structure of a homology Hopf algebra compatible with the
coaction of .
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Examples abound.

(1) Any Hopf space (X, ) together with the induced Hopf algebra structure
neon H X,

(2) If p = 2, then any sphere S™ is a pseudo-Hopf space mod 2 in the obvious
way. Similarly if p is odd then the odd spheres, $***1, are pseudo-Hopf spaces
mod p in a unique way.

(3) Let X be a space with H,(X) of finite type and H*(X) =% (M), for some
unstable «*-module M [S], [16]. Then there is an induced primitive Hopf
algebra structure on H*X and thus by duality H,X inherits the structure of a
coprimitive Hopf algebra under .

DerINITION.  If (X, ¢) and (Y, ) are pseudo-Hopf mod p spaces, a map
J:X — Y is a map of pseudo-Hopf spaces mod p, f:(X, ¢) — (¥, ) iff f, : H X —
H, Y is a morphism of the given Hopf algebra structures.

One readily checks that compositions behave well and thus we have the
category P — 2 Sp/p of pseudo-Hopf spaces mod p and their morphisms.

In a similar fashion we obtain the category P — 5% Sg/p of pseudo-Hopf fibre
square mod p. An object of this category consists of a fibre square

E—>E,

B——» B,

where all the spaces and morphisms of % are in the category S#Splp (ie.,
choices of Hopf algebra structures on H,E, H E,, H, B, H, B, have been made,
etc.) A morphism in P — #'# Sq/p is a morphism of fibre squares whose com-
ponent morphisms lie in P — 5 Sp/p.

The category P — 5#Sp[p has minimal structure for defining the coprimitive
fibre square. We proceed to this now.

DerINITION.  If (X, 4) € obj P — S Sp[p the coprimitive fibre square of X,
F (—1)(X), is the fibre square

X(—1)—— > LOH, X

A the pathspace
m fibration over KQH, X
#(—1>

X2  KQH,X
where ¢(—1) is characterized by requiring that the diagram
HX—— QH X

» = Hurecwicz Map
#{-De

H, KQH, X
be commutative.
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We are now presented with the following problem: If (X, u) € obj P — 5#Sp/p
does there exist a Hopf algebra structure u(— 1) on H,X(—1) such that #(—1)(X)
is a pseudo-Hopf fibre square mod p?

Unfortunately we are unable to answer this question in the affirmative for
arbitrary X. For this reason we shall introduce two further categories of Hopf-like
spaces.

DerINITION. A Hopf space mod p is an H-space (X, x) such that H, X is a
Hopf algebra. (Note that the only point at issue is the associativity of the multi-
plication u,: H, X @ H X —> H,X.)

The category of Hopf spaces mod p has as objects the Hopf spaces mod p and
as morphisms H-morphisms. We denote this category by #Sp/p. There is a
natural forgetful function 5 Spj/p — P — # Sp/p.

WARNING. This is not the inclusion of a full subcategory. But note that
# Splp is a full subcategory of the category of H-spaces and H-maps.

In the obvious manner we may also introduce the category of Hopf fibre
squares mod p, which we denote by % Sq/p.

Note that we do not demand that a Hopf space mod p be homotopy associative,
but only that the induced Hopf algebra structure on H,X be associative. For
example S7 is a Hopf space mod p for all p although it is not a Hopf space.

RemaRrk. Clearly the notion of Hopf space mod p is largely a technical con-
venience, its utility arising from our inability to verify that several rather natural
constructions on Hopf spaces lead again to Hopf spaces. For a more detailed
discussion of this point see the Appendix.

THeorREM 1.1. If (X, w) is a Hopf space mod p, X simply connected, then there
exists a natural structure u{—1) of a Hopf space mod p on X(—1). Equipped with
this structure u(—1), the fibre square ¥ (—1)(X) becomes a Hopf fibre square
mod p.

A proof of the preceding proposition may be found in the appendix. Note that
by construction X(—1) is an H-space and the only point at issue is the associativity
of H X.

The assertion of naturality is to be interpreted as follows: if (X, u), (Y, ) €
obj P — 5#Splp and f:(X, pn) — (Y, $) is a morphism in P — #Sp/p, then f
inducesa morphism of Hopffibresquaresmodp f{—1):F (—IXX)— F (=1 (Y).

ACKNOWLEDGEMENT. Theorem 1.1 overcomes the difficulty that X (—1) need
not be a Hopf space. This difficulty was pointed out to us by J. D. Stasheff (see
the appendix for a more thorough discussion). Theorem 1.1 thus overcomes certain
technical difficulties present in [9, Example 8.3].

DeriNITION. A pseudo-Hopf space mod p, (X, u), is said to be abelian iff
H,X is abelian.

The full subcategory of P — 5 Sp/p generated by the abelian objects is denoted
by P — Abs#’Sp/p. We may also form the obvious category P — Ab# % Sqp
of pseudo-abelian-Hopf fibre squares mod p.
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THEOREM 1.2. If (X, p) € obj P — AbK Sp|p, X simply connected, then there is a
natural structure, u(—1), of an abelian pseudo Hopf space mod p on X(—1).
Equipped with this structure u{—1), the fibre square F (—1)(X) becomes an object of
P — AbKH F Sq/p.

The proof of the preceding proposition may be found in the appendix.

It follows from Theorem 1.1 and Theorem 1.2 that we may, for certain (X, u),
iterate the construction (—1) to obtain a tower of fibrations over X. This tower is
called the coprimitive tower of X, and seems to yield useful information on the
mod p part of the homotopy of X. However, to avoid certain delicate convergence
conditions we find it convenient to modify somewhat the coprimitive tower.

The following definition was suggested by R. E. Stong and replaces a more
cumbersome one of the author.

DEFINITION.  Let (X, u) be a simply connected pseudo-Hopf space mod p and
keZ,k > 0. Define Q(k)H, X to be the following graded abelian group,

[Q(k)H*X],,ZO if ngk,
=H(X;Z) if n=k+1,k+2,
=(QH,X), if n>k-+2

DEerFINITION.  If (X, u) is a simply connected pseudo-Hopf space mod p let
& . X denote the fibre square

X,—— LOQ(nH X
w(n)

x 2" KQ(mH X

where ¢(n) is characterized by the commutative diagrams
é(n), =h H(X; Z) > H(KQ(nH X; Z) Jj=k+ 1, k42,
H(X;Z,))—— QH{X; Z,)
j>k+2
d(n)e
Hj(KQ(n)H*X; Zz)
Analogous to Theorem 1.1 and Theorem 1.2 we then have:

THeEOREM 1.3. If (X, p) € obj HSp[p and X is n-connected then there exists a
natural H-space structure p,:X, X X, — X, such that (X, u,) € obj # Sp/p and
F (X) is a Hopf fibre square mod p. Moreover X, is n + 1-connected.
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Proor. To prove that X, is n + 1-connected consider the homotopy exact
sequence of the fibration X,, - X — K@(n)H , X. In low degrees we have

H, (X;Z)
0 « 7"'ﬂ+1(I(Q(n)11u=X) ‘L 7T,,+1X h 1Tﬂ+1Xﬂ o 7T,,+2(KQ(H)H*K) ‘2 "n+2X

H,.,(X;Z)

Now ¢é(n), may be identified with the Hurewicz map. Thus the map marked 1 is
anisomorphism and the map marked 2 is an epimorphism. Thus =, ,X, = 0. The
fact that m, X, =0, i << n 4 1 is elementary.

The assertions about y, and %, X may be obtained by a simple modification of
the proof of Theorem 1.1. (See the appendix.) O

THEOREM 1.4. If (X, p) € obj P — AbH# Sp|p and X is n-connected then there
exists a natural abelian Hopf algebra structure p,:H, X ® H, X — H, X such that
(X, 1) EObj P — AbHSp[p and F (X) is a pseudo-abelian-Hopf fibre square
mod p.

Proor. The details are similar to Theorem 1.3. O
The functors &, will provide us with a suitable tower of fibrations over X. We
turn to this next.

2. The tower and spectral sequence. The results of §1 show that it will be
convenient to perform our constructions in one of the two categories ¥ Sp/p
or P — Ab#'Sp/p, and the categories of fibre squares over H#'Sp/p and
P — AbA Sp/p. Most of our results will therefore have two parts to them.

DerINITION. (1) If X € ob] S#°Sp/p and X is simply connected then we may
define inductively Hopf fibre squares mod p, % (—n)(X), by setting X(0) = X and

X(—n) = X(—n + 1)y —> LQMH (X (—n + 1))
a(—n)

X(—n + 1) 2 s KQMH (X(—n + 1)).

Note that Theorem 1.3 is used to provide the inductive step.

(2) If X eobj P — Ab# Sp/p and X is simply connected then we may define
inductively the pseudo-abelian Hopf fibre squares mod p, #(—n)X), by setting
X(0) = X and

X(—n) = X(—n + 1), ———> LO(MH,(X(—n + 1))
ml{—n)

X(—n + 1) 2= s KQMH (X(—n + 1)).

Note that Theorem 1.4 is used to provide the inductive step.
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If X € obj #°Sp/p or obj P — Ab# Sp/[p then the fibre squares {F(—n)(X)}
may be strung together to form a tower of fibrations

F(—n) == X(—n)

(—n-—1)
0 K(—n)
n(—n)
o{—n)

F(-n+4+1)—>X(—n+1 K(—n+ 1)

F(—1) —— > X(—1) —— K(—1)

w(—-1)

Y
X = x(0) 2= k(0),

where ¢(—n) classifies w(—n) which has fibre F(—n). We refer to this tower of
fibrations as the modified coprimitive tower of X. It is but a slight modification
of the coprimitive tower, introduced in [10], which is a geometric analog of the
coprimitive series of a homology Hopf algebra (see [8]).

Notation. If X is a simply connected space denote by =, (X; Z,) the homo-
topy groups of X with coefficients in Z,. (See [4], [7] for the basic facts about
me( ; Z,).) Recall that for p > 2 =,(X; Z)) is a Z ,-module, but when p = 2
m,(X; Z,) may have 4-torsion. We will concentrate mostly on the case of p-odd.

Let X be fixed with X € obj 5# Sp/p or obj P — Ab5#°Sp[p, X simply connected.
The homotopy exact triangles

T (X(—n); Z,) > mo(X(—n + 1); Z,)

m(F(—n); Z,)
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of the fibrations {m(—n)} in the modified coprimitive tower of X may be spliced
together to form an exact couple
AX) —— > A(X)

AN

E(X).
More precisely we set
AX), = m, (F(r); Z;) r<0

Er+1,a(X) = 7Tr+a(X(r); Zp) r <0.

Note the index shift in defining E(X), ,. The indexing looks as though we had
used the homotopy exact triangles of the fibration X(—n) — X(—n + 1) —
K(—n + 1) instead of F(—n) - X(—n) > X(—n + 1).

Let {E7(X), d"(X)} denote the spectral sequence of the exact couple €(X). Note
that {E7(X), d"(X)} is a second quadrant spectral sequence. Indeed, since X(—n)is
n + l-connected (Theorem 1.3 or 1.4) E! (X)=0 unless s —2n —1 >0.
The differential d7(X) has degree (—r, r — 1).

We refer to {E7(X), d"(X)} as the modified coprimitive spectral sequence of X;
the mod-C? spectral sequence of X for short.

ProposITION 2.1.  {E7(X),d"(X)} is a functor from the categories 3 Spjp,
P — AbS#'Sp|p to the category of second quadrant homology spectral sequences of
Z -modules, p odd and Z;-modules, p = 2.

Proor. The functoriality is a simple consequence of the naturality in Theorem
1.3 and Theorem 1.4 and a simple induction (i.e., one shows that f: X — Y induces
a morphism of the coprimitive tower of X to that of Y). The different behavior for
p =2, p> 2 was noted previously. O

PROPOSITION 2.2.  If X € obj S Sp/p or P — Ab3# Sp|p then the mod-C? spectral
sequence {E"(X), d"(X)} converges in the naive sense to m,(X; Z,).

Proor. This is an elementary consequence of the fact that X(—n) is n + 1-
connected. O

On the basis of Proposition 2.2 we may regard {E"(X), d"(X)} as an unstable
Adams spectral sequence with Z -coefficients.

In §7 we will identify E?(X) when H,X is coprimitive and p is odd. The re-
mainder of this paper is devoted to preparing the way for this identification.

3. Elementary properties of the functor (—1):5¢° [k — o ,¢ [k. Through-
out this section k will denote a fixed field of characteristic p 5= 0. In §2 of [8] we
introduced the functors [—1], (—1):5¢ [k — 5 3 [k. Our objective in this
section is to establish the following property for these functors.

THEOREM 3.1.  The functors [—1], (—1): " 3 [k —H |k preserve mono-
morphisms and epimorphisms.
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WARNING. In general the functors (——1) and [—1] are not exact. For example
suppose that H eobj # ,# [k and solH =2 (such gadgets certainly exist).
Consider the exact sequence

k— H[—1]—>H—>CH—k.

Assuming that the functor [—1] is exact we then obtain the exact sequence
k— H[—-2] > H[-1]— (CH)[-1] > k.

By hypothesis H[—2] = k and by definition (CH)[—1] = k. Thus we have an
exact sequence
k—H[-1]—k

and hence H[—1] = k contrary to the assumption that sol4 =2 > 1. A similar
example may be constructed to show (—1) is not exact; not even as a functor
HGH [k — HLH |k
Later in this section (see Theorem 3.4) we will introduce a class of exact
sequences in ¥ ,# /k whose exactness is preserved by [—1] and (—1).
Familiarity with the material of [8 §2] will be assumed throughout this section,
and we will freely use the notation, definitions and results established there.

LemMa 3.2. If A, B e objH# ¥ [k are abelian and f: A — B is an epimorphism
of homology Hopf algebras then f(—1): A(—1) — B(—1) is an epimorphism.

Proor. Recall that for C e obj# 5 [k that C (—1) = kiC. The rest is
routine. 0O
NOTATION. Let A € obj 5 [k, and let

O(A):ALA—>ArA=A®A

be the natural morphism in H# ,# [k from the coproduct to the product. Denote
by C(A, A) © Az A the kernel in H# H [k of 0(A); ie., C(A,A) = AL AN\
6(A).

PROPOSITION 3.3. If A, Beobj # [k and f:A— B is an epimorphism of
homology Hopf Algebras, then C(f,f):C(A, A) — C(B, B) is an epimorphism.

Proor. Consider the commutative diagram

AsAN fefN\¢—>AnAN fuf2>AN\ foAN [

) h\

CA A)—— > Az A— > A®A

1&f I&s

\ A 8(B)
CB,B)——> BuB——» B®B
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By definition the two right-hand columns and the bottom two rows are exact. We
contend that the top row is also exact. To prove this it suffices to show that

pAr AN Sef—=ANSfOANS

is an epimorphism. To this end consider the commutative diagram

Aum\ﬂ{J;A\f®A\f

N\,

N
\\ 0(ANS)

\

AuAé\A\qu\f
ref
Bu B

Since (fzf)g =* the existence of the dotted morphism is assured. Since
6(A4 \ f) is epic we may conclude that ¢ is also.

Thus in our original diagram the rows and two right-hand columns are exact.
Therefore by a suitable version of the 3 x 3 lemma the left-hand column is exact
and hence C(A, A) — C(B, B) is an epimorphism. 0O

PRrOOF OF THEOREM 3.1. It follows from Proposition 3.3 and the definition of
the functor [—1] that [—1] preserves epimorphisms. To prove that (—1) pre-
serves epimorphisms consider the commutative diagram of exact sequences

k
!
k (CA}{—1)
! !
k—A[—1]>A—>CA—k
! [ —
k— A(—1) > A — C’A -k
! !
AL/ Al-1] k
l
k

An elementary diagram chase shows that A(—1) / A[—1]is naturally isomorphic
to (CA)(—1). Therefore for any H €obj# ,# [k we have a natural exact
sequence of homology Hopf algebras

k— H[—1]— H{(—1) - (CH){(—1) —> k.

Now suppose that f: 4 — B is an epimorphism of homology Hopf algebras. We
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then obtain a diagram
k—A[—1] > A(=1) > (CA}—1) >k

f[-1] =12 [CrI{-1)>

k— B[—1]— B(—1) > (CB}—1)—>k

with exact rows. Since f is an epimorphism, so is Cf. Thus by Lemma 3.2
(Cf){—1)is anepimorphism. We have already seen that f [—1] is an epimorphism
and thus the above diagram shows that f(—1) is an epimorphism.

The proof that [—1] and (—1) preserve monomorphisms is elementary. [

THEOREM 3.4. Ifk — H' L HZ > H" > kis an exact sequence of homology
Hopf algebras such that
0>QH - QH—>QH"—0

is an exact sequence of k-modules, then

k—HI[-1]— H[-1]>H'[-1]>k
and

k—H{(—1)> H{—1)—>H"{(—1)—>k
are exact sequences of homology Hopf algebras.

ProoOF. The arguments are similar and we present the details for the second
case only.
Consider the diagram

H'(—1) —> H(—1) — H"(—1)

4
H' > H H(—1)

A A Y
C’°H' — C*H — C*H’.
By definition the. columns are exact. By hypothesis the middle row is exact. To
show that the bottom row is exact recall that for any A4 € obj 3¢ [k the natural
map QA — QCPA is an isomorphism. From this and the fact that C?4 is co-
primitive the hypothesis implies the exactness of the bottom row.
Hence the top row is exact by a suitable version of the 3 X 3 lemma. O
COROLLARY 3.5. Suppose that k — H' — H — H" — k is an exact sequence of
homology Hopf algebras such that

0—>QH -~ QH—~QH" -0



HOPF FIBRATION TOWERS 141

is an exact sequence of k-modules. Then if H' and H" are abelian so is H and if H'
and H" are coprimitive so is H.

Proor. By Theorem 3.4

k— H[-1]—> H[-1]-H'[-1]—>k
and
k— H(—1) > H(—1)> H"{(—1)—>k

are exact and the result now follows from the definition of [—1] and (—1). O

4. Elementary properties of the tower. Let X be either an object of 5 Sp/p or
P — AbH# Splp. Let F(—n)(X) be the nth-modified coprimitive fibre square of
X; i.e., the fibre square

X(—n)———— L(—n + 1)

w{—n)

X(—n+ )22 s K(—n+ 1)
defined inductively as in §2. Let F(—n) be the fibre of #(—n) and e(—n): F(—n) —
X(—n) the inclusion of the fibre.

THEOREM 4.1. (1) If X eobj# Sp/p is simply connected, then X(—n)e
obj s Sp/p and is n + 1-connected. Moreover % (—n)(X) is a Hopf fibre square
mod p.

(2) If XecobjP— Abs#'Splp is simply connected, then X(—n)e obj P —
AbX#Splp and is n + l-connected. Moreover F(—n)(X) is a pseudo-abelian
Hopf fibre square mod p.

Proor. This is a summary of results obtained in §§1 and 2. O

We will employ the above notation and results throughout the remainder of
this section without explicit mention. We will assume that X is simply connected
and equipped with enough additional structure to be an object of either of the
categories J°Sp[p or P — Abs# Sp/p.

ProrosiTION 4.2. (1) w(—n),:H, X(—n) — H X(—n + 1) is a morphism of
Hopf algebras;

(2) the natural morphism of homology Hopf algebras n(—n),:H, X(—n) —
H, X(—n + 1)\ $(—n), is an epimorphism, and

(3) HeX(—n + 1)\ $(—n)y = (HX(—n + DN—1).

Proor. This follows as in [9, Example 8.1]. O

PROPOSITION 4.3. (1) There is an exact sequence of homology Hopf algebras

e(—n)*

H*F("‘n)—> H*X(_n) N\ #(—n) * E*(_‘n) —Z,
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where
E,(—n) = E[s7'P_,C’H X(—n + D];

(2) if p > 2 there is an isomorphism of homology coalgebras

H, X(—n) = (H  X(—n + DY—1) € Ex(—n) ® S, (—n)
where
Sy(—n) =1m {e(—n),: H F(—n) > H X(—n)};

(3)if p=2 and P_,C*H,X(—n + 1) =0 then there is an isomorphism of
homology coalgebras

HyX(—n) = (Hy(X(—n + DX—1) & Sy(—m).

Proor. The second and third assertions are consequences of the first,
Theorem 4.1, Proposition 4.2 and the facts that S, (—n) is injective as a homology
coalgebra (by [1], [3] and [9, Proposition 4.1]) and E,(—n) is if p > 2.

The exact sequence of the first assertion follows as in Example 8.1 of [9]. The
identification of E, (—n) is a routine exercise in the use of the material developed
in §§4-6 of [9] and we leave to the reader the proof of the following more general
result. O

PrOPOSITION 4.4, Suppose that k is a field,

E—>E,

B— B,

is a pseudo-Hopf fibre square mod p with F the fibre of the fibrations = and m,. In
addition suppose that

(1) H,B, is injective as a homology coalgebra;
(2) HyEq = k;
(3) H,Fis coprimitive.
Then there is an exact sequence of homology Hopf algebras
HF>H,EN\wm,—>E, —k
where E, = E[s7'P_, imf,] as Hopf algebras. O

A similar result holds for pseudo-abelian Hopf fibre squares.
A slightly stronger result than Proposition 4.3 may be obtained when H, X is
coprimitive of finite type. We turn to this now.
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PROPOSITION 4.5.  Suppose that H,X is coprimitive of finite tvpe. Then
H,X(—n) is also coprimitive of finite type. Moreover if {F"'H*X(—n)} is the
filtration associated to the cohomology Eilenberg-Moore spectral sequence of
F(—n)(X)and

P(—n) = FIH*X(—n),
then H*X(—n) = U (P(—n)) as a Hopf algebra over A*(p).

Proor. This follows as in [8, Theorem 6.4] and [14, Theorem 5.9]. O
Consider now the mod-C?” tower of X;

F(—n) — X(—n) > K(—n)

w{—n)

X(—n+1

F(—1) = X(—1) = K(—1)

z(—1)

X = X((;) — K(0).
NotATION. If m <nleta(—m, ..., —n) ==(—m) - 7(—n).
PROPOSITION 4.6.  The image of the morphism
w(—m, ..., —n)y:H,X(—n) > H X(—m + 1)
is exactly the sub-Hopf algebra (H  X(—m)){—n + m — 1).

Proor. Let n=m 4 t. For t =1 this is just Proposition 4.2 (2) and so we
may proceed by induction on ¢.
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Consider the shortened tower
X(—m —t)

m{—m—t)

w(—m)

X(—m + 1).
By the inductive hypothesis we have exact sequences
H, X(—m —t) > (HX(—m — t + ))(—1) > Z,
and
HX(—m—t+ 1) > (H X(—m 4+ D){(—t) > Z,,.
From Theorem 3.1 we obtain an epimorphism

(HyX(—m — t + D)(—1) > (H X(—m 4 D)—=1)(—1)
= (H X(—m + D)}{—t — 1),
and the result follows. [

5. Some functors of unstable .«/*-modules. In this section we will develop
some properties of the category of unstable modules over the Steenrod algebra
«Z*(p). These will be of use in the identification of E2(X)in §7.

We assume familiarity with [16].

NoOTATION AND CONVENTION. Throughout this section p will be a prime and
«Z* the Steenrod algebra mod p. An «*-module will mean a positively graded
left Z*-module. We will use upper index notation for the grading. The dual of
«Z* will be denoted by .. An & ,-comodule will mean a positively graded left
«Z ,~comodule and lower index notation will be employed.

DEFINITION.  An Z*-module M is called unstable if

(p =2): S¢x =0 forallxe M, j<i
(p>2): Px=0 forallxe M, j<2i
fPix =0 forall xe M%.
If X is a space then H*X is an unstable «*-module, which is of course the

motivation for the definition. Note further that if X is a pseudo Hopf space mod p
then PH*X is an unstable «*-module.
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If M is an unstable «*-module and N € M is an «Z*-module then N is
unstable and so is M/N.

The category of unstable *-modules will be denoted by #.#*/*. Note
that it is a full subcategory of J/d*.

Similarly we have the category of unstable comodules under &, which we
denote by #€o.# /A ,. For all practical purposes we may consider the categories
UM*|A* and UC€oM,| A&, as dual categories. More precisely the full sub-
categories generated by the objects of finite type are in duality.

ProPOSITION 5.1.  The categories UM* [A* and UCoM | A, are abelian.

Proor. This is elementary. O
DEFINITION.  If M € obj WM *|* we define a morphism {y: M — M by

(p =2):{3/(x) = Sg"x for all xe M"
(p > 2):8y(x) =Px forall x e M2
= BP"x for all x € M2™+1,

Note that {;, is not a morphism in the category. When p = 2, {,; doubles
degrees and gives M the structure of an abelian restricted Lie algebra. If p > 2
then roughly speaking (M, {,,) is an abelian restricted Lie algebra with Bockstein.

Note that {;: M — M is Z linear and thus we may define ker {y; and coker
{4; to be the kernel and cokernels in A */Z,.

LemMA 5.2. If M eobj UAM*|A* then im {,, and ker {y, are d*-sub-
modules of M.

ProOF. When p = 2 the Adem relations yield
Sqla(x) = L3 S¢*(x) ieven
=0 i odd

from which the result follows for p = 2. A similar calculation applies when
p>2. 0
DEFINITION.  If M € obj %M *|A* then Q*M is defined by

(Q*M)? = (M/Im )+,

If fi:M'— M" is a morphism of unstable «*-modules then Q*f:Q*M’ —»
Q*M" is defined in the obvious fashion. It is a morphism in % M * [ *.
We denote by oy,: M — Q*M the natural morphism of degree —1.

PROPOSITION 5.3 (MASSEY-PETERSON). The functor
Q*: UM*|A* — UM* [ A*

is an additive right exact functor and o:1d — Q* is a natural transformation of
Sunctors of degree —1.
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Proor. The proof is routine and left to the reader. O

ACKNOWLEDGEMENT. The definition of the functor Q* is due to Massey-
Peterson [5] who developed its elementary properties.

ExampLEs. (1) The functor Q* is not left exact. For consider the a*-
modules defined by

M = {(M)"

, 0 if n 5= 2p?
(M) = ,
xZ, ifn=2p®

0 ifns2por2p?
M" = {(M")" | (M")" = uZ, ifn=2p
vZ, ifn=2p?

The «Z*-action on M’ is trivial and on M” is determined by requiring P?u = v.

Let f: M’ — M” be the monomorphism given by f{x) = v. One may readily
check that Q*f:Q*M’ — Q*M" is the trivial morphism, although Q*M" =~ 0.

(2) Let A be a simply connected graded abelian group. Then the results of
Cartan and Serre [1], [13] show that PH*QQKA = Q*PH*KA. This, in a large part,
is the motivation for the definition of Q*.

DEFINITION. If M € obj U A *|Z*, then Z* M is defined by (Z* M)+l = M«

One readily checks that Z* is a functor from %A *[Z* to itself.

PROPOSITION 5.4. If M € obj % M*[d* then
(1) there is a natural isomorphism
o Q*Z*M - M
(2) there is a natural morphism of ~&*-modules
Bar:M — Z*Q*M.

ProoF. By definition Q*2*M = M. Thus ay; is really the identity. S, is
just the obvious quotient mapping. U
We now readily obtain,

PROPOSITION 5.5. (&, B):Q* — Z* (U M*[A*, UM*|A*) is an adjoint
pair of functors. Ul

DEerINITION.  If n > 0 let B(#n1) denote the set of all elements of & * such that
for any M € obj % M*|* and « € B(n),

a(x) =0 forallxeM’, j<n

One readily checks that B(n) is a left ideal in «* and hence Z*/B(n) is an
Z*-module. The ideal B(n) occurs naturally in topology as the annihilator ideal
(in «Z*) of the fundamental class i € H"(Z,, n; Z,), see [1], [13], [14].

DEFINITION, P(n) = (Z*)"(*/B(n)).
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PROPOSITION 5.6. P(n) is an unstable &*-module, and indeed is a projective
object in U M* | A*.

Proor. Routine. O

ReMARK. P(n) = PH*(Z,,n;Z,).

Let V be a graded strictly positive Z,-module. A free unstable &*-module
generated by V consists of an unstable .Z*-module F(V) together with a homo-
morphism 0:V — F(V) of graded Z,-modules such that, given any unstable
«Z*-module M and a morphism f: ¥V — M of Z,-modules there exists a unique
morphism f:F(¥)— M of unstable «&*-modules such that the diagram of Z -
modules

V—0—>F(V)

%

M
is commutative.

ProposITION 5.7. If V is a strictly positive Z ,-module then the free unstable
L *-module generated by V exists and is unique up to a canonical isomorphism.

Proor. For the existence choose a basis {v,} for ¥ as a Z,-module. Let
P, = P (degv,) and set F(V) = , @P,. Let 6: ¥V — F(V) be the obvious map. Itis
easy to verify that (F(V),6) solves the required universal mapping problem.
Uniqueness is routine. [J

Let M be an unstable «&*-module. Then for the moment we may forget the
«Z*-module structure and form the free unstable «*-module FZ*M. For any
x€Z*M and a € A*, aox is now defined by remembering that X*M is an
Z*-module. Let Ny < FZ*M denote the «*-submodule generated by the
elements,

(p =2):8¢" - x — Sqg'x such that i < deg x

(p>2):P,ox — Pix suchthati < 2degx
B°x — Bx.
DEFINITION.  With the notation employed above, let B*M = FX*M/N,,.
B*:UM*|*) is called the classifying functor. (For f€ morph % #*|.«f*,

B*f is defined in the obvious way.) Let 7: M — B*M be the natural morphism of
degree +1.

PROPOSITION 5.8. The functor B*: UM*|A* — UM*[A* is an additive
right exact functor.

Proor. Suppose that
0->MIsMIsM 0
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is an exact sequence of unstable sZ*-modules. Introduce the commutative diagram

0 0 0

N'—’>N—>N
n n n

y ’ A Y
0— > F*M — 2 S Fs* M L FS*M"— 50

, -
L4 T 7

Y .y Y Py Y
B*M B L Bry BT, By

0 0 0

where the columns are exact by definition. The middle row is easily seen to be exact
also.

Next we note the ¢” is onto. For recall that N” is generated as an < *-module by
elements o o x — ax. Where o € &Z*, x € Z*M". Since f” is surjective so is Z*f".
Thus there exists y € Z*M such that Z*f"y =x. Thusacy — aye N and
@ (xoy —ay) = aox — ax. Since ¢" is a morphism of «&Z*-modules it follows
that ¢” is onto as claimed.

We are now ready to show that the bottom row is right exact.

(1) B*f" is epic: For we have by commutativity B*(f")r = »"F". Now ="
and F” are epimorphisms and hence so is B*f”.

(2) exactness at B*M: Note first that we have B*f"B*f' = B*(f"f") =
B*(0) = 0.

Next suppose that x e B*M with B*f"(x) = 0. Choose y € FX*M such that
my = x. Then #"F"(y) =0 so F"(y) = n"(u). Since ¢” is surjective there exists
v € N such that ¢”(v) = u. Then we have

(a): F'(y — nv) = F*(y) — F'n(v)
=F'(y) — n"¢"(®)
=F'(y) — () =0
(b): m(y — ) =my — 7n(v) =my = x.
From (a) it follows that there exists w € F*X* M’ such that F'w =y — nv. From

(b) we obtain
B*f'n’'w = nF'w = x.
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Thus x € im B*f” and exactness at B* M follows.

Additivity is routine. 0O

We shall have need of a more delicate exactness property of B* in §7. We turn
to this now.

Suppose that A4 is a graded simply connected abelian group of finite type. Let
P, = PH*(KA). It follows easily from {1], [13], and the definition of B* that
B*P, = P, where s is the suspension functor.

We recall from [1], [13], that P, has a basis {i;, 87} as an unstable Z*-
module. If M < P, is an *-submodule with generators {u, = X,;i; +
XL,pri;} then it may be verified directly from the definitions that B*M is the
«/*-submodule of B*P, = P,, generated by the elements {ru, = Xu,7i; 4+
X{,;préris} where 7:P — P, , is the transgression.

Combining this with Proposition 5.8 we obtain:

COROLLARY 5.9.  Suppose that A is a simply connected graded abelian group of

Jinite type and
0—-M—->P,>M -0
is an exact sequence of unstable Z*-modules. Then
0—-B*M'—>B*P, ~B*M"—0

is an exact sequence of unstable ~&*-modules.

PrOPOSITION 5.10.  There are natural transformations of functors

Id - Q*B* and B* — Z*.
Proor. This is routine. We define the second one only. Let
M e obj U M*|A*,

Then id: Z*M — =*M induces a morphism of «Z*-modules id :FS*M > Z*M.

It is immediate that id | N =0. Thus id induces a morphism of «*-modules
Sy:B*M =FX*M|N, — 2Z*M. It is easy to extend the definition of s,; to a
natural transformation B* — X* as required. 01

The functor B* is constructed by analogy with the work of Cartan [1] and Serre
[13]. Indeed their work shows:

PrOPOSITION 5.11. (1) If A is a connected abelian group then
PH*KsA = B*PH*KA.
(2) If A is a simply connected abelian group then
PH*Ks'4 = Q*PH*KA. O

ProposSITION 5.12.  If A is a simply connected Z,-module then QH,KA is an
injective object of UCoM | A ,. Dually, if A is of finite type PH*KA is a pro-
Jective object of U M*|A*. O
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We note that for any strictly positive Z,-module V, F(V) is a projective
object in the category % . #*[.sf* and thus we readily obtain,

PROPOSITION 5.13. (1) The category UM*[A* has enough projectives, and
dually,
(2) the category U€oM,[A, has enough injectives. O

Since the category % €o.#, [+ has enough injectives we may proceed in the
usual fashion [3] to construct the derived functors of M O , N. These will be
denoted by UnCotor ‘f,,‘,(M , N).

REMARK. Roughly speaking the functor UnCotor “¢+(,) is “dual” to the
functor Unextg+ ( , ) of [S]. Indeed under suitable finite type hypotheses there
is an isomorphism UnCotor¥« (M, N) = Unextg+ (M*, N). (Compare [2]
page 87.)

PROPOSITION 5.14. If M € obj U M*[* and {: M — M is a monomorphism,
i.e. ker { =0, then there is a natural isomorphism B*Q*M ~ M of s x-modules.

PROOF. A routine exercise in the definitions. O
ReMARK. If A is a graded simply connected abelian group and M < PH*KA
is an «*-submodule, then ker {;; = 0. This follows easily from [1], [13].

PROPOSITION 5.15. If M € objUM*[A* is a projective object then so are
B*M and Q*M.

PrOOF. One readily checks that
B*P(n — 1) =~ P(n) =~ Q*P(n + 1),

and the result follows. T

REMARKS ON DuALITY. For the sake of convenience we have worked almost
exclusively in the category #.#*[*. We could dually have defined the functors
B,, Q,, X, on #U€oM,[ A, dual to the functors B*, Q* X*. The functors
B,, Q,, and 2, would then enjoy the properties dual to B*, Q*, Z*. In dealing
with homotopy groups the category #€o.# /A&, is more natural to work in.
We will adopt this course in §7.

6. The algebra #°*. One of the useful properties enjoyed by the K(Z,, n)-
spaces is that the Hurewicz map provides an isomorphism

h:m (K(Z,,n) > Z,0 4, QH (Z,,n;Z1,).

Relative to the homotopy theory =,( ; Z,), p an odd prime, all the K(=,n)
spaces (m-abelian) exhibit analogous behavior. We turn to this first.
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ACKNOWLEDGEMENT. The results of this section are due in large measure to
J. C. Moore.

CoNvenTION.  Throughout this section p is an odd prime.

Let /:e* — E[x], where deg x = 1, be defined by

fB =x fi(P)Y=0,k>0.

One readily checks-that fis a morphism of homology Hopf algebras.
DEFINITION. * = l* N f*.

Note that 9#* is a normal sub-Hopf algebra of &* and that there is an exact

sequence of homology Hopf algebras

Z,>H*—>Ad* > E[fl—>Z,.

NoOTATION. Ifx, y € &Z* then we set [x, y] = xy — (—1)%6*1€¥ yx  Observe
that J#* is generated as an algebra by the elements P* and [, P*], k > 0, and that
a minimal set of generators is provided by P*, [, P*'], k > 0. Thus 3#* is
2p — 3 connected.

H* may be described quite simply in terms of Milnor’s characterization of the
dual &, of the Steenrod algebra. We recall this now [16]..

If p is an odd prime then

A, = E[x4, x1,...]® Py, .. .]

where
degx, =2p* — 1 degy, =2p* — 2
and Vi, — o, ® A&, is given by

Vi =y, @y
Vx,=x, &1+ Zy,{f;. ® x;.

Since x, is primitive E[xo] is a sub-Hopf algebra of eZ,. Thus &, / E[xy] is
again a Hopf algebra. If we denote by o, the dual of #°* then it is easy to see
that

'#* >, / E[x,]
as Hopf algebras.

The algebra 2#°* has the following two nice properties:

(1) the natural map #* — H*(Z, «o; Z,) given by action on the counit is an
isomorphism of coalgebras;

(2) * acts naturally on the cohomology mod p of any space.
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In addition, a careful examination of the results of [1] shows:

THEOREM 6.1.  If A is a connected graded abelian group and p is an odd prime
then the Hurewicz map induces an isomorphism

himy (KA Z,) > Z, 0 5 Qo KA.

DEFINITION.  Let 3#*(n) < 3#* be defined by #°*(n) = B(n) N>,

If we think of 3#* as acting on H*(Z, n; Z,) then 3 *(n) is just the an-
nihilator ideal of the fundamental class (reduced mod p).

DEFINITION. An S *-module is unstable iff for all x € M’/ and « € #*(n),
j<n=>a-x=0.

We thus obtain the full subcategory of M */#°* generated by the unstable
H*-modules. We denote this category by . M*/H#*. Note that there is a
natural forgetful functor

D% UM | AL > UM H*

which roughly speaking forgets the action of f.
Dually we also have the category #€o M , |3 .
From [1] again we obtain (compare Proposition 5.11):

THEOREM 6.2. If A is a connected graded abelian group then QH,KA is an
injective object of UC€oM,|H,. Dually if A is of finite type then PH*KA is a
projective object of UM*|F*. [

PROPOSITION 6.3.  The category B M*|H* has enough projectives and dually
the category UM ,|F , has enough injectives.

ProOF. Routine. 0O
Thus we may form the derived functors of the functor M O 4, N in the standard

fashion [3]. These will be denoted by UnCotor¥; (M, N).

PROPOSITION 6.4. (1) The forgetful functor O* . UM* [L* — U M*|FC* pre-
serves projectives;

(2) the forgetful functor ®,:UCoM,| AL, —~ UCoM,|H, preserves in-
jectives;
g (3) if M € obj U M*|L* and ®*M is a projective in U M*[FH* then P*B*M
is a projective in UM* | H*;

4) if NeobjU€CoM,| AL, and O, N is an injective in UCoM,[H , then
®,B, N is an injective inUCo M | H ,.

ProofF. Routine. 0O

7. E¥(X): A special case. Throughout this section as in the previous, pisan
odd prime. X will denote either a Hopf space mod p or a pseudo-abelian Hopf
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space mod p. The mod CP-tower of X will be denoted by

F(—n) — X(—n) - K(—n)
7(—n)

v
F(—n+1)—>X(—n+1)—K(—n+1)

F(—-1)— X(‘—l) — K(=1)

7(—1)

X = X(0) — K(0)

The mod C?-spectral sequence of X will be denoted by {E"(X),dr(X)}. Our
objective in this section is to prove:

THEOREM 7.1. Let p be an odd prime. Let X be a simply connected pseudo-
abelian Hopf space mod p with H,X coprimitive of finite type. Then there is a
natural isomorphism

E*(X) = UnCotory,_ (Z,, OH,X).

ProoF. For each integer n we have exact sequences

@l—n—1)e

0— QH, X(—n) ——— QHK(—n) > Q(H, K(—n) / ¢(—n — 1),) > 0.

In addition it follows inductively from Proposition 4.5 that H,X(—n) is co-
primitive. Thus we have exact sequences of homology Hopf algebras

Z,— H,X(—n) > H,K(—n) > H,K(—n) / ¢(—n — 1), > Z,,
Thus we obtain from Proposition 4.3 an isomorphism
QHX(—n — 1) = Q0(H,K(—n) / p(—n — 1),).
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Hence we have exact sequences
0—QH. X~ QH,K(0)— QH,K(©0) / ¢(—1), >0
0—> QQH,K©O) / ¢(—1), — QHK(~1) > QH K(—1) / ¢(—=2), =0

0— Q*QH*K(_”) A o(—n — 1)y > QH, K(—n — 1)
— QH,K(—n—1) / ¢(—n—2), -0

It follows from the dual of Proposition 5.13 and the succeeding remarks that
B, Q,OHK(—n) / ¢(—n — 1)y = QH K(~n) / ¢(—n — 1),.

Thus applying the functor B, n-times to the nth sequence, we obtain in view of
Corollary 5.9 exact sequences

0—QH,X— QH, K(0)—> QH,K(©) / ¢(—1), >0
0—>QH*K(0)//(p(—1)*—>B*QH*K(——1)—>B*Q*H*K(—1)//(p(—2),,—>0

0—>BQH,K(—n) / ¢(—n — 1), > BL'QH, K(—n — 1)
— BiMQH K(—n — 1) / ¢(—n —2), >0

Pasting these short exact sequences together we obtain a long exact sequence of
& ,~comodules

x: 0—>QH, X —~QH,KO0)— B, QH, K(—1)—---

It follows from Proposition 6.2 and Proposition 6.4 that & is an injective
resolution of QH,X in the category ¥€oH [ ,. From Theorem 6.1 and
naturality it follows that

as differential modules. Thus
E2(X) 2 UnCotord#* (Z,, QH, X).

The naturality of this isomorphism is elementary. [
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APPENDIX

Let X be a simply connected pseudo-Hopf space mod p with coprimitive fibre
square [9, Example 8.1]
X(—1)——> LOH,X
F(—1)X) 71>

(-1

X KQH X

We will study conditions that assure a *‘natural” pseudo-Hopf fibre square mod p
or Hopf fibre square mod p structure on & (—1)(X).
NoTtaTION., X, % (—1)(X) are as above;

K(X) = KQH X,
PX) = p(—1),

{ET(X), d"(X)} denotes the homology spectral sequence of the
fibre square & (—1)(X), with Z -coefficients [3], [8].

LemmAa ALl
E’(X) = (H,,X)(—l) ® CotorH+EK(X07¢({ X0 (Zw Z,).
PrOOF. Sce [9; Example 8.1]. O

NotaTION. {F_,H,X({—1)} denotes the filtration on H,X{(—1) that is
associated to the spectral sequence {E"(X), d” (X)}.
E°H, X({—1) is the associated graded object. Note that E°H X(—1) = E*(X).

PROPOSITION A.2. E°H,X(—1) admits a natural homology Hopf algebra
structure.

Proof. From [8, Theorem A.1]. O
ReEMARK. In the context of Proposition A.2 natural means that for any
morphism f: X — Y of pseudo-Hopf spaces mod p, the induced map

A= X(=1) = Y(-1)
yields a morphism of homology Hopf algebras E%f(~—1),:E°H,X(—1)

E°H, Y{—1).
DEFINITION. A triple of pseudo-Hopf spaces mod p and their morphism

I xlx
is said to be Q-left exact mod p if

Z,>HX ->HX—>HX
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is an exact sequence of homology Hopf algebras and
0—>QH. X' —> QH,X > QH X"
is an exact sequence of Z,-modules.

LeMMA A.3. If 0> V'—V — V" is an exact sequence of graded ZL.-vector
spaces then KV' — KV — KV" is a Q-left exact triple of Hopf spaces mod p.

Proor. Routine. 0O
PROPOSITION A.4. Suppose that
Z,-H -H—>H"
is an exact sequence of homology Hopf algebras with the property that
0— QH' —~ QH — QH"
is in exact sequence of Z -modules. Then
Z,— H'(—1)— H(—1) —> H"(—1)

is an exact sequence of homology Hopf algebras.

PrROOF. An easy consequence of Theorem 3.4. O

PROPOSITION A.5. Suppose that X e xIsXxisa Q-left exact triple of
pseudo-Hopf spaces mod p. Then

Z, > H KXY / 9(X)y — HK(X) / 9(X)y — HKX") / 9(X"),
is an exact sequence of homology Hopf algebras.
Proor. Consider the diagram
C°H X' — H KX') > H KX') / ¢(X’),

l l l
C*H,X — H,K(X) > H,KX) / ¢(X),
l ! !

CPH X" —> HKX"Y— H,K(X") / ¢(X"),.

By replacing H, X" by im f, we may assume that the two left-hand columns are
exact. Since the rows are exact by definition it follows from the 3 x 3 lemma that
the right-hand column is exact. O

PROPOSITION A.6. Suppose that
ZP —H >-H—>H"

is an exact sequence of homology Hopf algebras whose underlying homology co-
algebras are injective. Then

Z,— Cotor®' (Z,, Z,) — Cotor (Z,, Z,) — Cotor®" (Z,, Z,)

is an exact sequence of abelian Hopf algebras.
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ProoF. This follows from the structure of CotorV(k, k) discussed in
§30f [9]. O

THEOREM A.7. If X'— X — X" is a Q-left exact triple of pseudo-Hopf spaces
mod p then
Z,—EH X (—1)—> EHX(—1)—> E°H X" (—1)

is an exact sequence of homology Hopf algebras.

Proor. If follows from [1], [13] and [9, Proposition 4.1] that for any
Y € obj P — H#Sp/p that H, K(Y) / ¢(Y), is injective as a homology coalgebra.
Therefore from Lemma A.1 and Proposition A.4, Proposition A.5 and Proposition
A.6 it follows that

Z,— EXX') - E¥X) > E¥X")
is an exact sequence of homology Hopf algebras. From [8, Theorem A.1] it now
follows that
Z,—> E®(X')—> E*(X)—> E*(X")

is an exact sequence of homology Hopf algebras, yielding the result. O

RecoLLECTIONS. If A4 is a connected algebra over Z, then as in
[9, Example 8.4] we may give K/A the structure of a Hopf'space. If 4iscommutative
then K14 is homotopy commutative. If f: 4 — Bisa morphismofgraded connected
algebras, then f induces a morphism of Hopf spaces Kif: KIA — KIB.

We will often use the notation KA for the Hopf space KIA.

LEMMA A8. Let A be a connected I ,-algebra. The natural map @(KA):
KA — K(KA) is the uniqgue map determined by the morphism of Z-algebras
In:JA— QH, KA, ie., p(KA) = Ka.

PrROOF. Direct from the definitions. O

LEMMA A.9. The monomorphism of homology Hopf algebras A:A — H, KA
induces a monomorphism QA:QA — QH, KA.

Proor. Direct from the definition of the Hopf space structure [9, Example 8.4]
on KA. O

LEmMMA A.10. Suppose that f:A — B is a morphism of connected 1 ,-algebras
where B has trivial multiplication. Consider the fibre square

E — LB

.

KA — KB.

Let C < A be the ideal ker f together with the identity in degree 0 (i.e., C is the kernel
of fin the category of supplemented Z ,-algebras). Let D = B[fA. Then E is a
Hopf space and there is an isomorphism of Hopf spaces E~ KC x K(s™'D).

ProOF. Routine. O
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ReMARKS. The only use that we shall make of Lemma A.10 is that E'is a Hopf
space, which a priori we do not know; we only know that Eis an H-space. In the
terminology of [15], KA is an Ag-space. s K4 an 4, -space for n > 3? Probably
careful attention to a construction of KA via simplicial sets settles this in the
affirmative. Suppose that f:4" — A" is a morphism of connected Z -algebras.
Is Kf:KA" — KA” an A;-map? Probably careful attention to a construction of
KA via simplicial sets settles this in the affirmative. If so then Theorem 6.1 of
[15] would neatly dispose of the need for Lemma A.10.

NotatioN. If 4 is a connected Z ,-algebra let 0~ 4 = QH KA[QA.

PROPOSITION A.ll. If A is a connected Z ,-algebra then K{(A)(—1)c~
KA* X K(s7'Q*A) as a Hopf space.

ProoF. From Lemma A.8 it follows that ¢ . KA) = K« and the result now
follows from Lemma A.10. O

TueoreM A 12. If X is a Hopf space mod p then X(—1) is a Hopf space
mod p and F (X) is a Hopf fibre square mod p.

Proor. Note that X(—1) is easily seen to be an H-space and thus the only
issue at stake is the associativity of H,X(—1).

Consider the natural morphism of Hopf spaces 6: X — KH,X. The argument
in Theorem A.7 shows that

E%O(—1),:E°H, X(—1) — E°H  [(KH ,X){—1)]
is a monomorphism of homology Hopf algebras. Therefore
=Dy HX(—1) > H [(KH X)(—1)]

is a monomorphism of quasi-Hopf algebras. Since the right-hand side is actually
associative by Proposition A.11 it follows that H X(—1) is a Hopf algebra. [

ProsLem. [f X is a Hopf space, is the natural map X — K(X) an Az-map?

Suppose that (X, ) € obj P — Ab# Sp/p. Then H KH_X is abelian and hence
the natural morphism 0, :H, X — H KH, X is normal. Thus H KH_ X / 0, is
defined and is an abelian Hopf algebra over Z ;. There is also a natural morphism
of Hopf spaces {:KH, X — K(H,KH,X / 0,) and we readily obtain:

PROPOSITION A.13. If (X, u) €obj P — Ab# Splp and X is simply connected
then .

X5 KH XS K(H KH,X 7 0,)
is a Q-left exact triple of Hopf spaces mod p. O

THEOREM A.14. If (X, pu) € obj P — AbA#'Sp[p then X(—1) admits a natural
pseudo-abelian Hopf space mod p-structure and F (—1)(X) is a pseudo-Hopf fibre
square mod p.

ProoF. From Proposition A.13 we obtain a Q-left exact triple of pseudo-Hopf
spaces mod p

X5 KH X 5 K(H,KH, X /7 6,)
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and hence by Theorem A.7 we have an exact sequence of homology Hopf algebras
Z,—> EH,X(—1) - E'H,(KH,X)(—1)) - E*H,(K(H,KH, X / 6,)(—1)).
By Theorem A.12 (KH, X){—1) and (K(H,KH, X / 0,))(—1) are Hopf spaces and
U—1)y: Hy [(KH X)(—1)] — H (K(H,KH, X / 8,))(—1)]
is a morphism of Hopf algebras. Hence
H [(KH X(—DIN (=1
=Z, U rxm.xieny He (KHKH X 7 0,)K=1)]

is again a Hopf algebra under &7, .
Since { 6 is null homotopic it readily follows that the composite morphism of
homology coalgebras

H, X(—=1) > Hy [(KH X)(—1)] > H [K(H KH, X / 0,))(—1)]
is trivial there is a natural morphism of homology coalgebras

H,X(—1) —> H (KH  X)(— D]\ {{—1),.
Since
E'H, X(—1)— E°H, [(KH X){(— D]\ E°[{(—1),

is an isomorphism of coalgebras it readily follows that
H, X(—=1) > H (KH X DIN =1,

is an isomorphism of coalgebras under &, . But the right-hand side is an abelian
Hopf algebra under &, by Proposition A.11. Transferring this structure to
H,_X(—1) via the above isomorphism of coalgebras gives X(—1) the structure of
an object of P — Ab#’Sp[p as required. The rest is routine. [J

ProBLEM. If X € obj P — H#Sp[p is F (—1)(X) a pseudo-Hopf fibre square
mod p? Theorem A.14 gives an affirmative answer when H, X is abelian.

There is a closely related and completely algebraic problem. Suppose that
Heobj# H|K. Let p:H— UH be the morphism of homology Hopf algebras
constructed in {9, Proposition 3.6]. Is p a normal monomorphism ?

Theorem 1.1 and Theorem 1.2 follow from essentially trivial modifications of
the arguments used to prove Theorem A.12 and Theorem A.14, respectively.
Details are left to the reader.
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Stable Homotopy II

Peter Freyd

We shall use the language of our paper Stable homotopy [1] freely in the proofs.
Those propositions marked with *, however, will be stated in more conventional
language. A few new definitions will be necessary in the statement of some of the
*-theorems; the definitions will, however, be given in conventional language.
All spaces are finite complexes.

1. Cancellation

* PROPOSITION 1.1.  Given spaces X, Y, Z all in a stable range and a homotopy
equivalence X V Z ~ Y V Z it is not necessarily the case that X = Y even if Z is a
sphere.

Proor. We shall need the Schanuel Lemma here and throughout the paper.
In an arbitrary abelian category, the Schanuel Lemma says that if

O—-X,—-X, ,—» " —>X,>A4->0
and
0—-X_,—>X_

> Xy A0
are exact, X; projective for —n < j < n then
X, @X (@ X, 2D BX_)n =X, O @ Xy

We shall use the Lemma in , always in the case that X, =~ X__. Furthermore,
either X,, or 4 will be torsion. Thus

SPECIAL SCHANUEL LEMMA 1.12.  Given exact sequences
0-B—->X,—-X, > —>X,>4->0
0O—-B—>X,—>X , > " —>X,>4-0

in &, X, € for all j, and either A or B torsion, then
XoVX oy V VX =X VX, Ve VX e
161
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The copy of B has been cancelled assuming that it is B that is torsion. Ifitis 4
that’s torsion then we use co-Schanuel and cancel 4. JLEMMAJ]

Now let »:5°— S° be a map of order 8 [2]. Let $3 SRANGY\ JIN C,— S* and
58 25 50 C,, — S* be mapping cone sequences. Note that Im (¥) ~ Im (3»)

and Ker (») =~ Ker (3»). Hence we may apply Schanuel’s Lemma to the exact
sequences

0->Im@»)—>S*—>C,—~SKer(») >0
0—->Im@3») >8> C;, > SKer(3») >0
to obtain
SOV Gy~ S°VC,.

(We could similarly obtain C, v §* ~ C;, v §4.) In general, given y:S™ — S°, and
an integer j prime to the order of y we would obtain S* v C, ~ §° v C;,. We may,
of course, suspend the example into a stable range. Itis not known to be a counter-
example however, until we know that C, 4 C,,. We need

PROPOSITION 1.2,  Given «:8" — S°, $:5" — 8°, if C, =~ C, then a. = +f.

Proor. Let f:C, — C; be an isomorphism. We obtain

Sn _* S0 > Ca > Sn+l
1] a f b
Y J] Y Y ’
sr—2— 50 >C, > sni
b a’ it b’
A\ Y
St ——> 50 C, > Sri
a

where a, a’, b, b’ are integers. Note that
s> 50 C, =0,

hence (aa’ — 1) - 14 factors through «, hence aa’ — 1 = 0. Similarly (dually
bb' =1. | Cancellation fails.

* THEOREM 1.3. Given X, X', Z all in a stable range,if X v Z and X' v Z are
homotopically equivalent, then for the bouquet of spheres B with the same betti
numbers as X there exists a homotopy equivalence X v B~ X' v B.

Proor. Given X e, m,(X) is the graded stable homotopy group
{&L(S", X)}12. By m,/T(X) we mean the torsion-free part of 7, (X), i.e.

{& (5", X){Tor &(S*, X)) .
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The values of =, /T are graded free abelian groups, each component of which is of
finite rank, almost all of which are trivial. Needing a name for the range of =, /T
we settle for > Mat (Z), where Mat (—) is intended to denote the category of
matrices over a ring (—), and ), means the weak product over the integers.

We note that we may imbed Y Mat (Z) into & by assigning bouquets of spheres,
the betti numbers of which are determined by the ranks of the free groups, and that

S Mat (2) > S =L >3 Mat (Z) = 1.
Furthermore note that
& T 53 Mat (Z) —22> 3 Mat (Q) ~ H,(—, Q)

because (5", X) ® Q ~ H, (X, Q) [2(4.10)].
We shall define B:# — % to be the functor which assigns bouquets of spheres
of the same betti numbers

& =T >3 Mat (Z) > F = B.

B(X) will be written By.!
For any space X we can find a map ¢:Bx — X such that =,/T(¢) is an iso-
morphism.

LemMa 1.31.  Suppose X and X’ are isomorphicin’, p:By — X, ¢":Bx.— X',
o/ T-isomorphisms. Then there is an integer t > 0 such that Ker (t¢) =~ Ker (t¢")
and Cok (1¢) =~ Cok (1¢").

PRoOF. Let f:X — X’ be an isomorphism. Note that there exists

By LBX

T
By —5— Bx:
and that g is an isomorphism. Hence the diagram
By —>—Xx
By —— X

commutes when /T is applied. fo — ¢'g is killed by =, /T, therefore it is

! Philosophers and people at Penn will understand why I think of this as the Betty-Flower
Functor.
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torsion. Let ¢ be the exponent of the torsion part of & (Bx, X’). Then

By ——> X'
tg/

commutes and the isomorphisms announced in the statement of the lemma are
obtained. JLEMMA]

Now suppose that X VZ ~ X'V Z. Let ¢":B, —Z be a m,/T-isomorphism.
By the above lemma we can find ¢ > 0 such that

Ker (#(9 @ ¢")) =~ Ker (1(¢" @ ¢)).
Noting that

Ker (t(p @ ¢")) = Ker (tp ® t¢") = Ker (t¢) @ Ker (t¢")

and similarly for ¢’ instead of ¢ we obtain
Ker (t¢) @ Ker (t¢") ~ Ker (t¢') @ Ker (t¢").

Observe that an 7, /T-isomorphism is a rational homology isomorphism and there-
fore t¢” is a rational homology isomorphism, and Ker (t¢") is torsion. It cancels
Ker (t¢) = Ker (t¢'). Similarly Cok (2¢) =~ Cok (t¢'). We have exact sequences

0 — Ker (tg) —> Bx — X — Cok (tg) —> 0
0 — Ker (t¢') > Bx. —> X' — Cok (1¢') — 0.

The Special Schanuel Lemma 1.12 gives By V X'~ By. v X. Finally note that
the isomorphism X vZ ~ X'v Z implies that X and X’ have the same betti
numbers, hence Bx ~ Bx.. |

The semigroup (|¥|, V) is not a cancellation semlgroup by the first proposition.
We define the congruence X = Y as usual by: X = Y iff there is Z such that
XVZ~YVvZ Then (|| v)/= is a cancellation semigroup. By the above
theorem X = Yiff XV By~ YV By.

Let H¢ be the family of homotopy types of finite complexes of connectivity ¢,
dimension d. We shall always assume that d < 2¢ + 1, i.e. that we are in a
meta-stable range. The example in the proof of Proposition 1 says that (H}, V) is
not a cancellation semigroup.

The Freudenthal Theorem gives an embedding (H¢, v) —¢||, v) for all
d < 2¢ + 1. The above theorem tells us that when we pass to the associated
cancellation semigroups the map remains an embedding, i.e. that if X, Y H?
and X = V in &, then there exists B € H% such that YV B~ Y V B.

2. Spherical retracts. We define the TOTAL n-DIMENSIONAL
SPHERICAL RETRACT of a space X to be the largest bouquet of n-spheres B,,
which retracts from X. There is a largest such because the nth betti number of X'
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is clearly an upper bound on its rank. For each n let B, be the total n-dimensional
retract of X, and let f,:B,— X, g,:X— B, be such that g,f, =1. Define
By =VB,and f:B;, > XbyB,—>By—>X={,,8:X—> By byX—> By~ B, =
g.- Note that =,/T(gf) = 1, hence that gf =1 — t where ¢ is a torsion map.
Clearly ¢ is nilpotent. Therefore gf is an isomorphism and Bj retracts from X.
Thus there is a largest bouquet of spheres that retracts from X and we may define
it to be the TOTAL SPHERICAL RETRACT of X.

* PROPOSITION 2.1.  Total spherical retract is a = invariant. That is, if X, Y
are in a stable range and if X vV Z ~ Y v Z and a bouquet B retracts from X then it
retracts from Y.

Proor. First a lemma, stated in <.

If S® retracts from X and if X = Y, then S° retracts from Y.

Let By = By v B, v B_ where B, is a bouquet of O-dimensional spheres, B,
positive dimensional, B_ negative dimensional. Let X = X'V §° We know that
S° v B, retracts from X V By, hence from Y vV By by the last Theorem (1.3). Itis
apparent that the retraction S°v By— YV B,vB, VB — 8"V By=1 is not
upset if we remove B, since (S°V B,, B,) = 0, and then if we remove B_ since
(B_, S*V B;) = 0. Hence we obtain S°v B,— YV B,— S°Vv B, = 1. Let

f=8"VB,—Y—>S8VBEB,
g=S"VBy—By— SV B,
Then
freg=1

The full subcategory of bouquets of 0-dimensional spheres is equivalent to the
category of integral matrices Mat (Z). With that equivalence in mind we observe
that gisa (b, + 1) X (b, + 1) matrix, where b, is the Oth betti number of X and Y.
Moreover g is of rank b, because it factors through 15 , a by X b, matrix. We may
diagonalize g: there exist automorphisms 6,, 6, such that 6,0, is diagonal.
Necessarily, one of its rows must be 0. We’ll assume it’s the top row. Therefore,
the top row of 6,0, is unimodular, and we obtain

SO>S0V B - L S0y B >S5 =1.

Recalling that ffactors through Y we have that S° retracts from Y. Thus the lemma.

"~ Now let By, By, be the total O-dimensional retracts of X and Y. And
suppose Br, is bigger than By, In particular, then, Byo = By, Vv S°V B”
where B” could be trivial. Let X = X'V By, Y=1Y"V By, Note that
X'vS'V B =Y. By the lemma, S° would retract from Y’, a contradiction.
Hence the total 0-dimensional retracts of X and Y are equal, similarly for all
dimensions, hence their total spherical retracts are equal. ||

* COROLLARY 2.2. Given X and Y in a stable range. If X v B= Y where B
is a bouquet of spheres whose betti numbers dominate those of X, then XV B~ Y.
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Proor. By the above proposition ¥~ Y'v B, and X = Y’'. By Theorem
1.3, Xv By~ Y’V By. By the condition on the betti numbers, we obtain
XvB~YvVvA |

PROPOSITION 2.3, Giveny:8" — 8% y # 0, then the cone, C, is indecomposable
in{|&L|, v)/=.

Proor. Suppose not. C,= X, v X, where neither X,, X, is trivial. By the
stable Whitehead theorem, neither X, nor X, has trivial homology. But the
homology of C, is that of §° v §"*! and hence X, and X, are homology spheres,
therefore spheres. By the last Proposition 2.2 C, ~ §° v §"*1, i.e. C,~ C,. By
Proposition 1.2, y = £0. || ’

* PrROPOSITION 2.4. (HS, V)/= is not a unique factorization semigroup, a
fortiori, neither is (||, V)[=.

ProOF. Let a:83—S° be a map of order 3, and $* > §°— C, — §¢,
a+tv

S — §*— C,.,—~ §* mapping cone sequences. Note that the torsion object
Im (« + ) is isomorphic to Im (x) ® Im (), because « and » are of coprime order.

We have exact sequences
O0—-Im(x+»—>8—>C, ,—8—>SIm(x+»)—0
O—-Im@eIm@—>S°vS—>C,vC, —>SMvS—>SIm()®SIm(»)—0.
The ends are isomorphic and torsion. Hence special Schanuel 1.12 yields
SVC,VC, VSt~ 8 VvSVC, VSvS.

We may cancel to obtain
c,vC,=C,.,VvSvSsi

We may use Proposition 2.2 to obtain C,vC,~C, v S°v S, But even
without the ~, just with the =, we know that (|#|, v)/= fails to obey unique
factorization, since C,, C,, C,,,, S® and S* are all indecomposible therein. By
suspending five times we may move the example into the pre-stable range.

Note that not even the number of indecomposable factors is invariant. Also
note that total spherical retracts do not add up on wedges. The example can be
duplicated for any y, y':8" — S° of coprime order. We wish to explicate the

dependence of the failure of unique factorization upon the mixing of primes.

3. Primary spaces. Given X € & consider the integers n such that there is
a bouquet of spheres B and maps such that X — B — X = n - 1 x. The set of such
integers is clearly an ideal. Define T(X) to be the nonnegative generator of that
ideal. T(X) =1 iff X is a bouquet of spheres (retracts of bouquets are bouquets
[2(6.4)]). It may be observed that T(X) is the exponent of X in the quotient
category /B obtained by killing maps which factor through bouquets. (The
exponent of an object is the order of its identity map.) T(X) is never zero, since we
can choose a rational homology isomorphism ¢: B8 — X and note that the exponent
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of Cok (@) is in the ideal (T(X)). Note that T(X v Y) = Lc.m. (T(X), 7(Y)). Of
more interest is the set Py of prime divisors of T(X): '

Py = @ iff X is a bouquet of spheres.

Pyvy =Py UPy.

If X is torsion, Py is the set of prime divisors of its exponent.

For the last statement notice first that if n+ 1y = 0 then clearly n e (T(X)),
hence Py is contained in the set of prime divisors of n. For the reverse containment,
let p be an arbitrary prime divisor of the exponent of X, and X, the p-primary
component of X. Suppose T(X) is prime to p. Then T(X,)| T(X) and T(X,) is
prime to p. But we have just observed that the prime divisors of 7(X,) must be
divisors of the exponent of X, which is a power of p. Hence X, =0 and X = 0.

PROPOSITION 3.1. Let ¢:B — X be a w,[T-isomorphism. Py is equal to the
set of prime divisors of the exponent of Cok (¢).

PrOOF. One containment is easy. If n-lg,(,) =0, then there exist
X—>B-2>X=n Hencene T(X)and P is contained in the prime divisors of .
. . f .
For the other direction, let X —»> B’ —> X = T(X)- 1. Note that there exists
BI
1 By
By ——B;—’ By.

Hence,
BI

h f
BXT)X

commutes after the applications of =, /T. Therefore f — @k is torsion. Define
g = x-2-p1, Bx. Then ¢g' = T(X) — t' where ' is a torsion map. We may
decompose ¢ as a sum of primary torsion elements ¢’ = 3 t,. Definet” = 3 of,.
For some exponent @ > 0, (T(X))*-t" = 0. Hence (T(X))* -t is of order prime
to 7(X) therefore divisible by T(X). Let ¢ be such that (T(X))**!t = (T(X))*- t'.
Define g” = (T(X))® - g’. Then ¢g" = (T(X))**'(1 — t). Now, ¢ is an element of a
finite multiplicative semigroup, Tor (End (X)), and some power ¢” is idempotent.
Defineg” =g"- (1 + ¢t + 2+ --- 4 1), Then ¢g" = (T(X))*(1 — ).

Let X' = Im (¢*). X'is a retract of X since #° is idempotent. The exponent of
X' is equal to the order of ¢, and hence not divisible by any prime in Py. But
Py. < Py. It follows that Py, = &, and X’ is a bouquet of spheres. But it is
torsion. Hence X' = 0. Hence t* = 0. Hence gg” = (T(X))***. Now

X5 By —%> X — Cok (¢) = 0.
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Therefore (T(X))**! - 150x(,) = 0, and the prime divisors of the exponent of
Cok (@) divide (T(X))*+, hence are contained in Py. |
We will say that X is p-primary if Px < {p}, equivalently if there exist maps
X — B— X = p"for some bouquet B of spheres, or equivalently for B the bouquet
of spheres with the same betti numbers as X (equivalently, if T(X) is a power of p).
The only spaces both p-primary and q-primary, p # q, are bouquets of spheres.
The family of p-primary spaces is closed under wedge composition and de-
composition.

* THEOREM 3.2. Let X be in a stable range. There is a set of primes P, spaces
{X,},cp in the same stable range, each X, p-primary, and each with the same betti
numbers as X such that

XvyV B~VYX,
{P]—1 4
where B is the bouquet of spheres with the same betti numbers as X.

PROOF. P =Py. Let ¢:B— X be a w,/T-isomorphism, B~ X — ¥ — SB
a mapping cone sequence. Because ¢ is a rational homology isomorphism, Y is
torsion, a fortiori, Cok (¢) and S Ker (¢) are torsion. We split each into its
primary components, and obtain for each prime p,

0 — [Cok ()], > ¥, — [Ker (9)], 0.

For p ¢ Px we know by the last proposition that [Cok (¢)], = 0 hence that
Y, ~ [S Ker (¢)],, but [S Ker (¢)], being injective would retract from SB. But
it is torsion. Hence trivial. Therefore ¥ =V, Y.

For each p, let §'Y,— B— X, — Y, be a mapping cone sequence. We
obtain, for each p € P an exact sequence

0 — [Ker (p)], —~ B— X, — [Cok (p)], 0,

where X, is p-primary and has betti numbers equal to those of B. If we take the
direct sum of these sequences we obtain

0— @ [Ker (w)]p—>|}/|B—> VX, 61), [Cok (¢)],— 0

peP peP
the ends of which are torsion and isomorphic to those of
0 — Ker (¢) - B— X — Cok (¢) — 0.
The Special Schanuel Lemma yields
XvVB~BVVX,

e peP

The cancellation of the extra B follows from Proposition 2.2 (noting that if
{Px| < 1 the theorem is immediate). |
If we make (||, V) into a group, G, the Grothendieck group, K;, of &, we have

* COROLLARY 3.3. G is generated by the primary spaces. ||
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We shall show far more. In particular that the X,’s of the theorem are unique
up to =. Note, incidentally, that the image of (|.#|, V) — G is the cancellation
semigroup (||, V)/=. Also, that if we define G to be (H{, v) made into a group,
then for d < 2¢ + 1, G? is embedded in G, and G¢ is generated by the primary
spaces therein. We observe that the one-to-oneness of G?— G depends on
Theorem 1.3.

4. Thelocalized categories. We need to concentrate oneach prime, individually.
When studying rings we do so by localizing. In additive categories we do the same.
Given an +’ive category % and a prime integer p, we define %, to be the category
with the same objects as % and with maps represented by pairs (f, m), fe ¥, m
an integer prime to p, subject to the equivalence ( f, m) = (f’, m’) if for some m"
prime to p, m'm"f = mm"f’. We denote the equivalence class of (f, m) by fim.
The rules for addition and composition were learned in grade school. Note that if
A has one object, in other words U is a ring, then A, is the localization, as defined
for rings, at the prime p. In general, A (4, B) = (4, B) ® Z,,, where Z,,, is the
ring of p-adic rationals, {a/m € Q | (m, p) = 1}. W — A, kills precisely those maps
which are torsion of order prime to p. Moreover, if Tor,, (%) is the full subcategory
of p-torsion objects in A, then Tor, (A) — A — A, is a full embedding and it is an
equivalence from Tor, (A) to (Tor (UA)).

In U, every map of the form m - 1,, (m, p) = 1, is an automorphism. U, is
universal in this respect. Given a category B with this property and functor
A — B there is a unique factorization through A —A,. Note that H (—, Q),
H,(—, Z,) and H (—, Z/pZ) each are definable on & .

In general, if A is abelian then so is A, and A — A, is exact. Moreover, if
B is abelian and A — A, — B is exact, then so is A, — B. It follows that
A — N, preserves projectives and injectives. We may consider the commutative

L —— F

|

y’p<——> &>

It is clear that &, — §& is a full embedding, and from the last paragraph, that the
& ,-objects form a resolving set of projectives in &, and a coresolving set of in-
jectives. &, is a frobenius category. We do not know, a priori, that idempotents
split in &, i.e. that all &, projectives are isomorphic to %, objects. Wait.

THEOREM 4.1. Given X, Y in a stable range, X=Y in L iff X~ Y in &L,
each p.

Proor. If X= Ythen X'v B~ Y Vv Bfor Babouquet of spheres by Theorem
1.3. Henceineach & ,, X v B~ Y Vv B. But note that the ring of endomorphisms
of a sphere in & is a local ring, namely Z,,. Objects with local rings of endo-
morphisms may be cancelled in any @’ive category [1(6.11)]. Hence X ~ Y in
each & .
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Because rational homology factors through &, we know from X ~ Y (in.%,)
that the betti numbers of X and Y are equal. Let ¢:B— X and ¢':B— Y be
7o/ T-isomorphisms in &, and let r be the exponent of the torsion part of
&L(B, XV Y) For given p,l et fln: X — Y be an & -isomorphism, fe L (X, Y).
We may assume that n = 1. (Multiply by » if it is not.) Let f'/m:Y — X be its
inverse, f' € #(Y, X). We may assume that f/f =m- 15 in &. Now let

Bo
B—> By

B,

B—> > By

BTBX

@

commute, g'g = m - lp g is an & -isomorphism.
Note that the square

BL)X

gvl lf
B———Y
te
commutes in &. (As in the proof of 1.31, they commute even without the ¢’s after

application of =, /T, hence they fail to commute only because of torsion. That
failure is killed by t.) The vertical maps are & -isomorphisms. Thus

Ker (tg) ~ Ker (t¢), Cok (t¢) ~ Cok (t¢’) in &,,.

The choice of ¢ did not depend on p. Torsion objects in § are isomorphic in &, iff
their p-components are isomorphic in §. (§ could be any @’ive category.) Thus
if two torsion objects in § are isomorphic in §,, each p, they are isomorphic in §&
(still good for any @’ive category). Schanuel again. We have exact sequences

0 — Ker (t¢) > B— X — Cok (t¢) >0
0— Ker (t¢') > B— Y — Cok (t¢') - 0
in §, with isomorphic torsion ends. (1.12) BvX~Bv Y. |
COROLLARY 4.2. Given p-primary spaces X and Y in a stable range, X=7Y
fFX=Yin¥, :
Proor. If X~ Y in &, they have the same betti numbers. Let ¢:B— X,
¢':B— Y be =,/T-isomorphisms. Because Ker (¢), Ker (¢"), Cok (¢), Cok (¢)

are all p-torsion, 3.1 they are all 0 in &  each ¢ # p. Hence X =~ Y in &, each
g # p. The theorem above now suffices. ||
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We shall find repeated need for the observation

ProrosITION 4.3. X is p-primary iff it is isomorphic to a bouquet of spheres in
& allg #p.

PROOF. => As in the proof of the above corollary. <= If X ~ Bin &, there
exist maps in & X — B— X = m - | y where ¢ # m. Noting that m e (T(X)) we
know that ¢ ¥ T(X). 1

5. Uniqueness theorems. The complement of 3.2:

* THEOREM 5.1.  Let P be a finite set of primes, {X,} ,cp, {X,},cp collections
such that X, and X are p-primary with the same betti numbers, all in a stable range.
Then Vo X, = VX, implies X, = X, each p.

Proor. From V, X, =V, X  we have V X, ~ V_ X in &, But note that
X, and X are isomorphic in &, ¢ # p, to bouquets of spheres according to the
above Proposition 4.3, and the betti numbers force them to be the same bouquets.
Hence we may cancel them, just as in the first half (the easy half) to Theorem 4.1,
leaving us with X, ~ X in &,. Proposition 4.2 finishes the proof. I

This last theorem does not translate directly into a nice theorem about G. We
need a bit more.

PROPOSITION 5.2.  Given X there is a p-primary space X’ such that X ~ X'in & .
We can assume, therefore that & -objects are p-primary in &.

ProOOF. Decompose X as in 3.2.
XvVB~=x,v V X,
[P[—1 a€p—(p}

In &, X, ~ Beachq +# p. We cancel the spheres toobtain X ~ X, in% . |

PrOPOSITION 5.3.  If X is a p-primary space and if a bouquet B retracts from X
in &, then it does so in & .

PROOF. Suppose X ~ X'V Bin %, We may assume by the last proposition
that X" is p-primary. Hence by 4.2 X = X’ v B. Theorem 2.1 said that spherical
retracts are = invariants. ||

* PROPOSITION 5.4.  The family of p-primary spaces in a given stable range,
without spherical retracts is closed under wedges.

PrOOF. Suppose S retracts from X, v X, where X; and X, are p-primary. We
recall that in any ®’ive category, an object with a local ring of endomorphisms not
only cancels but is such that if it retracts from X; ® X; it retracts from one of
them. Hence in &, S retracts from either X, or X, and by the last proposition, it
does so in <. |}

* THEOREM 5.5. Let G, be the subgroup of G freely generated by spheres. For
each p, let G,,, be the subgroup of G generated by p-primary spaces without spherical
retracts. Then G is internally isomorphic t0 G, © 2G,,.
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Proor. We have shown that G, U UG,, generates G in 3.2. To show that
G, ® XGy, — G is one-to-one we let BV V X, =BV V, X  where B, B are
bouquets of spheres, X, X are p-primary without spherical retracts, eachp. In.%,
we have X, VBV V.., X,~ X, VB VvV, X by4.l, X, and X, are isomorphic
to bouquets of spheres in & each g # p by 4.3. We may cancel as many spheres as
we can. If any spheres are left we would obtain either that X, or X, has a spherical
retract in &, hence in &, (5.3), a contradiction, Thus X, ~ X in &%, and by
4.2, X, = X,. Finally B = B’ just by a betti number argument. [

6. The Grothendieck ring. G has a ring structure, smash product as multi-
plication, S° the unit. B:G — G, is a ring homomorphism, where G, can be
considered to be the ring of Poincaré polynomials. The augmentation ideal will be
denoted G*. It consists of elements of the form [X] — [Y] where X and Y have
the same betti numbers. We define G} to be the subgroup of G* of elements of the
form [X] — [Y] where X and Y are p-primary. Note that G* is generated by
U G; by Theorem 3.2. Indeed that theorem can be restated nicely as

[X] — [Bx] = 2([X,] — [Bx]D
where [X,] — [Bx] € G} each p. It follows easily from 5.1, that
* THEOREM 6.1. G* is internally isomorphic to Y ,G,. |

The theorem is a statement about an abelian group. But it is also a statement
about ideals, since

* THEOREM 6.2. G} is an ideal.

Proor. Let [X]— [Y]€G}. X and Y have the same betti numbers by
definition of G} = G*. Let ¢:B— X, ¢": B~ Y be =, /T-isomorphisms, and let
¥:X — B be such that gy = p"- 14 (3.1). v and ¢ are isomorphisms in &, each
q # p, hence f: X — Y, f= ¢’y is an isomorphism in &,.

* We may prove here the freeness of Gy,, (hence of G). The category &/B has the property
that every map has a finite ring of endomorphisms. (Recall that #/B is obtained from # by killing
maps which factor through spheres.) Let U be the category obtained from /B by splitting
idempotents. Every indecomposable object in U has a local ring of endomorphisms, hence
(Y|, ®) is free. The Grothendieck group, ko(¥/B) is embedded in ko(N) (because #/B is a full
subcategory of A), hence ko(#/B)is free. Now we need only show that G,, is embedded in Ko(#/B)
For that is suffices to know

PrOPOSITION 5.6. If X and X' are p-primary, without spherical retracts with the same betti
numbers, and if they are isomorphic in #|B, then X = X',

Proor. If X and X" are isomorphic in &/B three exists a retraction X ~X'vB—>X=1, B
a bouquet of spheres. Let C be such that Xv C ~ X’ v B. In &, we can easily show that C is a
bouquet of spheres. The equality of betti numbers yields C ~ B in &,. But note that C is
p-primary. Hence C is a bouquet of spheres 4.3. Thus X = X". |

We shall want more than the freeness of G. We shall want, for example, a basis. Note that at
this point we do not know if indecomposable p-primary spaces remain indecomposable in #/B.



STABLE HOMOTOPY 11 173

" For any Z consider ZA ([X]— [Y])=[ZAX]—[ZAY]. The map 1A f
remains an isomorphism in &, each q # p. If we decompose

[Z A X]— [B] = 3 [X,] — [B]"
(ZA Y]~ [B] = 3[Y.] — [B]

where B = B,,y, we note that the & -isomorphisms ZAX=ZA Y yield
& isomorphisms VX, ~ VY, from which we may cancel to obtain X, = ¥, all
g#p. Because [ZAX]—[Z— Y]=X([X.]—[Y,]) we have [Z A X]—
[ZA Y]IeGE 1

* COROLLARY 6.3. If X and Y are primary for different primes, in a stable
range, then (X A Y)V (Bxay) = (Bx A Y)V (By A X), where B(_, is the bouquet
of spheres with the betti numbers of (—). (The right-hand side of = is a wedge of
suspensions of copies of X and Y.)

ProoF. ([X]— [BxD A ([Y] — [By])=0 by the last theorem. Hence
XAY)V(BxABpy)=(BxAY)V(By AX). The = becomes a ~ because
of22. |

Note that we do not need X and Y to be primary, aslongasPx NPy.= &.
(““Coprime spaces’’ ?)

COROLLARY 6.4. Let o:8" — S% (3:8" - 5% be of coprime orders, C,, Cy
their mapping cones. Then C, A Cp = C, 1,V S™C, .

ProoF. By the last corollary and the subsequent remark we have
(CAC)V(SPV Sy Sty i) ~ C, v §™IC, Vv C, Vv S™HIC,.
By the proof of 2.4, the right-hand side is isomorphic to

Copy V S™1C,,, V SOV SHHY Snity Sz ]

7. The basic theorem of local stable homotopy. Before we prove it, we wish
to observe a few consequences of the theorem we choose to call the Basic Theorem
of Local Stable Homotopy:

If X is an indecomposable p-primary space in & then End, (X) is a local ring.

First, it follows that every indecomposable in &%, has a local ring of endo-
morphism, because if X is indecomposable in &, and p-primary, it is, a fortiori,
indecomposable in &. Hence the Krull-Schmidt theorem holds in &, as in any
category in which every indecomposable object has a local ring of endomorphisms.
That is, (|.%,l, V) is free. Let (|&], V), be the sub-semi-group of (|¥|, V) con-
sisting of p-primary spaces. The image of (|%|, V), = (L |, V) is {|L|,V), /=
according to 4.2. But (5.2) says it is an onto map, i.e. (|&|, V), /= is isomorphic
to the free semigroup {|.% |, v). Hence making the cancellation semigroups into
groups:

THEOREM 1.1. G, ® G,, is freely generated by the indecomposables. |1
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This we may restate as

* THEOREM 7.2. If X, V' VX, =X/V -V X, and each X, X; is an
indecomposable p-primary space, thenn = m and for some permutation =, X; = X,
alli. 1

We may combine this theorem with 5.5 to obtain
* THEOREM 1.3. G is freely generated by primary spaces. ||
And for the ring-version:

* THeOREM 7.4. G} is freely generated by {[X] — [By] X an indecomposable
p-primary space}.3
In preparation for the basic theorem:

THE LocAL STABLE WHITEHEAD THEOREM. 7.6. Hy(—,Z,): &, — (Z ;-modules)
reflect isomorphisms, where Z,, may be interpreted as either the prime field or the p-
adic rationals.

PROOF. Suppose fim: X — Y e is an H,(—, Z,) isomorphism. [t suffices
to consider the case that m =1, fe (X, ¥Y). Let X > Y —>C— SX—SYbea
mapping cone sequence H,(C,Z,) = 0. Hence H,(C, Z) is torsion prime to p.
Hence p - 1 is an H,(—, Z) isomorphism. By the nonlocal stable Whitehead

theorem p - 1, is an isomorphism. Thus End,, (C) 2> End (C) is onto. But
Endg (C)is finitely generated, thus torsion prime to p. Hence C = 0is &, and f'is
an isomorphism in &% . |

CoroLLarY 7.7. If g € Endy (X), then 1 — pg is an automorphism.

* THE Basic THEOREM OF LocaL STABLE Homotopy. 7.8. Given a p-primary
indecomposable space X in a stable range, then End, (X) ® Z(,, is a local ring.

PrOOF. (Algebraists please note that Z,, is the ring of p-adic rationals, not
the completion of that ring.)

Let ¢: B— X be a w,/T-isomorphism, let p* be large enough to kill the torsion
part of &,(B, X) and large enough so that p® > p. Given f/m € End, (X),

3 Of more technical interest:
PROPOSITION 7.5.  Idempotents split in & |B.

PrROOF. Suppose X€.% and X ~ ©X, in U, (following the notation of remarks proceeding
5.6) where X, is p-torsion in 2. The decomposition suggested in Theorem 3.2 Xv B ~ B’'v VX]
where each X is p-primary and without spherical retract, yields X; ~ X, in 2. Hence X, is in
¥|B.

Now note that we have an epimorphism Ends, (X) — End gy, (X) for p-primary X. Clearly
(1/m)* 15, (p, m) = 1 exists in /B because X is there p-torsion). The basic theorem tells us that
if X is indecomposable p-primary then End &, (X)is local, hence End g5 (X)is local. In particular,
X does not have idempotents in &/B. Now given arbitrary p-torsion X€ /B suppose that
X~X, @ - ® X, in U where each X; is indecomposable. We may assume that X is without
spherical retracts in . We may decompose it in &, X ~ X\ @D+ ® X, Noweach X is, by
the above remarks, indecomposable in &/B and hence n = m and for each /, X; ~ X in A some
J. Thus X; € &#/B, and idempotents split in #/B because every object of A is in #/B. 1
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f€End, (X), (m,p) = 1 let g€ End,, (B) be a map such that

By
B—* > By

B— By
]f¢

commutes. Then fp — ¢g is torsion. Thus

commutes in &, as in the proof of (1.3).

We obtain a ring homomorphism ®:End, (X)— End,_ (Cok (p"¢)), the
kernel of which consists of those maps which factor through p¢. By the corollary
above, @ reflects units because if ®(f) is a unit then ®(f™) =1 some m > 0
(the image of @ is finite). Hence ®(f™ — 1) = 0 and f™ = | + p"ph. By the
corollary f™ is a unit, therefore f is a unit.

We shall show that Cok (p"¢) is indecomposable. This will suffice for the
theorem because if Cok (p"¢) is indecomposable then its ring of endomorphisms
being finite is local. Henceifa, b,n € Endy,v (X),a + b = u, a, b nonunits, uaunit
we could obtain a contradiction via ®.

Because Cok (p™¢) is p-torsion (3.1) its #-endomorphisms are the same as its
& ,-endomorphisms. We shall work entirely in % and & from now on, the situation
being:

0>K—>B—>X—>F—>0exactin §
K torsion

F p-torsion

B a bouquet of spheres.

To show: X indecomposable = F indecomposable. We shall, in fact, show the
contrapositive: If F has a nontrivial idempotent then so does X. We could finish
the theorem by lifting the idempotent. But we don’t know how. Rather, we will,
please, extend the idempotent up through the mapping cone sequence to SX.

First note that we may assume that F is reduced, i.e. no projective subobjects.
If it were not, then X would have a torsion retract.

Second, note that K is reduced, (if not, then B would have a torsion retract,
which it can not). Let B— X — Y — SB be a mapping cone sequence. Let / be
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the image of B— X. We have exact sequences

0—>F—>Y—>SK—>0
0—-SK—SB—SI—0
0—SI—> SX— SF—0.
We shall extend idempotents from F to Y, reduce to SK, extend to SB reduce to

S1, extend to SX. Note that nontriviality is preserved by extension. For the two
reductions,

Lemma 7.81. If 0—> A" — E— A" — 0 is exact in an abelian category, E
infective, A’ reduced, then any idempotent on E which extends a nontrivial idem-
potent on A’, reduces to a nontrivial idempotent on A"

A—

|

A E

PrOOF. Let

”

—— A4
-
A

”

commute. If e” were trivial we may without loss of generality assume thate” = 0

(otherwise consider 1 — e). Then we would obtain a map £ — A4’ such that

E— A’ — E = e. Hence Im (e) is an injective subobject of 4. JLEMMA]
Two of the extensions are covered by

LemMa 7.82. Let 0> A —~E— A" —0 be exact, E injective, End (4")
Sfinite. Then any idempotent on A may be extended to E.

ProOF. Let e be an idempotent on 4. Let

A E A"
e S ltl
A——>FE—— 4"

commute. Let g" be idempotent.” Noting that f* extends e” = e we may assume
that f and g were chosen to be f* and g", i.e. that g is already idempotent. Then

A E — A"
0 1= 0

A——)E—)A”
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commutes, from which we obtain two equations: (f2 —f)>*=0; a(ft —f)=0
where a is the exponent of 4”. We may assume that @ > 2.

A =1y =1—a + fPi(f)
where Py(f) is a polynomial in f.

A=y =1—=a+a(f* =)+ [*P(f) =1 = [?P(f)
where P(f) = a — P,(f).
A=A =rr=0=0)—-0=0)0Pf)=~10-f)
That is, (1 — f)* is an idempotent. It is an extension of the idempotent 1 — e.
Such is the perversity of computation. On the other hand 1 — (1 — f)@ is idem-
potent and it extends e. JLEMMAJ]
Only one extension is left: from Kto B. We note that X is p-torsion (any non-p-

torsion must be isomorphic to the non-p-torsion of Y, hence injective.) We thus
have the Basic Theorem once we have

Lemma 7.83.  If K is a p-torsion subobject of a bouquet of spheres B, then every
idempotent on K extends to an idempotent on B.

PROOF. We need a functor. Let G’ be the subfunctor of (—, B) defined by
feG'(4) if there is a bouquet B’, a torsion map B'— B and a factorization
A— B" — B = f. Note that G’(B) is a two sided ideal of End (B). Let R be the
ring End (B)/G’(B). Define G(A4) to be the R-module (4, B)/G'(4). (Whether it
is a left or right module depends on too many conventions. It doesn’t matter.
Whatever the conventions, note that (4, B) is an End (B) module, and that the
submodule generated by G’'(B) is in G'(A4).)

Now for the geometry: G'(B) is the torsion ideal of End (B), and Ris a product
of integral matrix rings M; X M, X - -+ X M,, (determined by the betti numbers
of B). We have a map R — End (B) which retracts End (B) — R. End of geometry.

G is a functor from § to the category of R-modules, ¥E. But ¥F~
GM1 x GMs x - -« x gMn. For integral matrix rings M we have ¥M ~ @7,
hence 9P~ ¥ X ¥ x --- x 4.

G carries monomorphisms into epimorphisms. It carries B into a small pro-
jective. It carries K into a p-torsion object. G(B) — G(K) — 0.

In G .idempotents on p-torsion quotients of small projectives lift to idempotents
on the projectives.

This statement is true for ¥F because it is true for & x - -+ x #. Itis true for
& X -+ X ¥ because it is true for &. It is true for & because small projectives
are free and because of classical integral linear algebra.

Given an idempotent e on K we have an idempotent f such that

G(B)——> G(K)
7 P

G(B)——> G(K)
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The retra_ction R — End (B)— R gives us an idempotent f € End (B) such that
G(f) = f. Thus we have a G-commutative diagram

K——>8B

el I
K——>8B

where e and fare idempotent. Giving K — B the name u, we have G(fu — ue) = 0.
Hence there exists a bouquet B’, a torsion map B'— B and a factorization
K— B —~ K = fu—ue. B is injective, ¥ monomorphic, hence there exists a
factorization K — B' = K— B— B'. Definet; = B— B’ — B. Then fu — ue =
K—-B -—>B=K—>B-—»>B -—>B=tuand

K—»B
e f+t

K——B

commutes. Note that ¢, is torsion. Define t,,;, = ¢t,f+ ft; + t,4;, and note
inductively that (f + #,)" = f + ¢,. The ¢’s are torsion. There are only a finite
number of torsion elementsin End (B). Hence for some positivenandj, (f+ #,)* =
(f + 1,)*". Now the familiar argument: since 2j, 3/, . . . work as well as j we may
assume that j is at least as large as 2n, that is, (f 4 )" = (f + #,)***, k > 0.
Then (f + t,)*** is idempotent. But this idempotent is an extension of e"** and
ettise. 1

COROLLARY 7.9. Idempotents split in & ,. That is, all projectives in §, are
isomorphic to objects in & .

Proor. Let P be a projective object in §,. Because we may cover P with an
object in &, we have PO P €%, Let X;, X,,..., X, be indecomposable
& -objects such that P@ P'~ X, ® X, ® - - - ® X,. Because each X; has a local
ring of endomorphisms we may find iy, &, . .. , i;suchthatP~ X; @ - ® X,. |

8. The infinite localization. The Dold Lemma [2 (4.9)] says that the natural
maps §(4, B) ® Q — (H,(4, Q), H,(B, Q)) where the values of H,(—, Q) are
understood to be graded vector spaces, is an isomorphism. The most amusing
consequence of this observation is the statement that the rank of & (X, Y)is equal
to the inner product of the betti-vectors of X and Y.

If we understand A ® Q to be the category whose objects are those of A and
whose maps are equivalence classes of pairs (f, m), fe A, m # 0 subject to
fim=f'lm' :fAm" #0, m'm’f = mm"f" then the above isomorphism tells us
that & ® Q is isomorphic to the category of graded vector spaces (0-degree maps)
globally finite in dimension — in our previous notation ¥ ® Q ~73 Mat (Q).
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Exactly the same is true for § ® Q, i.e. ¥ ® Q — F ® @ is an equivalence of
categories. (¥ ® Q is the Gabriel quotient obtained by killing torsion objects.)
Everything in § ® Q is a bouquet of spheres.

We shall find it useful to use

ProposiTiON 8.1. & @ Q has global dimension 0, i.e. every epimorphism and
monomorphism split. i

While considering the isomorphism (X, Y) ® Q — (H (X, Q), H (Y, Q) it
is convenient to record a piece of the folklore:

PROPOSITION 8.2. There are only a finite number of homotopy types in a given
stable range of the same homology type.

Proor. Given a graded abelian group {...,0, Gy, Gy,...,G,, 0,...}, let
K be the set of spaces X such that

HX)=G, 0<j<n

=0 otherwise,
let K’ be the spaces X’ such that

H(X)=G; 1 <j<n
=0 otherwise.

We know inductively that K’ has only a finite number of isomorphism types. We
shall assume notationally, that & is a skeletal category, i.e. isomorphic objects are
equal.

Given X € K, let M, be the Moorespaceof Gylet M — X bean Hy-isomorphism,
let

My—X— X' 1> SM,
be a mapping cone sequence. X' € K. Moreover H,(f) = 0, hence from
FX',SM)—~ F (X', SMy) ® Q = (H (X', Q), Hy(M,, 0))
we know that fe Tor [S(X’, SM,)]. Hence
X e U {Cone (f)|f€ Tor (§7X’, M,)},

a finite set. oK

* COROLLARY 8.3. = classes are finite. ||

9. Injective envelopes in §.

PrOPOSITION 9.1. If0— A - X —> A" —0isexactin§, XL, then X is the
injective envelope of 4 iff A" is torsion and reduced.

PROOF. <=Suppose A" = X, 4 N 4" = 0. Then we have an exact sequence
0>A®A —>X—> A"JA -0, the right-hand end clearly torsion. Lemma
7.82 applies. We may extend the idempotent n, p, to X, the kernel of the extension
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being injective and containing 4" and not meeting A. Hence if 4" # 0 we would
obtain an injective subobject of X/4 = 4",

= If A” has an injective subobject, it would retract from X (since it is pro-
jective). We would have an injective subobject of X not meeting A. If A” were not
torsion consider the splitting in § ® Q,

AII
8.1 . 7/m !

A—> A"
Hence for some m > 0 we have in &,

Aﬂ

X—— 4

Note that

Ker(m-1,)——> 4"

A—m X

is a pullback. Let p be a prime not dividingm. Ker (p-14.) N Ker (m-1,.)=0.
Moreover Ker (p * 1 4.) # 0 because

A", )22 (47, v)

being onto implies that (4”, Y)is torsion all spaces ¥ € &%. Finally, then
Ker(p:l,.)—>A4"—>X

is monomorphic, and its image does not meet 4. |I

We know that some objects in § do not have injective envelopes (e.g.
Ker (2 - 1g)). But

PROPOSITION 9.2.  Direct summands of & objects with injective envelopes have
injective envelopes.

PROOF. Suppose A; © A, has an injective envelope X. Consider
04,04, >X—>A"—0.

By the above proposition, 4” is torsion. By 7.82, u, p, extends to an idempotent
on X. The image of the extension is the injective envelope of 4,, again by the
above proposition. |
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We note that Lemma 7.82 said that idempotents extend to injective envelopes,
and this in turn implies the last proposition (by a slightly longer argument). Also
note, that the converse is true. To be sure that we have said something about the
category § consider the category of modules over Z, = {a/b < Q| (6, b)) =1}.
Zg, is projective and indecomposable and a co-envelope of its quotient Z g (),
that is, if X > Zg) — Z ) ey 1 ONto, then f is already onto (because (6) is the
intersection of all the maximal proper subobjects of Z4,). But Z,,q = Z/6Z =
Z, ® Z,. In the dual category, therefore, we have an example of an idempotent
failing to extend to an injective envelope.

10. Injective envelopes in .

THEOREM 10.1.  Every object in &, has an injective envelope.

Proor. Every injective in &, is a finite sum of indecomposables. By the
Basic Theorem 7.7, every indecomposable injective has a local ring of endo-
morphisms. Hence we need only show

LemMA 10.11.  Let N be an abelian category with enough injectives, in which
every injective is a finite sum of indecomposables.

If indecomposable injectives have local rings of endomorphisms then every object
has an injective envelope.
And conversely.

Proor. The “and conversely” is well known (e.g. [1, 6D]).
First, suppose E is an indecomposable injective, 4 < E nonirivial. We wish
to show that E is the injective envelope of 4. Suppose B< E, A N B=0. Let

A®B——E

uLpL 1f

A®B——E

commute. Note that 4 < Ker(l —f) hence 1 —f isa nonunit. Because
End (E) is local, fis a unit. Butf|B = 0. Hence'B = 0.

Given 4, let n be an integer such that 4 may be embedded in an n-fold sum of
indecomposable injectives, E, © E; @ - - + ® E, but not in any subsum. We shall
show such an embedding is an essential extension.

First, given a monomorphism 4 — E, @ E, @ - - ® E, we observe that the
pullback

P——E,

A———>EOE® - QE,
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is nontrivial because P = Ker (4 — E, ® - -+ ® E,, — Cok (,)), and A4 can not be
embedded in Cok (4,)) = E, ® -+ ® E,.

Now let B— E, @ - - - @ E, be a monomorphism. Let / be the smallest set of
indices such that B may be embedded in @®,,E. We may assume that [ =
{1,...,j}

If j < n, then we know inductively that E, @ - - - @ E; is the injective envelope
of B. Hence

B—~E®  ®E,=B—>E & ®E->E ® - ®E,

J a monomorphism. If 4 N Im(f) = 0 then 4 is embeddable in Cok (f). But
E® - 9E ®Cok(f)=E, ®---®E, and by the cancellation of objects
with local rings of endomorphism, Cok (f) = E;;, ® - - - @ E,, which contradicts
the definition of n. Hence 4 N Im (f) # O, that is, the pullback

P— —>E & - ®E,

.

A > El @ P @ En
is nontrivial. Hence the pullback

P,— B

|

Pp— >E® --®FE
is nontrivial. But
P,—>B

|

A— >E @ - ®F

n

is a pullback, and 4 meets B,
If j = n, then both 4 and B meet E, nontrivially, and by the first part of the
proof, they must therefore meet nontrivially therein. [J

COROLLARY 10.2. If X — YL »Z > SX s SY in & is exact in §,, then
Z~Cone (f)in &,

Proor. Let E be the injective envelope of Cok (f). Note that E/Cok (f) is
reduced. Z=E®E and E embeds in SKer(f). Then SKer(f)=
E’ ® E[Cok (f). Hence Z is the sum of the injective envelope of Cok (f) and the
injective part of S Ker (f). Injective parts are uniquely definable because of the
Basic Theorem 7.7.

Exactly the same must be true for Cone (f). Hence Z =~ Cone (f). [
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*COROLLARY 10.3. Let X ' »¥ —Z — SX °L5 SY be in a stable range and

suppose that an exact sequence results upon the application of any cohomology
Sfunctor. Then Z Vv B, =~ Cone (f) V B,.

ProOF. The condition is equivalent to the fact that X — ¥ - Z - SX — §Y
is exact in §. By the last corollary, therefore, Z ~ Cone (f) in &, each p. By4.1,
then, Z = Cone (f). Finally use 1.3. 1|

We should note that for ¢:S8" — S° and j an integer prime to the order of y,
that Cok (y) = Cok (jy), S Ker (y) =~ S Ker (jy). Hence we obtain an exact

sequence
Sy

§* 25 8° — Cone (jy) — S™1 > 81,
Thus the condition of the corollary does not imply isomorphism 1.2 just =.
Note that for cohomology theories K with finitely generated values Z = Z’
implies K(Z) ~ K(Z'). Hence the condition of the corollary implies that K(Z) ~
K(Cone (f)). Whereas, mapping cones are not characterized by exactness
properties, the cohomology (and homology, homotopy, cohomotopy, etc.) of
mapping cones is characterized.
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On a theorem of Wilder

J.-L. Verdier

1. Wilder’s theorem. In this section, we state a theorem due to M. Zisman
and the author. Proofs can be found in [1, Exposé 9].

1.1. Let X be a locally compact space of finite cohomological dimension [1],
A a unitary ring which is a flat algebra over some commutative ring and let F* be a
complex of sheaves of right 4-modules on X which has only finitely many non-
zero cohomology sheaves. Let F'— Q(F') be a resolution (i.e. a morphism of
complexes which induces isomorphisms on the cohomology) of F- by injective
sheaves of A-modules. For any paracompact open subset U < X, the nth co-
homology module of the complex T'(U, Q(F")) (resp. ' (U, Q(F"))) is denoted by
H"(U, F') (resp. H}(U, F*)) and is called the nth hypercohomology module (resp.
the nth hypercohomology module with compact supports) of U with values in F-.

Since the complex I'(U, Q(F)) (resp. I'(U, Q(F))) has only finitely many
nonzero cohomology modules, there exists a complex L(U, F*) (resp. L (U, F-))
whose components are projective modules and a map of complexes ¢y : L(U, F') —
LU, Q(F)) (resp. ¢, y: LU, F)— T (U, Q(F))) such that

(1) the component L*(U, F*) (resp. L}(U, F*)) is zero for n big enough; and

(2) the map ¢y (resp. ¢, ) induces isomorphisms on the cohomology.
Moreover if U < ¥V are two paracompact open subsets of X, the restriction map
pr.u: TV, Q(F)) — LU, Q(F)) (resp. the extension map ey j-: T (U, (F)) —
[ (¥, Q(F))) can be lifted to the projective resolutions. The lifting is unique up
to homotopy, is called once again the restriction map (resp. the extension map) and
is denoted once again by pp yy (resp. ey p).

1.2 DerINITION.  Let (L;, i€l, i <jr>y,;:L;+>L;) be a directed (resp.
inverse) system of complexes of right A-modules (we require only that the transition
morphisms agree up to homotopy), and let [m,n] < Z be an interval. The
system (L;, i € I, y, ;) is said to be essentially of finite type of amplitude contained
in [m, n] if, for any i € I, there exists a j > i (resp. j < i), a complex L, ; whose
components L%, are projective modules of finite type, zero whenever k ¢ [m, n],

184
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and a diagram commutative up to homotopy:

Wi,

L, . LA L; resp. L,——» L;

L, L

1.3 In the following theorem we use the notation of 1.1.

i,

THEOREM. The following conditions are equivalent:
(i) There exists an interval [m, n] = Z such that for any compact K in X, the
directed system indexed by the paracompact open neighborhood of K:

(U— LU, F), V< U, LU, F)— L(V, F))

is essentially of finite rank of amplitude contained in [m, n].
(ii) There exists an interval [m',n'l = Z such that for any compact K in X,
the inverse system indexed by the paracompact open neighborhood of K:

(U—L(U,F),V < U~ LU, F)—> LU, F))

is essentially of finite rank of amplitude contained in [m, n].
(iii) Same as (i) but consider only the compact subsets reduced to one point.
(iv) Same as (ii) but consider only the compact subsets reduced to one point.

1.4 DeFINITION. A complex of sheaves F* on X is said to be perfect if it has the
equivalent properties of Theorem 1.3.

It is clear that these properties depend only on F* and not on the different
resolutions.

1.5 COROLLARY. Let f:X — Y be a proper map between two locally compact
spaces of finite cohomological dimension, and F' a perfect complex of injective
sheaves® of A-modules on X. Then the complex f, (F’) is a perfect complex on Y.
In particular, when Y is a point and X compact, the complex L(X, F*) is homotopic
to a bounded complex of projective A-modules of finite rank.

1.6 PROPOSITION. Let 0 — F'-— F-—F"-—0 be an exact sequence of

complexes of sheaves on X. If two of the complexes of the sequence are perfect, so is
the third one.

1.7 PROPOSITION.  Assume that A is right noetherian and that F- has a finite
[flat amplitude (i.e. that F' has a resolution by a bounded complex whose components
are sheaves with flat stalks). Then F is perfect if and only if it has one of the two
following equivalent properties:

(a) For any x € X, and for any open neighborhood U of x, there exists an open
neighborhood V of x,V < U, such that for any neZ, the restriction map
H"(U, F)—> H"(V, F') has a finitely generated image.

1 Or more generally of sheaves acyclic for the direct image functor.
8 y Y 3
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(b) For any x € X and for any open neighborhood U of x, there exists an open
neighborhood V of x, U < V, such that for any n € Z, the extension map

HXU, F)— HMV, F)
has a finitely generated image.

Applying Theorem 1.3 and Proposition 1.7 to the case A =Z and F =
constant sheaf free of rank one, we get Wilder’s theorem [2].

2. The Wall invarijant.

2.1 Let f: X — Y be a continuous map between locally compact spaces and let
G be a sheaf of A-modules on X (say on the right). For any open set U of Y denote
by yp(U) the family of closed subsets S of the space f~}(U) such that the map f
induces a proper map from S to U. We denote by f,G the sheaf

U— T an(/~'(V), G).

The sheaf £/G is called the direct image of G with proper supports.

2.2 Let X be a connected, locally simply connected, finite dimensional,
compact space and X~ _* | Xits universal covering. Choose a base point in X . Then
for any complex of sheaves of right 4-modules F* on X, the complex p,p  F- is
canonically equipped with a right A[Il,(X)]-structure. Furthermore, when F- is
perfect one checks immediately by local inspection that pp*F- is a perfect
A[ll,(X)]-complex. Therefore, in that case, the complex L(X, p,p*F) (1.1) (the
resolutions being taken in the category of right A[Il,(X)}-modules) is homotopic
to a bounded complex C'(X, F) of projective A[II,(X)]-modules of finite rank.

2.3 DerINITION. Let X be a connected, locally simply connected, finite
dimensional, compact space and let F* be a perfect complex of sheaves of right
A-modules on X. The element Y, .,(—1)cl(Ci(X, F)), in the Grothendieck
group K(A[I1,(X)]) of projective right A[II,(X)]-modules of finite type, is called
the Wall Invariant of F- and denoted by W (X, F').

It is easy to check that the element W (X, F') does not depend on the choice
of the point in X~ used to define the action of II,(X) and does not depend on the
choice of the different resolutions.

As an immediate consequence of the definitions we have the following prop-
osition:

2.4 PROPOSITION. (1) Let u: F-— F' be a map between two perfect complexes
which induces an isomorphism on the sheaves of cohomology. Then W (X, F') =
W (X, F").

(2) Let 0> F"— F — F" —0 be an exact sequence of perfect complexes.
Then W (X, F)= W (X, F") + WX, F").

In particular if F'[1] denotes the complex F" shifted one degree to the left, we
have W (X, F'[1]) = — W (X, F).
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2.5 Letf: Y — X be a continuous map of connected, locally simply connected,
finite dimensional compact spaces. The map f induces a homomorphism

IL(N): 1Y) — T1(X)

so that the ring A[II,(X)] becomes an A[Il,(Y)]-algebra. The tensor product—
® qrm A [I1(X)] defines a map denoted f,: K(A4[I1,(Y)]) - K(4[I1,(X)]) on
the corresponding Grothendieck groups. Let now F- be a perfect complex of
right 4-modules on Y. Assume that the components of F' are acyclic for the
functor direct image by f. The direct image f,F" is then a perfect complex on
X (1.5).

2.6 PROPOSITION.  With the notation of (2.5), we have
WX, foF) =fW(Y, F).

Proor. Let p: X~ — X the universal covering of X and X~ X xY the fiber
product. We have a cartesian square:

X" x YX—f~>X~

pre |

l !

Y — X

P

and the map pry: X~ X x Y — Yisa principal covering with group I1,(X). Further-
more, the base change theorem for direct images by proper morphism yields a
canonical isomorphism, compatible with the action of II,(X); f,pry pr;F =~
PP faE

Let pry, praF — I be a resolution by injective sheaves of right 4[I1,(X)}
modules. The complex f,I' is an injective resolution of the complex p,p*f, F- and
we have I'(X, f,I') ~ (Y, I'). By Corollary 1.5, there exists a bounded complex
whose components are finitely generated projective A[Il;(X)}-modules P- and a
resolution P-— I'(Y,I'). We have therefore the equality W, (X, fF')=
Diz(—1)Ycl(P?). Letq: Y™ — Y be the universal covering of Y. There exists a
canonical isomorphism §,¢*F & 4, ()4 [[1,(X)] = pry, pryF-. Hence we have a
homotopy equivalence C(Y, F') ® 4m1,(yA[I1,(X)] — P- and the proposition
follows.

2.7 COROLLARY. Let X be a finite polyhedron (geometric realization of a
Sinite semisimplicial complex), and let F- be a complex of sheaves on X which
induces on each cell a perfect complex. Then F: is perfect. Let x(F') € K(A) be
the Euler-Poincaré characteristic of F- in the Grothendieck group of finitely generated
projective right A-modules. Then

Wa(X, F) = 2(F) - cl(4[(T1,X))).

Proor. Follows, by induction on the number of cells, from Propositions 2.4
and 2.6.
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2.8 Let X be a connected, locally simply connected, finite dimensional compact
space on which the constant sheaf Z is perfect. Let T’y be the orientation complex
introduced by Borel and Moore [3]. Then the complex T is perfect [1]. The
cohomology groups H,(X, Z) = H*(X, Ty) are the homology groups of X. The
results quoted above (1.6) show that the homology groups of X~ equipped with
their natural action of II;(X) are the homology modules of a finite Z[II,(X)]-
complex whose components are finitely generated projective Z[II,(X)]-modules,
this complex being well defined up to homotopy, so that our Wall invariants are
natural translations in the theory of sheaves of the invariant introduced by Wall.

In particular, when the Borel-Moore homology of X is isomorphic to the
singular homology, the element Wz(X, T ) is the invariant introduced by Wall [4].

3. Properties of the Wall invariant. In this section we want to show that some
properties of the Wall invariant are immediate consequences of the definitions and
of the Poincaré duality theorem (see [S] for analogous results in singular homology).

3.1 Let F be a complex of sheaves with finitely many nonzero cohomology
sheaves on a locally compact, finite dimensional space X. Let Ty , be the
orientation complex of X with respect to the ring 4 [3]. (This is a complex of
sheaves of 4-bimodules injective on the right.) We denote by D ,F* the complex
Hom (F, Ty ,) (s om is the complex of sheaf homomorphisms). The com-
plex D ,F-is a complex of sheaves of right 4°-modules and is called the dual com-
plex of F*. When F is perfect, D ,F"is perfect [1, Exposé 91.

Let F* 1~ S(F") be a bounded c¢-soft resolution of F-and 4 — I (4) be aresolution
by A4-bimodules injective on the right. The complex of presheaves on X:

(.1.1) U Hom(I' (U, S(F?), I(4)),

is a complex of flabby sheaves of right 4°-modules [3], and is denoted by F-*, It
follows from the Poincaré duality theorem [1, Exposé 4] that the complexes
D F and F* have isomorphic injective resolutions.

3.2 Let Il be a group and let P be a projective right A[I1]-module of finite type.
Set

3.2.1) P* = Homyyy, (P, A[I]).

The module P* is a right projective A°[II]-module of finite type, (II acting on the
right via its left action on A[I1]). The map P~ P* induces an isomorphism
K(A[I1]) — K(A®[IT]) on the corresponding Grothendieck groups.

3.3 PROPOSITION. Let X be a connected, locally simply connected, finite
dimensional compact space. Then, for any perfect complex F' on X, we have:

W (X, F)y* = W, X, Dy F).

Proor. We sketch the proof. Let p:X~ — X be the universal covering of
X. By (2.4) we may assume that F- is a bounded complex of ¢-soft sheaves. Let us
consider the complex Dy 1, (xyPp*F viewed as an A°[11,(X)]-complex (via the
isomorphism A°[II,(X)] => A[I1,(X)]?). Using (3.1.1) and the definition of p!
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(2.1), we see that the complexes pDx~ ,p*F and Dy g, (x),,Pp*F have iso-
morphic injective resolutions. Moreover, since p is a covering, we have a canonical
isomorphism Dy~ ,p*F- =~ p*D, F". ThereforethecomplexesI'(X, p,p* Dy F)
and I'(X, Dy n,x)P.P*F ) have isomorphic injective resolutions. Let

I (AT (X)])

be a resolution of A[II,(X)] by A[II,(X)]-bimodules injective on the right. It
follows from the Poincaré duality theorem (3.1) that the complexes

I, DX.A[H,(X)]P!P*F') and Hom;l[nl(x)](I‘(X,p!p*F'), I (A[T1,(XO])

have isomorphic injective resolutions. There exist (2.2) a bounded complex of
finitely generated projective A[Il,(X)]-modules C(X, F-) and a resolution

C X, F)—T'(X, pd*F).
We have therefore two maps of complexes
Hom:ym, ) (C (X, F), A[TL/(X}]) — Hom 1, ) (C (X, F), I(A[IL,(X)])
Hom iy, (x)(T'(X, pp*F), I (A[11, (X)])) - Hom iy, (x1(C (X, F), I (A[I1,(X)])),

which induce isomorphisms on the cohomology and the proposition follows.

3.4 Let IT be a group and 4 a commutative ring. We denote by G(A4[II]) the
Grothendieck group of A[II]-modules that are finitely generated and projective as
A-modules. The tensor product over 4 of two such A[II]-modules endowed with
the diagonal action of II is an A[I1]-module of the same kind. Hence, the tensor
product defines a ring structure over G. Let M be an A[I1}-module that is finitely
generated and projective as an 4-module and P a finitely generated projective and
projective A{Il}-module. The tensor product A[I11® P with the diagonal action
of II is a finitely generated projective A[II]-module. Hence the tensor product
defines on K(A[II]) a structure of module over G(A[I1)).

3.5 Let X be a connected and locally simply connected space and M a locally
constant sheaf of finitely generated and projective A-modules. Then the stalk of
M is an A[I1,(X)]-module that is finitely generated and projective as an A-module.
Its image in G(A[II,(X)]) is denoted by cl(M).

3.6 PROPOSITION. Let X be a connected locally simply connected finite dimen-
sional compact space, F' a perfect complex of sheaves of A-modules, M a locally
constant sheaf of finitely generated and projective A-modules. Then

WX, M ® F)=c(M) WyX,F).

ProoF. By (2.4) we may assume that F- is a bounded complex of c-soft
A-modules. Let p:X~ — X be the universal covering of X. The A[II,(X)]-
complex I' (X~, p*F") has a resolution C'(X, F*) by a bounded complex of finitely
generated and projective A[Il;(X)]-modules. Since we have a canonical iso-
morphism I'(X~, p*M ® (F) =T (X, p*F) ® 4M,, where M_ is any stalk of
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M with its natural action of I1,(X), the complex C(X, F) ® (M, is a resolution
of the complex I' (X~, p*M ® ,F). q.e.d.

3.7 COROLLARY. Let X be a compact connected n dimensional topological
variety with boundary. Let 0X;, 1 < j < q, be the different connected components
of its boundary, i;:0X; — X the inclusion maps, and let Ay be the orientation
Z[I1,(X)]-module. Then

(=D)"W(X, Z) + (—=1)" 3; i (Wy(0X;, Z)) = cl(Ax) - Wy(X, Z)*.

PrOOF. We have W (X, Z)* = Wy(X, T}() where Ty is the orientation
complex of X (3.3). The complex Ty has only one zero cohomology sheaf 0y in
dimension —n. Hence W;(X, Z) = (—1)" (X, 0x). The sheaf 0y is locally
constant free of rank one on X — 0X and its restriction to dX is zero. Let
J:X — 0X — X be the inclusion map. We have an exact sequence

0—>0x —j,0x —j,0x/0X — 0.

Hence (2.4) W,(X,0x) = Wo(X,j,0x) + Wz(X,j,0%/0X). The sheaf j 0y is
locally free of rank one and is defined by the orientation module Ay. The
formula follows from (3.6), (2.6) and trivial manipulations.

4. Fibration.

4.1 PROPOSITION. Let X and Y be two connected, locally simply connected
finite dimensional compact spaces, and let F- and G- be two perfect complexes of
sheaves of A-modules on X and Y respectively (A is commutative). Assume that the
stalks of the components of F- are flat A-modules. Then

WX, F): Wy(Y,G)= WX x Y,F ® ,G),

where F- ® 4G" denote the cartesian product of the two complexes of sheaves (tensor
product of the two inverse images by the two projections of the product X X Y).

Proor. Immediate consequence of the Kiinneth formula [1 Exposé 3].

42 Let 11 be a group and G'(Z[I1]) the Grothendieck group of the Z{Il]-
module which are finitely generated as abelian groups. It is easy to check that
the canonical map G(Z[II]) - G'(Z[I1]) is an isomorphism. Hence any Z[II]-
module M, finitely generated as abelian group, yields an element in G(Z[II])
denoted by cl(M).

4.3 Let X be a connected and locally simply connected space and M a locally
constant sheaf whose stalks are finitely generated abelian groups. The stalk at any
point is a finitely generated abelian group on which II,(X) acts hence yields an
element in G(Z[I1,(X)]) denoted by cl(M). Let now f:E — X be a continuous map
such that for any ge Z, RYZ is a locally constant sheaf whose stalks are of
finite type, zero for g big enough.

We denote by cl(f) the element 3, (—1)%l(RY, Z) in G(Z[T1,(X)D).

4.4 PROPOSITION.  Let f: E — X be a locally trivial fibration, where X is a con-
nected, locally simply connected, finite dimensional compact space and where the fiber
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is a finite dimensional compact space on which the constant sheaf Z is perfect.
Assume E is connected and locally simply connected. Then, for any q in Z, the sheaf
Ref Z is a locally constant sheaf whose stalks are finitely generated abelian groups,
zero for q big enough. Moreover, for any perfect complex F- on X, f*F" is a perfect
complex on E and

JeWo(E, f*F) = Wy(X, F) - cI(f).

PrOOF. It is clear that the R, Z are locally constant sheaves whose stalks are
isomorphic to the cohomology of the fiber hence finitely generated abelian groups.
It is also clear that f*F is perfect whenever F- is perfect. Let us prove the
equality. By 2.4 we may assume that F- is a bounded complex of c-soft sheaves
whose stalks are torsion free. We have f, W, (E, f*F) = Wy(X, f,f*F) (2.6).
Let Z — Q:(Z) be a c-soft resolution of the constant sheaf Z on E. The projection
formula yields a resolution f, f*F — F' ® ,f,£2(Z) [1, Exposé 3]. Therefore
(2.4) we have W (X, f f*F) = W (X, F' ® . f, 2 (Z)). The cohomology sheaves
of £,£2:(Z) are the R, Z and the complexes F- ® R, Z are perfect. Hence, by
2.4, we have

Wo(X, F ® ;[ (Z)) = > (—1)*Wy(X, F ® ,RY,Z).

Therefore, we are reduced to proving that, for any locally constant sheaf M whose
stalks are finitely generated abelian groups, we have

WX, F' ® ;M) = W,(X, F") - cl(M).

When M is locally free, this equality follows from (3.6), so that, using (2.4), we
may assume that the stalks of M are torsion groups. But then M has a resolution
of length two by locally free sheaves of finite rank and the equality follows from
(3.6) and (2.4).

Analogous results for singular homology can be found in [6] and [7].
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A formula for KR |[T]

F. T. Farrell and W. C. Hsiang?

0. Introduction. In this paper we obtain a formula of K,R,[T] where R,[T] is
the a-twisted finite Laurent series ring.® (See Theorem 19.) Our formula is a
generalization of that obtained in [7] for K, R[T]. We note that the techniques of [7]
do not generalize in a straightforward fashion so as to prove our formula. As an
important special case, we obtain a formula for Wh G x, T where G X, T is the
semidirect product of a group G and the infinite cyclic group T with respect to an
automorphism « of G. (See Theorem 21.) We obtain a geometric interpretation
of this last formula in [4] and derive several applications from this interpretation.
In §4 we derive a few immediate consequences of our formula. In Appendix I,
we exhibit a certain pathology as a warning to applying our formula carelessly;
and in Appendix 2, we give an example to illustrate that a certain stronger generali-
zation of the formula from [7] is false.

We wish to thank H. Bass for suggesting the possibility that the formula for
K R[T] of [7] could be generalized to K;R,[T].

1. Notation and recollection of some facts from algebraic K-theory. The pur-
pose of this section is to introduce some notation to be used throughout the entire
paper, and to recall those definitions and results from algebraic K-theory which will
be needed in this paper.

The following is a partial list of symbols used in this paper:

R. An associative ring with identity. Ring homomorphisms are assumed to
map identity to identity.

G. A group.

Z. The integers considered as a ring.

T. The infinite cyclic group (written multiplicatively).

! We announced in paragraph 2 of [18} some of the results proven in this paper.

* Both authors were partially supported by NSF Grant NSF-GP-6520. The second named
author also held an Alfred P. Sloan Fellowship.

® C. T. C. Wall has independently obtained formula (31), which is the chief result of §2 of this
paper.

192
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t. A preferred generator for T.

T+, T-. The subsemigroups (with identity) of T generated by ¢ and ¢
respectively.

R(G). The R group ring of G.

a. An automorphism of R or G. If « is an automorphism of G, then the same
symbol is used to denote the induced automorphism of R(G) defined by

“(z rvg) =2 re(g)
veG veG

where g€ G and r, € R.

R,[T]. Called the a-twisted finite Laurent series ring. (Also called the o-
twisted R group ring of T.) Additively, R,[T] = R[T]. Multiplication in R,[T] is
defined by the following condition:

(rt))(st’) = ra—*(s)r*+?

where r, s € R. There is an automorphism of R,[T] induced by « and which we
also denote by «, defined by the following condition:

a(rt’)y = a(r}t’ where reR.

R,[t], R,[t7']. The subrings of R,[T] generated by R and ¢, and R and ¢!
respectively. R_[¢] is called the a-twisted polynomial ring. The automorphism o«
of R,[T] restricts to automorphisms for these two subrings which we also denote
by «.

The following are ring homomorphisms which are inclusion maps.

j R—RT].

korkt. R— R,t].

k~. R— R[]

iorit. R,[t]— R,[T).

i~ RJt]— R,[T].

The next two ring homomorphisms are augmentations.

gor et. R,[t] = R defined by the condition &(t) = 0.

¢. R,[t7'] — R defined by e~(¢+!) = 0.

G X, T. The semidirect product of G and T with respect to «. Recall that if
(g, t) and (g’, ') are elements in G X, T, then (g, ') (g’, ') = (ga—*(g’), t*+).

G X,T+,G %, T~. The subsemigroups of G x, T generated by G and T+,
and G and T~ respectively.

The next two symbols apply to an abelian group G.

G {g|a(g) =g,g€C}

(o). {g — alg) |g € G}.

An additive map f from a right R module M, to a right R module M, is called
o linear if f(mr) = f(m)a—2(r)for me M and r e R.

M(f). The cokernel of the « linear map f.

aM. If M is a right R module, then «M is a new right R module such that
additively aM = M but which possesses a new scalar multiplication defined as
follows: m - r = ma(r), where me M, r € R and - is used to denote the scalar
multiplication in aM.
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¢. M — aM, the identity map between sets ‘‘c” is an ! linear isomorphism.

re. M — M, right multiplication by a € R, i.e. ry(m) = ma for me M. If
M is a right module over R,[T] then r, is an « linear endomorphism.

M(n,m, R). The collection of n x m matrices with entries from R.

GL(n, R). The group of invertible matrices from M(n, n, R).

a(A4). If 4 € M(n, m, R), then a(4) € M(n, m, R) such that a(A4),;; = a(4,;).
Here A, denotes the entry in the ith row and jth column of 4.

fT. Iffisaring homomorphism from R; to R, then f7 is the ring homomorph-
ism from R,[T] to R,[T] extending f so that fT(¢) = 1.

r.dimp M. The projective dimension of M, where M is a right R module.
(See [1], p. 109.)

w.dimp M. Weak dimension of M over R. (See [1], p. 122.)

r.gl.dim R. Right global dimension of R. (See [1], p. 111.)

E,(r),p #4q. Square matrix with 1 down the diagonal and whose only off
diagonal entry is r € R in the pth row, gth column. Such a matrix is said to be
elementary.

(r). Square matrix whose diagonal entries are all equal to r € R and whose
remaining entries are all zero.

Next, we introduce some notation and recall some simple facts concerning the
relationship between matrices, « linear maps, and bases for free modules.

Let a e M(m, n, R), and let ¥ and V' be free right R modules with ordered
bases e = (e}, ..., e,) and € = (e, ...,e,). Then, the o linear homomorphism
f:V — V’associated to a with respect to e and e’ is defined by the following formula:

(1 f(é1 e,.r,.) = 3 equa(r)

where r; € R.

With e and e’ fixed, we thus obtain a 1-1 correspondence between M(m, n, R)
and the collection of « linear homomorphisms of ¥ to ¥’. Let f' be an «’ linear
homomorphism from ¥’to a third free R module V" correspondingtoa’ € M(k, m, R)
with respect to e’ and an ordered basis " = (e}, . . . , €;) for V”.

LEMMA 1. f'f is the &’a linear homomorphism corresponding to a'a'(a) with
respect to e and e". (If f and g are functions, fg denotes their composition, i.e.

Jg(x) = f(g(x)) for x in the domain of g.)

If e =(ey,---,e,) is an ordered basis for ¥ and a € GL(n, R), then ea =

(eay, . . ., ea,) is a new basis for V defined by the following formula:
2 ea; = 3 e;a;.
i=1

LEMMA 2. Ifa, b e GL(n, R), then e(ab) = (ea)b.

Let ae M(m,n, R), be GL(n, R), c € GL(m, R), and let ¥, V’ be two free
right R modules with ordered basis e = (e;,...,e,) and ¢ = (e}, ...,e¢},,)
respectively.
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LeMMA 3. Iff:V — V'is the o linear homomorphism associated to a with respect
toeande’, thenfis also the a linear homomorphism associated to c~'ax(b) with respect
toebande'c.

The proofs of Lemmas 1, 2, and 3 will be left to the reader.

Next, we recall some definitions-and results from algebraic K-theory. For more
details, the reader is referred to [2] or [3].

K R = direct limit GL(n, R)/[GL(n, R), GL(n, R)].
If a € GL(n, R), denote the corresponding element in K, R by [a]. J(G) = subgroup
of K,Z(G) whose elements are [(g)] for g € G, where (£ g) is the | x | matrix
with single entry g or —g.

Wh G = K,Z(G)/J(G) and is called the Whitehead group of G. K, and Wh are
covariant functors. The homomorphism induced by a ring homomorphism
J: R, — R, (or a group homomorphism f:G, — G,) will be denoted by f,.

P(R) denotes the category whose objects are finitely generated projective right
R modules, and whose maps are R linear homomorphisms. KR is the Grothendieck
group of P(R), i.e. the abelian group generated by the isomorphism classes of
objects in P(R) modulo the relations (P, — P, — Py) for short exact sequences
0— P, —P,—>P;—0. Let [P] denote the element in K,R corresponding to
P e P(R). F(R) is the cyclic subgroup of K,R generated by [R]. (Here R is con-
sidered as the free right R module of rank 1.) K,R = K,R/F(R) and is called the
projective class group of R. Let f: R — R’ be a ring homomorphism. f induces a
covariant functor f, :P(R) — P(R') defined by f4(P) = PR’ =P ®p R’ for P¢
P(R). f, induces homomorphisms K,R — KoR' and K,R — K,R’, both of which
will again be denoted by f,.

Now, let f: R, — R, be a fixed ring homomorphism. We manufacture a category
®f whose objects are triples, 0 = (P, v, Q) where P, Q € P(R,) and v: PR, — OR,
is an R, linear isomorphism. Let ¢’ = (P',v’, Q') be another such triple. A
morphism ¢ — ¢’ is a pair (g, 4) of R, linear homomorphisms,g:P — P'and h: Q —
Q' such that the diagram

PR,—" > OR,
(3) aR, hRs
P le _v_) Q’Rz

is commutative. Here gR; and AR, denote g ® id and /4 ® id, respectively. The
sequence
(g.h) , (@',
6——>0d ——0

is exact if the induced sequences
P g P, g P” and Q h Ql h er

are exact sequences in P(R). The symbol o, @ o, denotes the object (P, & P,,



196 F. T. FARRELL AND W. C. HSIANG

v, ® vy, O @ Qp) Where o, = (Py, 01, Py), 03 = (Py, vy, @,) are objects in Of.
If ¢ =(P,v,P") and o' =(P’,v', P"), we write o’'c = (P, v'v, P"). K,®f is the
abelian group generated by the isomorphism classes of objects from ®f modulo the
relations:

(A) (ADDITIVE). (0 — ¢’ — ¢”)for short exact sequences 0 — ¢’ — ¢ — ¢" =0
in @f. '

(M) (MULTIPLICATIVE). (6 — ¢’ — ¢") for ¢ = ¢'0”.

We denote the class of 0 = (P, v, Q) in K;®f by [¢] = [P, v, Q.

Next, we define a homomorphism ¢: KR, — K,®f. Let a € GL(n, R;) and let
@:(Ry)" — (R,)" be the linear homomorphism associated to a with respect to the
standard basis for (R))" = R, ® - - + ® R,, where this sum has length n. By use of
the standard identification of (R,)"R, with (R,)", we obtain a well-defined object
o = ((R)", ¢, (RY™) in ®f, and ¢ is an element in Autg (R,)", the automorphism
group of (Rp)". For simplicity, we shall call ¢ an “automorphism”. For each
P e P(R,), let I, denote the identity automorphism of PR,. Then rp = (P, Ip, P)
will be called an “identity”. Clearly, the “identity” of (R;)"is an “automorphism”.
Since TpTp = 7p, the relation (M) for K,®@f implies that [rp] = 0 in K,®f.

Let a € GL(n, R,) and let o be the associated “automorphism’. If we replace
o by 6 ® 7(g,,m, We see from relation (A) that [6] = [0 ® 75 )] in K, ®f. Hence
by letting ¢,(a) = o we obtain maps ¢,:GL(n, R,) — K;®f which are consistant
with our stabilization. By property (M) and Lemma 1, we see that each ¢, is a
group homomorphism, and hence they induce a homomorphism ¢: K, R, — K,®f.

Next, we give an alternate description of K, ®f, which we will find useful in [4].
If o, 0’ € ®f, we write 0 ~ ¢’ if there exist identities r and 7" and a matrix a €
GL(n, R,) with [a] = 0 in K, R, (for some integer n) such that (¢ ® 7)e =~ o' @ 7/,
where ¢ is the automorphism associated to a. It can be seen that “~ is an equiva-
lence relation.

PROPOSITION 4.  The objects of ®f under ® modulo the relation “~" form an
abelian group G. Moreover, the natural map which sends an object from @f to its
class in K,®f induces an isomorphism h:G — K,®f.

b4

For the proof of Proposition 4, see [3, pp. 34-35]. Finally, we define 0: K,®f —
K,R by 0[P, v, 0] = [P] — [Q].

THEOREM 5. Let f: R, — R, be a ring homomorphism. Then, the sequence
() KR, 2> KRy %> K,Of > K,R, *> K,R,
is exact.

For a proof of Theorem 5 see [3, pp. 35-37] (See also [S] for a more general
sequence.)

2. The category € (R, «) and the group C(R, ). Let us first recall some terminol-
ogy and results from [6].
% (R, «) is the category whose objects are pairs (P, ¢) where P € P(R) and ¢ is



A FORMULA FOR K;Rq[T) 197

an o linear nilpotent endomorphism of P, and whose morphisms g:(Py, ¢,) —
(Ps, ®;) are R linear homomorphisms g from P, to P, satisfying the following
commutative diagram:

Pl_“"_,pl

® l l

P, £, P,

We have the Forgetting Functor #: €(R, a) — P(R) by throwing away the endo-
morphism ¢ for (P, ¢) € 6(R, «), and the Zero Functor 7 : P(R) — € (R, «) which
sends P to (P, 0) for P € P(R). Both % and 7 are covariant exact functors, and
F o 7 is the identity functor of P(R).

C'(R, o) is the abelian group generated by the isomorphism classes of objects
from %(R, «) modulo the relations X; — X, — X, for short exact sequences
0—>X,—> X, > X,—01in€(R,a). If X = (P, ¢)is an object in €(R, a), then
the corresponding element in C'(R, «) is denoted by [X] or [P, ¢]. Let F'(R)
denote the cyclic subgroup of C'(R, «) generated by [R, 0]; then C(R, A) =
C'(R, a)[F'(R), while C(R, a) is the subgroup of C(R, ) generated by [R", ¢]
for (R*, ) € 6(R, o). (Again, if X = (P, ¢) e €(R, o), we will denote the corre-
sponding element in any of the three groups C'(R, &), C(R, 2), or C(R, «) by
either [X] or [P, ¢].)

PROPOSITION 6.  We have the following split exact sequences:

Fu
0 —> C(R, @) —» C'(R, ) 2 KR —> 0

(6)
Foo o
0 —> C(R, ) — C(R, OL);? KoR—0
where &, and I, are homomorphisms induced by F and T respectively; and
I[R", ¢] = [R", ¢] — [R",0]. Moreover, the splittings and I are natural with respect

to homomorphisms g:(R,a)— (R', ), ie. ring homomorphisms g such that
geoa =o' og. Hence, we write

0 C'(R,a) = C(R, @) ® K,R,  C(R, a) = C(R, ) @ K,R,

where in the first equation we identify &(R, ) with I(C(R, ), and KyR and I?OR are
identified with their images under 7 .

For the proof of this proposition, see [6].

LeMMA 7. Let 6,:P, — P, and 8,: Py, — P4 be a, and a, linear homomorphisms,

where Py, P,, and Py are right R modules. If 8, is a monomorphism, then the following
Sequence is exact:

® 0 — ayM(d,) = M(8,6,) — M(d,) — 0.
Proor. From 68,6,P; < 6,P, = P, we obtain the following exact sequence:
0 — 0,Py/030,Py — P3/8,0,Py = M(8,6,) — P3/0,Py = M(3,) — 0.
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Since 8, - M(6,) = P,[6,P, — 6,P,/0,0, P, is an a, linear isomorphsm, 6,P,/0,0,P; ~
ay M(0y).

Next, we study the relationship of @i to C'(R, ). (Recall that i:R,[t]—
R,[T].) Let S = R,[T]and P € P(R,[t]), then we identify P with P Qp Rl €
PS by sending x to x ® 1 for x € P.

THEOREM 8. Let (P, v, Q) € Di, then

(a) there is an integer n > 0 such that r,w(P) < Q;

(b) M(rv) € P(R) (Here r,w:P — Q is an «” linear map between R,[t] modules
and we disregard the extra structure of M(r.v) as an R,[t] module, retaining only
its R module structure), and r, induces an « linear nilpotent endomorphism on
M(rpv), ie. (M(rpnv), r,) € €(R, a);

(c) and if we define y:K,®i— C'(R, «) by

Z[P’ V’ Q] = [M(rz"v)’ rg] - [P/rg"(P)’rzL
then y is an isomorphism.

ProoF OF (a). For any x € P, we can find n(x) > 0 such that rne(v(x)) € Q;
and since P is finitely generated, r.v(P) < Q for n > max {n(x,), ..., n(x,)},
where {x,, ..., x,} are generators for P.

Proor oF (b) By (a) applied to (@, v™1, P), there exists m > 0 such that
rmv"1(Q) < P. From this and the fact that v is R,[t] linear, we obtain that
rmim(Q) S ra0(P). Hence, r,: M(rv) — M(rv) is nilpotent. Since M(rav) is a
finitely generated R,[T] module and r, is nilpotent, M(r..v) is a finitely generated
R module. Let P’ =r,.wo(P)and ¢ = rp.m. From @(P) < ¢(Q) < P’ < Q, we
obtain the following two exact sequences: '

9 0— P'[p(Q) — Q/p(Q) > Q[P" = M(rpmv) — 0,
and
(10) 0 — a,  M(rv) = 9(Q)/@(P) — P'[@(P) — P'|p(Q) — 0.

Since
Q/9(Q), P'[p(P)e P(R) and r.dimp M(r,.w) <1

(0— P — Q— M(rn.v) >0 can be considered as a projective resolution of
M(rv) over R of length 1), P’/ @(Q) is a projective R module by (9) and «,,,,,M(rv)
is a projective R module by (10). Hence M(r,.v) is a projective R module, and
(M(rqv), r) e€(R, ).

PrOOF OF (c). We first show that y is well defined. Let y,:®i— C'(R, «) be
the map defined by (P, v, Q) = [M(rpv), r,] — [P/ry(P), r,] for any n such that
rav(P) = Q. We assert that y; is independent of n. It suffices to show that
M(rgav), r,] — [Plra(P), r,] = [M(rpav), r] — [P/raa(P), r]. We decompose

r,,.HU:P—» Q@ and r,nn:P—»P
into

L

PP 0 and PE>PIS P



A FORMULA FOR K,Rq[T] 199

(Observe that rnav = rynvr, since v is R,[T] linear.) It follows from Lemma 7 that

(1D [M(ryn), r,] = [«"P[r.P, r,] + [M(rmv), 1],
and
(12) [P/rpsP, 1] = [a"P[rP, 1] + [P[rsP, r].

Subtracting (12) from (11) we obtain the desired result, and hence yx; is well
defined. .
Next, we show that x; respects relations (A) and (M). Let

(g1.01") (g3.93")
00— 0, ———> 0, —2 > g, —>0

be a short exact sequence in ®i where o, = (P, v, Q) for i =1,2,3. By (a),
there exists an n > 0 such that r.w,(P;) < Q,. Consider the diagram

0 P2 >p—2 5P 0

(13) 'l“”ll 't"”:l nnvnl

0 >0 ——— 0, —2 > 0, >0

as a short exact sequence of chain complexes. Then (13) induces the following
sequence in homology:

(14) -+« = Ker ravg = M(rav,) = M(rmvy) — M(rmvg) — 0.

Since Ker rnv, = 0, we obtain from (14) the following exact sequence in €'(R, «):
(15) 0 — (M(r,avy), r) = (M(rpvy), r) = (M(rpnvg), r) — 0.

From (15), we obtain the following equation in C'(R, «):

(16) [M(ravy), r,] = [M(ras), r] + [M(rmvy), 1]

By the same method that we obtained equation (16), we can also obtain the follow-
ing equation:

(17) [Pofra(Py), r] = [Pa[rn(Py), r,] + [Pyfr(Py), 1,].

Subtracting (17) from (16) we find that x,(c,) = x,(03) + x1(0os) and hence g,
respects relation (A).
Now let o, = (Py, v3, Py) and o, = (P,, v,, P3) be two objects from ®i. Put
o3 = (Py, vy, Pg) with vy = ve0,. By (a), we can find n, m = 0 such that r.0y(P) <
Py, rmvg(Py) < Py, and hence r,n.m(P;) < P, Since vy, v, are R,[T] linear homo-
morphisms, we have the following commutative diagrams:
Te"vL

P sp, P P

(18) \:lm \\j l

Py Py
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If we apply Lemma 7 to (18), we obtain the following equation in C'(R, «):
[M(rt"*"‘us), rt] - [Pl/rt"+’"(Pl)’ rt] = [M(rt"‘vz), r;] + [amM(rt"vl)’ r;]
— [Purn(Py), r,] — [2"(Pr/rym(PY)), 1,).

(19)

Consider the commutative diagram

ety

———> P,
m ln
—> P,

rinvy

Py

(20) l"

P
By Lemma 7 applied to (20), we have
(21) [amM(rt"vl), rt] — [“"(Pl/rt"‘(Pl))a rt] = [M(rt"vl)) r;] - [P2/rt"‘(P2)’ r:]'

Substituting (21) into (19), we obtain that y,(03) = y1(0;) + x1(02) and hence that
11 preserves relation (M). Therefore y, is factored through y:K,®i — C'(R, a),
i.e. x is a well defined homomorphism.

We shall next construct x’s inverse. But first, let us obtain the “‘characteristic
sequence” for an arbitrary right R,[t] module M. Denote r,:M — M by v. If N
is a right R module and R,[¢] is given a left R module structure via k, then we
denote N ®g R,[t] by NS’. Now consider M as a right R module and recall that
¢:M — aMisan «!linear isomorphism. Hence, 5 = vc™':aM — M is an R linear
homomorphism. Let/;: R [t]— R,[t]denote left multiplication by ¢; then /,is R, [¢]
linear as a map of right R,[f] modules and «! linear as a map of left R modules.
Hence ¢! ® I, and § ® id: («M)S’ — MS' are well-defined R, [¢] linear homomor-
phisms. Letu = ¢ 1 ® l, — $ @ id. Let w: MS' = M ®p, R,[t] - M be defined by
w(m ® t*) = vi(m). Then u and w are both R,[f] linear homomorphisms.

LeMMA 9. The following is an exact sequence of R,[t] modules, and will be
referred to as the characteristic sequence of the module M:

(22) 0 —> (aM)S’ 2> MS' > M —> 0.

The proof of Lemma 9 follows from a computation and will be left to the reader.

Now, we are in a position to construct the inverse to x. Let (M, v) e (R, «);
then M can be made into a right R,[¢f] module by defining xt = v(x) for x e M.
Since M and aM € P(R), we have that MS’ and (aM)S’ € P(R,[t]). If we tensor (22)
with ®g,R.[T] and use the facts that R,[T] is a flat left R,[r] module and that
v is nilpotent, then we obtain that u ® id = uS'is an isomorphism. Hence, o=
((aM)S’, uS, MS’) € ®i; and, again by Lemma 9, x(¢) = [M, v]. Let us define
A E (R, «) > Qi by A,(M, v) = («M)S’, uS, MS"). Since 4, is an exact functor,
4y induces a homomorphism A: C'(R, «) — K,®i such that y2 = id.

To complete the proof of Theorem 8, it suffices to show that 4 is epimorphic. To
do this, we show first that K,®i is generated by elements of the form [P, v, Q]
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where v(P) < Q, and secondly that each element of the above form is in the image
of 4.

Let (P, v, Q) € ®i; then by part (a) there exists an # > 0 such that vr(P) =
rav(P) < Q. Recall that c':a"P — P is the «” linear identification map. Since
¢ =c !t ®a”: («"P)S — PS is an «* linear isomorphism, r,.c’:(a"P)S — PS is a
linear isomorphism; and hence («"P, r,«c’, P) € ®i. We set

(«"P, vrnc’, Q) = (a"P, rync’, P)(P, v, Q),

and write this equation ¢” = ¢’0. Then, [¢] = [0"] — [¢]; and therefore K,®
is generated by elements of the form [P, v, Q'] where v'(P") = @', since [¢”]
and [¢'] are both elements of this type.

Let [P, v, Q] € @i be such that o(P) < Q. By part (b), (M(v), r) e€(R, «);
and we wish to show that A[M(v), r,] = [P, v, Q]. Because of our definition of 4,,
it suffices to show that if (P;, v;, Q;) e @i, vi(P;) = Q,,j =1 or 2, and M(v,) ~
M(v,) as R, [t] module, then [Py, v, Q4] = [Ps, vs, Q] From our hypothesis, we
obtain the following two projective resolutions of M(v;) = M:

0 —>Plvl—> Q1¢—1>M—>0
(23)

0—>P, 25> 0,25 M—>0

where v;S = v, for i = 1, 2. Hence there exists a homomorphism f: @, — @, such
that ¢, f = @,. Consider the resolution

@4) 0P ® 02" 0,00, %>M—>0

where @ is the composite of the projection onto @, followed by ¢,. Define g: 0, —
0;® Q, to be (f, id). Since g = g,, there exists a unique homomorphism
g' 1Py — P, ® Q, making the following diagram commutative:

0 >P,— " s P, ® 0, Y >0
(25) lvv,' V[v;’@id Jw
0 0,——> 0,00, > X >0

In (25),g' is monomorphic since v,and g are; and X, Y, y denote cokernel modules
and induced homomorphisms, respectively. By regarding (25) as a short exact
sequence of chain complexes and passing to homology, we obtain that y is an
isomorphism. But one easily sees that X~ Q,, and hence that (Y, S, X) € ®i.
Tensoring (25) with @ g, R.[T] and using relation (A), we obtain the following
equation in K,®i:

(26) [Pl @ QZ’ U @ ld’ Ql @ QZ] = [P29 Uz, QZ] + [Y7 'PS, X]

Since w is an isomorphism, one sees easily that [Y, S, X] =0; and likewise
[Qs, id, Q,] = 0. Using these two facts and applying (A) to the left-hand side of
(26), we obtain that [Py, vy, Q1] = [Ps, 5, Q:]; and hence g is an isomorphism.
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If fmaps (R, ) to (R, &), i.e. f R — R’ is a ring homorphism such that «'f =
Jfa, then f induces an exact functor from €' (R, «) to €(R’, «’) sending (P, v) to
(P®rR,v®«); and this functor induces homorphisms from C’(R,a) to
C'(R', &), from C(R, @) to C(R', &), and from C(R, «) to C(R’, «’). All of these
homomorphisms are denoted by f,. If f happens to be «, then one easily sees that
g [P, V] = [aP, v].

ProrosiTioN 10. (R, o) = C(R, «).

Proor. Recall that C(R, &) is generated by elements of the form [N, v]
where Nis a free R module. Look at the characteristic sequence (22) of N regarded
as a right R,[t] module, and apply Lemma 7 twice, once to r,u and the second time
to ur,, to obtain the following two equations:

[M(ra), r,] = [NS'[r,(NS’), 0] + [N, 2],
[M(rg), r]] = [(@N)S'[r,(aN)S"), 0] + [N, v].

Since N is free, [NS'/r,(NS’), 0] and [(«N)S'[r,((«N)S"), 0] are both 0. (Recall
the definitions of F'(R) and C(R, a).) Hence (27) implies that [N, v] = «,[N, v].

@7

3. The formula for K R [T]. Applying the exact sequence, (4) of Theorem 5
to i:R,[t]— R,[T], we obtain

(28) KR [1] 2> K R,[T] 2> K,®i —> KR, [1] —> K,R,[T].
Let I: C'(R, o) — KR, [t] be the composite map
(29) C'(R, ) 25 K,RZZS KR 25 KR [1)

where %, is induced by the ““Forgetting Functor”, &#.

LemMa 11.  The following diagram is commutative:

2

K,®i > K,R,[1]

(30) x !

C'(R, o)
where y is the isomorphism of Theorem 8.
Proor. Since 2 is the inverse to g, it is sufficient to prove that A = /. But
this follows immediately from the definitions of 0, 2, and /.
Now, let p = xq; then the exact sequence (28) becomes
G KR([]=> KR,[T] "> C'(R, @) = K,R,[t] > K,R,[T].
Next, we wish to analyze the map p more closely.

ProPOSITION 12. Image p = (C'(R, a))**.
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Proor. Clearly, /(C'(R, «)**) =0, and hence C'(R,a)™ < imagep. Let
[a] € K\R,[T] where ae GL(n, R,[t]), and let [F, ¢, F] =gq[a], where F =
(R, [t])". Then there existsan m > 0 such that p[a] = [M(r=¢), r,] — [F/rm(F), r.].
Applying Lemma 7 to both sides of the equation r,(r»p) = (r,m@)r, and using the
fact that («™F, 0) >~ (F, 0), we obtain that

oy [M(romg), r] = [M(rimp), r,].

But (F/ry(F), r,) =~ a(F/r;m(F), r,), and hence a,pl[a]l = p[a].
Let p’ = piz: KiR,[t71] > C'(R, ).

THeoREM 13. Image p’ = C(R, a); and the following sequence is split exact;
(32) 0 — K,R — K;R,jt-1] 2> &(R, &) — 0.
Hence, KR [t >~ K;R ® C(R, «); and likewise K,R,[t] >~ K;R ® C(R, «™Y).

Proor. 1If we consider the sequence (4) of Theorem 5 in the case where f = k~
and observe that &, induces a splitting of this sequence, we obtain the following
split exact sequence:

k.
(33) 0 — K;R > KiR,[t71] > K, @k~ — 0

Next, we define a functor A;:%(R, «) > @k~ by A;(P,v) = (P,u’, P) where
' =id — v ®/.:PS" - PS", PS" = P ®g R,[t7*]. A;is an exact functor, and
hence induces a homomorphism A":C'(R, «) > K,®k~. By use of Higman’s
trick (See [8], p. 359 and [7], Proposition 2.1.), we show that A’ is an epimorphism.
By [7], Proposition 2.1, K,R,[t7!]is generated by k(K,R) together with elements
of the form [l — Nt~Y], where N € M(n, n, R) for some n and Nt~! is nilpotent.
Using Lemma 1 and the definition of ¢, we see that

gll — Nt=1] = [R*,id — v ® l,s, R"]

where v is the « linear endomorphism of R™ associated to N with respect to
the standard basis for R*. Again by Lemma 1, we see that v is nilpotent, and
hence that g[Il — Nt~1] = A'[R", v]. Therefore, A’ is an epimorphism; and in fact
A | &(R, o) is epimorphic since A'[R",0] =0. We define a homomorphism
p: K, @k’ — K, ®i as follows: p[P, ¢, Q] = [PS’, ¢', OS’] where ¢’ is defined so
that the diagram

ps's —* 5 ¢s's

(34)

v v

¢ ®id
R

PS”S/II QS”SII/

is commutative. Here, XS" = X ®pg,,—,R,[T]and v is the isomorphism such that
px®a®b)=x®1 ®i(a)bwhere x e P,a€ R,[t7],and b € R,[T]. Itcan be
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seen easily that the following diagram is commutative:
i

Kle[t_I] e Kle[T]

(35) lq Ja

K Ok~ > KOi

We wish to calculate ypA’. Now,
pA'[P,v] =[PS',id —r @ a®/,.,, PS'];
and r(id — v ®@ a® /1) =r, — vt @ a @ a. Therefore,
rpA [Pov] = [M(r, — v ® a ® ), r,] — [P, 0].

Consider the « linear isomorphism ¢ ® « ® «:PS’'S — (aP)S’'S. By composing this
map withuS = ¢! ® L, ®id —vc'@id@id =c'®@a'®, —vcl@id®id,
we obtain r, —v ® « ® a. Since A[P,v] = [(«P)S’,uS,PS’] and c R a @ «
restricted to PS is still an isomorphism onto («P)S’, we have, by Lemma 7, that
xpA [P, v] = [P,v] — [P, 0]; and hence gpi’ restricted to C(R, «) is the identity
map. From this, together with diagrams (33) and (35) and the fact that A’
restricted to C(R, «) is epimorphic, all the results stated in Theorem 13 can be
immediately deduced.

The following theorem will enable us to compute the kernel of 7, (See formula
(31).)

THEOREM 14. Kerj, = I(a,), where j,: K;R — K R [T].

The proof of this theorem is motivated by the geometric arguments found in the
last chapter of [6].

Proor. It is clear that I(a,) < ker (j,); and hence we need only show that
ker (j,) € I(a,). First, let us introduce some more notation. 1f Vis a free R,[T]
module and e = (e, ..., e,) is an ordered basis for V, then we define V, =

{3r e, | v; € R,[t71]}. V,is free both as an R,[t~'] module and as an Rmodule.

Lemma 15. Ifae GL(n, R,[T]) and each a;; € R,[t7*], then V,, < V

a — e*

The proof of this lemma is left to the reader.

Suppose that j,[a] =j,[0]. Then, after stabilizing, we may assume that
a = be't - - - &'t is a matrix equation in GL(n, R,[T]) where each of ¢’/ is an ele-
mentary matrix over R,[T] whose off-diagonal entry is homogeneous in t. To
prove that ker (j,) € I(a,), it is sufficient to show that [a] — [b] € I(x). If we
conjugate a by a large enough power of 1™ we obtain a™(g@) = t=™be! - - - ¢', where
each matrix &’ is of the form E_(rt*), re R, s’ < s,and 0 < s.

Let ¥V be a free R,[T] module with ordered basise = (e;, ..., ¢,). Letf:V >V
be the R,[T] linear homomorphism associated to b with respect to bases e. e. By
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Lemma 3, we see that f is also associated to a™{a) with respect to ee! --- ef as a
basis for its domain and e(+™) as a basis for its range.

Let ¢ = (1), d = (), c*t =¢l---¢ for | <i <!, and ¢'*? = c"Y(¢). By
Lemma 15, we see that Vec* = Vec™tl. Consider the following two filtrations of V:

(36) Ve < Vec! < Vecttl < VecH2 < ¥,
(37 Ve < Ve(t) < Ve(t™) < Ve(rmt) < V.

We see that f maps filtration (36) into filtration (37) and also /! maps (37) into
(36); and hence f induces isomorphisms on the quotient modules. Let M, =
Vecl[Ve, M, = Vec't'[Vec', My = Vec*?[Vec*™!, M| = Ve(t)[Ve, M, = Ve(1™)/
Ve(t), and M, = Ve(t™+1)/Ve(t™). Then f induces isomorphisms from M; to M,
for i =1,2,3; we also denote these isomorphisms by f. Let N; = Vec'*!/Ve,
N, = Vec'*¥|Vect, N; = Ve(t™)/Ve, and N, = Ve(t™))/Ve(t). f induces iso-
morphisms (again denoted by f) from N, > N for i =1,2. Since f: V-V is
R,[T]linear, fr, = r, f; and hence the following diagram is commutative:

N,— >N,
(38) f f

N ——> N,
where the maps denoted by r, are induced by r,: ¥ — V. The maps denoted by r,
are o linear isomorphisms.

We show next that each of the modules N, and N is a free R module. We will
assign ordered bases to each of these modules and then derive from (38) a matrix
equation. From this equation, we will obtain that [a] — [b] € I(a,).

A basis for a quotient module of a submodule of ¥ will be chosen as follows.
We will pick a set of elements in ¥ and use the image of this set under the quotient
map to give a basis to the sub quotient. The image of an element in V and the
element itself will both be denoted by the same symbol as long as no confusion
can result.

LEMMA 16. Ifa =E, (1)), s’ <s5,0 <s,reR,ande = (e,,...,e,) is
an ordered basis for a free R,|T] module V, then (UZ,e(t™)) U (Us_ ed’) is a
basis for Vea as a free R module, where a' = E,(rt*)(t") fori =1,...,s.

The proof of Lemma 16 is straightforward and hence is omitted.

Lemma 17, Under the same hypothesis as in Lemma 16. Vea[Ve is a free R
module with an ordered basis

((ea')y, (eaY)s, . . . , (ea"),, (ea®)y, . .. , (ea®), . . ., (ea%),).

For brevity, this basis will be denoted by the symbol (ea’, . . . , ea®), and will
be referred to as the basis for Vea/Ve associated with e (and a), or, if no confusion
can result, the basis associated with e.
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Lemma 17 is an immediate consequence of Lemma 16.

By Lemma 17, the modules M and N, are free. We give the module M, M,,
M;, N;, and N, the bases associated with e, e(/), e(t™), e, and e(/) respectively. The
modules M, and M; are free for the same reason; we give these modules the bases
associated to e and ec'*! respectively. In order to prove that the modules M,,
N,, and N, are free and to assign bases to them, we need to define and examine a
new collection of modules K,. Let K, = Vec'[Vec! for i=1,...,1+ 2.
By Lemma 17, the modules K, are free; and we give K, the basis associated with
ec1. Since each K; is free, M, = Vec'"'[Vec' >~ P71 K, and hence is free.
Likewise, N, and N, are free. The ordered basis assigned to M, is obtained by
“stringing together” the ordered bases assigned to K,, ..., K,,; in the order
indicated. (That is, the basis for M, is the union of the bases for K,, . .., K ;.
Recall that all these elements are gotten from elements in V. 1If x and y are two
elements in this basis, then x precedes y if either x and y € K; and x precedes
y here or x € K; and y € K; with i <j.) The ordered bases for N, and N, are ob-
tained by stringing together the ordered bases for K, ..., K;,; and K;, ..., K,
respectively.

The number of elements in the bases assigned to Ny, N,, N|, and N, is the same
and will be denoted by n. Let 4 and B e GL(n", R) be the matrices associated
with the R linear isomorphisms f:N; — N, and f:N, — N,, respectively, with
respect to the bases assigned to these modules; and let C and D € GL(', R) be
the matrices associated to the « linear isomorphisms r,: N, — N, and r,: Ny — N,
respectively, with respect to the assigned bases. From Lemma 1 and formula
(38) we obtain that Da(A4) = BC; and hence we have that

(39 (D] + «4[4] = [B] + [C]

in K;R.
Let us now analyze the matrices A, B, C, and D more closely. D is clearly the
identity matrix; hence [D] = 1. Consider next the following diagram:

0 M, >N, ——M,——0
(40) 5 5 5
0 -~ M, N—>M,—0

and note that the row maps in (40) respect the assigned bases. f:M;— M| is
associated with b with respect to the assigned bases; we denote by d the invertible
matrix associated with the R linear isomorphism f: M, — M;. From (40), we see
that the matrix A4 has the form
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and hence [4] = [b] + [d]in K;R. Likewise, by considering the followingdiagram:

0 M, > Ny ———> M, >0
(41) lf lf lf
0 M, N M 0

we see that B has the form

d *
(T a™(a) )

and hence [B] = [d] 4+ «}'[a] in K;R. Using the above analysis of D, 4, and B,
equation (39) can be rewritten as

(42) %y [6] — oy[a] = [d] — «,[d] + [C].
By adding the quantity

6] — ey 6] + 3 (xpaila] — ofa)

to both sides of (42) we obtain
(43) [b] — [a] = x — ayx + [C]
in KR, where x = [d] + [b] — D ! ai[a]. In view of formula (43), in order to
complete the proof of Theorem 14, it suffices to show that [C] = 0.

Lemma 18. [C]=0in K R.

ProOF. Let K; = Vec'(t)/Vec'(t7*) for i=2,...,1+ 2, and consider
the following filtration of Vec!*1:
(44) Ve = Vecl(t™) < Vec*(t™) < - -+ < Vec*3(t-1) = Vec'tL

This filtration determines a filtration of N; = Vec'*'/Ve whose successive sub-
quotients are the modules K. Since &' is of the form E,(rt*)(°), we see by Lemma
16 that

@« s—1

(0 @een) U (U e

=0 s =1
is a basis for Veci(1™)) (here @’ = E, (rt*)(#")); but |J;2, (ec(¢~%)) is a basis for
Vec2(t71), and hence K] is a free R module to which we assign the following
ordered basis: (ec*™!, ec'lal, ..., ec™0*1). (This notation was explained in the
paragraph following Lemma 17.) Note that this basis for K| consists of exactly
those elements from the basis assigned to N; which lie in Vec’(s~!) but not in
Vect1(t71).

Consider the following filtration for Vec'*2:

(45) Vect < Vect < - -- < Vec't?,
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which induces a filtration of N, with subquotients the modules K; fori =2, ...,
! + 2. The ordered bases already assigned to K, is the same as the ordered set of
basis elements from the assigned ordered basis for N, which lie in Vec but not in
Vec'-1.

One easily sees that r,: V' — V maps filtration (44) into filtration (45) and that
r1: ¥V — ¥V maps (45) into (44); and hence r, determines « linear isomorphisms
from K to K;, which we also denote by r,. Let C; be the invertible matrix associ-
ated to the « linear isomorphism r,: K] — K; with respect to the assigned bases;
then [C] = 312 [C,]in KR, and hence to prove Lemma 18, it suffices to show that
[Cl=0fori=2,...,142.

Since &; = E, (rt*)r, the matrix C; has one of the following three forms.

CaseI. 5" < 0. Then C; is the identity matrix and hence [C,] = 0.

CaseIl. s’ = 0. Then,

0
7)

Ci= [ Ep(—a(r))
=5

and hence [C;] = 0.
CaseIIl. s> s" > 0. Then,

C'. = I *
2
and hence [C;] = 0.

This completes the proof of Lemma 18 and hence also of Theorem 14.
The next theorem gives the structure of K, R,[T].

THEOREM 19. (a) i, and iy map Kker ¢, and ker &, respectively, monomorphi-
cally into K\R,[T] in such a way that
is(kerey) Nig(KiR,[17]) =0
and
iy(ker &) Ni (KR, [t]) = 0.

(b) iy(ker e,) @i (ker ;) is a direct summand of K\ R,[T]. Moreover,i,(ker¢e,)
and iy(ker £5) are isomorphic to C(R,, «Y) and C(R, «) respectively.
(¢) Let X = K R,[T]/i,(ker &,) @ iz(ker £), and hence
KlRu[T]% X® C(R’ (1) @ C(R: a_l);
then the following sequence is exact:
(46) 0— K,R/(2,) 2> X X5 (K,R)*™ — 0

where @ is induced by j: Ky R — K, R [T]and v is induced by & , p: K, R,[T] — K,R.

Proor. (a) follows from Theorem 13. (b) follows also from Theorem 13
together with Proposition 6. In proving (c) Proposition 12 together with Proposi-
tion 6 show that image ¢ = (K,R)**. Theorem 14 together with Theorem 13 shows
that ¢ is monomorphic; and Theorems 13 shows that ker y = image ¢.
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Let w: R — R be an involution which commutes with «; that is, w is an anti-
automorphism, w? = id, and wa = aw. We can extend w to an involution of
R,[T] which commutes with « by setting w(rt*) = t="w(r) for r € R. We denote
this new involution also by w, and observe that w:R,[t] — R,[t~"] anti-isomorphi-
cally; winduces an involution of GL(n, R) (also denoted by w) as follows: (w(a)),, =
w(a,;) where a € GL(n, R); and hence w induces an isomorphism of period 2 of
KR, which is again denoted by w. Likewise, w induces isomorphisms (again
denoted by w) between K R,[T] and K,R,[T], and between K,R,[t] and K,R,[t7'].
Since the following diagram is commutative:

E

R*— R,[1]

1L

R R,[171]
-

we obtain that w induces an isomorphism between ker (¢,) and ker (¢3). From
this fact together with Theorem 13 and Theorem 19, we deduce the following
proposition.

PROPOSITION 20. If there exists an involution w of R which commutes with «,
then C(R, «) =~ C(R, a™Y). Moreover, in the direct sum decomposition of KiR,[T]
given in Theorem 19, part (b), w interchanges the direct summand i, (ker e,) with
the direct summand iy (ker €3).

Since our main interest is integral group rings, we next specialize our results to
this type of ring.

There is a standard involution w of G such that w(g) = g™* for g€ G. Let
J» i, and i~ denote inclusion homomorphisms of G into G X, T, G X, T* into
G X,T,and G X, T~ into G X, T respectively; let k and k~ denote the inclusion
homomorphisms of Ginto G X, T*and Ginto G X, T~ respectively. If R = Z(G),
then there is a standard isomorphism between R,[T]and Z(G X, T) which is the
identity map on R and maps ¢ € R,[T] onto t € Z(G X, T). This isomorphism
induces isomorphisms between R,{f] and Z(G x, T*) and between R,[#'] and
Z(G X, T"). We denote all of these isomorphisms by ¥. Then the maps j, i, i~,
k, and k* of §1 are converted by v into the maps induced on the respective integral
group rings by the maps j, i, i~, k, and k* defined in this paragraph. Also y will
convert the augmentation maps ¢ and ¢~ of §1 into ring homomorphisms, again
denoted by ¢ and ¢, of Z(G x, T*) onto Z(G) and Z(G X, T-) onto Z(G) respec-
tively. Let Wh G x, T+ = K\ Z(G X, T+)/k,J(G) and

Wh G x, T = K,Z(G X, T)/k3J(G).
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THEOREM 21. (a) The following sequences are split exact:

ke v
0> WhG=WhG x, T+ 2> HZ(G), ) >0

£e

(48) ke
0—>WhG<=WhG x,T-2> C(Z(G), a) >0

where p' is induced by p in (31) and p" is similarly induced; and w induces an iso-
morphism between C(Z(G), «) and C(Z(G), «™Y).

(b) i, and iy map Kere, and ker ey, respectively, monomorphically into
Wh G X, Tinsucha way that iy (ker £,) NigZ(Wh G x, T~) = Oand symmetrically
iy(kereg) Niy,(WhG X, TH) =0.

() i (ker &,) @ iy(ker €5) is a direct summand of WhG x,T;

iy (ker £, == C(Z(G), «™)
and iy(ker e5) =~ C(Z(G), ).
(d) Let X = Wh G x, Tfi,(ker £,) ® i, (ker &), and hence
WhG x, T~ X ® 8(Z(G), o) ® C(Z(G), aY);

then the following sequence is exact:
(49) 0 —> Wh G/I(x,) => X 4> (R, Z(G))* — 0

where @ and y are induced by the corresponding map in (46).
(€) wis the conjugation automorphism of Wh G x, T. (See [2], p. 373.) winter-
changes the summands iy(ker &) and i ,(Ker &,).

To prove this theorem, use Theorem 13, Theorem 19, and Proposition 20.

Next, we use Theorem 19 to obtain information about the relation of K R to
K,R,[t] and K,R,[T]. Let X+ = ker ¢, where ¢, :K,R,[t] - K,R; and let X— =
ker 5. Note that X*and X~ are direct summands of K R,[f] and K,R,[t*] respec-
tively.

THEOREM 22. (a) Kerj, = I(«,), where j,: KR — KR, [T].

(b) i, restricted to X+ and i, restricted to X~ are both monomorphisms.
(©) i, (KR [1]) Niz(X) =0.

Proor oF (a). From the exact sequence (31) we have that
(50) C'(R, @) = KoRy[t] > KyR,[T]

isexact. But /is the composite of the maps in diagram (29), where &, is epimorphic -
and k, is monomorphic. Hence (id — «,)(K,R) = ker (ixk,); and since j = ik,
ker i, = I{a,).

PRrOOF OF (b). Since image (/) n Xt = 0, we see from (50) that i, restricted to
X+ is a monomorphism; and a similar argument holds for i restricted to X—.
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PrOOFOF (¢). KR is naturally a direct summand of K, R[T]. The maps defining
this direct sum decomposition (originally given in [7]) are £:K,R[T]— K,R and
7:KyR — KyR[T], where & = F,p and 7 is defined as follows: Let [P] € K,R;
then id ® r,: P ®g R[T]1— P ®g R[T]is an automorphism of an object in P(R[T])
and hence determines an element in K;R[T]. This element is n[P]. This direct
sum decomposition is natural in the following sense: If f: R — R’ is a ring homo-
morphism, then the following two diagrams are commutative:

"
KR —I > KR K,R[T] ——— K,R'[T]

(51 l" ln Je 3
!T

K,R[T]——> K,R'[T] K,R — KR

Suppose x € X~ and iy(x) € image i,. Then we wish to show that x = 0. Con-
sider the following commutative diagram:

KR <X — KRIT] <2 KR[T]

- _pr
ko ko

k,
KoRo[1] —— K,R,[H[T'] <2 KRITLI]
. n
(52) i, 77 i,
v Jv
KoRlT] —— KiR[TIIT'] = KRITLIT]

ie K4 in
i,

KR [t] ———> KR,[IT'] «<"— KRIT')[]

where ¢,, @,, and @, are the isomorphisms induced by the ring isomorphisms
obtained by sending (¢%)t" € R,[T][T"] into (¢")te R[T’],[T] and which are the
identity map on R.

From (52), we see that iy @,7(x) is in image i,; and hence by Theorem 19,
part (a), there exists an element x’ € K, R[T’] such that k3(x") = ¢,5(x). Applying
the fact that the upper third of diagram (52) is commutative to this last equation,
we obtain that k &(x") = x; and hence x = 0. This proves (c).

4. Applications. In this section we give three applications of Theorems 19,
21, and 22. Our first application is to generalize Grothendieck’s Theorem (see
[71, p. 545) to a-twisted polynomial and Laurent series rings. Our result in the
nontwisted case is also slightly more general than that given in [9], since it applies
to arbitrary regular rings. In order to prove our result, we prove that if R is a
right regular ring then R,[¢] and R,[T] are also right regular rings.
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Our second application is that Wh 7,;(M) and R,Z(m,(M)) both vanish when M
is a solvmanifold.

Our third application is that Wh (M) =0 when M is a two-dimensional
manifold.

LEMMA 23 (TwisteD HILBERT SYZAGY THEOREM). Ifr.gl.dim R = n, then
(a) r.gl.dimR,[t] =n+ 1, and .
(b) r.gl.dim R,[T] <n+ 1.

PrOOF OF (a). Let M be a right R,[t] module. If we consider M as a right R.
module, thenr.dimg M <nandr.dimgaM < n,and hencer . dimp ;) MS’ <
nand r.dimpg(eM)S’ < n. (Here, we use the fact that R,[t] is free as a left R
module.) Hence from the characteristic sequence of M (22) r.dimg i M <
n+ 1. (Here, we used Proposition 2.1 from Chapter VI of [1].) Therefore
r.gl.dimR,[t] <n+ 1.

If M is a right R module, we can make it into a right R,[¢] module by defining
mt = 0foreachm € M; and we denote this module by M’. By what we have shown
above, r.dimgy M’ <r.dimg; M + 1. Next, we prove that the following
equality is true:

(53) r.dimpy M =1+ r.dimg M.

Equality (53) immediately implies that r. gl . dim R,[t] =r.gl.dim R + 1. Our
proof of (53) will proceed by induction on r . dimz M. M’ is never projective since
M't =0; therefore r.dimg gy M > 1; and hence equality (53) holds when
r.dimp M = 0. Now, suppose thatr . dimp M = |, theneitherr . dimp gy M’ =
1 or 2. Supposer . dimg 1; M’ = 1; then M’ ~ P/Q where P and Q are projective
R [t] modules. From the filtration Q¢ < Pr = Q < P we obtain the following two
exact sequences:
0— Q/Pt—>P[Pt>M—0
(54)
0—aM— Q/Qt— Q/Pt >0

from which we obtain, as in the proof of Theorem 8, part (b), thatr . dimp M = 0.
This contradicts our assumption; hence r . dimg g M " =2. Now, suppose that
we have proven (53) for r.dimp M < i, i > 1; and assume that r.dimp M =
i+ 1. Let0—>N—>F—> M0 be exact as a sequence of R modules where F
is free; then 0 - N’ — F'— M'— 0 is exact over R,[t]; dimg i F' =1 while
dimp N’ =i+ 1; and hence it follows from [1], Proposition 2.1 of Chapter VI
that r . dimg 1 M’ = i + 2. This completes the proof of (a).

ProOF OF (b). Let M be a right R,[T] module; then M ~ M p®,aR,[T]
By (a), M has a resolution of length < n 4 1 by projective R,[t] modules. If we
tensor this resolution with ®g 11y R,[T], we obtain a resolution of M of length <
n + 1 by projective R,[T] modules. (Here, we use the fact that R [T] is flat as a
left R,[¢] module.)
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LeEMMA 24 (TwiSTED HILBERT BASIS THEOREM). If R is right Noetherian then
both R,[t] and R,[T] are right Noetherian.

The proof of Lemma 24 will be left to the reader, since it can be proven by a
straightforward generalization of the prooffor the untwisted case. (See, forexample,
[10], p. 171)

Recall that R is said to be right regular if R is right Noetherian and for any
finitely generated right R module M, r. dimp M < 0.

THEOREM 25. If R is right regular, then
(a) R[] is right regular; and
(b) R,[T]is right regular.

ProOOF OF (a). By Lemma 24, R [¢] is right Noetherian. Let N be a finitely
generated right R,[¢] module. We wish to show that r. dimg 1;; N < c0. Since
R,|t] is right Noetherian, there exists a short exact sequence of R,[t] modules
0 — M — F— N — 0 where Fis free and M is finitely generated; and hence it is
sufficient to show that r . dimg 1y M < co. The advantage in examining M rather
than N is that r,: M — M is a monomorphism. First, we show that w. dimg M <
oo. Letx,,...,Xx,generate M as a R,[t] module; and let M, be the R submodule
of M generated by x,t/,1 <i <nand0 <j <m; M =U2 M, and hence by
[1], Proposition 1.3 of Chapter VI w.dimg M < supy.,.,, W.dimg M, We
proceed to show that supy; . » W . dimg M; < c©. Let L; = rghi(M; N rua(My)).
Then, Ly < L, < L, < - -- is an ascending chain of R submodules of M,; and
since M, is a finitely generated module over the Noetherian ring R, there exists an
integer ng such that L, =L, ,, =---. Let

a=1-+ max{w.dimg M;fori =0,1,...,n,andw.dimg L, fori =0, ..., n}.
We claim that the following inequality is true for all i:
(55) w.dimg M; < a.

The proof of (55) will proceed by induction on i. Fori =0, ..., n,itis part of
the definition of a. Suppose (55)is true for i,i > ny; then M, = M, U rpa(My),
and hence, by a Mayer-Vietoris type argument,

w.dimp M, < max{w.dimg M,, w.dimpg rs.(M,), w. dimg v.a(L;) + 1}

T

Since rpa:My— rpa(M,) and rpa:Ly, = L;— rg-1(L;) are «**! linear iso-
morphisms, w . dimgr,.1(My) <a — 1 and w.dimgrsa(L,) <a—1. By as-
sumption, w . dimp M; < a; hence inequality (55) is true for all /; and therefore
w.dimp M < oo. Tt is easily seen from this that w.dimg ,MS’ < o and
w.dimg . («M)S’ < 0. Now from the characteristic sequence for M (22),
we see that w . dimp ;M < o0; but M is a finitely generated module over the
Noetherian ring R,[t]; and hence by [1], p. 122, Exercise 3(b), r . dimp ;M < co.
This proves (a).
In order to prove part (b), we need the following lemma.
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LEMMA 26. If R is a right Noetherian ring and M is a finitely generated right
R,[T] module, then there exists a finitely generated right R,[t] module M’ such that
MS~M.

It is clear that part (b) of Theorem 25 is an immediate consequence of part (a)
of the same theorem together with Lemma 26 and part (b) of Lemma 24.

ProOF OF LEMMA 26. Since R,[T] is Noetherian, there exist finitely generated
free R,[T] modules F; and F, and a map f: F; — F, such that M(f)~ M. As in
[7], p. 562, we may assume that F, = F|S, F, = F,S, and f = ¢S, where F,, F| are
finitely generated free R,[f] modules and ¢:F’— F| is an R,[¢] linear map; and
hence M ~ M(¢p)S.

THEOREM 27 (TWISTED GROTHENDIECK THEOREM). If R is a right regular ring,
then

() ky:KoR— KyR,[¢] is an isomorphism; and

(b) ju: KR — KyR,[T] is an epimorphism whose kernel is 1(a,), i.e. KoR,[T] =~
K,RI(ay).

Proor. First, we show that i,:K,R,[t]— K,R,[T] is an epimorphism.
Let [P] € K4R,[T], P € P(R,[T]); then by Lemma 26 there exists a finitely generated
right R,[7] module M such that MS ~ P. By Theorem 25, part (a), there exists a
resolution of M of finite length by objects from P(R,[¢]). Tensoring this resolution
with @p 111 Ra[T]and using the fact that R,[T]is a flat left R,[r] module, we obtain
that i, is an epimorphism. Hence by Theorem 22, part (c), i (X~) = 0; and by the
same theorem part (b), X— = 0. Therefore, k5 is an isomorphism; and an analo-
gous argument shows that k, is an isomorphism, which completes the proof of
(a). Sincej = ik bothi, and k, are epimorphisms, we have that j, is an epimorph-
ism; and by Theorem 22, part (a), ker j, = I(«y). This completes the proof of
Theorem 27.

COROLLARY 28. If R is a right regular ring, then
(@) ky:K,R — KyR,[t] is an isomorphism; and
(b) ju:KoR — KyR,[T] is an epimorphism whose kernel is I(a.,,).

We remark that /(a, ) can have in general two meanings depending on whether
we consider «, as an endomorphism of K,R or of K,R. In this particular case there
is no ambiguity since the quotient map from K,R onto K,R maps the first I(«,)
isomorphically onto the second. To see this, we used the fact that a right Noether-
ian ring has the invariant basis property (see [11], Proposition 2.1}, together with
Lemma 24, and the fact that F(R') is infinite if and only if R’ has the invariant
basis property. (Cf. Appendix 1.)

We leave the proof of Corollary 28 to the reader.

Any group possessing only a single element will be called a group of type 0.
Inductively, we define G to be a group of type n 4+ 1 if G = H x, T where G is
a group of type n.
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THEOREM 29. If G is a group of type n, then both Wh G = 0 and K,Z(G) = 0.
Before we prove Theorem 29, let us first obtain a corollary from it.

CoOROLLARY 30. If M is a solvmanifold, then both Wh 7 (M) = 0 and
RyZ(my(M)) = 0.

PROOF OF COROLLARY 30. From results of G. D. Mostow and L. Auslander, it
follows that = (M) is a group of type n. (See [12], Chapter 1, and [13], §§64, 66.)
Hence, Corollary 30 follows directly from Theorem 29.

ProoF oF THEOREM 29. If G is a group of type n, then Z(G) is a regular ring.
This follows easily from Theorem 25 by induction on 7.

Again, it follows by induction on n, using the above fact together with Corollary
28 Part (b), that K,Z(G) = 0.

Next, we show that Wh G = 0. Again, we proceed by induction on n. The
inductive step goes as follows. Let G = H X, T, where H is of type n — 1. By
Theorem 21, .

Wh G =~ X ® §(Z(G), ») ® C(Z(G), a™).

Now, it was proven in [6] that if R" is a regular ring, then C(R', &) = 0 (see [6],
Theorem 1.6); and hence ((Z(G), a) ~ C(Z(G), a!) ~ 0. Therefore, Wh G ~ X;
but from the exact sequence (49) (in which H replaces G), we see that X = 0.
This follows from our inductive hypothesis, that Wh H = 0, together with the
first half of our proof in which we showed that K,Z(H) = 0. This completes the
proof of Theorem 29.

THEOREM 31. Let F be a free group (not necessarily finitely generated): then
WhFx,T=0.

Before proving Theorem 31, let us first obtain a corollary from it.

COROLLARY 32. Let M be a connected 2-dimensional manifold; then
Wh 7 (M) = 0.

PrOOF OF COROLLARY 32. CaseI. M is open. Then 7,(M) is a free group.
(See [14], p. 200, Problem 5.6.) A theorem due to Stallings and Gersten says that
Wh F = 0if Fis a free group. (See [8] and [15].)

Case II. M is the sphere or projective plane. Then 7;(M) = 0 or T, (cyclic)
group of order 2). Wh (0) = 0 and Higman showed that Wh T, = 0. (See [16].)

Case IIl. M is closed and HY(M; Z) has rank >=1. Then m(M)=Gx, T
where G is the fundamental group of an infinite cyclic covering space of M and
hence of an open connected 2-dimensional manifold. Therefore, as in Case I,
G is a free group; and hence Wh 7 (M) = 0 by Theorem 31.

The proof of Theorem 31 will depend on the following lemma.

LEMMA 33, Let F be a free group; then

(a) r.gl.dim Q(F) < 1, where Q denotes the rational numbers; and

(b) r.gl.dim Z(F) < 2.
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ProOF OF LEMMA 33.  We will only prove (b), since the proof of (a) is similar
and slightly simpler. Let N be a right Z(F) module and let0 -~ M — P -~ N—0
be exact (here P is projective). In order to prove (b), it is sufficient to show that
r.dimy g, M < 1. Since P is free as a Z module, M is also free as a Z module.
Let g, i €  be a collection of free generators for F, where €2 is some indexing set.
Define a map ¢:Py=M QzZ(F)—> M by ¢(m®@r)=mr for me M and
reZ(F). Then ¢ is a Z(F) linear homomorphism. Also, since M is a free Z
module, P, is a free Z(F) module. Likewise, P, = @;.q M ® (Z(F)); is a free
Z(F) module; here (Z(F)); denotes a copy of Z(F) indexed by i € Q. Define a
map y:P,— P, as follows: pm@r)=m®gr, —mg,®r;, where me M
and r; € (Z(F)),. Then yisaZ(F)linear homomorphism, and the following sequence
Is exact:

0—>P,2>P 2> M—>0.

The proof of this last statement is straightforward, but involves some tedious
calculations, and hence will be left to the reader. This completes the proof of
Lemma 33.

PrROOF OF THEOREM 31. By Theorem 21, we have that

Wh F x, T2 X ® C(Z(F), «) ® C(Z(F), «™)

where 0 —~ Wh F/I(a,) - X — (K, Z(F))*™ — 0 is exact. But, by [8] and [15],
Wh F =0, while Bass has shown that K,Z(F) =0 (see [17]); and hence
Wh F x, T =~ C(Z(F), «) ® C(Z(F), «™). By Theorem 21, part (a) C(Z(F), ) =~
C(Z(F), «Y); and hence in order to complete the proof of Theorem 31 it only
remains to show that C(Z(F), «) vanishes.

Now, since r. gl . dim Z(F) < 2 if Z(F) were Noetherian, we could conclude
immediately from Theorem 1.6 of [6] that C((Z(F), @) = 0. Unfortunately, Z(F)
is not Noetherian if F is not infinite cyclic. But, by making strong use of Lemma
33, we are able to modify the argument used in proving Theorem 1.6 of [6] in such
a way as to avoid use of the Noetherian condition. If we examine the proof of
Theorem 1.6 of [6] (see also Lemma 1.2 of [6]), we see that an element of the form
[P,fle C(R, a) equals zeroif thereexists afiltration0 = Ky < K, < - -- < K, =P
of P by R submodules with f(K,) < K, ; and such that each subquotient K, /K;
has a resolution of finite length by objects from P(R). Using this fact, we will show
that C(Z(F), @) = 0. Suppose that f» =0 and let K, = kernel f*. Clearly,
0=K, < K,<---< K, =Pandf(K;) < K;_;. Also, the subquotients K,/K; ,
have all resolutions of length 2 of the following form: 0 — K, _; — K; — K,/K; , —~
0. Hence, if we can show that each K; € P(Z(F)), then we will have shown that
C(Z(F), a) = 0. Consider the following two exact sequences:

(56) 0— K, —P—imagef‘—0
(57) 0 — image f* — P — cokernel f* — 0.

Since r . gl . dim Z(F) < 2, we see from (56) and (57) that each K, is projective;
and hence it only remains to show that each K is finitely génerated. Now, if we
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tensor sequences (56) and (57) with ® ,, Q(F) and use the facts that Q(F)is a
flat Z(F) module and that r . gl . dim Q(F) < 1, we obtainthat K; ®,,, Q(F)isa
direct summand of P ®,, Q(F), and hence is finitely generated as a Q(F)
module. Since K; is a projective Z(F) module, K; =~ K; @, Z(F)is a Z(F) sub-
module of K; ®, . @(F); and hence there exists a finitely generated Z(F)
submodule L of K, with the property that for any element x € K, there exists a
nonzero integer n(x) such that xn(x) € L.

Let N be a free Z(F) module together with a map ¢:N — K, which is an epi-
morphism. Since K; is projective, there exists a splitting p: K, — N to ¢. Since L
is finitely generated, there exists a direct sum decomposition of N, N = N ® N’
such that N is finitely generated and (L) & N’. We proceed to show that p(K)) =
N’. Let x € K;. Then p{xn(x)) = yp(x)n(x) € N'. But y(x)can be uniquely written
asa + bwhereae N'and b € N”; and hence bn(x) = 0. But N”is free when con-
sidered as a Z module; and therefore b = 0. Consequently, ¢ maps N’ onto K;;
and hence we have shown that K is a finitely generated Z(F) module. This com-
pletes the proof of Theorem 31.

ApPENDIX 1. In this appendix, we give an example of a ring R possessing the
[.B.P. (invariant basis property [11]); but such that R,[T]does not have the 1.B.P.
Therefore, one should be careful when applying our formula, for instance, to
problems concerning the torsion of a chain complex. Our example is based on a
ring R’ constructed by Cohn. (See [11], Theorem 7.1.) R’ has the 1.B.P.; but in
addition there exists a fixed integer n such that any finitely generated free R’
module is a direct summand of (R)*. Let R = J[2 . (R'); where (R’); denotesa
copy of R" indexed by i. We can consider R as the collection of functions from Z
to R’; then we define « to be the shift automorphism; i.e. a(f)(i) = f(i — 1) where
feRandieZ.

Recall that we remarked after Corollary 28 that a ring R, has the 1.B.P. if and
only if F(R,) is infinite. By [11], Proposition 2.4, R possesses the 1.B.P. To show
that R,[T] does not have the |.B.P., it suffices to show that F(R,[T]) is finite, and
hence by Theorem 22, part (a) that [(x,) NF(R) # 0. We show, in fact that
F(R) < {(«,) by constructing an element x € K,R such that x — a,(x) = [R].
For ie Z let R'(i) = (R')" if i > 0 and equal to the zero module for i < 0. Let
P=TI2_ ., R(@) and Q =TI°_,, R'(—i); then since each R'(i) is a direct
summand of (R')" we see that P, Q € P(R). Now, let x = [P] — [Q].

APPENDIX 2. Letj: K R, [T] — (K,R)** — 0 be the composite of p: K,R,[T] —
C(R, w)and F,:C'(R, «) — K,R. In this appendix, we give an example of a pair
R, o such that j does not split. Let Q; be the adjunction space S U, D’ where ¢
is a map of degree 2. Let X' = Q3%v Q% and let f": X' — X' be a map with the
following properties: f’ =y v id; rip = id where r, is the retraction map onto
(?and r, the retraction onto Q%; and ryp: 8% = Q3/5% — $%is a map of degree one,
where r3p is the map induced by ryy. By a regular neighborhood argument, one
can construct a space X and a homeomorphism f of X together with a homotopy
equivalence A: X — X' such that 4f = f’A.

Let R = C(X), the ring of complex valued continuous functions defined on X,
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and let a(g) = gf- That p does not split for this pair is a consequence of the follow-
ing fact. Ifi: X — X, denotes the inclusion map, where X, is the mapping torus of f
(ie. X, =X x [0, 1]/(x, 1) = (f(x),0)), then i induces a map i*R°(X,)—
(RX)y* —0. If p splits, one can show that i* splits. But in this case, this is
impossible since f* = id, K*(X) = T, (cyclic group of order 2) and R(x) =T,

ADDED IN ProOF. Theorem 21 was also discovered by L. C. Siebenmann
independently in his forthcoming paper, A total Whitehead torsion obstruction to
fibering over the circle.
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Finite flat structures

B. Mazurt

1. Fix a rational prime p, an algebraic closure of the p-adic numbers, §,, and
a subfield K < @, of finite degree over Q,. Consider the category g of finite flat
commutative group schemes over R, the ring of integers in K (call objects of ¢4
group schemes, for short). We take morphisms of g to be arbitrary group scheme
homomorphisms over R. The category g is not an abelian category. One remedy
for this is to imbed g as a full subcategory of the abelian category of sheaves of
abelian groups for the fppf'site over Spec (R) [1]. One thus obtains the fppf = flat
cohomology groups over Spec (R) with coefficients in objects of g. One has a
fairly good computational understanding of this cohomology theory, (see §2
below) and it is the purpose of this paper to show how, conversely, the knowledge
of flat cohomology determines the object of ¢.

This is our approach: The *“‘generic fiber”” provides us with a faithfu] functor
M(G) from 4 to the abelian category .# of finite galois modules over X. Thus
M@G) = G(z) = G(Q,) where the galois module structure is given by the obvious
formula.

It is easy to construct examples of finite galois modules M which come from
no group scheme G in the above manner. There are also examples of distinct
group schemes with isomorphic galois modules. In fact, after a recent result of
Tate, one knows the following:

Let R contain a primitive pth root of 1. Let e denote the absolute ramification
index of R. The number of nonisomorphic group schemes whose galois module
isisomorphic to Z/p (taken with trivial galois action)ise/(p — 1) 4 1. The problem:
What information in addition to the galois module M = M(G) is it necessary to
give, to uniquely characterize the group scheme G? Or, what rigidification of the
category .# is needed, to allow us to refine the *“generic fiber functor” M( )to a
fully faithful imbedding? Our answer, which will be presented in a moment,

1 This research was partially supported by National Science Foundation Grant GP-6585.
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provides a format for the classification of group schemes of the above sort, and
may be useful in more general contexts.

If M = M(G), let h%(M) = h%(G) denote HY(K, M), galois cohomology of M
over K. Let H*(G) denote the cohomology of the group scheme G for the ( fppf)-site
(e.g., H%(G) denotes flat cohomology over Spec R. One has the natural map
H%(G) — h*(G) which is an isomorphism for ¢4 = 0, and an injection for ¢ = 1
(since R is integrally closed). Let us identify H(G) with its image in A(G).

We shall show that the group scheme G is determined by the subgroup H*(G)
in AY(G).

More explicitly, let us consider the category of pairs consisting in galois
modules M together with subgroups V < A(M) where morphisms f:(M, V)—
(N, W) are those morphisms of galois modules, f:M — N such that f(V) = W.
We have a functor G +> G from the category of group schemes to the above
category, by letting G be the pair (M(G), H'(G)). We shall prove in §2

THEOREM 1. The functor G G is fully faithful.

Fix a galois module M. By a flat structure on M we mean a group scheme G
together with an isomorphism M(G) -- M. We say H < h{(M) is realizable if
H = H'(G) for some flat structure on M.

A morphism G, — G, of flat structures is a morphism of group schemes inducing
the identity map on galois modules. Since a morphism of group schemes G, — G,
is determined by its effect on galois modules, if a morphism of flat structures exists
from G, to G, it is unique. Given two flat structures G,, G, consider the diagonal
imbedding of galois modules M<>M(G, X G,). The image subgalois module
determines a sub-group scheme G by “flat extension™ (cf. [1]). By construction
we have an isomorphism M(G) o> M, so we may view G as a flat structure, denoted
G, A G,. The natural projections yield maps

G, A G,
Gr G,

expressing G; A G, as a product of G;, G, in the category of flat structures on M.
Let G denote the Cartier dual of G. Define G, V G, = (G, A G,)" and we have the
natural maps,

G, G,

G, Vv G,

expressing G; V G, as a sum of G;, G, in the category of flat structures on M.
Consequently, the category of flat structures on M form a lattice. A trivial, but
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fundamental fact is the following: If G, — G, is a morphism of flat structures and
discp G, = discy G,, then it isanisomorphism. Herediscpdenotes thediscriminant
ideal, over R. From this, and duality, one learns that there are a finite number of
flat structures on M.

THEOREM 2. (a) HY(G, A Gy) = HYG,) N HY(Gy).

(b) HY(G, V G) = HY(G)) + HY(G).

(c) H! yields an isomorphism of the finite lattice of flat structures on M onto the
lattice of realizable subgroups of h*(M).

If the galois module M admits any flat structure, it follows from the above
discussion that it admits a unique ‘“‘minimal” flat structure, as well as a unique
“maximal” flat structure. The maximal structure may be.described as that unique
group scheme structure on M, admitting a group homomorphism to any other
group scheme structure on M. It may also be identified as the group scheme
structure on M with smallest discriminant. The minimal structure may be described
dually. What are those structures for a given M?

2. Theproofs. To prove the above theorems, we shall make use of the fol-
lowing results:

(a) H(G)=10 forq> 1L
@1 (b) #HY(G) = #(MX)- |discg G|V,
(c) (Local flat duality) There is an exact sequence,
0 — HY(G) —> h(G) 1> H'(G)* >0,

where the terminology above is as follows: ME = G(K) = G(R), i.e., the sub-
group of M left fixed by the galois action; |discp G| is the normalized absolute
value of the discriminant of G; G° is the connected component of G; g, is the
order of G°, i.e., the rank of the affine algebra of G° regarded as an R-module; i is
the natural map; G is the Cartier dual of G; * denotes Pontrjagin duality;
j = i*: 7 where 7:h}(G) 2> h'(G)* is the isomorphism induced by cup-product
(Tate duality). These results are proved in [2].

We begin the proof of Theorem 2. Constructing the appropriate quotient,
[6], consider the exact sequence

2.2) 0—>G,AGy,— G, X G— G—0.
Applying M( ) to (2.2) one has the split exact sequence,

(2.3) 0= M —> M X M—>M—>0
[{

where d(m;, my) = m; — m,.
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From the above exact sequences we obtain:

0 — > HY(G, A G;) ——> HY(G,) X H(G,) —> HY(G)

0——> A(M) ———> K(M)X h{(M) —> (M)

from which Theorem 2(a) follows. Using local flat duality (2.1c) and Theorem 2(a)
applied to G, A G,, Theorem 2(b) follows.
Theorem 2(c) and Theorem 1 both follow from Proposition 2, below:

PROPOSITION 1. Let p:G — H be a morphism of flat structures such that p
induces an isomorphism H'(G) o H'(H). Then p is an isomorphism.

PROPOSITION 2. Let G, G, be group schemes, with associated galois M, M.
Let H;= HYG,) (i=1,2). Let 9:M,— M, be a homomorphism of galois
modules bringing H, to H,. Then ¢ is induced from a morphism f.G, — G, of group
schemes.

PRrOOF OF ProPOsSITION 1. Consider the decomposition of G into connected
and étale parts:
0 — G° >G —— > G ——>0

|

H

we may obtain a flat subgroup p(G®) = H' = H and quotient H” = H[H' to give
us

0 —> G° >G— >G*— >0
lp p‘ p.”l
v
0 > H' H———>H — 50

where all vertical maps induce isomorphisms on associated galois modules.
Consider the induced cohomology maps

HY(G") ——> HY(G) —» HYG¥) — > 0

HYH')—> H(H)—> H(H")—— 0.

Since the vertical maps are inclusions, and the middle vertical map an equality, we
obtain all vertical maps to be equality. From (2.1b) we learn that G® and H' have
the same discriminant (since they are both connected) and consequently p’ is an
isomorphism. Similarly, we conclude from (2.1b) that H” is étale, and p” is an



FINITE FLAT STRUCTURES 223

isomorphism. We may then observe that G, H have equal discriminants, and so p
is an isomorphism.

PROOF OF PROPOSITION 2. Let M < M; X M, denote the graph of ¢.
Consider the split exact sequence of galois modules,

0—>M—>M, X My—M —0

and form the finite flat subgroup G = G; X G, obtained by “flat extension” of
M. Forming the quotient, consider the exact sequence,

0—>G— Gy X G,— G’ —0,

and the two natural projections

G
N
G, G,.

We get
0
<
HY(G) ———> K(M)
(2.6) H, x Hy—— > i(M,) x K(My)
- |
H\(G') ——— i{(M")
, !
0 0

from which it follows that p, induces an isomorphism,
puHY(G) 2 HY(GY)

but since p; also induces an isomorphism on associated galois modules, p, is an
isomorphism of group schemes, by Proposition 1. Take f = p,p;*. Q.E.D.

3. Examples. Let M = u,, be the galois module of pth roots of 1. Kummer
theory yields an isomorphism A'(u,) ~ K*/K**. A recent result of L. Roberts
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(see [2]) determines the lattice of realizable subgroups of K*/K*?. These turn out
to be of the form
U(") . U1J K*
—_—C —
U» K*»

where U is the group of units in R with U < U the nth subgroup of the canonical
filtration. The #’s that yield realizable subgroups may be easily described, using
the result of Tate referred to in §l.

Now let X be absolutely unramified. Let C be an elliptic curve over K with
nondegenerate reduction, and Hasse invariant zero. Let G denote the finite flat
group scheme over Spec (R) obtained by taking the kernel of the pth power map
on the abelian scheme induced by C over Spec (R).

By way of illustrating the use of our Theorem 2, we show that the flat group
scheme G is uniquely determined by the galois module M.

One sees easily that /(M) = h%(M) = 0, therefore Tate’s Euler characteristic
formula [4] tells us that A!'(M) is a vector space of dimension two over the prime
field F,. We shall show that the lattice of admissible subspaces of A'(M) consists
in exactly one subspace of dimension one. There is at least one admissible sub-
space, since G is a flat structure. Suppose that there were more than one. By the
fact that the sum of two admissible subspaces is again admissible, and the inter-
section, it would follow that either {0} or A!'(M) is admissible. Using self-duality
of M, it would follow in either case, that {0} is admissible. But that implies that
M admits a finite étale group scheme structure over Spec (R), which, in turn would
imply that the action of the inertial group 7 of K on the space M(K) is trivial.
But this is not the case. In fact the action of J on M(R)can be completely described
([3, $3D).

This suggests a definition: a galois module will be called uni-structured over R
if it admits at most one flat group scheme structure over Spec (R). It follows from
Theorem 2 that if

0—-A4—-B—->C—0

is an exact sequence of galois modules such that 4 and C are uni-structured then
B is uni-structured.

Putting together what we have observed, we have: if M, is the galois module of
p"-torsion points in the elliptic curve C above, then M, is uni-structured.

In this very special case, then, we have come across a result for finite flat
group schemes, which sharpens the general result of Tate [5], which asserts that a
p-divisible group scheme is determined by its galois module.
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abelian, 57
cofibrant, 68
2,101
homology, 16
projective, 66
simplicial, 17, 89
P -aspherical, 98
(semi-) simplicial, 66
simplicial resolution, 28, 66, 68, 101
Obstruction set, 42

P -aspherical, 98
% -epimorphism, 98
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Permutation representation, 14
Poincaré-Birkhoff-Witt isomorphism, 79, 81
Pontrjagin duality (Tate duality), 221
Pregroups, 126
Primary spaces, 166

p-,168,171,173,174
Profunctor, 11
Proof theory, 1
Proofs over X, 2

Qualification, 2

Ring
a-twisted Laurent series
K,R,|T], 192
R,[T], 192, 193
a-twisted finite Laurent series, 193
a-twisted polynomial
R,[t], 193
subrings R,[t], R, [t7'], 193
L.B.P. (invariant basis property), 217
homomorphism
£7,194
J, 193; k or k*,193; k7, 193;
iorit,193;i 7,193
augmentations, ¢ or et, e, 193
left regular, 213
right regular, 213
Rules of inference, 2, 3

Schanuel Lemma, 161, 162
Sequence
characteristic of module M, 200
Mayer-Vietoris, 119
Kiinneth spectral, 74

231

mod-C? spectral, 137
modified coprimitive spectral, 137
zero, 50
Simplicial complex, 89
Simplicial homotopies, 93
Simplicial resolution, 28, 66, 68, 101
Simplicial set, 20
Singular, 62
Singular homology, 20
Spherical retracts, 165
Split, 53
Steenrod algebra, 131
< *(p), 144
Steinberg relations, 112
Subcategory
P-Ab&'Sp/p,133
Subgroup
F(R) cyclic, 195
KR, 195
J(G), 195
realizable, 220
subsemigroups
T, 77,193
GX TY,GX,T,193
virtual, 14
Substitution, 2

Total spherical retract, 165, 166
Tower

coprimitive, 134

modified coprimitive, 136
Types, 3

Wall invariant, 186
Wilder’s theorem, 184, 186
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