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Preface

Homotopical algebra or non-linear homological algebra is the
generalization of homological algebra to arbitrary categories which
results by considering a simplicial object as being a generalization
of a chain complex. The first step in the theory was presented in
[Dol58], [DP61], where the derived functors of a non-additive func-
tor from an abelian category A with enough projectives to another
category B were constructed. This construction generalizes to the
case where A is a category closed under finite limits having suf-
ficiently many projective objects, and these derived functors can
be used to give a uniform definition of cohomology for universal
algebras. In order to compute this cohomology for commutative
rings, the author was led to consider the simplicial objects over
A as forming the objects of a homotopy theory analogous to the
homotopy theory of algebraic topology, then using the analogy as
a source of intuition for simplicial objects. This was suggested by
the theorem of Kan [Kan58a] that the homotopy theory of sim-
plicial groups is equivalent to the homotopy theory of connected
pointed spaces and by the derived category ([Har66], [Ver]) of an
abelian category. The analogy turned out to be very fruitful; but

there were a large number of arguments which were formally sim-
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8 CONTENTS

ilar to well-known ones in algebraic topology, so it was decided to
define the notion of a homotopy theory in sufficient generality to
cover in a uniform way the different homotopy theories encoun-
tered. This is what is done in the present paper; applications are
reserved for the future.

The following is a brief outline of the contents of this paper; for
a more complete discussion see chapter introductions. Chapter 1
contains an axiomatic development of homotopy theory patterned
on the derived category of an abelian category. In Chapter 2 we
give various examples of homotopy theories that arise from these
axioms, in particular we show that the category of simplicial ob-
jects in a category A satisfying suitable conditions gives rise to
a homotopy theory. Also in §2.5 we give a uniform description of
homology and cohomology in a homotopy theory as the “lineariza-
tion” or “abelianization” of the non-linear homotopy situation, and
we indicate how in the case of algebras this yields a reasonable
cohomology theory.

The author extends his thanks to S. Lichtenbaum and M. Schlesinger
who suggested the original problem on commutative ring cohomol-
ogy, to Robin Hartshorne whose seminar [Har66] on Grothendieck’s
duality theory introduced the author to the derived category, and
to Daniel Kan for many conversations during which the author
learned about simplicial methods and formulated many of the ideas

in this paper.



Preface to the new Typesetting

The book was TeX'd up by the Texromancers, a latexing group.
The credits for the typesetting of this book go to: Aareyan Man-
zoor, Jonas Hardt, Evelyn Koo, Yohan Wittgenstein, Grisha Taroyan
and others.

Here is a link to a dyslexic friendly version of the book: https:
//aareyanmanzoor.github.io/assets/books/homotopical-algebra-dysle
xic.pdf . Here is a link to our IATEX: https://github.com/AareyanManz
oor/Quillen-Homotopical-Algebra

We added citations and references with hyperlinks. References
to e.g. theorems/lemmas in the book are in blue, while citations
to the bibliography is in red. The bibliography also has URLs now,
for easy access. Some of the books in the bibliography had newer
editions, so we went with those.

We also added a small index. This is minimalist as of now, if the
reader feels more words should be added to it, please let us know.
Also please report typos or anything else to us, readers taking the
time to help the proofreading is appreciated. This can be reported
at our website: https://aareyanmanzoor.github.io/Texromancers.html.

We changed some notations, particularly for the name of cat-

egories. (sets) is now Set for example. Underlining is also a relic
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Chapter 0: CONTENTS

of the typewritter era, so those were replaced with bolded text,
same for category names. For example category C in the original
book is now C.

All diagrams are redrawn in tikz or tikzcd.
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1. Axiomatic homotopy theory

1.0 Introduction

Chapter 1 is an attempt to define what is meant by a “homo-
topy theory” in a way sufficiently general for various applications.
The basic definition is that of a model category which is a category
endowed with three distinguished families of maps called cofibra-
tions, fibrations, and weak equivalences satisfying certain axioms,

the most important being the following two:

M1 Given a commutative solid arrow diagram

where i is a cofibration, p is a fibration, and either i or pis also
a weak equivalence, there exists a dotted arrow such that the

total diagram is commutative.

M2 Any map f may be factored f =pi and f = p'i’ where i,i’ are

cofibrations, where p,p’ are fibrations and where p and i’ are

11



Chapter 1: Axiomatic homotopy theory

also weak equivalences. It should be noticed that we do not
assume the existence of a path or cylinder functor; in fact the
homotopy relation for maps may be recovered as follows: Call
an object cofibrant if the map g — X is a cofibration (hence
in the category of simplicial groups the cofibrant objects are
the free simplicial groups) and fibrant if the map X —» e is a
fibration (hence in the category of simplicial sets the fibrant
objects are the Kan complexes). Then two maps f,g from a
cofibrant object A to a fibrant object B are said to be homo-

topic if there exists a commutative diagram

f+g
AVA — > B

id+id/l\ o /I\h (1)

A — A
(o2

where v denotes direct sum, f+gis the map with components

f and g, and where ¢ is a weak equivalence.

Given a model category C, the homotopy category HoC is ob-
tained from C by formally inverting all the weak equivalences. The
resulting “localization” y : C - HoC is in general not calculable by
left or right fractions [GZ67] but is rather a mixture of both. The
main result of §1.1 is that HoC is equivalent to the category zC, ,
whose objects are the cofibrant and fibrant objects of C and whose
morphisms are homotopy classes of maps in C. If C is a pointed
category then in §§81.2-1.3 we construct the loop and suspension

functors and the families of fibration and cofibration sequences in

12



Chapter 1: Axiomatic homotopy theory

the homotopy category. If one defines a cylinder object for a cofi-
brant object A to be an object A’ together with a cofibration iy +1i,
and a weak equivalence ¢ as in diagram |, then the constructions are
the same as in the ordinary homotopy theory except that, since a
cylinder object of A is neither unique nor functorial in 4, one has
to be careful that things are well-defined. This is done by defining
operations in two ways using the left (cofibration) structure and
the right (fibration) structure, and showing that the two definitions
coincide.

The term “model category” is short for “a category of models
for a homotopy theory”, where the homotopy theory associated
to a model category Cis defined to be the homotopy category HoC
with the extra structure defined in §1.2-1.3 on this category when C
is pointed. The same homotopy theory may have several different
models, e.g. ordinary homotopy theory with basepoint is ([Kan58a],
[Mil57]) the homotopy theory of each of the following model cate-
gories: 0-connected pointed topological spaces, reduced simplicial
sets, and simplicial groups. In section 1.4 we present an abstract
form of this result which asserts that two model categories have
the same homotopy theory provided there are a pair of adjoint
functors between the categories satisfying certain conditions.

This definition of the homotopy theory associated a model cat-
egory is obviously unsatisfactory. In effect, the loop and sus-
pension functors are a kind of primary structure on HoC, and the
families of fibration and cofibration sequences are a kind of sec-
ondary structure since they determine the Toda bracket (see §1.3)
and are equivalent to the Toda bracket when Ho C is additive. (This

last remark is a result of Alex Heller.) Presumably there is higher

13



Chapter 1: Axiomatic homotopy theory

order structure ([Ger65], [Spa63]) on the homotopy category which
forms part of the homotopy theory of a model category, but we
have not been able to find an inclusive general definition of this
structure with the property that this structure is preserved when
there are adjoint functors which establish an equivalence of homo-
topy theories.

In section 1.5 we define a closed model category which has the
desirable property that a map is a weak equivalence if and only if

it becomes an isomorphism in the homotopy category.

1.1 The axioms

All diagrams are assumed to be commutative unless stated oth-

erwise.

Definition 1.1.1. By a model category we mean a category together
with three classes of maps in %, called the fibrations, cofibrations,

and weak equivalences, satisfying the following axioms.

MO ¥ is closed under finite projective and inductive limits.

M1l Given a solid arrow diagram

/7(
iJ/ /// J/P (1)

where i is a cofibration, p is a ficration, and where either i or

p is a weak equivalence, then the dotted arrow exists.

14



Section 1.1: The axioms

M2 Any map f may be factored f = pi where i is a cofibration and
weak equivalence and p is a fibration. Also f =pi where i is a

cofibration and p is a fibration and weak equivalence.

M3 Fibrations are stable under composition and base change. Any

isomorphism is a fibration.

Cofibrations are stable under composition and co-base change.

Any isomorphism is a cofibration.

M4 The bases extension of a map which is both a fibration and a
weak equivalence is a weak equivalence. The co-base exten-
sion of a map which is both a cofibration and a weak equiva-

lence is a weak equivalence.

M5 The bases extension of a map which is both a fibration and a
weak equivalence is a weak equivalence. The co-base exten-
sion of a map which is both a cofibration and a weak equiva-

lence is a weak equivalence.

M6 Let X N Y- Z be maps in 8. Then if two of the maps f,g, and
gf are weak equivalences, so is the third. Any isomorphism is

a weak equivalence.

Examples. A. Let @€ be the category of topological spaces and
continuous maps. Let fibrations in € be fibrations in the sense
of Serre, let cofibrations be maps having the lifting property
of axiom M1 whenever p is both a Serre fibration and a weak
homotopy equivalence, and finally let weak equivalences in &€
be weak homotopy equivalences (maps inducing isomorphism
for the functions [K,—] where K is a finite complex). Then the

axioms are satisfied. (This is proved in §2.3.)

15



Chapter 1: Axiomatic homotopy theory

B. Let & be an abelian category with sufficiently many projec-
tives and let ¥ = C (/) be the category of complexes K =
{K,d:K,— K, ,} of objects of &/ which are bounded below
(K, =0 if ¢<0). Then @ is a model category where weak
equivalences are maps inducing isomorphisms on homology,
where fibrations re the epimorphisms in €, and where the cofi-
brations are maps i which are injective such that Cokeri is a

complex having a projective object of & in each dimension.

C. Let ¢ be the category of semi-simplicial sets and let fibrations
in € be the Kan fibrations, cofibrations be injective maps, and
let the weak equivalences be maps which become homotopy
equivalences when the geometric realizations functor is ap-
plied. Then € is a model category (§2.3).

For the rest of this section € will denote a fixed model category.

Definition 1.1.2. Let @ (resp. ¢) denote “the” initial (resp. final)
object of the category ¥). (These exist by M0O.) An object X will
be called cofibrant if

@ — X is a cofibration and fibrant if X — e is a fibration. A map
which is a fibration (resp. cofibration) and a weak equivalence will

be called a trivial fibration (resp. trivial cofibration.)

Remark. In example A. every object is fibrant and the class of
cofibrant objects include CW complexes, and more generally any
spaces that is constructed by a well ordered succession of attach-
ing cells. In example B. every object is fibrant and the cofibrant
objects are the projective complexes (that is, complexes consisting

of projective objects — these are not projective objects in C (o)).

16



Section 1.1: The axioms

In example C. every object is cofibrant and the fibrant objects are

those s.s. sets satisfying the extension condition.

Before stating the next definition we recall some standard no-
tation concerning the fibre products and introduce some not-so-

standard notation for cofibre products. Given a diagram

la l @

there is a unique map A — B X, X denotes (a,f)y or simply (a,f)
such that pr(e, ) = a and pr,(a, ) = §, where pr; : Bxy X — B and
pr, : Bxy X — X are the canonical projections. Also (2) is said
to be cartesian if (a,p) is an isomorphism. We shall denote the
cofibre product of B and X under A by Bv, X and the two canonical
maps by inj : B— BV, X and in, : X — BV, X. The unique map
Bv,X - ¥ with uin; =6 and uin, = y will be denoted 6§+ ,y or simply
&5+ vy, and (2) will be called co-cartesian if § +y is an isomorphism.

Finally given a map f : X — Y there is the diagonal map
Ap=(idy,idy) : X — X Xy X

and the codiagional map
Vy=idy+idy : YVvyY—Y

of f. We write Ay (resp. Vy) if Y =e (resp. X = @).

17



Chapter 1: Axiomatic homotopy theory

Definition 1.1.3. Let f,g : A = B be maps. We say that s is left-

homotopic to g notation fig) if there is a diagram of the form

f+g
AVA — > B

v 0p+0; /I\h (3)

A +—— A
o

where ¢ is a weak equivalence. Dually we say that f is right-

homotopic to g (notation: fL g) if there is a diagram of the form

N

B ¢+—— B
(do.dy)
k/l\ 0-%1 \|/A (4)
A — % BxB
(F)

where s is a weak equivalence.

Remark. In example A. above two maps of spaces which are hom-
topic in the usual sences are both left and right homotopic as one
sees by taking A = Ax T and B= B! where I is the unit interval. In

fact we have the implications:
homotopic = right homotopic = left homotopic (5)

where the last implication comes from the dual of lemma 1.1.5(i)
below and the fact that every space is fibrant. if 4 is cofibrant (e.qg.

a CW complex) then the three notation coincide, but in general it

18



Section 1.1: The axioms

seems that the implication (5) are strict.

Definition 1.1.4. By cylinder object for an object A we mean an

object Ax I together with maps
00+01 (o2 .

such that gy+9, is a cofibration and ¢ is a weak equivalence. Dually, a

path object for Bshall be an object B/ together with a factorization

(do-dy)
B— B =L, Bx B of Ay

where s is a weak equivalence and (dy,d,) is a fibration. By a left
homotopy from f : A— B to g: A— B we mean a diagram (3)
where 9, +09, is a cofibration and hence A is a cylinder object for A.
Similarly a right homotopy from f to g is a diagram (4) where B is
a path object for B.

Remark. 1. AxIis not the product of A4 and an object I'norisit a
functor of A. In example A., the product of a space 4 and the
unit interval is not necessarily a cylinder object of A unless

A is cofibrant.

2. Since the dual of a model category is again a model category
in an evident way there is a corresponding dual assertion for
every assertion we make. In the following we will often give
only one form and leave the formulation of the dual assertion
to the reader.

Lemma 1.1.1. If f,g € Hom(4, B) and fi g, then there is a left ho-
motopy h: AxI— B from f to g.

19



Chapter 1: Axiomatic homotopy theory

!’ !’

Proof. Given diagram (3) use M2 to factor g,+9,; into AvA Lal> a2
A where 9] + 9, is a trivial cofibration and p is a trivial fibration. By
M5

¢’ =0p: A" — Ais a weak equivalences so A’ with d;,0], and ¢’ is a
cylinder object for A. ' =hp : A’ — B is the desired left homotopy
from f to g. O

Lemma 1.1.2. Let A be a cofibrant object and let Ax I be a cylinder
object for A. Then

dy: A— AxTand 9, : A— AXx I are trivial cofibrations.

Proof. in, : A— AV A is a commutativ by the coase change asser-
tion in M3, hence 9, = (9, + 9,)in, is a cofibration. ¢g, =id, ands M5
imply that g, is also a weak equivalence. Similarly o, is a trivial

cofibration. O

Corollary (Covering Homotopy theorem). Let A be cofibrant and
let

p: X — Y be a fibration, let «a : A — X, and let h : AXI — Y
be a left homotopy with hd, = pa. Then there is a left homotopy
H : AxI— X with Hoy=a and pH = h.

Proof. By M1, H exists in
a
A —— % X
dy - p

AX] ———% Y
h

The dual assertion is the homotopy extension theorem. O

20



Section 1.1: The axioms

Lemma 1.1.3. Let A be cofibrant and let Ax I and A x I' be two
cylinder objects for A. Then the result of “gluing” AxI to AxI’ by
the identification 0,4 = 9)A, defined precisely to be the object 4 in
the co-Cartesian diagram

’
a0

A — % AXT

9 iny (6)

AXT ——% 4

in,

is also a cylinder object Ax " for A with
9, =in;dy, 0/ =iny09;, ¢"inj=0, ¢"iny=0"

Proof. M4 and Lemma 1.1.2 show that in; and in, are weak equiv-
alences; as 9] =in;9,, o¢"d] =id, we have by M5 that ¢” : A — A
is a weak equivalence. 9] +9/ : AvA — A is the composition of

in, vid

AvA ——4 (AxI)Vv A, which is the co-base extension of 9, by
iny +o;

A oy AV A, and the map (Axl)vA — 2 A, which is the co-base

extension of 9 +9d; by AVA —— (AxI)vA. By M3 9] +9] is a

cofibration and hence A is a cylinder object for A. O

Lemma 1.1.4. If A is cofibrant, then Lis an equivalence relation in
Hom(A, B).

Proof. The relation is reflexive since if f =g we may take 4 = A and
h=fin (3) and it is symmetric since given (3) we may interchange
0, and 4,. Finally given f,, f,.f, € Hom(A, B) and a left homotopy

21



Chapter 1: Axiomatic homotopy theory

h: AxI— B from f, to f; and a left homotopy A’ : AxI' — B
from f, to f; and a left homotopy A" : AxI' — B we obtain by
Lemma 1.1.3 a left homotopy A" : AxI" — B from f, to f, by
setting »”in; =h and n"in, = n'. O

Lemma 1.1.5. Let A be cofibrant and let f,g € Hom(4, B). Then
(i) frg = [ g
(i) f<g = there exists a right homotopy k : A— B! from f to
g with s : B— B! a trivial cofibration.
(iii) If u: B— C, then fXg = uf~ ug.

Proof. (i) By Lemma 1.1.1 there is a left homotopy A : AxI— B
from f to g and by M2 there is a path object B! for B. By

Lemma 1.1.2 and M1 the dotted arrow K exists in

sf
A — s B!

K /\(
00J/ //// J/(do»dﬂ (7)

AXI — % BXB
(fo.h)
and k = K9, : A— B! is the desired right homotopy from f to

I

(i) Let ¥ : A — B! be a right homotopy from f to g and let
B— B2 B ve a factorization of s’ : B—s B! into a trivial
cofibration followed by a fibration. By M5 p is a weak equiva-
lence. Let
(dy.d,) = (d}.d})p : B— Bx B so that (d.d)) is a fibration by M3

22



Section 1.1: The axioms

and hence B with d,d,, and s is a path object for B. By M1
there is a dotted arrow % in

g —— > B!

!
£ lp (8)

7

A—/)BII
k

and k gives the desired homotopy from f to g.

(iii) Let k be as in (ii) and let ¢! be a path object for C. By M1 it is

possible to lift in

BL)CI

1
¢ 7 9
S // (d()’dl) ( )
//
//
Bl — % cxcC
(dou,du)

and k¢ : A— C! is a right homotopy from uf to ug.
O

If A and B are objects of € we let z"(A, B) (resp. 7#'(A, B)) be
the set of equivalence classes of Hom(4, B) with respect to the
equivalence relation generated by L (resp. L). When A cofibrant
and B is fibrant, in which case L and % coincide and are already
equivalence relations by Lemmas 1.1.4, 1.1.5(i) and their duals, we
shall denote the relation by ~, call it homotopy and let zy(4, B) or

simply z(4, B) be the set of equivalence classes.

23



Chapter 1: Axiomatic homotopy theory

Lemma 1.1.6. If A is cofibrant, then composition in € induces a map
7"(A, B)x n'(B,C) —> n'(A, B).

Proof. It suffices to show that if f,g € Hom(4,B), © € Hom(B,C)
and f ~ g then uf ~ ug, which is Lemma 1.1.5(iii), and that if u,v €
Hom(B, C),

f € Hom(4, B), and u ~ v, then uf ~ vf, which is immediate from the
definition. O

Lemma 1.1.7. Let A be cofibrant and let p : X — Y be a trivial
fibration. Then p induces a bijection p, : 7/(4, X) — 7!(A, Y).

Proof. The map is well-defined since ng = pfipg is immediate
from the definition. The map is surjective by M1. By Lemma 1.1.4
if £,g € Hom(A, X) and pf, pg represent the same element of 7/(A,Y),
then there is a left homotopy 2 : AXxI — Y from pf to pg. If H is a
lifting in

f+g
AVA ———> X

7
H -
ao+alJ/ 7 J/p (10)

h
AX] ———% Y

then H is a left homotopy from f to g. This shows that p, is
injective. O

Let 6, 6, and %, be the full subcategories consisting of the
cofibrant, fibrant, and both fibrant and cofibrant objects of & re-
spectively. By Lemma 1.1.6 we may define a category =@, with the
same objects as &,, with

Homﬂgc(A, B) = 7"(A, B) and with the composition induced from that

24



Section 1.1: The axioms

of &. If we denote the right homotopy class of amap f : A — B by
f we obtain a functor . — =%, given by X — X, f — f. Similarly
largely by the dual of Lemma 1.1.6 we may define @, (resp. 7%, ;)
to be the category with the same objects as &, and with 7'(A, B)
(resp. n(A, B)) as maps from A to B.

Definition 1.1.5. Let € be an arbitrary subcategory and let S be a
subclass of the class of maps of €. By the localization of € with
respect to S we mean a category S~'% together with a functor
y : € — S7'% having the following universal property: For every
s € S, y(s) is an isomorphism; given any functor F : € — % with F(s)
an isomorphism for all s € S, there is a unique functor 9 : S7'¢ — %
such that 9oy =F.

Except for set-theoretic difficulties the category S~'% exists
and may be constructed by mimicking the construction of the free

group (see Gabriel-Zisman [GZ67]).

Definition 1.1.6. Let ¥ be a model category. Then the homotopy
category of ¥ is the localization of ¥ with respect to the class
of weak equivalences and is denoted by y : ¥ — Ho0®%. Ye !
€. — Ho %, (resp. y, : €, — Ho%,) will denote the localization of
@, with respect to the class of maps in &, (resp. %) which are
weak equivalences in 4. We sometimes use the notation [X,Y] for
Homy, (X, Y).

Lemma 1.1.8. (i) Let F : € — & carry weak equivalences in &

into isomorphisms in %. If ng or fL g, then F(f) = F(g) in &.

(i) Let F : €. — % carry weak equivalences in €, into isomor-
phisms in &. If £~ g, then F(f) = F(g) in 3.
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Proof. (i) Let h: AxI — B be a left homotopy from fto g. Asoc

is a weak equivalence, F(c) is an isomorphism. As
F(c)F(dy) = F(6)F(9,) =id, = F(9,) = F(9,)

and so
F(f)=FhF(y) = F(h)F(d)) = F(g).

(i) The proof is the same same as (i) since by Lemma 1.1.4 (i) we
may assume that s : B— B! is a cofibration and hence B! is
in ..

By Lemma 1.1.8 the functors y,, y;, y induce functors y, : 76, —
Ho%,, v, : 76, — HO &, and 7 : 6., — HOE, provided these lo-
calizations exist. The following result shows that the homotopy
category Ho ¥ as defined in Definition 6 is equivalent to the more

concrete category 7%, .

Theorem 1'. Ho% exists and the functor y : z6,, — Ho% is an

equivalence of categories.
This is included in the following more complex assertion which
is presented for the purpose of comparison with (Gabriel-Zisman

[GZ67]).

Theorem 1.1. The categories Ho %, Ho @, Ho ¢, exist and there is a
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diagram of functors

76, ——— Ho®% (11)

~

16, ——— HoE;

where — denotes a full embedding and — denotes an equiva-
lence of categories. Furthermore, if (™" is a quasi-inverse for 7,
then the fully faithful functor

N -1
Ho%, - Ho% ' 7%,, — 1%,

is right adjoint to y, and the fully faithful functor

N -1
Ho%, - Ho & ' 18, — 2%,

is left adjoint to y,.

Proof. For each object X choose a trivial fibration py : O(X) — X
with O(X) cofibrant and a trivial fibration iy : X — R(X) with R(X)
fiorant. We assume that Q(X) = X and py = idy (resp. X = R(X)
and iy =idy) if X is already cofibrant (resp. fibrant). For each map
f : X — Y we may choose by M1 a map O(f) : O(X) — QO(Y) (resp.
R(fiy = iyf) which is unique up to left (resp. right) homotopy by
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Lemma 1.1.7. It follows that Q(gf) ~ Q()Q(f) and

Q(idy) ~ idyx,, hence O(gf) ~ 0(2)0(f) and Q(idy) ~ idyy, by Lemma 1.1.4())
and therefore X — Q(X), f — O(f) is a well-defined functor which

we shall denote Q : ¥ — z%.. Similarly there is a functor R : ¥ —

LA ys

If Xis cofibrant, f,g € Hom(X,Y), and fL g, then by Lemma 1.1.4(iii)
inL iyg and hence R(f) ~ R(g) by the dual of Lemma 1.1.7. It fol-
lows that R restricted to %, induces a functor 78, — 7., and that
there is a well-defined functor RQ : C — 7%, given by X — ROX,
/= RO(/).

Let Ho @ be the category having the same objects as € with
Homy«(X,Y) = Hom,rcgcf(RQX, RQY) =zn(ROX, RQY)

and the obvious composition. Let y : ¥ — Ho% be given by y(X) = X,
y(f)=RO(f). As RO(X)=X if X is in &,,, it is clear that the functor
vy : n6,, — Ho® induced by y is fully faithful. By Lemma 1.1.7
and its dual, trivial fibrations and trivial cofibration in &,, become
isomorphisms in 7%, ,; hence any weak equivalence in %, , becomes
an isomorphism in z%,, by M2 and M5. If f : X — Y is a weak
equivalence in &, then fpy = pyO(f) and M5 imply that QO(f) is a
weak equivalence in €, and similarly RQO(f) is a weak equivalence
in 6., hence y(f) = RO(f) is an isomorphism. It follows that for any
X the maps

i
X & ox) 2 rox

yield an isomorphism of X and RQ(X) in Ho ¥ and hence 76,z S How
is an equivalence of categories.
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We now show that y : € — Ho % has the required universal
property of Definition 1.1.5. As mentioned above y carries weak
equivalences in € into isomorphisms in HoO®. Let F : € — % do the
same. Define § : HO€ — % by 9(X) = F(X) and for a € Homp(X,Y)
choose f : RO(X) — RQ(Y) representing « and let 6(a) be given by

the diagram

O(a
F(X) —=——m—m- > F(Y)
A~ A
Flpx) | ~ ~ | Flpy)
F(OX) F(QY) (12)
Fligy) | ~ ~ | Fligy)
~ ~

F(f)
F(RQX) —— > F(RQY)

By Lemma 1.1.8(i), 6(«) is independent of the choice of f and it
is then clear that 0 is a functor, in fact the unique functor with
0y = F. This proves the existence of Ho% and also the horizontal

equivalence in (11).

The existence of Ho %, and the equivalence n%cf;» Ho &, can be
proved in the same way using the functor ¢, — z%,, induced by
R and Lemma 1.1.8(ii). The last assertion of the theorem results
from the fact that the inclusion functor z%,, — z6, is right adjoint
to the functor R’ : 7%, — 1%,, since
7"(X,Y) = z(RX,Y) if X is in €, and Y is in €., by Lemma 1.1.7, and
from the fact that up to the equivalence Ho 6, ~ HO® ~ 7%, 7, :
%, — Ho &, “is” the functor R'. O
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Corollary 1. If A is cofibrant and B is fibrant, then
Homy, (A, B) = (A, B)
Proof.
Homy, (A, B) = 7(RQA, ROB) = 7(RA, OB) = 7(A,OB) = n(A, B)

by Lemma 1.1.7 and its dual. O

Corollary 2. The functor y, : #6, — H0 %, permits calculations by
left fractions and the functor y, : 76, — Ho &, permits calculation

by right fractions.

Proof. This follows from the first chapter of [GZ67], since y, has a
fully faithful right adjoint. O

Remarks. 1. In general the localization € — Ho @ cannot be cal-

culated by either left or right fractions.

2. In example A., ¥ = €, and the usual homotopy relation on
maps coincides with homotopy in the sense of Definition 1.1.5
on . Thus z6,, = 786, is the homotopy category of cofibrant
spaces which in turn is equivalent to the usual homotopy cat-
egory of CW complexes. In example B., € = €, and homo-
topy on €, coincides with the chain homotopy relation. Hence
76, = 76, is what is denoted by K~ (P) is Harshorne [Har66]
where P is the additive sub-category of projectives in o, while
Ho @ is the derived category D™ (&) or D, ().

3. The following example shows that although Ho®% is deter-
mined by the category % and the class of weak equivalences,
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the model structure on % isn’t. Let o be an abelian category
of finite homological dimension having enough projectives and
injectives. Then € = ¢, (&) the category of bounded complexes
is what one should call a full sub—-model category of ¢ () as
in example B.. The dual of example B. gives the structure of a
model category on c_(«), the category of complexes bounded
above, where cofibrations are injections, fibrations are surjec-
tive maps with injective kernels, and weak equivalences are
homology isomorphisms. Again c,(&) is a full-sub-model cat-
egory of c_(«) and we obtain different model structures on

cp(&f) with the same family of weak equivalences.

1.2 The loop and suspension functors

Homotopy theory is concerned not only with the category Ho®
as a category but also with certain extra structure which comes
from performing constructions in %. In this section we will be
concerned with one aspect of this extra structure-the loop and
suspension functors.

% denotes a mixed model category and f,g: A =2 B two maps in &

where A is cofibrant and B is fibrant.

Definition 1.2.1. Let h: AxI — B and h’': AxI' — B be two left

homotopies from fto g. By a left homotopy from » to A’ we mean
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a diagram
h+h'
AxXI v AxI" —— B
AVA
Jotit 1
J/a+a’ H ()
A < AxJ

T

where j, + j, is a a cofibration and 7 is a weak equivalence. (Here
AxIA\V/AAxI’ is the cofibre product of the maps 9y+9,: AvA — AXI
and

d)+0;: AVA— AxI'.) We say h is left homotopic to A’ (notation

i) if such a left homotopy exists.

Remarks. 1. As in §1.1, the symbol A xJ will denote an object
of ¢ together with a cofibration j,+j, and weak equivalence
as in (1). AxJ is not generally the product of A and an object
“J".

2. There is a dual notion of right homotopy of right homotopies

whose formulation we will leave to the reader.

Definition 1.2.2. Let 2: AxI — B be a left homotopy from f to g
and let k: A — B! be a right homotopy from f to g. By a corre-
spondence between 4 and k we mean a map H: Ax 1 — B! such
that Ho, =k, Ho, = sg, dyH = h, and d,H = go. We say that A and «
correspond if such a correspondence exists.

It will be useful to use the following diagrams to indicate a left

homotopy &, a right homotopy k, and a correspondence H between
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h and k respectively.

g g go g
S h g
. . k k H 5g

f f h g (2)

Lemma 1.2.1. Given Ax I and a right homotopy k: A — B’ there is
a left homotopy h: Ax I — B corresponding to k. Dually given B!

and A, there is a k corresponding to h.

Proof. Same of that as Lemma 1.1.5(ii). O

Lemma 1.2.2. Suppose that h: AxI — B and h': AxI' — B are
two left homotopies from f to g and that k: A — B! is a right
homotopy from f to g. Suppose that » and k correspond. Then 4’

and k correspond iff 4’ is left homotopic to A.

Proof. Let H: Ax I — B! be a correspondence between h and k,
and let H': AxI — B! be a correspondence between »’ and k. Let

AXJ, jo+j;, and r be as in Remark 1. The dotted arrow K exists in

H+H' I
AxI v AxI' ——> B
AVA 3

-
K -
L Pid d
Jotii - 1
-
-
7

AXJ > B
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and dyK: AxJ — B is a left homotopy from h to A’. Conversely
suppose given H: Ax I — B! and a left homotopy K: AxJ — B
from h to n’'. Then j,: AXI — AxJ is a cofibration by M3 since it’s

the composition of j, +j, and
inj: AXI — AXI v AXI’
AVA

which is the cobase extension of g, + 9;,. Also j, is trivial by M5

since 7j, = 0. Therefore the dotted arrow ¢ exists in

H
AXxI ——> B!

-1
4 Pie -
oo (dody)
-
-
-

(K.g7)

AXJ ————3% BXB

and ¢j,: AxI' — B! is a correspondence between ' and k. O

Corollary. “is left homotopic to” is an equivalence relation on the
class of left homotopies from f to g and the equivalence classes
form a set ﬂ'i(A,B;f,g). Dually right homotopy classes of right ho-
motopies form a set z{(4, B; f,g). Correspondence yields a bijection
(A, B; f,g) ~ n[(A, B; f, g)

Proof. Lemma 1.2.2 yields the equivalence relation assertion while
Lemma 1.2.1 shows that every & is equivalent to a k: A — B! with
fixed B! and hence the equivalence classes form a set. The last

assertion is clear from Lemma 1.2.2 and its dual. O

By the corollary we may drop the “/” and “r"” and write z,(A, B; f,g)
and refer to an element of this set as a homotopy class of homo-

topies from f to g.
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Again let € be a fixed model category, let A be a cofibrant object
of &, and let B be a fibrant object.

Definition 1.2.3. Let 1, f,, f; € Hom(A, B), let h: AXx I — B be a left
homotopy from f, to f, and let »': AxI' — B be a left homotopy
from f, to f;. By the composition of 4 and A/, denoted s -h', we
mean the homotopy A": AxI”" — B given by n"in; = h, h"in, = 1’
where A x 1" is the path object constructed in Lemma 1.1.3. If
f.g € Hom(A,B) and h: AxI — B is a left homotopy from f to g,
then by the inverse of i, denoted 4»~! we mean the left homotopy
h:AxI' — B from g to f, where Ax I’ is the path object for 4
given by AxI'=Ax I, 9= 0, 9, =9y, 6’ =c and where h’' = h.

The following pictures for a-h’ and A~! will be used.

f1 h /2 h' f3

§ / (3)

Composition and inverses for right homotopies are defined dually
and will be pictured by diagrams like (3) but where the lines run
vertically.

Proposition 1.2.1. Composition of left homotopies induces maps

7l (A, B; f1. ) X ©\(A, B; f5, f3) — #1(A, B; £}, f3) and similarly for right
homotopies. Composition of left and right homotopies is compat-
ible with the correspondence bijection of the corollary of Lemma
1.2.2. Finally the category with objects Hom(A4, B), with a morphism
from f to g defined to be an element of z;(4, B; f,g), and with com-
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position of morphisms defined to be induced by composition of
homotopies, is a groupoid, the inverse of an element of n{(A,B;f,g)

represented by s being represented by A7l

Proof. Let h (resp. k) be a left (resp. right) homotopy from f, to
o, let A’ (resp. k') be a left (resp. right) homotopy from f, to fs,
and let H (resp. H') be a correspondence between A and k (resp A’
and £’). Then we have the following correspondence between h- A’
and k- k'.

/3o 130

k' k'c K’ H' s'f3
fro h’

k H sfr sh' K
h n'

Taking Lemma 1.2.2 into consideration this proves the first two
assertions of the proposition.
Composition is associative because (h-h')-h" and h-(h' - h") are
both represented by the picture
h n' n"

If h: AxI — B from fto gand H: AxI — B! is a correspondence

of A with some right homotopy k then the diagrams
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go go go go
k ko k H S8 k H S8 s80 S8
fo h h 80

and Lemma 1.2.2 give fo-h~h, h-go ~ h, proving the existence of
identities and hence Hom(A, B) is a category. Finally let H': AxI' —
B'be H: AxI — B, where AxI' is AXI with o) =0,, 9| = 9,, and ¢’ =0,
and let H” : AxI' — B! be a correspondence of ™' : AxI' — B with
some k”: A— B!, and let H: AxI — B be H". Then the diagrams

g0 go fo fo
58 H' k H 58 sf H K" H" sf
g K-l 7 h g f h g n! S

show that A™!-h ~go and h-h~! ~ fo providing the last assertion of

Proposition 1.2.1. O

It is clear that if i: A’ — A is a map of cofibrant objects,
then there is a functor i*: Hom(4, B) — Hom(4’, B) which sends
finto fi and a right homotopy k: A — B’ into ki: A’ — B!. Sim-
ilarly if j: B— B’ is a map of fibrant objects there is a function
J«: Hom(A, B) — Hom(A, B).

Lemma 1.2.3. The diagram
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l-*
(A, B; f,g) ———— (A, B; fi, gi)
. . i* ! ! . e o _ .
(A, B;jf,.jg) —> (A", B',jfi,jgi)
commutes.

Proof. Let a € =#((A,B;f,g) and represent a with h: Ax B — B,
k: A — B!, and let H be a correspondence between i and k. By
Lemma 1.1.5(ii) and Lemma 1.2.1 we may assume that ¢: AxI — A

is a trivial cofibration. By M1 we can choose dotted arrows in

i+ i s'j
AVA ————— S AXIT B —— % (B)
/j /\(
@ - s
ool o7 o s v @}.d])
/// ///
io’ ; Udody
AvI — 2 v 4 Bl — v B'xB

Then H is a correspondence between jh and wk; hence wk rep-
resents j.a and so yki represents i*j.a. Similarly He is a corre-
spondence between ki and he; hence he represents i*a and so jhg
represents j i*a. Finally wHg is a correspondence between wki and

jhe which shows that i*j.a = j,i*a. -

Definition 1.2.4. A pointed category is a category & in which “the”
initial object and final object exist and are isomorphic. We shall
denote this object by * and call it the null-object of «. If X and Yare
arbitrary objects of & we denote by 0 € Hom(X,Y) the composition

X —x—Y. If f: X — Yis amapin &, then we define the fibre of
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f to be the fibre product *x, X and the cofibre of f to be the fibre
product = vy Y.

By a pointed model category we mean a model category & which
is also a pointed category. If A is in €, and B in G, then we will
abbreviate z,(4, B;0,0) to =;(A, B). #;(A,B) is a group by the above

proposition.

Theorem 1.2. Let ¥ be a pointed model category. Then there is
a functor A,B — [A,B], from (Ho®) x Ho® to Grp1 which is de-
termined up to canonical isomorphism by [A,B]; = 7;(A,B) if A is
cofibrant and B is fibrant. Furthermore, there are two functors
from Ho® to Ho &, the suspension functor T and the loop functor

Q and canonical isomorphisms
[ZA, B] ~ [A, B], ~ [A,QB]

of functors (Ho %) x Ho® — Set? where [X,Y] = Homyy(X,Y)

Proof. Let A be cofibrant; choose a cylinder object A x I and let
Ax T -5 $A be the cofiore of d,+0,: AVA — AxI. By M3 XA is

cofibrant. We shall define a bijection
p: n(ZA, B) — (A, B) (4)

which is a natural transformation of functors to Set as B runs
over ¢,. Let ¢: XA — B be a map and let p(p) be the element
of r,(A, B) represented by oz: AXI — B. If 9,9’ € Hom(ZA, B) and
@ ~ ¢, then there is a right homotopy h: X4 — B! from ¢ to ¢'.

lcategory of groups and homomorphisms
2Category of sets and functions

39



Chapter 1: Axiomatic homotopy theory

Let H: AxI — B! be a correspondence of ¢’z with some right

homotopy k from 0 to 0 and consider the diagram

Oc

k H s0
Q'n

s0 hx s0
¢

This shows that @z commutes with s0-k and ¢’z corresponds to
k, as s0 -k and k represents the same element of r;(4,B) so do
er and ¢’z and hence p(p) = p(¢’). This shows that p (4) is well-
defined. p is surjective by Lemma 1.2.1. Finally, if p(¢) = p(¢’), then,
with the notation from Definition 1.2.1, there is a left homotopy
H: AxJ — B from ¢ to ¢'z. Let H': AxJ — B be given by
H'j,=H'j, = ¢prx and let K be the dotted arrow in

s
Axl — 5 B!

-1
K Pie -
Jo e (do.dy)
7
7
7

(H.H")
AxJ —— > (B,B)

(jo was shown to be a trivial cofibration in proof of Lemma 1.2.2.)
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Then
Kj,: AxI — B! is a right homotopy from @z to ¢’z such that
Kj;(dy+0;) =0 and so induces a right homotopy 64 — B! from ¢ to
@'. This shows p is injective and proves (4).

Dually if we choose a path object B! and let QB be the fibre of
(dy.d;): Bl — Bx B, then QB is fibrant and there is a bijection

7(A,QB) —— 1,(A,B) (5)

which is a natural transformation of functors as A runs over é..
Lemma 1.1.3 shows that A, B — (A, B) is a functor (%.)° x 6, to
Grp. (4) and (5) combined with Theorem 1.1 and its first corollary
show that this functor induces a functor (Ho%.) x Ho%, to Grp,
which then by Theorem 1.1 may be extended to a functor A,B —
[A, B]; from (HO®)  x HO®% to groups, not uniquely but unique up
to canonical isomorphism. By the first corollary of Theorem 1.1
and (4) and (5) the bifunctor [,,-]; is representable in the first and

second variables which proves the theorem. O

Remark. 1. X and Q are adjoint functors on Ho % and are unique
up to canonical isomorphism. Also for any X, "X n> 1 is a
cogroup object (resp. Q"X is a group object) in Ho &, which is

commutative for n > 2.

2. We shall indulge in the abuse of notation of writing = for both
the functors on Ho® of Theorem 1.2 and writing oA for the
cofibre of AvA — AxI when A is in €.. If we should encounter
a situation where this would Lead to confusion we shall denote

the former use of £ by LX because it’s kind of a left-derived
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functor in the sense of §1.4 below. Similarly RQ will be used

for the loop functor on Ho @ if necessary.

1.3 Fibration and Cofibration Sequences

In this section we develop another part of the extra structure
on Ho &, namely the long exact sequences for fibrations and cofi-
brations and the Toda bracket operation.

% denotes a fixed pointed model category in the following.

Let p: E— B be a fibration where Bis fibrant and leti: F — E
be the inclusion of the fibre of p into E. F and E are fibrant by M3.
Let

B B! ﬂ» BX B
be a factorization of A into a weak equivalence followed by a
fioration. We shall construct an object E! which is nicely related
to B.

Let Expz B! (resp. B! xz E) denote the fibre product of p: E— B
and df : B’ — B (resp. df : B’ — B), and let the fibre product
signh xzB! to the left (resp. B'xy to the right) of B! denote fibre
products with d; (resp. df) in what follows. Let

; Woop'd))

be a factorization of (idg,s®p,idy) into a weak equivalence followed
by a fibration. The notation E’ s, etc. is justified because st is
a weak equivalence and (do, 1) is a fibration by M3 since it is the
composition of (@}, p’.df) and (pr,pr;) : Exp B’ x3 E— E x E, which

is the base extension of (4, df) by pxp. A similar argument shows
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that (dy.p") : E' — E xz B' and (p'.d}) are fibrations.
The map pr, : Ex B' — E is the base extension of 47 by p and
hence is a trivial fibration by M3 and M4. Hence by M5 the fibration

(dy.p") : E' — ExgB'is trivial since idg = pr; «(d;’, p')esp. The diagram

I Pr2 I
FXpE'xy,F —— % E

x (do.p") (1)
iXj
FXxQB «——% ExpB!

is Cartesian where = = (pry,;~'p! pr,) and where j : QB B! is as in
§1.2 the fiber of (d).d). Here we are using the following convention

which will be used many times in this section.

Convention. If a : X — Y is a monomorphism in a category and
p: Z — Yis amap, then by a~!g we mean the unique mapy : Z — X

with oy = g, if such a map exists.
Returning to the cartesian diagram (1) we have that z is a trivial
fibration by M4 and hence in Ho & (in fact in Ho ;) there is a map
m:FXQB— F (2)

. - - (Pra)
iven by the composition F x QB " px, Elx, PN
g y E E

Proposition 1.3.1. The map m is independent of the choice of P! :

E' — B! and is a right action of the group object QB on Fin Ho@.

We first show that m may be defined in another way.
Recall that [X,Y] = Homy(X,Y) and [X,Y], = [X X,Y] = [X,QY]
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where these are the same respectively as #(X,Y) and z;(X,Y) if X

and cofibrant and Y is fibrant.

Proposition 1.3.2. Let A be cofibrant and let the map

m, : [A, F1x[A,QB] — [A, F] be denoted by a,A — a-A. If e €[A, F] is
represented by u : A — F, if 1 € [A,QB] = [A, B], is represented by
h: AxI — B with h(9,+9,)=0, and if »’ is a dotted arrow in

>
w7
J/@o /// \LP (3)

h
AXI ——% B

then « -y is represented by i"'n'9, : A — F.

Proof. Let H : AxI — B! be a correspondence of h with k : A — B,

Let K be a lifting in

sgh’0;

A — v F!

K -7 7
7
9 e dg.p"
//
7
7

(h' ,H)
AXxI ——% ExpB!
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Picture:
0 00- dlKaO dlK h'dl
pI
k H sB0 Ko, K sEn’o,
0 h iu n h'o,

Now Kd, : A — E! induces a map Kg, : A — F xz E! x; F such
that zKog, = (u,j"'k) (see (1)) and hence by the definition of m we
have that «- 4 is represented by i"'dfKd, : A — F. But i"'d[K :
AXxI — Fis a homotopy from i~'dfKd, to i"'r’0, and this proves
the Proposition. O

Proof of Prop. 1.3.1. Diagram (3) is clearly independent of p! so m
is independent of p! by Prop 1.3.2. On the other hand, let a, A,u, h, A’
be as in Prop 1.3.2, let 4, € [A, B], be represented by h; : AXI — B

and let 2| be a dotted arrow in the first diagram

h,dl iu
A — N E A —— SN E
h{ ///>( /’l/~/’l; ///>(
9 e p a; e p
// ///
’ h h-hy
AXI ——— % B AXI' ———% B

so that i‘lh;al represents (a-1)-4; by Prop. 1.3.2. As the composite
homotopy &-h, represents 1-4,, the second diagram and Prop. 1.3.2
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show that i“(h’-h;)a{ represents a-(4-4,). But (n"-h})d; = hjd, hence
(- ) -4 =a-(4-4)) and m is an action as claimed.
O]

Definition 1.3.1. By a fibration sequence in Ho ¥ we mean a diagram
in Ho % of the form

X—Y —Z XXQZ — X

which for some fibration p : E — B in %, is isomorphic to the
diagram

FSEXB FxQB-SF (4)
constructed above.

Remark 1. By dualizing the above construction one may construct
a diagram
A— X —C C—CVZIA

starting from a cofibration « in €,, where v : X — C is the cofibre
of u and n is a right co-action of the cogroup X4 on C, and define

the notion of a cofibration sequence in Ho @.

Proposition 1.3.3. If (4) is a fibration sequence so is

; A
QB-5 F-E QBXQF— QB (5)

. L 0,id m
where 0 is the composition QB — F x QB — F and where
n, : [A,QB]x[A,QE] — [AQB] is given by (4,u) — ((Qp)*u)_l - A

Proof. We may assume that (4) is the sequence constructed above
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from a fibration p. Let p! : Ef — B! be as in the definition of m.
Then

pry : Exg B xp(x) — E is the base extension of (4}, d}) by

(p,0) : E — Bx B and hence is a fibration; so we get a fibration

sequence

0,7,0 pr
QB Y Ex, Bxy 0 2N E QBXQE - QB. (6)

We calculate »n by Proposition 1.3.2; let 1 € [4,QB] be represented
by

u:A— QB, let y € [A QE] be represented by 2 : Ax T — E and let
(h, H,0) be a lifting in

(0,ju,0) Exp Bl Xy (%) Oc
-1
% //// pry ju Ho,
P (h,H ,0)
AXI ! > E
7 ph

where H : AxI — B! is pictured at the right. By Prop. 1.3.2, j~'Ho,

represents n,(4, u) in [A,QB]. Letting H' : AxI — B! be a correspon-
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dence of Ho, with »’ : Ax T — B, we obtain the correspondence

Oc Oc
Ju H H’ sBo
ph h

of ju with ph-hn', which shows that

A=Qp)u-n(Ap) or n (A =[Qpul"- A

Thus the map » in (6) is the same as that in (5).

(i.0.0) . : .
The map f’——> E xp B! x5 (%) is a weak equivalence by M5 since

: Eijid
it may be factored F "% Elx, F = E'xp(+) — E x5 B! x5 (+) where
. e . g -p")
the second map is a trivial fibration (base extension of E/ —2~5

E x B! and where the first map is a section of the trivial fibration
EIxEFEi F (base extension of d['.) We shall show that the diagram

in Ho®
QB
(0,4,0)

d
/ (1,0,0) \ (7)

F S Exp Bl xp (%

commutes. Let 1€ [A4,QB] be represented by k : A — B! and let
H : AxI — B! be a correspondence of k with 4. Then d,a =0« is
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represented by i"'4’d, : A— F where i’ is the dotted arrow in

0
A —— % E

h
AxI ———% B

So (i,0,0),0,4 is represented by

(h'3,,0,0)
" Exp B x5 (%),

. 0,k,0)
0,/,0),4 is represented by A4 (——> E Xg B! Xp (%), and

(h',H,0) : A1 — E xp B! x5 (%)

is a left homotopy between these maps, showing that the triangle
(7) commutes in Ho . As pr;«(,0,0) =i we see that idgg, (i,0,0), and
id; give as isomorphism of (5) with the fibration sequence (6), and

so by definition (5) is a fibration sequence. O

Proposition 1.3.4. Let (4) be a fibration sequence in Ho %, let 0 :
QB — F be defined as in Propostion 1.3.3 and let A be any object
of Ho%. Then the sequence

(Q0), @), (Qp),

— [AQ7'B] —— [A.QIF] — [A,QE] ——

(Qp), (0,) iy

— % [AQE] — [A.QB] — [AF] — [AE]
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is exact in the following sense:
(i) (p)7'{0} =Imi,
(ii) i,0,=0and i,a; =i,ay < ay=a;, -1 for some 1€ [A4,QB]
(iii) 0,(Qi), =0 and 9,4, = 0,4, < A, = (Qp),u- 4, for some u € [A,QE]

(iv) The sequence of group homomorphisms from [4,QF] to the

left is exact in the usual sense.
The dual proposition for cofibration sequences is

Proposition 1.3.4’. Let
u v n
A— X —C C—CAh Z A

be a cofibration sequence in Ho¢ and let 0 : C — Y A be (id-+0)on.

If Bis any object in Ho %, then the sequence

v w* o* v* u*
— [XX.B] — [XA Bl — [C,B] — [X,B] — [A,B]

is exact in the sense that (i) - (iv) hold with i,,p,,0, replaced by
v*,u*,0" and where the - in (ii) refers to the right action »* : [C, B] x
[> A, B] — [C, B].

Proof if Prop. 1.3.4. We may assume (4) is the sequence constructed
from the fibration p.

(i) Clearly pi = 0. If p,a =0 represennt « by u : A — E, let h :
AXx I — B be such that hd, = pu, ho = 0. By the covering

homotopy theorem (dual of Corrolary of Lemma 1.1.2) we may
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cover h by k: AxI — E with o)k =u. Then if g is represented

by i~'ko, we have i, f = a.

(ii) With the notation of Prop. 1.3.2, we have that 4’ is a homotopy
from iu which represents i,a to A’9; which represents i, (a - ).

Hence i (a- A) =i.a and in particular
i,0,A=1i,0-4)=i0=0,
so i, d, = 0. Conversely given a;a, with i.a; =i.a,, represent q;

by u;,i =1,2, let h: AxI — E be such that hoy = iuj, ho;, = iu,
whence if 1 is the class of ph,a, - A=a, by Prop 1.3.2.

(iii) follows from (ii) and Proposition 1.3.3

(iv) follows by repeated use of Proposition 3.

Proposition 1.3.5. The class of fibration sequences in Ho % has the

following properties:

(i) Any map f : X — Y may be embedded in a fibration sequence

F—x-Ly Fxov—F.
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(i) Given a diagram of solid arrows

F s E s B FxQB i s )
| | |
| | |
:7 \|/,B J/a I yxQa :
|
< / , < / X
i P
FF— N ——— s p F'xQB — " v

(8)
where the rows are fibration sequences, the dotted arrow y
exists.

(iii) In any diagram (8) where the rows are fibration sequences, if
a and g are isomorphisms so is y.

(iv) Proposition 1.3.3.

Remark 2. Proposition 1.3.4 gives the analogues for fibration se-
quences of all non-trivial axioms for the triangles in a triangulated
category (see [Ver] or [Har66]) except the octahedral axiom. The
analogue of that axiom holds also, but as far as the author knows,

it’s not worth the trouble required to write it down.

Proof. (i) Any map in Ho % is isomorphic to a fibration of objects
in €, ;.

(iii) If A is any object in Ho®, then Prop. 1.3.4 gives a diagram

[A,QE] —— [A,QB] —— [A,F] —— [AE] —— [A, B]

[A,QE'] — [AQB'] —> [AF']l — [AE] —) [AB]
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(i)

where the rows are “exact” in the sense that (i)-(iii) of Prop.
1.3.4 hold. However this is enough to conclude by the usual
5-lemma argument that

7. . [A,F] — [A, F'] is a bijection for all A and hence y is an

isomorphism.

We may suppose by replacing the diagram (8) by an isomorphic
diagram if necessary that the rows are constructed in the
standard way from fibrations p and p’ in €,. Let B —~. Bbea
trivial fibration with B cofibrant and let E — Ex, B be a trivial
fibration with E cofibrant. By M4

pr, : Exz B— E is a trivial fibration and pr, : ExgB— Bis a

fibration so we obtain a diagram

i pryv

~
~

W ™
=

priv

-
m o

~
~

in €, where pr;v and u are weak equivalences. It follows easily

from the calculation given in Prop. 1.3.2, that
FXQE

L]

FxQB ——

commutes. Hence by (iii) the sequence ~ is isomorphic to first
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row of (8) and so we may suppose that the rows of (8) are
not only constructed in the standard way form fibrations p
and p’ but that E and B are in 6., Then by Theorem 1.1 « and
p are represented by maps u and v in € with p'v ~ up. As E is
cofibrant, we may by the corollary of Lemma 1.1.2, modify o,
so that p'v=up. Then we may take y : F— F’ in (8) to be the
map in € induced by v. The first part of (8) commutes clearly
and the second square may be shown to commute in Ho € by

use of Proposition 1.3.2. This proves (ii) O

The dual proposition for cofibration sequences is left to the
reader.

The following proposition will be used in the definition of the
Toda bracket.

Proposition 1.3.6. Let

u v 9’ n
A > X > C > XA cC — > C
| | | |
| | f | |
I g1 Iy I's
| | | |
g ~- - 2
a i p m
QB > F s E S B FXQB — %

(9)
be a solid arrow diagram in Ho € where the first row except ¢’ is a
cofibration sequence, and where the second row except for o is a
fibration sequence. We suppose that 9’ = (id-+0)on and 0 = m<(0, idgp)
as in Proposition 1.3.4 and 1.3.4'. Suppose that fu =0 and pf = 0.
Then dotted arrow «,f,7,6 exist and the set of possibilities for
a formas a left Qp,[A,QE] - right «*[X,QB] double coset in [4,QB]
and the set of possibilities for § forms a left (Zw)*[ZX, B] -right
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p.[ZA, E] double coset in [ZA, B]. Furthermore under the identification
[A,QB] = [ZA, B] the first coset is the inverse of the second.

Proof. By Prop. 1.3.4
pf=0=>3: X — F

with f = ip. Similarly ifu = 0 = Ja with da = pu. Hence a,p exist.
Suppose that o', p’ are other maps. By the exact sequence of Prop.
1.3.4 p' =p- 41 for some 1€ [X,QB]. More precisely g’ =mo (8, 1) hence

oa’ = p'u=mo (B, u=m(pu, \u) = m(da, Au) = da - (Au) = (0 - &) - Au = 0(ax - Au) = o(a - Au).

By exactness
a = Qp)p-a-tu=(Qp).pu-a-u(l)

and so o' lies in the double coset Qp,[A,QFE] -« - u*[X,QB]. As u and
A may be arbitrary we see that any element of this double coset
may be an «o'. Dual assertions hold for y and 6 and so the first

statement of the proposition is proved.

To prove the second assertion we must construct a,f,7,6 SO
that « corresponds to 5~!. We may assume that u is a cofibration of
cofibrant objects, that p is a fibration of fibrant objects and that
the top and bottom rows of (1) are constructed as above. In this
case Theorem 1.1 shows that the map fin Ho @ may be represented
by a map in € which we shall denote again by f. Now pf ~0and as X
is cofibrant and u is a fibration we may by the corrollary to Lemma
1.1.2 lift this homotopy to E and so assume that pf=0. (We may

not, however, simultaneously assume that fu=0.)Let h: AXI — E
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be such that hd, = fu, ho; =0 and consider the following diagram

0+4¢+0

in;
A — 8 X % XV AXIV () —— A

!
i'f f+h+0 phq™!

F S E

~
o~

(10)
where g : AXI — XA is the cokernel of AvA — AxTI and where we
extend to epimorphisms the convention for morphisms introduced
at the beginning of this section so that phg~! is the unique map such
that (phg~')g = ph. Now the top line of (10) is isomorphic in Ho % to
the top line of the first part of (9) — see the proof of Proposition
1.3.3 especially the homotopy commutativity of (7) for the dual
considerations. Consequently by means of this isomorphism we
may define g in (9) to be represented by i~'f, y by f+h+0, and &
by phg~!. But we also have the diagram

fu
A —— SN F

h
l% l,, . ho; =0
h

p
AxI ——% B

which by Prop. 1.3.2 shows that pu-§ = 0 since i~! fu represents pu in
(1). Hence pu=0-6""'=0("") and we may take « in (1) to be s7'. O

Definition 1.3.2. Let 4 —> x - E > B be three maps in Ho % such
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that fu=pf =0. Form a solid arrow diagram

v o3A c 3 cvsa

1

I

I

I

I
\I/
B

(11)
by choosing by Prop. 1.3.5(i) for the first row a cofibration sequence
containing u, and then fill in the dotted arrows as in Prop. 1.3.6.
The set of possibilities for 6 is as in Prop. 1.3.6 a left Cw)*[ZX, B]
-right p.[2A, E] double coset in [ZA, B] which is called Toda bracket
of u, f, and p, and is denoted (u, f, p).

Remark 3. 1. The Toda bracket is independent of the choice of
the top row of (3) by Prop. 1.3.5(ii) and (iii).

2. The Toda bracket (u, f,p) may also be computed by choosing

a solid arrow diagram

u

A —— % X
| |
I I f
I« I p
| |
+ +
a i p
QB —~ vy F — ' v F v B FXQB —3S F

(12)
where the bottom row comes from a fibration sequence, and
filling in the dotted arrows. By Proposition 1.3.6 we have

(Cu)*[ZY,B]-a” !, p.[2ZA, B] C [ZA, B].
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1.4 Equivalences of homotopy theories
We begin with some general categorical considerations.

Definition 1.4.1. Lety : A— A’ and F : A — B be two functors. By
the left-derived functor of F with respect to y we mean a functor
L'F : A" — B with a natural transformation € : L"F oy — F having
the following universal property: Given any G : A’ — B and natural
transformation ¢ : Goy — Fthere is a unique natural transformation

® : G— L'F such that

Goy
¢
@*y\/‘ F (1)
7

L'Foy

commutes.

Remark. 1. L'F is the functor from A’ to B such that L"Fo.y is
closest to F from the left. Similarly we may define the right-
derived functor of F with respect to y to be “the” functor
R'F : A — B with a natural transformation n : F — R'Foy

which is closest to F from the right.

2. The terminology left-derived functor comes from Verdier’s
treatment of homological algebra[Ver]. In that case A is the
category K(A), where A is an abelian category, y is the local-

ization K(A) — D(A), F : K(A) — B is a cohomological functor
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from K(A) to an abelian category B and L'F, R’F are what

Verdier calls the left and right derived functors of F.

3. We shall be concerned only with the case where A is a model
category C and y is the localization functor y : C — HoC. In

this case we will write just LF.

4. If C is a model category and F : C — B is a functor then it
is clear that ¢ : LFo-y — F is an isomorphism if and only if F
carries weak equivalences in C into isomorphisms in B. In this
case we may assume that LFis induced by Fin the sense that
LF is the unique functor HoC — B with LF .y = F. Moreover
RF = LF.

Proposition 1.4.1. Let F : C — B be a functor where C is a model
category. Suppose that F carries weak equivalences in C. into
isomorphisms in B. Then LF : HoC — B exists. Furthermore
&(X) : LF(X) — F(X) is an isomorphism if X is cofibrant.

Proof. Let X — Q(X), f — Q(f), py : O(X) — (X) be as in the
proof of theorem 1.1, so that QO induces a well-defined functor
Q : C — zC.. By Lemma 1.1.8(ii), X — FQX, f — FQ(f) is a func-
tor FQ : C — B which induces a functor LF : HoC — B since O(f)
is a weak equivalence if fis. Let ¢ : LFoy — F be the natural
transformation given by

e(X) = F(py) : FOX — FX. To show that £ has the universal prop-
erty of definition 1.4.1, let { : Goy — Fwhere G : HoC — B. Define
O(X) : G(X) — LF(X) to be the composition

G -1
6x) L Gox S FOX = LF(X).
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It is clear that ® is a natural transformation Ge.y — LF-y, and since
every map is Ho C. is a finite composition of maps y(f) or y(s)™}, ©

is a natural transformation ® : G — LF. The diagram

Grpx)™

GX ———% GOX 4§> FOX ——% LFX)

\LG(IJX) \LF (px)
€
¢

GX ——% FX

shows that £® % y) = ¢&. The uniqueness of ® : G — LF is clear
since it is determined by on Ho C.=Ho C and so ¢ has the required
universal property. Finally if X is cofibrant LFX = FOX = FX and
£(X) = idpx)- O

Definition 1.4.2. Let F : C — C’ be a functor where C and C’ are
model categories. By the total left-derived functor of F we mean
the functor

LF : HoC — HoC’ given by LF = L’(y' - F) where y : C— Ho C and

y' : € — Ho C’ are the localization functors.

Remark. The diagram

\|/y J/y, (2)

L
HoC —— % HoC’

does not commute, but rather there is a natural transformation

€ : LFoy — y'oFsuch that the pair (LF,e) comes as close to making

60



Section 1.4: Equivalences of homotopy theories

(1) commutative as possible.

Corollary. If F carries weak equivalence in C, into weak equiva-
lences C’, then LF : HOC — Ho C’ exists and &(X) : L(X) — F(X) is
an isomorphism in Ho C’ for X cofibrant.

Proposition 1.4.2. Let C and C’ be pointed model categories with
suspension functors £ and ¥’ on HoC and Ho C’, respectively. Let
F : C— C’ be a functor which is right exact (i.e. compatible with
finite inductive limits), which carries cofibrations in C into cofibra-
tions in C’, and which carries weak equivalences in C, into weak
equivalences in C’. Then LF is compatible with finite direct sums,
there is a canonical isomorphism of functors LF.X ~ ¥'-LF, and
with respect to this isomorphism LF carries cofibration sequences

in Ho C into cofibration sequences in Ho C'.

Proof. LF exists by proposition 1.4.1 and we may assume that
LF(A) = F(A) if A is cofibrant. If A, and A, are in C, then A, v A,,
the direct sum of A, and 4, in C, is also the direct sum of A, and

A, in Ho C. By assumption F(C,) c C/ and so
LF(A, V Ay)) = F(A; V Ay) = F(A))V F(Ay)) = LF(A)) VLF(A,)

where the last v means direct sum in HoC’. This proves the first
assertion about F.
Next observe that if A is cofibrant, then for a given object Ax 1

we have that

F(dp)+F(9y) F(o)
F(A)VF(A) —— > F(AXI) — F(A)

is a factorization of V,, into the cofibration F(dy)+ F(9;) = F(dy + 9,)
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followed by the weak equivalence F(c). Hence F(Ax I) = F(A)x I
and since F is compatible with cofibre products F(ZA) = ZF(A). As
F(A) is cofibrant X(F(A)) represents X(F(A)) in Ho C and so the second
assertion is proved. Finally note that if i : A — B is a cofibration
in C, and Ax1I e Bx I is a compatible choice in the dual sense that
p' : E' — B! was a compatible choice in §1.3, then F(AxI) — F(BxI)
is also a compatible choice for FAXxI — FBx I. It follows that F

carries the diagram in C,
I q in; &
A—B—C CHC\éBxI\éCHCvA

where ¢is a weak equivalence into a similar diagram with A replaced

by FA, etc. This proves the last assertion about LF. O

Theorem 1.3. Let C and C’ be model categories and let

@ R c’
—
be a pair of adjoint functors, L being the left and R the right adjoint
functor. Suppose that L preserves cofibrations and that L carries
weak equivalences in C, into weak equivalences in C’. Also suppose
that R preserves fibrations and that R carries weak equivalences

in C} into weak equivalences in C. Then the functors

L)

—_—
HoC R(R) HoC’
M/

are canonically adjoint.
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Suppose in addition for X in C. and Yin C, that a map LX — Y'is
a weak equivalence if and only if the associated map X — RY is a
weak equivalence. Then the adjunction morphisms id — L(L)+R(R)
and R(R) - L(L) — id are isomorphisms so the categories HoC and
Ho C’' are equivalent. Furthermore if C and C’ are pointed then
these equivalences L(L) and R(R) are compatible with the suspen-
sion and loop functors and the fibration and cofibration sequences
in HoC and Ho C’.

Proof. For simplicity we write L instead of L(L) and we use Grothendieck’s
notation «’ : X — RY(resp. ¥ : LX — Y) to denote the map corre-
spondingtou: LX — Y(respv: X — RY). If Xisin C and Yisin C,,
then we saw in the proof of proposition 1.4.1 that L(XxI)=LX X I.
Hence to any left homotopy 4 : X x I — RY between f and g there
corresponds the homotopy H’ : LX xI — Y between f” and g’ and
SO [X,RY] = [LX,Y]. Hence if X » Q(X) etc. is as in the proof of
theorem 1.1 and Y — R'(Y), f ~ R'(f), iy : Y — R'(Y) is the functor-
up-to-homotopy of theorem 1.1 for the category C’ we have the

isomorphisms:
Homyo o/ (LX,Y) ~ [LOX,R'Y] ~ [QX, RR'Y] ~ Homy, c(X,RY), (3)

where the first and last isomorphisms come from the construction
of L and R given above in proposition 1.4.1. The isomorphisms
(3) are clearly functorial as (X,Y) runs over C’xC!, and hence as
every map in HoC is a finite composition of maps of the form y(f)
or y(s)!, (3) is functorial as (X,Y) runs over
(HoC)’ x (Ho C") proving that L and R are adjoint.

Suppose now that for X in C, and Y in C}, f i X — RYis a
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. : . . (irx)
weak equivalence iff f*: LX — Yis a weak equivalence so X S,

RR'(LX) is a weak equivalence. But by propostion 1.4.1, RR'LX =
RLX and by examining (3) we see that y((iLX)") : X — RR/(LX) is
the adjunction map X — RLX. Hence X — RLX for all X in Ho C.
and hence in HoC. Similarly LR — id which proves the second
assertion of the theorem.

If Cand C’ are pointed we have by proposition 1.4.2 and its dual
LT ~¥'L and QR ~ RQ’,. Hence

RY' ~ RZ'LR ~ RLZR ~ 2R

and similarly L preserves loop functors. Also by proposition 1.4.2
L preserves cofibration sequences and R preserves fibration se-

quences. Suppose that
i P n
e={F— E— B, QBX F— F}

is a fibration sequence in HoC. Then we may embed the map
LE — LB in a fibration sequence ¢ of HoC’ by proposition 1.3.5 (i)
and the image Re’ of the sequence under R is a fibration seugnece
which is isomorphic to ¢ by Proposition 1.3.5, (ii) and (iii). Hence
e ~Le and L preserves fibration sequences. Similarly R preserves

cofibration sequences. O

Examples. 1. Let A be an abelian category with enough projec-
tives and injectives and let C and C’ be the two model cat-
egories which have C,(A) as underlying category described in

Remark 3 following theorem 1.1. Then the identity functor
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gives a pair of adjoint functor

c <
—_
satisfying the conditions of the theorem. The theorem implies
that cofibration and fibration sequences constructed from both
categories coincide which is clear since they coincide with

Verdier's triangles.

. Let C' = (spaces) C = (ss sets) as in examples A. and C. and
let L be the geometric realization functor, and R the singular
complex functor. Then theorem 1.3 applies because of [Mil57]
and so the cofibration sequences in the homotopy categories
of ss sets of spaces coincide. This is not entirely trivial since
the singular functor does not commute with the operation of

taking the cofibre of a map.

Remark. We recall our vague definition of the homotopy theory

associated to a model category, namely the category Ho C with all

extra structure which comes by performing constructions in C. In

§1.2 and §1.3 we gave the most important examples of that extra

structure and Theorem 1.3 gives a criterion which shows when the

homotopy theories coming from different model categories coin-

cide, at least when only the structure of §1.2 and §1.3 is concerned.

There are other kinds of structure, e.g. higher order ([Ver],[Spa63])

operations, which ate not included in theorem 1.3, and it seems rea-

sonable to conjecture that this extra structure is preserved under

the conditions of theorem 1.3.
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1.5 Closed model categories

We will say that a map i : A — B has the left lifting property
with respect to a class S of maps in a category C if the dotted

arrow exists in any diagram of the form

P
i\|/ /// J/f (1)

where fis in the class S. Similarly f has the right lifting property
with respect to S if the dotted arrow exists in any diagram of the

form (1) where i is in S.

Definition 1.5.1. A model category C is said to be closed if it sat-

isfies the axiom

M6 Any two of the following classes of maps in C - the fibrations,
cofibrations, and weak equivalences — determine the third by

the following rules:

(a) A map is a fibration < it has the right lifting property
with respect to the maps which are both cofibrations and
weak equivalences

(b) A map is a cofibration < it has the left lifting property
with respect to the maps which are both fibrations and
weak equivalences.

(c) A map fis a weak equivalence < f =uv where v has the
left Lifting property with respect to the class of fibrations
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Section 1.5: Closed model categories

and u has the right lifting property with respect to the
class of cofibrations.

Remarks. 1. It is clear that M6 implies M1, M3, and M4. Hence a
closed model category may be defined using axioms MO, M2,
M5, and Mé6.

2. Examples A., B. and C. of §1.1 are all closed model categories
(see proposition 1.5.2 below). Model categories which are not
closed may be constructed by reducing the class of cofibra-
tions but keeping M2, M3 and M4 valid. For example, take
example B., §1.1, where A is the category of left R modules,
R aring, and define cofibrations to be injective maps fin C.(A)

such that Coker fis a complex of free R modules.

In the following C is a fixed model category and we retain the

notations of the previous sections.

Lemma 1.5.1. Let p : X — Y be a fibration C.,. The following are

equivalent.
(i) phas theright lifting property with respect to the cofibrations.

(i) p is the dual of a strong deformation retract map in the fol-
lowing prcise sense: thereisamapt:Y — X with pr =idy and

there is a homotopy A : X XTI — X from p to idy with ph = po.
(iii) y(p) is an isomorphism.

Proof.
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(i) = (ii) One lifts successively in

tp+idy
g — X XvX —> X
~ />(
t s h Pt
e P 09+0 - f
e 4 ro
Y — s v XX —— 5% ¥

idy

(i) = (i) Let p’ : XI — y! be a compatible choice of path objects
for X and Y as in the beginning of §1.2 and let QO be a lifting in

X sy x!

) Wy p'alh)
0

(h,sY,pO',O')
XxI —3 XxyYix,y X

Then k= Qd, : X — X' is a right homotopy from #p to id, with
p'k = s¥p. Given the first diagram

k
A —" v x A4 ——sx

y A
7 H
i -7 P R dg'p")
P 7
~ 7

s -7 4psTp)
.S
B — 3 v B —— Xx

the dotted arrow ¢ may be constructed by choosing a dotted

arrow H in the second and setting ¢ = df‘H.

(i) = (iii) r is a homotopy inverse for p, hence p is a homotopy
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equivalence and y(p) is an isomorphism.

(iii) = (ii) By Theorem 1.1 y(p) an isomorphism = pis a homo-
topy equivalence and thereisamap:t: Y — X with pr ~id, and
tp ~idy. By the covering homotopy theorem we may assume
that pr=idy. Let g : X xI — X be a left homotopy from #p to
idy. Then the composite homotopy ¢~ '-tpg : XxI’' — X fromidy
to tp covers the composite homotopy (pg)~'-pg : XxI' — Y from
p to p. However proposition 1.2.1 implies that (pg)~! - (pg) is left
homotopic to pe : XxI — Y, that is, there exists H : XxJ — Y
with Hj, = pc and Hj, = (pq)~' - pg where X x J, jo, j;, = are as in
(1) with A replaced by X. By a covering homotopy argument
which takes the form

w9 (g
XxI

X
jll f
K

XxJ — % Y
H

we obtain a left homotopy Kj, : X xI — Y from idy to tp with

pKj, = po whose inverse is the desired homotopy A.

Definition. A map f: X — Y is said to be a retract of a map ' :

X' — Y’ if there is a diagram
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\

X

>

f

]
/\

Y Y

Proposition 1.5.1. Let C be a closed model category and let f be a

map in C. Then y(f) is an isomorphism iff fis a weak equivalence.

Proof. The direction « is the basic property of y, so we suppose
that y(f) is an isomorphism. By M5 and M2 we reduce to the case
where fis a fibration C., whence the result follows from the above
lemma and M6(c). O

Proposition 1.5.2. Let C be a model category. Then C is closed
if and only if each of the classes of fibrations, cofibrations, and
weak equivalences has the property that any retract of a member

of the class is again a member.
Proof.

< Let p: X — Y have the lifting property (1) whenever i is a
trivial cofibration. By M2 we may factor p into X Sz 5y
where i is a trivial cofibration and u is a fibration. By the

property of p there is a dotted arrow s in
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It follows that pis a) retract of the fibration u and hence that
p is a fibration. This proves a since M1 gives the = direction
of M6 a), and the proof of b) is similar. Suppose that f = wv
as in ¢. Then by the above argument u is a retract of a trivial
cofibration and hence by assumption is a weak equivalence.
Similarly v is a weak equivalence and so fis also. This proves
¢ since the implication = is contained in M2, M5, and M1. So C
is closed.

It is immediate that a retract of a map with a lifting propety
of the kind in M6 a) b) c¢) again has that lifting property. Thus
the classes of fibrations and cofibrations, are closed under re-
tracts. Let y : C — Ho C be the canonical localization functor
and suppose that fis a retract of a weak equivalence. Then
y(f) is a retract of an isomorphism and hence is an isomor-

phism so fis a weak equivalence by proposition 1.5.1.
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2. Examples of simplicial homotopy the-

ories

2.0 Introduction

The first four sections of Chapter Il give some examples of
model categories. In §2.3 it is shown how the categories of topo-
logical spaces, simplicial groups, and simplicial sets form model
categories, and in §2.4 this result is extended to the category sA of
simplicial objects over a category A, where A is a category closed
under finite limits having sufficiently many projective objects and

satisfying one of the following additional assumptions:
(i) A has sufficiently many cogroup objects,

(i) A is closed under arbitrary inductive limits and has a set of

small projective generators.

The proofs for topological spaces, simplicial groups, and sA when
A satisfies (ii) are similar and fairly simple, since every object in
the model category is fibrant. For simplicial sets we were unable to
find a really elementary proof; the argument given, which we think

is the simplest, uses the classification theory of minimal fibrations
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[BGM59]. It is possible to give another argument using the functor
Ex® of Kan [Kan57aJand a variant of this argument is used for sA

in case (ii).

All of these categories are what we call simplicial categories,
i.e. categories C endowed with a simplicial set “function complex”
Homc(X,Y) for each pair of objects X and Y satisfying suitable con-
ditions. In §2.1 we define simplicial categories and the generalized
path and cylinder functors X, K~ XQK, Y, K » YX, K a simplicial

set , by the formulas
Homg(KHom 5 (X,Y)) = Hom (X ® K,Y) = Hom_,(X,YX)

where S is the category of simplicial sets. In §2.2 we define closed
simplicial model category which is a category having the structures
of a simplicial category and a closed model category compatibly
related. All the examples of Chapter 2 are closed simplicial model
categories; moreover, for these model categories there are canon-
ically adjoint path and cylinder functors, so much of the work of
the first chapter simplifies considerably (see [Kan57b]). However,
there are certain categories of differential graded algebras that do
not seem to have natural simplicial structures but which are model
categories, which is the main reason for the generality in Chapter
1.

In §2.5 we show under suitable assumptions how homology and
cohomology for model categories may be defined using abelian
group objects and the abelianization functor. In particular, we de-
fine cohomology groups of an object X with values in an abelian

group object A of a model category C. When C is the category of
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simplicial objects in a category A and X and A are constant sim-
plicial objects, we show that these cohomology groups are equiv-
alent to those obtained from suitable cotriples and Grothendieck
sheaves. We also indicate how this cohomology gives a cohomol-
ogy theory for arbitrary universal algebras coinciding up to a di-
mension shift with usual cohomology in the case of groups, and Lie

algebras and associative algebras over a field.

In §2.6 we show that the category of simplicial modules over
a simplicial ring forms a model category and use this to derive
several Kunneth spectral sequences which will be used in later

applications.

The present framework for homotopical algebra is not the most
general that can be imagined. We have restricted ourselves to cat-
egories A closed under finite limits and having sufficiently many
projective objects. The sheaf cohomology of Grothendieck is de-
fined much more generally and Artin-Mazur [AM67] have shown in
the case of the etale topology for preschemes that it gives rise
to an analogue of ordinary homotopy theory using pro-objects in
a homotopy category. It would also be nice to weaken the hypoth-
esis that finite limits exist on a model category so the category
of 2-connected pointed topological spaces would become a model
category. Finally further generalization might eliminate the follow-
ing inadequacy of this theory, that although derived functors may
be defined for any category A with finite limits and enough pro-
jectives, the category sA does not form a model category without

additional assumptions.
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2.1 Simplicial categories

Simp will denote the category of (semi-) simplicial sets (see
[GZ67]).

Definition 2.1.1. A simplicial category is a category C endowed with

the following structure:
(i) a functor X,Y » Homg¢(X,Y) from C” x C to Simp,
(ii) maps in Simp

Hom¢(X,Y)x Hom¢(Y, Z) — Hom¢(X, Z)

f.g—g8°f

called composition defined for each triple X,Y, Z of objects of
C,

(iii) an isomorphism

Hom¢(X,Y) — Hom¢(X,Y),

umHu

of functors from C” x C to Set.
This structure is subject to the following two conditions:

(1) If f € Hom¢(X,Y),, ¢ € Homc(Y, Z), and h € Homc(Z,W),, then
(hog)of =ho(gef)

(2) If ue Homg(X,Y) and f € Hom¢(Y, Z), then fesji = Homc(u, Z),(f)-
Also sjU - g =Homc(W,u),(g) if g € Homg(W, X),.
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Section 2.1: Simplicial categories

Definition 2.1.2. Let C, and C, be simplicial categories. By a sim-
plicial functor F: C;, — C, we mean a functor F from C, to C, to-
gether with maps Homcl(X,Y) — Homcz(FX, FY), denoted f — F(f),
such that

F(f »g) = F(f)* F(g) and F(i) = F().

Example. If X and Y are simplicial sets, let Homg;,,(X,Y) or simply
Hom(X,Y) be the “function complex” simplicial set of maps from

X to Y. There is a canonical “evaluation map”
ev: XxHom(X,Y) —Y (1)
giving rise to isomorphisms
Hom(K,Hom(X,Y)) i Hom(X x K,Y) (2)
for all K € ObSimp, where #u) = ev «(id, xu). The map
evxid ev
XxHom(X,Y)xHom(Y,Z) —— Y xHom(Y,Z2) — Z

thereby determines a composition map (ii), while taking K = A(0),
the final object of Simp, in (2) yields an isomorphism (iii). It is easily
seen that Simp is a simplicial category.

If X is a fixed object of Simp then the functor Y » Hom(X,Y) is a
simplicial functor »¥, where »*: Hom(Y, Z) — Hom(Hom(X,Y),Hom(X, Z))

is given by #(h*) = composition.

In the following C denotes a simplicial category. When conve-
nient we will identify Hom¢(X,Y) with Hom¢(X,Y), and drop the “~"”
notation. Also we will often write Hom(X,Y) instead of Hom¢(X,Y).
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Definition 2.1.3. Let X € ObSimp. By X ® K we shall denote an
object of C with a distinguished map a: K — Hom¢(X, X ® K) such
that

¢: Homc(X ® K, Y) = Homg;,,,(K,Hom¢(X,Y)) (3)

for all Y € Ob C, where #(¢) is the map
axid o
K xHom(X ® K,Y) =5 Hom(X, X ® K) x Hom(X ® K,Y) — Hom(X,Y).

By XX we denote an object of C with a map f: K — Hom¢ (XX, Xx)
such that

w: Homg(Y, X¥) — Homgmp (K, Homc(Y, X)) (4)

for all Y € Ob C, where #(y) is the composite

(Pra.ppry)
K Pry.ppr,

K x Hom(Y, X Hom(Y, XX) x Hom(XX, X) — Hom(Y, X).

Example. If C=Simp, then X x K together with the map
a: K — Hom(X, X x K) such that #(a) = idy,x is an object X ® K.
Hom(K, X) with the map g: K — Hom(Hom(K, X), X) such that #p =
the composite

Hom(K. X) x K 2P ko Hom(k, X) =% x

is an object xX,

Proposition 2.1.1. If X € ObC and K,L € ObSimp, then there are
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canonical isomorphisms
XX XxL)~(X®K) QL (XKL~ xkxL (5)

when all the objects are defined.

Proof.

HomM(X ® (K x L),Y) ~ Hom(K x L,Hom(X,Y))
~Hom(L,Hom(K,Hom(X,Y)))
~Hom(L,Hom(X ® K,Y))

~HOM(X ® K)® L,Y).

This yields the first isomorphism; the second is proved similarly.
O

Remarks.

1. The degree-0 part of (3) yields the formula
Homc(X ® K,Y) ~ Homgjmp (K, Hom¢(X, Y)). (6)

The difference between (6) and (3) is roughly the first iso-
morphism of (5) as on sees by analyzing the proof of (5). In
practice (see Prop. 2.1.2 below) one defines an operation X®K
satisfying (6) and (5) and then proves (3) by inverting the proof
of (5).

2. The objects X ® K and XX have the following interpretation
whose details we leave to the reader. The functor Y » Hom(X,Y)

is a simplicial functor »X from C to Simp in a natural way. Call
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a simplicial functor F: C — Simp representable if it is iso-
morphic to A*¥ for some X € ObC. (Yoneda’s lemma holds:
HomF(hX, F) ~ F(X) where F is the simplicial category of sim-
plicial functors from C to Simp.) Then X ® K represents the

simplicial functor ¥ » Hom(K,Hom(X,Y)).

Let ry(K) be the set of components of the simplicial set K so

that we have adjoint functors
HOMgjmp(K, K(S,0)) =~ HoMge(7o(K), S) (7)

where if S is a set K(S,0) denotes the constant simplicial set which
is § in each dimension and has all simplicial operators = idg. |If
x,y € K, we say that x is strictly homotopic to y if there is a z in
K, with d,z = x and dyz = y and that x is homotopic to y if x and y
are equivalent with respect to the equivalence relation generated
by the relation “is strictly homotopic to”. zy(K) is the quotient of

K, by the relation “is homotopic to” and hence
7o(K X L) — 75(K) X mo(L). (8)

Let J denote a generalized unit interval, that is, a simplicial set
which is a string of copies of A(1) joined end to end. Let {0} c J
and {1} c J be the subcomplexes generated by the first and last

vertices of J. A typical J may be pictured

~
A
~
~

and it is clear that two simplices x and y of K are homotopic if
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there exists a generalized unit interval J and a map u: J — K with
u(0) = x and u(1) = y.

Definition 2.1.4. Let X, Y be two objects of C and f, g two maps
from X to Y. We say that fis strictly homotopic (resp. homotopic)
to g if this is the case when f and g are regarded as 0-simplices
of Hom(X,Y). By a strict homotopy (resp. homotopy) from f to
g we mean an element » € Hom(X,Y), with d,A = f and dyh = ¢
(resp. @ map u: J — Hom(X,Y) with u(0) = f and u(1) = g). Let
7o(X,Y) = ryHom(X,Y) be the homotopy classes of maps from X to
Y. We define the category n,C to be the category with the same
objects as C, with Hom,,oc(X,Y) = 7y(X,Y), and with composition

induced from the composition in C (this is legitimate by (8)).

When objects X®K and XX exist in C, then a homotopy from f to
gis the same asamap H: X®J — Y with Hiy, = f and Hi; = g. Here
J is a generalized unit interval and i,: X — X ® J denotes the map
induced by the 0-simplex e of J where e =0 or 1. The homotopy
may also be identified with a map H': Y — Y’ with j,H' = f and
jiH' = g where j,: X’ — X is induced by e € J,. The reader will note
that we have changed notation from 9, 4 of Ch. 1 to i, j. This is
because d,, corresponds to i;. However we will retain the notation
s: X — X/ and 6: X ® J — X to denote the constant homotopy
of idy. These are the maps induced by the unique map J — A(0).

Let A be a category and let sA be the category of simplicial
objects over A, that is, contravariant functors — A, where is the
category having for objects the ordered sets [n] = {0,1,...,n} for
each integer n > 0, and where a map ¢: [p] — [g] in is a (weakly)

monotone map. If X is an object of sA, we write X, instead of

n

8l



Chapter 2: Examples of simplicial homotopy theories

X[n] and ¢% (or simply ¢*) for X(¢) when ¢ is a map in . If X, Y
are objects of sA and if K is a simplicial set, then ([6],[8]) a map
f: Xx K —Yis defined to be a collection of maps f(o): X, — Y,
one for each ¢ > 0 and ¢ € K, such that ¢jf(c) = f(¢y0o)¢y for any
map ¢ in . X x K is not to be understood as an object of sA and f
is not a morphism in a category. Letting Map(X x K,Y) be the set
of maps f: X x K — Y we obtain a functor

(sA)? x SImp? x (sA) — Set

and hence a functor X,Y —» Hom,(X,Y) from (sA)”” x (sA) to Simp
given by
Hom ,(X.Y), = Map(X x A(n),Y)

with simplicial operator ¢* = Map(X x¢,Y). Here A(n) is the “standard
n-simplex” simplicial set, which is the functor % — Set represented
by [n], and for any simplicial set K and ¢ € K, we let 6: A(n) — K

be the unique map in Simp with &(id,) = o.

If X,Y,Z € OQbsA and K is a simplicial set, then we map define
the composite go f of two maps f: XxK —Yand g: Y XK — Z
by (g f)(o) = g(6)f(c). This yields a composition operations as in
(ii) of Def. 2.1.1, and (iii) comes from the fact that A0), consists of
exactly one element for each ¢. It is clear that sA thereby becomes
a simplicial category. Also if the functor F: A — B is extended
degree-wise to sF: sA — sB, then sF is a simplicial functor where
if f: XxK—Ywe let

F)f): FX) XK — F(Y), [(sF)(/)](o) = F(f(0)).
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Recall that a simplicial set is said to be finite if it has only
finitely many non-degenerate simplices. A finite simplicial set is
always a simplicial finite set, i.e. a simplicial object over the cate-

gory of finite sets, but not conversely.

Proposition 2.1.2. Let A be a category and let X be a simplicial
object over A. If A is closed under (finite) direct sums, then X ® K
exists in sA for every simplicial (finite) set K. If A is closed under

(finite) projective limits, then xX exists for every (finite) simplicial

set K.
Proof. Let
XXK), = \/ X, With  ¢ygy = Zin(vﬁ'}‘(a) b
o€k, 4
Here \/,c,; X; denotes the direct sum of an indexed family {X;;i e I}

of objects of A, in;: X; — V X, is the injection of the ith compo-
nent, and Y f;: \/ X; — Y is the unique map with (¥ f)in; = f; for
all jerif {f;: X, —Y,ieI}is a family of maps in A. These direct
sums exist by the assumptions on A and K. Let é: X x K — XKXK
be given by &(o) =in,. Finally let

ev': X xHom\(X,Y) — Y, ev'(f,)=f,ad,): X, — Y,
Then there are isomorphisms

Homgimp(K, HOM 5 (X, Y)) —— Map(X x K,Y) < Hom (XK, Y)

where # is induced by ev’ and & by & Letting # = )™ #) it is
clear that # is functorial as X, Yrun over sA and K varies over the
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category of simplicial (finite) sets. If L is another simplicial (finite)

set, then there is a canonical isomorphism
0: XX(K X L) — (XKK)XL

given by

0,= D ingin,.
(o,71)E(KXL),

Now if a: K — Hom(X, XXIK) is given by #(a) = idyzk, then XXK
with a is an object X ® K. In effect letting ¢ be the map (3) deter-
mined by a, we have the diagram

Hom(L,Hom(X[XK,Y)) i} Hom(L,Hom(K,Hom(X,Y)))
#\L~
# |~ Hom(K x L,Hom(X,Y))
#\L~

Hom((XKK)XL,Y) + Hom(XX(K x L),Y)

which may be shown to be commutative by a straightforward anal-
ysis of the definitions. Taking L = A(n) for each n we see that ¢
is an isomorphism and hence the first part of the proposition is

proved.

Let A’ be the category of functors A” — Set and let X — hX
be the canonical fully faithful functor (this forces us to leave the

haven of our universe). Denoting the degree-wise extension of &
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by n: sA — sA’, one sees that
MapA(X,Y) ~ Mapa(hX x K, hY),

so
Hom 4 (X,Y) ~Hom,,,(hX,hY) (9)

and & is a “fully faithful” simplicial functor. Now if F € QbsA’, then
FX exists and is given by FX(4) = F(4)X for all A € Ob A, where we
have identified sA’” with the category of functors A” — Simp in
the natural way. One sees immediately from (9) that xX exists
if and only if (X)X is isomorphic to nZ for some Z € ObsA, or
equivalently if [(hX)K]n is a representable functor for each n. There

is a cokernel diagram in Simp

\/ @) ? Vap) —> KxA®m

jers ier

where if K is finite so is K x A(n) and hence I and J are finite sets.

But the functor

A [(hX)K],(A) = HOMgimp(K X A(n), hX(A))
= Ker{J]nx, ) = [T nx, )}
1 J !

- hKer{Hthl_ = Hthj}(A)
I J
is representable by the assumptions made on A. O

Corollary. If F: A — B commutes with (finite) direct sums (resp.
projective limits), then F(X)® K — F(X ® K) for all X € ObsA and
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simplicial (finite) sets K (resp. F(XX) 5 F(X)X for all X and (finite)
simplicial sets K).

This is immediate from the formulas for X ® K and XX obtained
in the proof of Prop. 2.1.2.

Remark. The corollary implies that if G is a simplicial group then
the underlying simplicial set of GX is (underlying simplicial set of

G)X, and similarly for any other algebraic species.

2.2 Closed simplicial model categories

A(.n) for n>0 (resp. V(n, k) for 0 <k <n>0) denotes the simplicial
subset of A(n) which is the union of the images of the faces 9,: A(n—
1) — A(n) for 0<i<n (resp. 0<i<n,i#k). A0)=g the initial object
in S. In the following, RLP (resp. LLP) stands for right (resp. left)
lifting property ( §1.5).

Proposition 2.2.1. The following are equivalent for a map fin S.
(i) f has the RLP with respect to A(n) — A(n) for all n

(i) f has the RLP with respect to any injective (i.e. injective in

each degree) map of simplicial sets.

This follows immediately from the skeletal decomposition of an
injective map (see [GZ67, Ch. I, 3.8]). The following is proved in
[GZ67, Ch. 1V, §2.1]. {e} c A(l) denotes the subcomplex consisting
of the degeneracies of the vertex e, where e=0,1.

Proposition 2.2.2. The following are equivalent for a map fin S.

(i) f has the RLP with respect to V(n,k) — for0<k<n>0
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(i) f has the RLP with respect to
Azn) XA(D)UA) X {e} —> A(n) X A(1)

forn>0and e=0,1.

(iii) £ has the RLP with respect to
LxA(DUK X {e} — K x A1)

for all injective maps L— K in S and e=0,1.

Definition 2.2.1. A map of simplicial sets will be called a trivial
fibration (resp. fibration) if it satisfies the equivalent conditions in

Proposition 2.2.1 (resp. Proposition 2.2.2).

Thus a fibration is a fiber map in the sense of Kan. It is easy
to see that a trivial fibration is a fibration whose fibers are con-
tractible.

Definition 2.2.2. By a closed simplicial model category we mean a
closed model category C which is also a simplicial category satis-

fying the following two conditions:

SMO If X € ObC, then the objects X ® K and XX exist for any finite
simplicial set K.

SM7 If i: A— B is a cofibration and p: X — Yis a fibration, then

Hom(B.X) " Hom(4.X) x Hom(B.Y) (1)
Hom(A)Y)

Convention. It will be convenient to use the notation Hom(,p) for

the target of the map (1).
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Proposition 2.2.3. Suppose that Cis a simplicial category satisfying
MO and SMO with four distinguished classes of maps-fibrations,
cofibrations, trivial fibrations, and trivial cofibration-such that the
first and fourth (resp. second and third) determine each other by
lifting properties as in M6(a) and (b). (This holds in particular if
C is a closed simplicial model category). Then SM7 is equivalent

separately to each of the following:

SM7(a) If X — Y is a fibration (resp. trivial fibration), then

Y An)

is a fibration (resp. trivial fibration) and x20 — xfe} xYMYA“)

is a trivial fibration for e =0, 1.

SM7(b) If A— B is a cofibration (resp. trivial cofibration), then

AQ® An) V., B® A(n) — B Q® A(n)
AQA(n)

is a cofibration (resp. trivial cofibration, and
AQA(l) vV B®{e} — BRA(l)
A®{e}

is a trivial cofibration for e=0,1).

Proof. To show that x¥ — x% x,, YX is a fioration where L — K
is @ map of simplicial sets, it suffices to show that it has the RLP

with respect to any trivial cofibration A — B. By the definition of
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the object XX this is equivalent to showing that
Hom(B,X) — Hom(4,X) x Hom(B,Y)
Hom(A,Y)

has the RLP with respect to L — K. Manipulating in this way one

proves the proposition. O

Remark. It is clear that SM7(a) holds for the fibrations and trivial
fibrations in S.

For the rest of this section C denotes a closed simplicial model
category. We shall be concerned with relating the simplicial homo-
topy structure of C with the left and right homotopy structure of
Ch. 1. Let s < g (resp. f~ g) mean f is strictly (simplicially) ho-
motopic (resp. (simplicially) homotopic) to g. The following is the
covering homotopy extension theorem for simplicial homotopies.
It should be noted how much stronger it is when than the Cor. of
Lemma 1.1.2 and Lemma 1.1.7.

Proposition 2.2.4. Let i: A — B be a cofibration and let p: X — Y
be a fibration. Let h: AQJ — X and h: B® J — Y be simplicial

homotopies compatible with i and p in the sense that pk = (i ®id)).

(1) If : B— X satisfies pf = hj,, 0i = ki,, then there is a homotopy
H: B®J — X with Hiy =6, pH =h, and H(i ®id;) = k.

(2) If either i or p is trivial and if ,: B — X satisfies po, = hi,,
0i = ki,, e =0,1, then there is a homotopy H: B® J — X with
Hi,=6, e¢=0,1, pH =h, and H(i ® id,) = k.

Proof. This follows immediately from SM7 by an induction on the
length of J. O
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Corollary. Let i: A— B be a cofibration of fibrant objects. Then i
is trivial iff i is a strong deformation retract map (i.e. there exists
r. B— A,

h: B®A(l) — B with ri=id,, hy=idp, h; = ir, h(i ® A(1)) = ic)). Dually
if p: X — Y is a fibration of cofibrant objects, then p is trivial iff
there are maps s: Y — X, h: X @ A(1) — X with ps = idy, hy = idy,
hy = sp, ph=0o(p ® A(1)).

Proof. (=) r and h may be obtained by lifting successively in

id A i
A ———% A A — 2 v pl
A Iy
J/i r/// J/ h/// \L(}o»h)
// ///
7 7 (idg,ir)
B —— 3% ¢ B — % BXB
(<) is clear from Proposition 2.2.4 O

Proposition 2.2.5. (1) If f,g: X = Y are two maps in C, then
s i}
f~g = f~g

and fL g. If X cofibrant and Y is fibrant, then the strict simpli-
cial, left, and right homotopy relations on Hom(X,Y) coincide

and are equivalence relations.

(2) The conclusions of Theorem 1.1,81.1 remain valid if zCc, zC/,
and zC,_, are replaced by 7,(C,), 7o(C/), and z,(C, /), respectively.

Proof. (2) The inclusion {0} c J has the LLP with respect to fibra-
tions in S, hence if X is cofibrant one finds, as in the proof of
Prop. 2.2.3(b), that iy : X — X ® J is a trivial cofibration. By
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(1)

M5 the map o : X®J — X is a weak equivalence. also by Prop
2.2.3(b) XvXx fo*h, X®J is a cofibration and so X®J is a cylinder
object for J. It follows as in the proof of Lemma 1.1.8 that if
f.g : X 3 Y are two maps in C, and f ~ g, then y,(f) = 7.(¢) and
hence y, induces y, : n,C, — Ho C,. Similarly one shows that
v, ¥y as in Theorem 1.1, exist with z replaced by z,. Next note
that the “quasi-"” functors X » Q(X) and X » R(X) of the proof
of this theorem yield functors Q : z,C — z,C,, R : 7,C — 7€y
in virtue of Prop. 2.2.4 (2) above. The rest of the proof of
Theorem 1.1 goes through without change so (2) follows.

The quasi-inverse of y : z,C., — Ho C constructed in the proof
of Theorem 1.1 is induced by RQ : C — 7,C,,. But we have

just seen that
f~g = RO(f)~ RO(g)

and therefore we conclude that

f~g = 1)) =7r.

Now if J is a generalized unit interval, there is a canonical
homotopy

h:JxJ— J with h(@id,; x0) = id, and h(id, xI) = id;, where

¢ : A(0) — Jis the map with &(id;y)) = e, e =0,1 and ¢ is the unique
map J — A(0). This homotopy in a representative case may
be pictured

where the arrows denote the direction of each 1 simplex of
JxJ and where a simplex of JxJ labelled as sya goes to sya in

Junder h. Consequently if X is any object of C, 0 : X®J — X
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1 Sol Sol 1
Sob Sob
b Sol
Slb Sob
, h 0 a
Slb Sob
a sl
Slb Slb
0 a b 1

is a simplicial homotopy equivalence and therefore y(c) is an
isomorphism. By 1.5.1, ¢ is a weak equivalence and therefore
filg = fig Similarly X — X7’ is a weak equivalence for
all Xin Cso fr~g = fX~ g thus this first part of (1) is
proved. The last assertion follows from Lemma 1.2.1 which
shows when X is cofibrant and Y is fibrant the cylinder object

X®A(1) (see proof of (2) above) may be used to represent any

left homotopy from f to g and from Lemma 1.1.4.

Remark. Propostion 2.2.5 shows that the simplicial homotopy re-

lation of

Hom(X,Y) is finer than either left or right homotopy, but when X
is cofibrant and Y is fibrant the three relations coincide. One may
compare the constructions of §1.2 and 1.3 with the correspending
well-known simplicial constructions and show that the resulting

structure on HoC is the same. This the fundamental groupoid of
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the Kan complex Hom(X,Y) coincides with the one constructed in
§1.2, and if E— B is a fibration in C, where C is pointed, then the
long exact sequence of homotopy groups arising from the fibration
Hom(A, E) — Hom(A4, B) (SM7 when A € Ob C,) coincides with that of
§1.3.

Proposition 2.2.6. If C is a closed simplicial model category, then
in a natural way so are the dual C and the category C/X of the

objects of C over a fixed object X.

Proof. The assertion about C% is trivial. If A and B are two ob-
jects of C/X, we let Homg,y(A, B) be the subcomplex of Hom¢(4, B)
consisting of elements f, of dimension n with (sg) e f = squ, where
u:A— Xandv: B— X are the structural maps. With the induced
composition C/X becomes a simplicial category closed under finite
limits. If K is a finite simplicial set, then the object (4 = X)® K
in C/X is the map A®K6(L®id)>X, where ¢ : X ® K — X is the map
corresponding to the map K — Hom(X, X) sending all elements of
K to degeneracies of idy. The objects (4 &, X)X in C/Xx is the map
pr, : AXxyx X, whose source is the fiber product of »X and the map
s : X — XX corresponding to o. Thus C/X satisfies SMe.

A map in C/X will be called a fibration, cofibration or weak equiv-
alence if it is so in C. Axioms M2 and M5 are clear if i : A — A’
and p : B® — B are maps in C/X, then the map Homg,x(A’,B’) —
Homg,x(i,p) is the base extension by the structural map A0) —
Hom¢(4’, X) of the map
Homc¢(A’, B'’) — Homc(i,p). Hence SM7 holds, hence also M1l. To
obtain M6 argue as follows: Supposing a map f in C/X has the LLP

with respect to the fibrations in C/X, factor f = pi where i is a trivial
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cofibration and p is a fibration C/X; Then fis a retract of i hence is
a trivial cofibration in C and hence in C/X. The other cases of M6

are similar. O

2.3 Topological spaces, simplicial sets, and simplicial

groups

Let Top be the category of topological spaces and continuous
maps. If X and Y are spaces, define the function complex Hom(X,Y)
by

Hom(X,Y), = Hom(X X |[A(n)],Y)

with natural simplical operations, where | | denotes geometric re-
alisation. If f € Hom(X,Y), and g € Hom(Y, 2), let g- f be the com-

posite map
idxA fxid g
X X |A(n)| —= X X |A()| X |A(n)] == Y X |A(n)| — Z.

Top thereby becomes a simplical category where X ® K = X x |K|
and
X* = the function space x'kI,

A map f: X - Yin Top will be called a fibration if it is a fiber
map in the sense of Serre and a weak equivalence if it is a weak
homotopy equivalence (i.e. z,(X,x) = 7, (Y, fx) for all x € X and
g > 0). Finally a map will be called a cofibration if it has the LLP

with respect to all trivial fibrations.

Theorem 2.1. With these definitions the category Top of topolog-
ical spaces is a closed simplical model category.
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Let Sing: Top — Simp be the singular complex functor so that
HomSimp(KvSing X) = HomTop(IKlsX) (1)
(Actually Sing and | | are adjoint simplical functors which means
that Hom can be replaced by Hom in (1).)
Lemma 2.3.1. The following are equivalent for a map fin Top.
(i) fis a fibration.
(i) Sing f is a fibration in Simp.
(iii) f has the RLP with respect to |V(n, k)| — |A(n)] for 0 <k <n>0.

Proof. (ii) and (iii) are equivalent by (1), and (i) and (iii) are equivalent

since |V (n, k)| — |A(n)| is isomorphic in Top to I" ! x0— I". O
Lemma 2.3.2. The following are equivalent for a map f in Top.

(i) fis a trivial fibration.

(i) Sing s is a trivial fibration in Simp.

(iii) £ has the RLP with respect to A(:;D) — |A(m)| for n>0.

Proof. (ii) and (ii) are equivalent by (1). As A(gp) — |A(n)| is isomor-
phic in Top to " ! ¢ D" (where s~! = ¢ if n=0), the equivalence of
(i) and (iii) becomes a standard obstruction theory argument which

we omit. O

Corollary. In Top every object is fibrant and the fibrations and
trivial fibrations satisfy SM7(a).

Proof. Since Sing(x'Xly = (Sing X)X, SM7(a) for Simp implies SM7(a)
for Top. O
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Lemma 2.3.3. Any map f may be factored f = pi where i is a cofi-

bration and p is a trivial fibration.

Proof. Letting f: X —» Y we construct a diagram

x — 2 4 g AP 5
pbo
~
Y
as follows. Let z7!' = X and p_, = f, and having obtained z"!,

consider the set D of all diagrams D of the form

A(gp)] ——— 2!

Bp
|A(gp)] ——— Y

and define j,: Zz"! - Z" by a co-cartesian diagram

V lA@p)l ———  V |Agp)
Deb

Deb

J/ZIXD iny

Jn=iny

z > z"

Define p,: Z" > YbY p,j, = Py, Pyiny = 01’;, let Z = lﬂ)‘l Z", p= li_)m% and
i= Qr_)nj,,o...ojo. By Lemma 2.3.1 j, has the LLP with respect to trivial
fibrations, hence i does too and so i is a cofibration. Now as A(qp) is

compact any map a: A(gp) — Z factors through z” for m sufficiently
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large. In effect the well-known argument works because all the
points of Z —i(X) are closed. Hence given «: A(:;D) - Z, p: |An)| - Y
with pa = the restriction of g, there is an m with Ima c Z", and
hence by the construction of Z™*' a map y : |A(n)| » Z™' c Z such
that pa = g and a = the restriction of y to A(:;D). By Lemma 2.3.1, p

is a trivial fibration. O

Remark. The argument used to prove Lemma 2.3.3 relied primar-
ily on the fact that Hom(A(Z;D),@Z’”) = li_)mHom(A(:;D), Z™) and may
be used to prove factorization whenever the fibrations (or trivial
fibrations) are characterized by the RLP with respect to a set of
maps {A4; — B;} where each 4; is “sequentially small” in the sense
that Hom(4;,e) commutes with sequential inductive limits. We will
have further occasions to use this argument and will refer to it as

the small object argument.

Lemma 2.3.4. The following are equivalent for a map i: A —» B.
(i) i is a trivial cofibration.
(ii) i has the LLP with respect to the fibrations.

(iii) i is a cofibration and a strong deformation retract map.

Proof. (iii) = (i) since a strong deformatino retract map is a ho-
motopy equivalence and hence a weak homotopy equivalence.
(i) = (iii). Any trivial fibration is a fibration so i is a cofibration.

The retract and strong deformation may be constructed by lifting
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A —— 3 B A — 1y ol

B 1
. ro 7 h e
i JRe i /// GosJ1)
// s
7

7 (iridp)
B — e B — " BxB
which is possible since A — e and B! — B x B are fibrations by the
corollary to Lemma 2.3.2.
(iii) = (ii). A lifting in the first diagram, where p is a fibration,
may be constructed by lifting in the second

A —5 v x A — X!

Pt A
7 7
) u- o, ) H S
i /// P i /// Go-p")
s //

B —— 3% Y B —— Xx,v!

(a,.h)

and setting u = j, H. Here r and h are the retract and strong defor-
mation for i and lifting in the second diagram is possible because
(o»p") is a trivial fibration by the corollary of Lemma 2.3.2.

(i) = (iii). Consider the following factorization of i

Axp B!

which is the dual of the mapping cylinder construction. jis a strong
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deformation map, hence a weak equivalence, and p is a fibration.
But i is a weak equivalence and so p is a trivial fibration. As i is a
cofibration there is a section u of p with ui = j. Hence i is a retract

of j and so i is a strong deformation retract map. O

Proof of Theorem 2.1. Axioms MO, SMO, and M5 are clear. Axiom
M6 follows immediately from definitions and lemmas 2.3.1, 2.3.2,
2.3.4. M6 and the corollary to Lemma 2.3.2 yield SM7. Lemma 2.3.3
gives one case of M2; to obtain the other, take f: X —» Yand factor
it x - XxyY! 2, ywhere pis a fibration and j is a weak equivalence.
Then factor j =¢i by Lemma 2.3.3 where i is a cofibration and ¢ is a
trivial fioration. By M5 i is a trivial cofibration hence f = (gp)i is the

desired factorization. This proves M2 and hence the theorem. 0O

Let SimpGrp be the category of simplicial groups endowed with
its natural simplicial structure (see §2.1). Then G® K and GX exists
if G € ObSimpGrp and K is a simplicial set. In fact (G® K), =
\/ge,(q G, with natural simplicial operations and GX is the function
complex Homg;, (K, G) with its natural group structure. Define the

normalization of SimpGrp by

NG =(\kerd, : G,— G,.)) (=G if ¢=0)
i>0
d : N(G) — N,_,(G) induced by d,. (=0if ¢=0)

and the (Moore) homotopy groups of G by

ker(d : N,G — N,_,G)

7(G) = 5 : .
m( : N,;;G — N,G)

Then z,(G) is abelian for ¢ > 1 and 7,(G) is the set of components of
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G as a simplical set.

A map in SimpGrp will be called a weak equivalence if it induces
isomorphisms for the functor z,. A map will be called a fibration
if it is a fibration as a map of simplicial sets and a cofibration if it

has the LLP with respect to trivial fibrations.

Theorem 2.2. With these definitions the category SimpGrp of sim-
plicial groups is a closed simplicial model category.

The proof will be exactly the same as for topological spaces
once we get the corollary of Lemma 2.3.2 for SimpGrp and the

homotopy axiom for the functor x,.

Proposition 2.3.1. The following are equivalent for a map f : G —

H of simplicial groups.
(i) fis a fibration in Simp (hence in SimpGrp).
(i) N,f : N,G— N,H is surjective for ¢ > 0.
(iii) G N H Xk z,n.0) K(7G,0) is surjective (in each dimension).

Here if A is a group we let K(4,0) be the constant simplicial
group which is A in each degree and which has all ¢* =id,. It is
readily verified that G ~ 7z,(G) is adjoint to A » K(A,0), that is

HomSimpGrp(G’ K(A,0)) = HomGrp(”O(G), A)

and e : G — K(x,G,0) is the adjunction map. The above proposition
is essentially an elaboration of the following well-known fact which

we shall assume.

Corollary Moore. A simplical group is a Kan complexes.
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We shall also need the following fact which may be proved in

exactly the same way as [DP61].

Lemma 2.3.5. f : G — H is surjective (resp. injective) iff Nf :

NG — NH is surjective (resp. injective).

Proof of proposition 2.3.1. (i) = (ii) since (ii) is equivalent to lift-

ing in any diagram of the form

V(n,0) —0) G

1
'
P '
'
. f
'
7
7

Am) ————S H

where 0 denotes the map sending all simplicies to the identity

elements of SimpGrp.

(i) = (iii). By Lemma 2.3.5 it suffices to show that N(f,¢)
is surjective. As N is left exact and N,;K(4,0) = {1} for j > 0 and
A if j =0, we find that N;(H Xk n0 K(%G,0) = N;H for j > 0,
and hence N,(f,e) is surjective for j > 0. It remains to show that
Gy — HyXx, ymG is surjective which follows immediately by diagram

chasing in the diagram

=
Q
~
Q
S
~

700G ———5 1

=
=
&

noH ——% 1.
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(ili) = (i). First suppose f : G— H is surjective. Given

u:Vn,k)— G covering v : A(n) — H we may extend u to a map

u' : A(n) — G by the corollary. We may solve the lifting problem
for u and v iff we may solve it for 0 : V(n,k) — G and v- (fu')! :
A(n) — H. Hence we reduce to the case u=0. As f is surjective
when there is a map w : A(n) — G with fw =v. Then w|y, Maps
V(n,k) to ker f and by the corollary there is a z : A(n) — ker f with
2y iy = Wyur- Then w-z7' 1 A(n) — G satisfies (w -z |y =0=u
and fo(w-z"Y) = fow=uv, thus providing the desired lifting. Hence
any surjective map of simplicial groups is a fibration.

Returning to the general case we consider the diagram

) pr,
H XK(?TOH,O) K(ﬂ'oG, O) % H

K(zo.f.0)

K(nyG,0) > K(mgH,0)

where the square is cartesian. K(z,f,0) is clearly a fibration hence
so is pr;, and (f,¢) being surjective is a fibration. Hence f = pr,(f,¢)

is a fibration. O
Corollary. fis surjective iff fis a fibration and z,(f) is surjective.
Proposition 2.3.2. The following are equivalent for a map fin SimpGrp.
(i) fis a trivial fibration in Simp.
(ii) fis a trivial fibration in SimpGrp.

(iii) f is surjective and r,(ker ) =0.
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Proof. (ii) < (iii). First of all the above corollary shows that s is
surjective in case (ii). Letting K be the kernel of f we have the

exact sequence of non-abelian group complexes
11— N(K)— N(G)— N(H) —1

where exactness at N(K) and N(G) is because N is left exact and
exactness at N(H) comes from lemma 2.3.5. From this one gets

by the usual diagram chasing a long exact sequence
— 1(G) — m(H) — ny(K) — 7p(G) — np(H) — 1

which shows that »,(K) =0 iff z,(f) is an isomorphism.

(i) = (iii). First of all a trivial fibration is surjective in dimension
0 since it has the RLP with respect to A(.O) c A(0); hence by the
Corollary of Proposition 2.3.1 f is surjective. Next if a € z,(ker f)
we represent « by x € K, with dx = 0 for 0 < j < ¢q and define
u: A(q.+ 1) — ker f by sending all faces to the identity element of
ker f except the 0-th which goes to x. Lifting in

Agrl) — 8 G

l f
0
Alg+1l) —> H
we obtain y € N, (Ker f) with dy = x showing that « =0.

(i) + (iii) = (i). Given u: A(n) - G covering v: A(n) > H we may

lift if n =0 since fis surjective. If n> 0, then as f is a fibration we
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may find w: A(n) - G with w|y,¢) = uly and fw =u. Lifting for u
and v is equivalent to lifting for u-w™' and 0 so we reduce to the
case v=0 and u|V(n,0)=0. Then u applied to the 0-th face of AZn) is
an element x of (Ker f),_, with all faces the identity element. As
r(Ker f) =0, there is a z € N,(Ker f) with dz=x. Then z: A®n) - G

satisfies 2|A(- =u and fZ=0, hence z is the desired lifting. O

Corollary. Every object of SimpGrp is fibrant and the fibrations and
trivial fibrations of SimpGrp satisfy SM7(a)

Lemma 2.3.6. If f,g: G = H are homotopic maps in SimpGrp, then
7 (f) = 7,(8) 7, (G) — 7 (H).

Proof. We may assume that fis strictly homotopic to g. Let h: Gx
A(l) — H be a homotopy with hiy = f,hi; =g. Then h={h,} where ¢
is a simplex of A(), h,: G,— H, is a group homomorphism and g is
the degree of 5. 6 may be identified with the sequence (60, ...,09),
which is a sequence (0...0,1...1). Let h;: G, — H, be h, where ¢
has i+ 1 zeroes and ¢—1 ones. Then h_; = f and h, = g in degree gq.

If « € 7,G, represent a by x € G,with d;x=1,0<j <¢q, and set

zZ) = (hoSOX) . (hlslx)—l (hqsqx)(—l)fl

2y = (fs5o%) - (f51070 o (Fs,00

Then z,z;' € Ny, H and d(z,z;') = gx - (fx)”' showing that z,(f)a =

7 (g)a O

Proof of Theorem 2.2. : We first note that Lemma 2.3.4 holds in

SimpGrp. In effect (iii) = (i) because a homotopy equivalence
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is a weak equivalence by Lemma 2.3.6 and the rest of the proof
used only the definition of cofibration and the corollary to Lemma
2.3.2 which for SimpGrp is replaced by the corollary to Prop. 2.
The factorization axiom Lemma 2.3.2 may be proved by the small
object argument since trivial fibrations are characterized by the
RLP with respect to FAEn) — FA(n) (F = free group functor), and
since FAEn) is small. The rest of the proof follows that of Theorem
2.1, O

Let the category of Simp of simplicial sets be considered as a
simplicial category as in §2.1. Define fibrations and trivial fibrations
as in §2.2 and call a map a cofibration (resp. trivial cofibration) if
it has the LLP with respect to the class of trivial fibrations (resp.
fiorations). Finally define a weak equivalence in Simp to be a map
f which may be factored f = pi where i is a trivial cofibration and p

is a trivial fibration.

Theorem 2.3. With these definitions the category Simp of simplicial

sets is a closed simplicial model category.

Proof. First note that “trivial” has its customary meaning in the
sense that a map is a trivial cofibration (resp. fibration) iff it is

a cofibration (resp. fibration) and a weak equivalence. Indeed the
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direction (=) is clear. If f: A — B is a cofibration and

Z

A P (2)

e
N

is a factorization of f, where i is a trivial cofibration and p is a trivial

B

fibration, then there exists a section s of p with sf =i. Hence fis a
retract of i and so fis a trivial cofibration. Fibrations are handled
similarly.

The factorization axiom M2 may be proved by the small ob-
ject argument using Prop 2.2.1(i) and 2.2.2(i) and the fact that Azn)
and V(n, k) are small. This actually proves that any map f may be
factored f = pi where p is a trivial fibration (resp. fibration) and
where i is a sequential composition of cobase extensions of direct
sums of the maps Azn) — A(n) (resp. V(n,k) — A(n)). In particular
i is injective (resp. an “anodyne extension” in the terminology of
Gabriel-Zisman). If f is already a cofibration (resp. trivial cofibra-
tion), then as above (see (2)) fis a retract of i, hence is injective
(resp. an “anodyne extension”). The converse is also true (2.1.1
and [GZ67, p. 3.1]). Hence: O

Proposition 2.3.3. In Simp the cofibrations are the injective maps
and the trivial cofibrations are the anodyne extensions. Any object

of Simp is cofibrant.

All of the axioms except M5 are now clear. MO, SMO are trivial
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and M6 is true by the way things have been defined. M2 follows
from the small object argument, and as the fibrations and trivial
fibrations of Simp satisfies SM7(a), M6 implies that SM7 holds.
The fibrant objects of Simp are the Kan complexes. If Eis a Kan
complex and A is a simplicial set, then by SM7 Hom(4, E) is a Kan
complex so “is strictly homotopic to” is an equivalence relation on
Hom(A, E). Let
[A, E] = zpHom(A4, E) denote the equivalence classes. Then M5 fol-

lows immediately from:

Proposition 2.3.4. A map f: X — Y in Simp is a weak equivalence
if and only if for all Kan complexes E, [f,E]: [Y,E] — [X,E] is

bijective.
Proof.

(=) If fis a trivial cofibration then this follows from the covering
homotopy extension theorem (Prop 2.2.4) which depends only
on SM7. If fis a trivial fibration then as every simplicial set is
cofibrant one sees by the dual of the argument used to prove
(i) = (iii) in Lemma 2.3.3 that fis the dual of a strong defor-
mation retract map. In particular fis a homotopy equivalence
so [f,E] is bijective. If fis a weak equivalence then f is the
composition of a trivial cofibration and a trivial fibration so
[f, E] is bijective.

(<) Factoring f = pi where i is a cofibration and p is a trivial fi-
bration we have [p, E] bijective by the above so we reduce to
the case where f is a cofibration. In this case f is a trivial

cofibration by the following two lemmas.
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Lemma 2.3.7. If i is a cofibration and [i,e] is bijective for all Kan
complexes E, then i has the LLP with respect to all fibrations of

Kan complexes.

Lemma 2.3.8. If a cofibration i has the LLP with respect to all fi-
brations of Kan complexes, then it has the LLP with respect to all

fiorations and so is a trivial cofibration.

Proof of Lemma 2.3.7. We begin by showing that if p: X — Yis a
fibration of Kan complexes, then p is a trivial fibration if and only
if pis a homotopy equivalence. The direction = has been proved
above. To prove < let s be a homotopy inverse for p. By lifting
the homotopy from ps to idy we may assume that ps = idy. Then idy
and sp are homotopic and as X is a Kan complex we may choose
h: X xXA(l) — X with hi;=sp and

hil = id)/. NOW

Hom(X,p): Hom(X,X) — Hom(X,Y)

is a fibration and the /-simplicies 4 and sph define amap a: V(2,0) —
Hom(X, X) which covers the map g: A(2) — Hom(X, X) given by the
2-simplex s,(ph). Hence there is a map y: A2) — Hom(X, X) which
covers the map g and restricts to «; the 0-th face of y(id) is a
homotopy k: X x A(1) — X from idy to sp which is fiber-wise, i.e.
pk = o(px A(1)). This shows that p: X — Yis a fibration and the dual
of a strong deformation retract and hence is a trivial fibration.

Now let i: A— B and E be as in the statement of Lemma 2.3.7
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and apply this fact to the fibration
Hom(, E): Hom(B, EF) — Hom(A, E).

If K is any simplicial set, then [K,Hom(B, E)] — [K,Hom(A4, E)] may
be identified with [B,Hom(K, E)] — [A,Hom(K, E)] which is bijective
since Hom(K, E) is a Kan complex and the assumption on i. Hence
Hom(, E) is a trivial fibration.

Let p: X — Y be a fibration in Simp where Y and hence X is a

Kan complex and consider the diagram

(*.p) pr
Hom(B,X) ——> HOM(A, X) Xpomuy, HOM(B,Y) — Hom(4, X)

j/pr1 Hom(A4,p)

Hom(i,Y)
Hom(B.Y) > Hom(A,Y)

where the square is cartesian. We have just shown that Hom(,Y)

is a trivial fibration and hence so is pr,. Thus pr, and

pr,G*,p,) =1"= Hom(, X)

are trivial fibrations, hence homotopy equivalences, and so (i*,p,) is
a fibration (SM7) it is a trivial fibration hence surjective in dimension

zero and so i has the LLP with respect to p. O

Proof of Lemma 2.3.8. If p: X — Yis an arbitrary fibration in Simp,
then by [BGM59] there is a minimal fibration ¢: Z — Y such that z

is a strong deformation retract of X over Y (i.e. the homotopies
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are fiber-wise). As i is a cofibration SM7 implies that i has the LLP
with respect to p iff i has the LLP with respect to ¢q. But g is induced
from a fibration of Kan complexes. To see this we may suppose
Y is connected and let F be the fiber of 4 over a 0-simplex of Y.
Then by [BGM59] there is a cartesian square

X — WAUWF) Xpu s F

Y — % W(AUtF)

where r is a fibration and W(Aut F) is a Kan complex. As i has the
LLP with respect to r it does so also for ¢, and hence i is a trivial
cofibration. This completes the proof of Lemma 2.3.8 and hence

also of Theorem 2.3. O
Combining Prop 2.3.2 with Prop 1.5.1 we obtain

Corollary. The anodyne extensions are precisely the injective maps

in Simp which become isomorphisms in the homotopy category.

Remark. We have presented what we consider to be the next el-
ementary proof of Theorem 2.3. The problem is to characterize
the weak equivalences in some way so that M5 becomes clear. We
now present a list of different characterizations of the weak equiv-
alences. Some of these may be used to give alternative proofs of

M5 and will be useful later.

Proposition 2.3.5. The following assertions are equivalent for a

map f: X — Y of simplicial sets:
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(i) fis a weak equivalence (isomorphism in homotopy category).
(i) [Y,E] = [X, E] for all Kan complexes E.

(iii) |X|— |Y| is a homotopy equivalence in T.
(iv) ExX®* X — Ex®Yis a homotopy equivalence in Simp.

(v) HY,S) 5> H°X,S) for any set S, H\(Y,G) = H'(X,G) for any
group G, and HYY,L) = HYX,f*L) for any local coefficient
system L of abelian groups on Y and ¢ > 0.

(Vi) X > z,Y, 7, (X.x) — =,(Y, fx) for any x € X,, and
HYY,L) 5 HIYX, f*L) where L,q are as in (v).

Proof. (i) < (ii) is Proposition 2.3.4. (i) < (iii) < (iv) are
proved in [Kan570b]. Here X — Ex® X is the functorial embedding
of X into a Kan complex constructed by Kan.

(v) < (vi). Here
H'(X,S)=Hom(zyX, S), HY(X,G) = [X, MG,

and r;(X,x) is the fundamental group of X at x calulated by the
method of the maximal tree. The first assertion of (v) and (vi) are
equivalent and we may assume X and Y are connected. Let x € X,,.
Then [X, W(G)] = Homgp(7(X,x),G); where G acts on a homomor-
phism ¥ by (g-¥)(1) = g¥(A)g"!. In other words, [X, W(G)] is the set of
homomorphisms from z;(X,x) to G in the category of groups up to
inner automorphisms, so the second condition of (v) means that
m(X,x) — =;(Y, fx) is an isomorphism in this category. But this is

clearly the same as z;(X,x) — =,(Y, fx) being an isomorphism of
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groups, and so we see that the second conditions of (v) and (vi)

are equivalent. Thus (v) and (vi) are equivalent.

(i) = (vi). As ny|X| = zpX we may assume that X and Y
are connected. As r;(|X|,x) = =;(X,x) we conclude that =;(X,x) 5
(Y, fx) for all x € X,. Let x, be a fixed 0-simplex of X, let y, =
fxo and let 7 = 7,(X,x)) — =,(Y.y,). Let p: (X.5) — (X.x) (resp.
q: (Y, 55) — (Y, y,)) be the universal coverings and 7: X — Y be the
unique map covering f with fx; = 5.

If L is a local coefficient system on Y, then there is a morphism

of Cartan-Leray spectral sequences

E} = H(x, HY(Y,q"L)) ——————> H"(Y,L)

|

EY' = HP(n, H(X,p* fL)) ————> H"™(X,f"L)

As |X| and |¥] are the universal coverings of X and Y, (ii) = |7]
is a homotopy equivalence. As H*(|X|,A) = H*(X, A) for any abelian
group A we see that the map on the E, is an isomorphism and so

(vi) is proved.

(vi) = (iii). We may assume X and Y are connected and we let
X,Y,, etc., be as above. By a theorem of Whitehead it suffices to
prove that
71X, x0) = 7, (1Y 1],y for all g. For g =1, this comes from
(X[, xy) = m;(X,xo) and the similar assertion for Y. For ¢ > 1 it
suffices to prove |f| is a homotopy equivalence or equivalently,
since |X| and |¥] are 1-connected, that H*(¥,A) — H*(X,A) for any
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abelian group A. But the Leray spectral sequences for p and g

degenerate giving a diagram

Hn(Y7 q*7A) % HW(Y A)

I l?“

H"(X,p,,A) —— H"X, A)

where p,A,q,A are the local coefficient systems of the cohomology
of the fiber, and where f* is the map on cohomology coming from

(g, A) =p,A. By (vi) f* is an isomorphism and so we are finished. 0O

2.4 sA as a model category

Let A be a category closed under finite limits. Amap f: X —Y
is said to be an effective epimorphism if for any object T the

diagram of sets

Hom(Y,T) L} Hom(X,T) 7 Hom(X xy X,T)

pr3

is exact. We shall say that an object P of A is projective if

Hom(P,X) — Hom(P,Y) is surjective whenever X — Y is an effec-
tive epimorphism and that A has sufficiently many projectives if
for any object X there is a projective P and an effective epimor-
phism P — X. If A is closed under inductive limits, we call an

object X small if Hom(X,-) commutes with filtered inductive lim-
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its, and call a class U of objects of A a class of generators if for
every object X there is an effective epimorphism 0 — X, where

Q is a direct sum of copies of members of U.

Theorem 2.4. Let A be a category closed under finite limits and
having sufficiently many projectives. Let sA be the simplicial cat-
egory of simplicial objects over A. Define a map fin sA to be a
fibration (resp. weak equivalence) if Hom(P, f) is a fibration (resp.
weak equivalence) in Simp for each projective object Pof A, and a
cofibration if f has the LLP with respect to the class of trivial fibra-
tions. Then sA is a closed simplicial model category if A satisfies

one of the following extra conditions:
(x) Every object of sA is fibrant.

(%) A is closed under inductive limits and has a set of small pro-

jective generators.

Here, and in the following, objects of A will be identified with
constant simplicial objects. For the rest of this section A will
denote a category closed under finite limits and having sufficiently
many projectives. We will not use conditions (x) and (xx) until
we absolutely have to. We first make some remarks about the

theorem.

Proposition 2.4.1. Suppose that every object X of A is a quotient
of a cogroup object C (i.e. there exists an effective epimorphism
C — X). Then A satisfies ().

Proof. Given X € ObsA and a projective object P of A, choose an

effective epimorphism C — P where C is a cogroup object. Then
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Pis aretract of C, so Hom(P, X) is a retract of Hom(C, X) which is a
group complex. By Moore, Hom(C, X) is a Kan complex hence so is
Hom(P, X), and hence X is fibrant. O

Remarks. 1. By a theorem of Lawvere [Law63] a category closed
under inductive limits and having a single small projective
generator U is equivalent to the category of universal algebras
with a specified set of finitary operations and identities in such
a way that U corresponds to the free algebra on one generator.
Hence the theorem applies when A is the category of rings,
monoids, etc. One may show that effective epimorphism =

set-theoretically surjective map in this case.

2. The category of profinite groups satisfies (x) but not (xx). The
free profinite group generated by a profinite set is both pro-
jective and a cogroup object in this category and every object

is a quotient of such an object.
The rest of this section contains the proof of Theorem 2.4.

Proposition 2.4.2. Let A be a category closed under finite limits
and having sufficiently many projectives. Then X — Yis effective
epimorphism < Hom(P,X) — Hom(P,Y) is surjective for every

projective object P.

Proof. ( = ) is by definition. For ( «— ) we first establish three
properties of effective epimorphisms which hold without assuming
A has enough projectives. It is clear that f: X — Yis an effective
epimorphism iff for any object T and map «: X — T there is a

unique g: Y — T with gf = a provided a satisfies the necessary
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condition that au = av whenever u,v: S 3 X are two maps such that
fu= fo.

(1) If f: X — Y has a section 5: Y — X with fs=id, then fis an

effective epimorphism.

In effect, given a: X — T satisfying the necessary condition let
f=as: Y —T. As sf,idy: X =3 X are two maps with f(sf) = f(idy)

we have ff =asf=a. fis clearly unique.

(2) If x N Y-% zare maps, where gfis an effective epimorphism

and f is an epimorphism, then g is an effective epimorphism.

Given «: Y — T with au = av whenever y,v: S — Y and gu = gv, it
follows that af: X — T has the property that afu = afv, whenever
u,v: S—Yand gfu=gfv. As gfis an effective epimorphism, there
is @ unique map f: Z — T with f,, = af. As fis an epimorphism

pg =a.

(3) If x Lyt 7 are maps, where g is an effective epimorphism

and f has a section s, then gf is an effective epimorphism.

In effect given a: X — T satisfying the necessary conditions
that it factors through gf, it in particular satisfies the necessary
conditions for factoring through f. By (1). there is a unique g with
Bf = a given by f = as. Suppose u,v: S 3 Y are such that gu = gu.
Then gfsu=gfsv so asu = asv or f, = f,. Hence since g is an effective
epimorphism there is a unique y with yg = g and hence a unique y
with ygf = a. Thus gf is an effective epimorphism.

Now suppose that f: X — Y has Hom(P, X) — Hom(P,Y) surjec-
tive for all projective objects P. Choose an effective epimorphism
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u: P— X with P projective. As fu has the same property as f we
are reduced by (2). to the case where X is projective. Choose an
effective epimorphism v: 0 — Y with Q projective. As X is pro-
jective there is a map a: X — Q with va = f and by the property
of f there is a map f: 0 — X with fp=v. The maps « and g yield

sections of the maps pr, and pr, in

pr
Xxy0 ——3 0

X — s Y
i

By (1). and (3). vpr, = fpr, is an effective epimorphism and so

by (2). fis an effective epimorphism. O

Corollary. The class of effective epimorphisms in A is closed under
composition and base change and it contains all isomorphisms. If

gf is an effective epimorphism so is g.

In particular, the effective epimorphisms are universally effec-

tive.

Proposition 2.4.3. Any map f may be factored f = pi where i is a

cofibration and where p is a trivial fibration.
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Proof. Given f: X — Y construct a diagram

Jo J1 J2

X A s z! ————

Po

Y

as follows. Let Z™' = X, p~' = f and having obtained p, ,: z"! —,

choose a projective object P, of A and a map (a, ) so that

(@ p)+py" ) (2" yim) .
Pn Vv (Zn—l)A(n) > YA(n) XYAE,,) (Zn—l)A(n) (1)

is an effective epimorphism in dimension 0, where i, : A(n) — A(n)
is the canonical inclusion. Now define the map j, by a cocartesian
diagram

. P,Qi,
P, ® A(n) —— P, ®AMm)
in,

Zn—l . > 7"
Inl=jn

and let p,: Z" — Y be the unique map with p,j, =p,_, and p,in, = a.

As i,: Azn) — A(n) is an isomorphism in dimensions < n so is j,,
hence Li_)mZ" = Z exists and we may define map X Lz ly by
i=limJ,...Jy,, p=limp,. It is clear that P,®i, in (2) is a cofibration,
hence each j, and hence i is a cofibration. To see that pis a trivial
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fioration it suffices to show that

(PA(n), Zi") . ZA(n) N YA(n) X A( ) (Zn I)A(n)
YA®

is an effective epimorphism in dimension 0. Consider the diagram

Pn Vi (Zn—l)A(n) > YA(H) XYA(n) (Zn I)A(H)

A(n)

B+in (id, kA("))

(Zn)A(H) ; ZA(n) ; YA(I’I) X . ZA(H)

A(n) 2™, Zin) YA

where the top map is the effective epimorphism (1), and where
= limj,,...jq+1. k,+1 1s an isomorphism in dimension < », hence
(ld kA(”)) is an isomorphism in dimension zero. By the corollary of

Prop. 2.4.2, (p*™, Z'n) is an effective epimorphism in dimension 0. O

Proof of Theorem 2.4. (x) This is exactly the same as the proof
in §2.3 for Top and SimpGrp, so we present an outline only. If
f: A— Bis a map, then as 4 and B are fibrant, A AxBB’—p> B
is a factorization of f into a strong deformation retract map fol-
lowed by a fibration. The homotopy equivalence i in sA is carried
by Hom(P,-) into a homotopy equivalence in Simp; hence i is a weak
equivalence in sA. If f has the LLP with respect to fibrations, fis a
cofibration and a retract of i; hence fis a trivial cofibration. Con-
versely, if fis a trivial cofibration, M5 implies p is a trivial fibration
so fis a retract of i; hence fis a strong deformation retract map,
so by SM7(a), f has the LLP with respect to the fibrations. With this
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we have M6, hence SM7. Finally, M2 results from Prop. 2.4.3 for the
cofibration-trivial fibration case and for the other case one uses
this case to write i = ¢j, j cofibration, ¢ trivial fibration, whence
f =(pg)j is a factorization where j is a trivial cofibration and pq is a
fibration.

(+x) Let U be a set of small projective generators for A. Then
the retract argument used in the proof of Prop. 2.4.1 shows that a
map fin sA is a fibration or weak equivalence iff Hom(P, f) is so is
Simp for all P € U. In particular, the fibrations are characterized by
the RLP with respect to the set of maps P® V(n,k) — P ® A(n) for
each PeUand 0<k<n>0. However P® V(n, k) is small in sA since
Pis small in A, hence the small object argument implies that any
map f may be factored f = pi where p is a fibration and i has the
LLP with respect to all fibrations. We must show that i is a weak

equivalence.

For this purpose, we shall use Kan’s Ex® functor [Kan57a]. We
recall that (Ex K), is the projective limit in the category of sets of
a finite diagram involving K, K,_; and the face operators of K. AS
A is closed under finite limits, we may define Ex: sA — sA by the
formula

Hom(4,Ex X) = ExHom(4, X) (3)

for all A € ObA, X € ObsA. The natural map K — Ex K in Simp
extends to a map X — Ex X, and hence we may define Ex®(X) =

li_)mEx"(X) and a map ey : X — Ex®(X). If Pe U, then as Pis small

Hom(P,Ex® X) =Ex®*Hom(P, X).
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Therefore Ex® X is fibrant and ¢, : X — Ex® X is a weak equiva-
lence.
Now suppose that i: A — B has the LLP with respect to fibra-

tions. Then we may lift successively in

sepi

€4
A —— % Ex®A A > (Ex® B)AM
1 Y
u // H ///
iJ/ e i - J/(jo,jl)
// /,/
B — e B = S (EX® B)x (EX® B)

(eg.(EX® i)u)

obtaining the formulas ui = ¢4, (EX®iu ~ ¢, egi = (EX®i)ey. Let
P €U and apply the functor y - Hom(P,-) where y is the canonical
localization map Simp — Ho Simp. It follows that yHom(P,i) is an
isomorphism hence (Prop. 1.5.1) Hom(P,i) is a weak equivalence.
Thus i is a weak equivalence and we have proved that a map with
the LLP with respect to the fibrations is a trivial cofibration. Con-
versely if f is a trivial cofibration we may factor f = pi where p
is a fibration and i has the LLP with respect to the fibrations; by
what we have just shown i is a weak equivalence, hence p is triv-
ial, so fis a retract of i and hence has the LLP with respect to
the fibrations. This proves half of M6 and M2; the other is similar
using Prop. 2.4.3. M6 implies SM7 and M5 is clear, so the theorem

is proved. O

Remarks. 1. Some extra conditions on A like (x) or (xx) is neces-
sary since the category of simplicial finite sets fails to satisfy
M2. In effect there are simplicial finite sets with infinite ho-

motopy groups.
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2. If the map @ — X in sA is factored @ — Z 2> X where p is
a trivial fibration and i is a cofibration, then it is easily seen
by using Prop. 2.2.4 that this factorization is unique up to
simplicial homotopy over X. Now for Z — X to be a trivial
fibration is the analogue of Z being a resolution of X, while
for Z to be cofibrant is the analogue of Z being a complex
of projective objects. Hence Prop. 2.4.3 asserts for sA the
existence of projective resolutions and so one may define
derived functors for A even when A does not satisfy (%) or
().

3. It is worthwhile noting that (XAE"))0 = (cosk,_; X), where cosk,
is the ¢-th coskeleton functor of Verdier [Ver]. Consequently
a trivial fibration X — A where A is an object of A is the
same as hypercovering of A for the Grothendieck topology
whose covering families consist of single maps {v — u} which
are effective epimorphisms. We will discuss this in the next

section.

4. When A is a category of universal algebras (see Remark 1
after Prop. 2.4.1), then the P, in the proof of Prop. 2.4.3 may
be chosen to be free algebras, and so the map x -1 Zis free
in the following sense: there are subsets C, c Z, for each ¢
such that

(i) n"C, C C, whenever 5: [q] — [p] is a surjective monotone
map,

(ii) fa+8,: X,vFC,— Z,is an isomorphism for all g, where

FC, is the free algebra generated by C, and g,: FC,— Z,
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is the unique algebra map which is the identity on C,.

Conversely, one may show [Kan57b, Thm. 6.1] that any free

map Xz may be factored
X—272' 7z 5. 57

where there are co-cartesian squares (2) with P, free and hence
any free map is a cofibration. Furthermore given a cofibration
/S we may factor it f = pi where i is free and p is a trivial
fibration: then fis a retract of i hence a map is a cofibration

iff it is a retract of a free map.

. If A is an abelian category with sufficiently many projective
objects, then Theorem 2.4 endows sA with the structure of
a closed model category. On the other hand by Dold-Puppe
[DP61] the normalization functor

N: sA — ChA, the category of chain complexes in A is an
equivalence of categories, and moreover the simplicial ho-
motopy relation on maps in sA corresponds to the chain ho-
motopy relation on maps in Ch A. The corresponding closed
model category structure on ChA may be described as fol-
lows: Weak equivalences are maps inducing isomorphisms on
homology groups (since H(NX) = zX) and fibrations are maps
which are epimorphisms in positive degrees (straightforward
generalization of Prop. 2.3.1 to abelian categories). Finally
cofibrations are monomorphisms whose cockerels are dimension-
wise projective. In effect what is called the fundamental the-

orem of homological algebra amounts essentially to the fol-
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lowing: (i) any monomorphism with dimension-wise projective
cokernel has the LLP with respect to trivial fibrations and (ii)
any map f may be factored f = pi where p is a trivial fibra-
tion and i is @ monomorphism with dimension-wise projective

cokernel.

As the class of monomorphisms with dimension-wise projec-
tive cokernels is closed under retracts, it is seen to be the

class of cofibrations by a retract argument.

2.5 Homology and cohomology

If homotopical algebra is thought of as “non-linear” or “non-
additive” homological algebra, then it is natural to ask what is
the “linearization” or “abelionaization” of this non-linear situation.
This leads to a uniform description of homology and cohomology
for model categories and in the case of sA the resulting coho-
mology agrees with the cohomology constructed using suitable
cotriples and Grothendieck topologies.

Let C be a model category and let C,, be the category of abelian
group objects in C. We assume that the abelionaization X, of any

object X of C exists so that there are adjoint functors

ab
c, " c, (1)

i
where i is the faith inclusion functor. We also assume that C,, is a
model category in such a way that these adjoint functors satisfy

the conditions of the first part of 1.3, so that there are adjoint
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functors

Lab

HoC E ; HoC,, (2)

Ri

[X,Ri(4)] = [Lab(X), A]

Finally we shall assume that Ho C,, satisfies the following two con-
dition:

A. The Adjunction map 6: A =~ QXA is an isomorphism for all ob-
jects A.

B. If

i )
A alar osa

is a cofibration sequence, then
—i-07! j 5
QA" — S A5 A" — A

is a fibration sequence (Note that as HoC_,, is additive the
action

FxQB - Fis determined by 0 =m(0,id) : 0B — F via the rule
ma,A)=a+0dAif a : T— Fand A : T — QB).

These conditions hold for example if C,, = sA, where A is an
abelian category with enough projectives and if C, is the model
category of simplicial modules over a simplicial ring (see following

section.)

We define the cohomology groups of an object X of HoC with
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coefficients an object A of HoC,, to be
Hj,(X, A) = [Lab(X), Q" NzN 4]

where N is an integer >0 with ¢+ N > 0. By (A) it does not matter

what N we choose. Suppose now that C is pointed. Then

Hi (X, A) = [LabEX), Q" VENA] = [ZL ab(X), Q7 VN 4]

= [Lab(X), QNN A1 = HIY (X, 4)

Using this and the fact that Lab preserves cofibration sequence,
we find that if X — Y — C, etc. is a cofibration sequence, then

there is a long exact sequence

é
~— H3,(C,A) — H(Y,A) — Hj,(X,A) — vajl(c, A) —> -

From (B) it follows that if
Al—A— A —TA

is a cofibration sequence in HoC,, then there is a long exact se-

quence

o
w— HY(X, A — HL (X, A) — HI (X, A") = HI'\(X, A" — -

It is reasonable to call an object of Ho C of the form Ri(A) a gen-
eralized Eilenberg-Maclane object and to call L ab(X) the homology
of X. In effect

HY (X, A) = [Lab(X), A]
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is a universal coefficient theorem while
HY(X,A) = [X,Ri(A)]

is representability theorem for cohomology.

Examples. 1. C = Simp so that Simp, = s(Ab) the category of
simplicial abelian groups and X, = ZX,the free abelian group
functor applied dimension-wise to X. The assumption on Simp
and S, hold and as every object of Simp is cofibrant Lab(X) =
X .- Hence

H3,(X,K(R,0) = H*(X,R),

the usual cohomology of X with values in the abelian group
R. Also
(X)) = Ho (X, 2Z)

which partially justifies calling X, the homology of X.

2. Let C=SimpGrp so that SimpGrp,, = s(Ab) and G, = G/[G, G].

Then Lab(G) = G, if G is a free simplicial group and so by a
result of [Kan58b] (See also (16))

0 g<0
q
HY/(G,K(R,0) =

HYWG,R) ¢>0
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where WG is the “classifying space” simplicial set of G. Also
7, (Lab(G) = H,,,(WG,2).

These formulas are seen to hold for any simplicial group G

since to calculate L ab(G) we may replace G by a free simplicial

group.

We now show how these model cohomology groups compare
with other kinds of cohomology. In the following A denotes a
category closed under finite projective limits, X is an object of A,
and A is an abelian group object in A/X. We consider four definitions
of cohomology of X with values in A.

(1) Suppose that the effective epimorphisms of A are universal
effective epimorphisms (which is the case if A has sufficiently
many projectives— Cor. to Prop. 2). We define a Grothendieck
topology on A ([Art62]) by defining a covering of an object
Y to be a family consisting of a single map U — Y which
is an effective epimorphism. The induced topology on A/X
is coarser than the canonical topology so the representable
functor h, is a sheaf of abelian groups; hence sheaf cohomol-
ogy groups, which we shall denote by H;,(X,A), are defined.
Thus HgT(X, A)= HYI'(X)) where I is an injective resolution of

h, in the category of abelian sheaves on X.
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(2)

(3)

(4)

Suppose that there are adjoint functors

Hom,(FB,Y) = Homg(B, SY) (3)

Such that (i) FSY — Y is an effective epimorphisms for all
Y € Ob A, (ii) FB is projective for all B € ObB. these adjoint
functors define a cotriple (see [BB66]) and hence cohomology

groups H? (X, A) defined by
H (X, A) = H[h,(C,(X))]

where C,(X) is the simplicial object of A/X with C(X) = (FS)(X)
with face and degeneracy operators coming from the adjunc-
tion maps

id— SF, FS —id.

Suppose that A is closed under finite limits and has suffi-
ciently many projective objects. Regarding X as a constant
simplicial object there exists by Prop 2.4.3 a trivial fibration
P, — X, Where P, is cofibrant, which is unique up to homotopy
over X. The group HYh,(P,)] is therefore independent of the
choice of P, and we denote it by R (X).

Suppose that A satisfies the conditions of theorem 2.4, §2.4
that the abelianization functor ab : A/X — (A/X),, exists, and
that (A/X), is an abelian category. Then the model category

C = s(A/X) satisfies the assumption made at the beginning of
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this section and hence cohomology groups Hj;,(X,A) are de-
fined, where X and A are identified with constant simplicial

objects.

Theorem 2.5. When each of groups Hj,(X,A), H! (X, A), and R%4(X)
is defined, it is canonically isomorphic with the Grothendieck sheaf

cohomology group H/.(X,A).

Proof. We begin by showing that H]‘(J(X,A) = R%a(X). Let F be the
abelian category (A/X),. F has enough projectives, namely those
of the form P, where Pis a projective object A/X. Hence sF and
Ch(F) are model categories (see Remark 5 at the end of §2.4) and
N : sF — Ch(F) is an equivalence of model categories. The loop and
suspension functors on Ho(ChF) are given very simply by functors
Q and X on ChF defined by the formulas

X, ¢>0 d=X=-ZdX
(EX), =

0 qg=0

Xyt qg>0 dQX = -QdX
@X), =

Let A[q] be the chain complex in F which is A in dimension g and 0

elsewhere (A[q] if ¢ <0). As

NK(A,0)= A[0], NQTNINK(A,0)= Alq],
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hence

H} (X, A) = [Lab(X), Q" NENK(A,0)] = n((P,) . QITNENK (A, 0))
= ”(N(P.)ab’ A[q]) = Hq HomF(N(Po)ab’ A)

= HYHOME((P,)gp, A)) = Hh y(P,) = RTh 4(X).

To finish the theorem we need some results about Grothendieck
sheaves ([Art62], [Ver]). Let T denote a Grothendieck topology
whose underlying category is closed under finite projective limits
and has sufficiently many projectives, and where a covering of
an object Yin T is a family U = (Z — Y) consisting of a single
effective epimorphism. Eventually we will let T be A/X. A presheaf
of sets (resp. abelian groups) is a functor T’ — Set(resp Ab) and
a presheaf of sets (resp. abelian groups) is a presheaf F such that

for any effective epimorphism Z — Y the diagram
F(Y)— F(Z) =3 F(ZXyZ)

is exact.

Letting Pr and Sh (resp. Prab and Shab) denote the categories

of presheaves and sheaves of sets (resp. abelian groups) we have

T
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Here i and j are inclusion functors which are right adjoint functors
and the other functors are left adjoint functors. The square of
left (resp. right) adjoint functors commutes up to canonical iso-

morphisms.

We recall the construction of 4, the associated sheaf functor. If
F € ObPr (resp. ObPrab), then the 0-th (resp. g—th) Cech cohmol-
ogy presheaf of Fis defined by

H (F)(Y) = lim H*(U, F)
U

(resp. HY(F)(Y) = lim HYU, F))
U

where the limit is taken over the category coverings U= (U —Y)

of Y and where
H (U —Y),F)=Ker{F(U) = FU xyU)}

(resp. HY(U — Y),F) = the g-th cohomology of the cosimplicial

abelian group
F(U) = F(U xyU) = F(U Xy U Xy U) ... )

Then aF = H’'H(F). Given Y, choose an effective epimorphism P — Y
with P projective; it follows that (P — Y) is cofinal in the category

of coverings of Y and hence

H°(F)(Y) =Ker{F(P) = F(P Xy P)}
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In particular H°(F)(P) = F(P) if Pis projective, and hence
(aF)(P) = F(P) (5)

If Yis arbitrary choose effective epimorphism Py — Y, P, — Pyxy Py,

whence

a(F)(Y) = Ker{(aF)(Py) 3 (aF)(P)}

=Ker{F(Py) = F(P)}

It follows that for F € ObPrab, aF =0 if and only if F(P)=0 for all
projective P. Now if F' — F— F” are maps in Shab with vu = 0,
then this sequence is exact iff aH = 0 where H = Keruv/Imu in the

category Prab. Hence we have proved

Lemma 2.5.1. A sequence F' — F — F” of abelian sheaves is
exact iff F'(P) — F(P) — F"(P) is exact for all projective objects
P.

Let Z(S) denote the free abelian group generated by a set S.
Then the abelianization functor Z for presheaves is given by (ZF)(Y) =
Z(F(Y)) for all Y hence combining (5) and the commutativity of (5)
we obtain

Lemma 2.5.2. If Fis a sheaf of sets, then its abelianization ZF is
such that
ZF(P) = Z(F(P))

for all projectives P.

Let H? : Shab — Prab be the ¢—th cohomology presheaf func-
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tors. Then H? ¢ >0 are the right derived functors of i : Simp — P
and

H*(F)(Y) = H*(Y, F) is the cohomology of Fover Y. We define a weak
equivalence in sT to be a map Z, — Y, such that for any projective
object P,

Hom(P,Y,) — Hom(P, Z,) is a weak equivalence in Simp. This agrees
with the definition in §2.4.

Proposition 2.5.1. The following are equivalent for a sheaf of abelian

groups:
(i) HI(F)=0 ¢ > 0.

(i) H((U — Y),F)=0 ¢ > 0 for all effective epimorphisms U —
Y.

(iii) For any weak equivalence Z, — Y, in sT

H*(F(Y,)) — H*(F(Z,))

A sheaf satisfying the equivalent conditions of Prop. 1 will be

called flask. By (i) any injective sheaf is flask.

Proof. (i) = (iii). Let hy : T — Set be the functor repesented by
Y; then hy is a sheaf. Let Zy=Zhy so that

Homgpap(Zy, F) = F(Y)

Let I* be an injective resolution of F in Shab so that HYI*(Y)) =
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HYY,F)=0 for all Y. Then

. . HY(F(Y,)) q=0
H,H,Hom(Zy,1*) = H’HY(Y,, F) =
0 qg>0

H{H,Hom(Zy ,I*) = H” Hom(H (Zy ), I*) = EXt’(H/Zy,), F)
and so we obtain a spectral sequence
EY' = EXtP(H (Zy). F) = H""(F(Y,))

and a similar spectral sequence for Z,. Hence we are reduced to
showing that H,(Z,) — H,Zy). By Lemmas 2.5.1 and 2.5.2 we
are reduced to showing that ZHom(P, Z,) — ZHom(P,Y,) is a weak
equivalence of simplicial abelian groups for each projective P, But
this is clear since Hom(P,Z,) — Hom(P,Y,) is a weak equivalence
and since r,(ZK,), the homology of a simplicial set K,, is a weak

homotopy invariant.

(ii) = (i). There is a Carten-Leray spectral sequence
E}?" = HP(H'F) = HP*4F [Art62, 3.5, Ch.L]. By assumption Ego =HF =

0 for p> 0 hence by induction on » one sees that H'F =0.

(iii) = (ii). HY((U — Y),F) = HY(F(Z,)) where Z, is the object of
sT with
Zq = UXY XyU
\_W_J
g+1 times
Regarding Y as a constant simplicial object, Z, — Y is a weak
equivalence. In effect if Pis projective Hom(P,U) — Hom(P,Y) is

surjective; denoting this by S — T we have that Hom(P,Z,) —
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Hom(P,Y,) is the map

which is a homotopy equivalence by the cone construction. O

Lemma 2.5.3. With the notations of (2.5.2) C,(X) — X is a weak

equivalence.

Proof. Let Pbe projective, as FSP — Pis an effective epimorphism
it follows that Pis a retract of FSF. It suffices to show therefore
that

Hom,(FB,C,(X)) — Hom,(FB, X)

or
Homg(B, SC,(X)) — Homg(B, SX)

is a weak equivalence of simplicial sets. However SC,(X) — SX is

a homotopy equivalence by the “cone construction”. O

We can now finish the proof of the theorem. Let T = A/X and let
I°® be a flask resolution of the sheaf A, and let P, — X be a weak
equivalence where each P, is projective. For the double complex

I1°(P,) we have

HP(I*(X =0 H? (X, A
HPHI (P = (I'(X) =0 _ [ He (X, 4)
0 qg>0 0 qg>0
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by Prop. 2.5.1 and

s HP(hy(P)) q=0 [RPh,(X) q=0
H,H, (I°(P,)) = =
0 g>0 0 g>0

by Lemma 2.5.1. Thus the two spectral sequences of a double
complex degenerate giving HJ(X,A) ~ H! (X,A) by Lemma 2.5.3

and condition (ii) on the functors (3). O

Examples. Let A = Grp and let G be a group. Then any abelian
group object in A/G is of the form M x;G ™2 G where M is a G
module and M x; G denotes the semi-direct product of M and G.
Hence (A/G), is the abelian category of G modules. Moreover if
X — G is a group over G, then

Hom,,;(X, M x;G) = Der(X, M), the derivative of X with values in M
regarded as an X module via the map X — G. For each group X
over G, let CUX, M) = Homgg (X% M) be the group of ¢ cochain of
X with values in M and let § : CY(X, M) — C%!(X, M) be the usual

coboundary operator. Then
, 5 5
0— Der(, M) —C'(-M) — C°(-M) — ...

is a flask resolution of the sheaf h,, s on A/G. In effect any weak
equivalence of simplicial groups is a homotopy equivalence of sets
and the functor CYX, M) depend only on the underlying set of X;
hence Ci(, M) is flask by Prop. 2.5.1(iii). On the other hand the
sequence is exact by Lemma 2.5.1 and the fact that cohomology
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of a free group vanishes in dimension >2. Thus we find that

q q q Hq+1 (G’ M) q Z 1
H (G, M) = H. (G, M) = H'(G, M) =

Der(G,M) ¢=0

where H*(G, M) is the ordinary group cohomology.

Remarks. (i) The preceding example generalizes immediately to

(ii)

2.6

cover the usual cohomology of Lie algebras and associative
algebras over a field ([BB66]). Moreover one is lead to the
following general picture for cohomology of any kind of uni-
versal algebras. Letting A be a category of universal algebras
and X € Ob A, then an X-module is an abelian group object A
in A/X, and the cohomology of X with values in A may be de-
fined to be either H;(X,A), H (X, A), or H} (X,A) where the
cotriple is for example the “underlying set” and ‘“free alge-
bra” functors A s Set. A cochain complex for computing this

cohomology is just a flask resolution of the sheaf n, on A/X.

The isomorphism H}.(X,A) = H*(h,(P,)) is a special case of a
general theorem of Verdier that the Grothendieck sheaf coho-
mology group HY(X, F) may be computed as limg H*(U, F) where
U runs over the category of hypercoverings of X for the topol-
ogy. In effect P, — X is cofinal in this category of hypercov-

erings. See [GV72] especially, exposé V, appendice.

Modules over a simplicial ring

In this section we show how the category My of left simplicial

modules over a simplicial ring forms closed simplicial model cate-
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gory. My occurs as the category (sA/X),, where X is a non-constant
simplicial object in sA and hence is worth studying in virtue of
§2.5. We also derive Kunneth spectral sequences which are useful

in applications. Some applications to simplicial groups are given.

In this section a ring is always associative with unit, not neces-

sarily commutative, and left or right modules are always unitary.

Let R be a simplicial ring. By a left simplicial R-module we
mean a simplicial abelian group M together with a map Rx M —
M of simplicial sets which for each ¢ makes M, into a left R -
module. The left simplicial R-modules form an abelian category
M, where a sequence is exact iff it is exact in each dimension. The
category of right simplicial R-modules is the category My, where
R is the simplicial ring which is the simplicial abelian group R with
the multiplication opposed to that of R.

If X,Y € ObM, let Homg(X,Y), = HomMR(X ®7 ZAn),Y) with the
simplicial operator ¢°* induced by ¢ in the obvious way. Here ZK
denotes the simplicial abelian group obtained by applying the free
abelian group functor dimension-wise to the simplicial set K and ®

denotes dimension-wise tensor product. There is a bilinear map
Homg(X,Y) @ Homg(Y,Z) — Homg(X, Z) (1)

defined by letting go f for f: X® ZA(n) — Yand g : Y @ ZA(n) — Z
be the map

id®A fQid
XQ®ZA(n) —— X @ ZA(n)  ZA(n) —— Y @ ZA(n) — Z.

It is clear that My is a simplicial category with HomMR(X, Y) is equal
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to the underlying simplicial set of set of Homg(X,Y) and with com-
position induced by (1). If K is a simplicial set, let X ®, ZK and
Homg(K,Y) be considered as simplicial R-modules in the natural way.

Then there are canonical isomorphisms

Homg(K,HOmy(X,Y)) = HomMR(X ®7 ZK,Y) = HomMR(X, Homg(K, X))
X®,Z(KXL)=(X®,ZK)®, ZL (2)

Homg(K X L,Y) = Homg(L,Homg(K,Y))

which may be used in the proof of Prop. 2.1.2 to show that X ®,
ZK is an object X ® K and that Homg(K,Y) is an object YX in the
simplicial category M;. We will use the notation X ® ZK instead of
X ® K in the following.

Define a map in My to be a fibration (resp. weak equivalence) if
it is so as a map in S, and call a map a cofibration if it has the LLP
with respect to the trivial fibrations. The proof that M, is a closed
simplicial model category follows that for SimpGrp (§2.3) and sA in
the case (%) (§2.4); in effect every object is fibrant and factorization
axiom may be proved by the small object argument. The following

descriptions hold: A map f : X — Y in My is a fibration if
(f,€) X — YXK(IL'OY,O) K(n’OX,O)

is surjective, a weak equivalence if z,f : 7, X — #,Y, and a trivial
fibration if f is a surjective weak equivalence. f is a cofibration
iff it is a retract of a free map, and a trivial cofibration iff fis a
cofibration and a strong deformation retract map. Here f : X — Y

is said to be free if there are subsets C, c Y, for each g such that C,
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is stable under the degeneracy operators of Y and X, & R,C, = Y,
for each g.

If Ais a ring, M, is the category of left A modules, and R is
the constant simplicial ring obtained from A, then M, = s(M,) and
the above structure of a closed simplicial model category on My is
the same as that defined in §2.4. Moreover if Ch(M,) denotes the
category of chain complexes in M4, then the normalization functor
N : My — Ch(M,) is an equivalence of closed model categories.
Here Ch(M,) is defined to be a closed model category by a slight
modification of example B.. The following fact is of course clear
for Ch(M,).

Proposition 2.6.1. Let Q and X be the loop and suspension functors
in the category Ho(My). Then

0: M— QXM

SOM — M < oM =0

where the maps are adjunction morphisms. Furthermore if

. . S
A alar sa

is a cofibration sequence in Ho(My), then
—ig™! J §
QYA —s A— A" — A

is a fibration sequence.

Proof. For any simplicial left R module X there are canonical exact
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sequences in My

0—X —CX —-IX —0 (3)

0— QX — AX — X — K(7yX,0) — 0 (4)
which in more detail are the maps

X4 X ® ZAUYX ® Z{0} — X ® ZA(I)X ® ZA(1)

(Pry,pry) J1pr
ey 0%, X20 ALk YN K(7yX,0)

0xy X2 %, 0
Here K(zyX,0) is the simplicial R module which is the constant
simplicial abelian group of zyX with R module structure deter-
mined via ¢ : R — K(nyR,0) and the natural zyR action on z,X, and
€ : X — K(npX,0) is the canonical augmentation. The exactness
of (3) is clear dimension-wise and (4) is exact for simplicial groups
hence also for Mg, since X2 is calculated in My as in SimpGrp. The
canonical homotopy 4 : A(1) x A(1) — A(1) with hiy = iye and hi; = id
induces a homotopy H : CX ® ZA(l) — CX with Hiy =0 and Hi; =id
and a homotopy K : AX ® ZA(l) — AX with Ki; = 0 and Ki; = id.
Hence #(CX) = z(AX) =0.

The functor Q on My defined by (4) actually becomes the func-
tor Q in Ho(My,), since every X in My is fibrant and so X2 is a path
object for X. Similarly one sees that =X represents the suspen-
sion of X in Ho(My) provided X is cofibrant. However if ¥ — X
is a trivial fibration with Y cofibrant we obtain a map into (3) of
the corresponding sequence for Y, so by the homotopy long ex-
act sequence and the 5 lemma XY — XX is a weak equivalence.

Therefore X represents the suspension of X in Ho(My) for all X.
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If 7oX =0, then the diagram

0 — QX — CQX — QX —> 0

I
0 — QX — %y A X — s X — 3 0

(5)
where u and v are induced by the contracting homotopy K of AX
described above, and the five lemma show that v is a weak equiv-
alence. However v is the adjunction map for the adjoint functors
¥ and Q in M, and hence also in Ho(My), so the direction < of the
second assertion of the proposition is proved. The direction =
results from the formula zy(XX) = 0 which follows since (£X), = 0.
The first assertion of the proposition may be proved by a diagram
similar to (5). For the last assertion of the proposition we may
assume that i : A — A’ is a cofibration of cofibrant objects, that
A” is the cone on i, that j is the embedding of A as the base of
this cone, and finally that § is the cokernel of j. As My is abelian §

is a fibration with fiber j : A — A” and there is a diagram

A’ oA VAL R Y
QSA -y A 1 woa4r o osa

where g is the boundary operator of the fibration sequence associ-

ated to 6. For the commutativity of the first square see proof of
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Prop. 1.3.6. As 6 is an isomorphism we find that 0 = —-i6~! and so

the proposition is proved. O

Kunneth spectral sequences. If X and Y are simplicial abelian
groups and if x € X, yEY, the the element xAye (X ® Y)ptq is
defined by the formula

XAY= D, e, V)5, x ® s,y (6)
(u,v)
where (u,v) runs over all (p, q) shuffles, i.e., permutations (y, ... s Hps Vs e

of {0,...,p+q+1} such that y; < - <p, and v; < - <v,, where e(u,v)

is the sign of the permutation, and where

SuY =Sy, S Yy X =Sy oSy X

The following properties of the operation A are well known.
(1) xeNX,yeNY—= xQ®yeE NXQ®Y)
(2) dxAy)=dxAy+(=1)’x Ady where p= degree x and d = Y (-1)'d,.
(3) xAGAZD)=(xXAYAZ

(4) If 7 : X®Yi> Y ® X is the isomorphism 7(x ® y) = y® x, then
7(x Ay) = (=DMz(y A X)

if p= degree x, ¢ = degree y.

If Ris a simplicial ring, then these properties show that A induces
on NR the structure of a differential graded ring which is anti-

commutative if R is commutative. In fact NR is even strictly anti-
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commutative (x? = 0 if degree x is odd) when R is commutative as
one sees directly from (6). Consequently z,R = H,(NR) is a graded
ring which is strictly anti-commutative if R is commutative. If X is
a left (resp. right) simplicial R module then by virtue of ®, NX is
a left (resp. right) differential graded NR module, and so z, X is a
left (resp. right) graded =, R module.

By a projective resolution of a left simplicial R module X we
mean a trivial fibration u : P — X in My such that P is cofibrant.
By Prop. 2.2.4 u is unigue up to homotopy over X, and moreover if
we choose projective resolutions py : Q(Y) — Y for each Y € Ob My
and a map Q(f) for each map f : Y — Y’ such that P,,0(f) = fpy,
then we obtain a functor z,(Mp) — 7zo(My.) right adjoint to the
inclusion functor. Hence projective resolution is up to homotopy a
homotopy preserving functor of X.

If X is a right simplicial R module and Y is a left simplicial R
module, and if P-% X and o S vare projective resolutions of X
and Y in Mg, and My respectively, then the abelian group P ®3 O
is independent up to homotopy over X ®; Y of the choices of u
and v. We denote P®; QO by X@LaRYand call it the derived tensor
product of X and Y since in the terminology of §1.4, it is the total

left derived functor of ®g : Mgy X Mgz — M.

Theorem 2.6. Let R be a simplicial ring and let X (resp. Y) be a left
(resp. right) simplicial R module. Then there are canonical first

quadrant spectral sequences
(a) E;, —n,(Torkx,v) = 7, (X ®rY)

(b) Ep, = TorsR(zM,aN),=> 1, (X @ Y)
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(c) B3, =m)(r,X ®gY) => 7, (X Qg Y)
(d) Ej, = n,(X @pr,Y) = 7, (X ®rY)
which are functorial in R, X,Y.

In (a) Torff(X,Y) denotes the simplicial abelian group obtained
by applying the functor Tor,(-,-) to R, X,Y dimension-wise. In (b)
Tor?®(zM,zN), denotes the homogeneous submodule of degree in
g in Tor;,’R(nM,nN) which is naturally graded since the ring R and
the modules zM,zN are graded. In (c) z,X is an abbreviation for
the constant simplicial abelian group K(z,X,0) which becomes a
right R module via the augmentation R — K(xyR,0) and the action

7, X ® 7yR — =,X induced by A. Similarly for z,Y in (d).

Proof. (a) Construct recursively an exact sequence in My
w— P — P —X—0 (7)

by letting X, = X, P,— X, be the projective resolution of X , and
X, = ker(P, — X,). Then zP, =0 for ¢ >0 so P, — 0 is a weak
equivalence of cofibrant objects and hence a homotopy equiva-
lence. Hence there is a map & : P,®; ZA(l) — P, with h(id ®ij) = id
and h(id®i;) =0. Thus

h®id
(Pq QrY)®7 ZA(l) — Pq ®rY

is a contracting homotopy of P,®;Y and so (P, ®g Y) = 0. Think
of the simplicial operators in (7) as being vertical and consider the
double complex N)(P,®yY) obtained by applying the normalization
to the functor to the simplicial structure. Then H[ﬁ’Hq” =0forg>0
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Section 2.6: Modules over a simplicial ring

and =r7,(P®rY) if ¢=0. As the cofibrant simplicial R module P, is
a direct summand of a free simplicial R module, (P), is projective
over R, for each n, and so in simplicial dimension n (7) is a projective

resolution of the R, module X,. Hence
Rn
H!NY(P,®gY)=NH](P,®zY)= N, Tor,"(X,.Y,),

where we have used that N is an exact functor from the simplicial

abelian groups to chain complexes.

Thus we obtain the spectral sequence

Ejy = my(TOr{(X.Y)) = 1, (P ®r Y) (8)
having the edge homomorphism z,(Py®rY) — 7,(X ®g Y) induced
by the map P, — X. By repeating this procedure with Y instead of

X we obtain a spectral sequence
Ep, = 7 (TOrf{(X,Y) = 7,,,(X ® Q) (9)

where Q, — Y is a projective resolution of ¥, whose edge homo-
morphism z,(X ®z Oy) — 7,(X ®rY) is induced by v. Substituting P,
for X in (9), it degenerates showing that Py®; 0, — Py, ®z Y is a
weak equivalence and hence that n(Xé)RY) = 7(Py®gY). Substituting
this into (8) we obtain the spectral sequence (a) and the following
fact which will be used later.

L
Corollary. The edge homomorphism z(X®zY) — 7(X ®iY) of spec-
L
tral sequence (a) is induced by the canonical map X®rY — X QY.

This map is a weak equivalence if Torf"(Xn,Y,,) =0forg>0,n>0.
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To prove (a) is functorial let R, X,Y — R’,X',Y’ be a map and
suppose that a sequence (7)" corresponding to (7) has been con-
structed. As a map of simplicial sets, the maps P, — X, are
trivial fibrations as maps in Mg,,. Hence we may construct a map
6 from (7) to (7)' covering the given map X — X'’ by inductively
defining 6, : P, — P, by lifting in

0 > P
//>(
0, Pie
‘- l (10)
-7 0,1
P, > X, S X!

We then obtain a map of the spectral sequence (8) into the corre-
sponding one (8)’ which is independent of the choice of 9 because
its E? term is clearly independent and the map P, — P, covering
X — X' is unique upto homotopy. Consequently there is a canon-
ical map from spectral sequence (a) to the corresponding one (a)’
and this proves the functoriality of (a) as well as its independence
of the choices made for its construction.

(b) We need two lemmas.

Lemma 2.6.1. Suppose that Pis a cofibrant right simplicial R mod-
ule such that »,Pis a free graded »,R module. Then for any left

simplicial R module Y the map
7w, P ®..r Y — m,(PQRrY)

induced by A is an isomorphism.
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Section 2.6: Modules over a simplicial ring

Lemma 2.6.2. Suppose P is as in Lemma 2.6.1 and let f : X — Y
be a fibration in My, such that z,f : z,X — #,Y is surjective. Then

given any mapu: P— Y thereisav: P— X with fo=u.

Proof. Let RS" = Coker(R® ZA(n)) n > 1 considered as a right sim-
plicial R module in the obvious way, let 7, € (RS"), be the residue
class of the element 1®id,, and let u, be the element of z,(RS")

represented by ¢,. We claim that
A. n(RS") is a free right graded =R module generated by u,.

B. The map #(RS") @,z 7Y — n(RS" ®x Y) induced by A is an iso-

morphism.

Indeed there is an exact sequence of right simplicial R modules
0 — Rs"' - RD" L5 RS" — 0 (11)

where RD" = Coker(R® ZV(n,0) — R ® ZA(n)), where i is induced
by dy: A(n—1) — A(n) and j is the canonical surjection. Moreover
0 — RD" is a trivial cofibration because it is a cobase extension of
the map

R® 7V (n,00 — R®ZA(n), which is a trivial cofibration by SM7 since R
is cofibrant. Hence RD" is contractible and the long exact sequence

in homotopy yields an isomorphism

n—1
7, (RS") T (RS a2
’ - .
0 qg=0.

such that du, =u,_,. By property 2 of A dis an isomorphism
7(RS™) = Tz(RS" ') of right graded zR modules, where if M is a
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right graded module over a graded ring S, we defined M to be the
right graded R module with (ZM), = M,_, and (EZm)s = X(ms); here if
me€ M,_;, Zm denotes m as an delement of (ZM),. A then follows by
induction on »n. To obtain B note that (11) splits in each dimension
so it remains exact after tensoring with Y over R. The resulting
long exact homotopy sequence yields the bottom isomorphism in
the square

oRid
T(RSN) @, g 1Y ———> Ex(RS" )@, g 7Y

l

d
m(RS"®rY) ——— Za(RS"' @gxY)

where the vertical arrows come from A and the diagram commutes

by property 2 of A. Induction on » then proves B.

If Pis as in Lemma 2.6.1 choose elements x, € P, ,i € I whose
representatives in zPform a free basis over zR and let ¥: RS" —
P the map of right simplicial R modules sending 7, to x;. By the
assumption on Pand A ¥ is a weak equivalence hence a homotopy
equivalence since both are cofibrant. Lemma 2.6.1 then reduces to

the case P = RS"” in which case it follows from B.

To prove Lemma 2.6.2 we reduce by the covering homotopy
theorem to the case P = RS", and we must show that Z,f: Z, X —
Z,Y is surjective where Z, denotes the group of n cycles in the
normalization. As fis a fibration N,f is surjective j >0 and as zf

is surjective one sees easily that Zf is surjective. O
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Section 2.6: Modules over a simplicial ring

To obtain (b) construct an exact sequence

of right simplicial R modules by setting X, = X, X,,, =Ker(u,: P, —
X,) where u, is surjective, zu, is surjective, and zP, is a free graded
right zR module. u, may be obtained by choosing generators {a}
for zX, over zR, letting v: @, RS" — X, be a map sending#, onto a
representative for «; and then factoring v = u,i where u, is a fibration
and i is a trivial fibration. If Q — Y is a projective resolution of
Y, consider the double complex NY(P, ®; Q) where v refers to the
(vertical) simplicial structure. By Lemma 2.6.1 7(P,QrQ) = 7P,Q,r 70
and by the construction of (12), =(P,) is a free =R resolution of zX.
Thus

H!HY(N,(P, ® Q)) = H}zP, @, 70), = Tor:®(zX,70),.
On the other hand, Q is projective over R in each dimension, hence
HYHMN,(P, ® Q) = HIN H](P, ® Q) =0

if g>0and 7,(X®z0) if g=0. As 2(X ®z0) - n(xéRY) by the above
corollary and z(Q) = z(Y) we obtain spectral sequence (b) as well as
its independence of (12) may be proved in exactly the same was
as for (a), except the lifting analogous to (10) is constructed via

Lemma 2.6.2.

(c) These are derived by the Serre-Postnikov method. In effect

151



Chapter 2: Examples of simplicial homotopy theories

we have (see Prop 2.6.1 (4)) canonical exact sequences
O—)QX—»/\X—»X—)HOX—>0 (13)

in My, where A X is contractible and where =,X is short for the
right simplicial R module which is the constant simplicial abelian
group K(zy, X,0), and whose R module comes via the augmentation
e: R— K(myR,0) from the map

moX ® ngR — myX induced by A. From the long exact homotopy

sequence we have
9
7y (X) — 7, (QX) ¢>0 (14)

where d(a-p) = (0a), if p € zR. Hence substituting QFX into we obtain

exact sequences
0_)Qk+1X_)/\QkX_,QkX—>JrkX—>O k>0 (15)

where =, X stands for the right simplicial R module as described in
the theorem. Letting O — Y be a projective resolution of Y, ® 0
is exact and A Q*X ®; Q is contractible, hence from (15) we obtain

exact sequences

— 7, QX ®r0) — 7,(QX®r0) — 7,(1 X® Q) — 7, ( Q' X®r0) — ...

L
for k > 0. By the corollary — ®; O may be replaced by — ®3 Y and
L
so we obtain an exact couple (D3, E;) with EJ = z,(r,X ® Y) and
L
Df,q =7,(Q'X®rY) and hence the spectral sequence (c). It is clearly

canonical and functorial since the only only choice made was that
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Section 2.6: Modules over a simplicial ring

of Q which is unique and functorial up to homotopy. Spectral se-
quence (d) is proved similarly. There is no sign trouble from the
fact that 0: z,Y — 7z, ,(QY) satisfies d(pa) = (-1)*p - 9 if p € 7, R be-
cause only k=0 occurs when we consider 7, Y as a left simplicial R

module. Theorem 2.6 is now proved. O

Applications to simplicial groups. Let G be a simplicial group.
If M is a simplicial G module we call H,(G,M) = n(Z ®LZG M) the
homology of G with coefficients in M. Here Z is short for K(zZ,0) with
trivial G action. To calculate the homology we choose a projective
resolutive of Z as a right ZG module, e.g. ZW G where WG — WG is
the universal principal G bundle, whence H(G, M) = 2(ZW G Qz5 M).
If M is an abelian group on which =,G acts and we consider M
as a constant simplicial G module, then it follows that H,(G, M)
is the homology of the simplicial set WG with values in the local
coefficient system defined by M. In particular when G is a constant
simplicial group and M is a G module H(G, M) in the above sense

coincides with the ordinary group homology of G with values in M.

If Fis a free group, then

Z qgqg=0
ZF —
Torg"(Z,2)=4F, q=1

0 qg>=2.

hence if G is a simplicial group which is free in each dimension
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Chapter 2: Examples of simplicial homotopy theories

spectral sequence (a) degenerates giving

z =0
H,G,2)= ! (16)

”n—l(Gab) n> O

which is a formula due to [Kan57a] when G is a free simplicial group.

Let f: G— H be a weak equivalence of simplicial groups. Then
fis a weak equivalence in Simp, and as every object of Simp is
cofibrant fis a homotopy equivalence in Simp. Thus ZG — ZH is
a homotopy equivalence of simplicial abelian groups and so zZG 5
zZH. From spectral sequence (b) we deduce that H,(G, 2) 5 H,(H,Z7)

which shows that homology is a weak homotopy invariant.

Suppose now that
]l —K—5G— H—1

is an exact sequence of simplicial groups and that M is a simplicial
G module. Let P — M be a projective resolution of M as on left
ZG module. Then

Z®,c M ZQz6 — Z Qzy (ZH Q¢ P).

and
T (ZH ®6 P) > 1(Z ®zx P) = H(K, M).

Substituting R=ZH,X =Z,Y = Z ®, P in spectral sequence (d) we
obtain a spectral sequence

E2 = H,(H,H(K,M)) = H,, (G, M) (17)
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which generalizes the Hoschild-Serre spectral sequence for group
homology and the Serre spectral sequence for the fibration Wk —
WG — WH.
Spectral sequence (a) with R = ZG,X = Z,Y = Z has the edge
homomorphism
H,(G.2) — 7, 1(Gy) n>0.

which is an isomorphism for n =1 in general and for all » if G is free.
So we obtain Poincare’s theorem

HI(G’ Z) = (ﬂOG)ab'

Now by the method of [Ser53] it is possible to start from this fact
and the spectral sequence (17) and prove directly the Hurewicz and
Whitehead theorems for simplicial groups. We leave the details to

the reader.
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cartesian, 17 left homotopy, 19
closed model category, 14, 66 left lifting property, 66
closed simplicial model category, 74, left-derived functor, 58

87 — total, 60
co-cartesian, 17 left-homotopic, 18
cochain complex, 138 localization, 25

codiagional, 17
cofibrant, 12, 16

cofibration sequence, 46 model category, 11

cofibre, 39 — closed, 66

cofibre product, 17 module, 138

composition, 35, 76 Moore homotopy groups, 99

constant homotopy, 81
correspondence, 32

cylinder object, 13, 19 null-object, 38

d_erived tensor product, 145 path object, 19
diagonal, 17 pointed category, 38
. pointed model category, 39
fibrant, 12, ::LL26 16 presheaf, 131
ﬁbraiI:ncoé7 ’ projective resolution, 145

— trivial, 16
_ — trivial co, 16 representable, 80
ggratlgg sequence, 46 right homotopy, 19
ﬁnirfé simplicial set, 83 r!ght-derlved f_unctor, 58
flask. 134 ’ right-homotopic, 18
generalized unit interval, 80 simplicial categories, 74

simplicial functor, 77

homomcpayielgzériolz 25 Simp“c;iaﬁl o 83

— , 12, — finite,
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rofstant, strictly homotopic, 80, 81
— right, 19, 32
— strict, 80, 81 Toda bracket, 57
total Left-derived functor, 60
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Daniel Quillen, 1940-2011, Fields Medalist, transformed many
aspects of algebra, geometry, and topology. Especially in a
succession of remarkable papers during the ten-year period of
1967-1977, Quillen created astonishing mathematics which

continues to inspire current research in many fields. Quillen’s
mathematical exposition serves as the ultimate model of clarity.
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