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I AEE O S

INTRODUCTICN

These notes are being printed in exactly the form in which
they were first written and distriputed: as class notes, supplementing
and working out my oral lectures. As such, they are far from polished and
ask a lot of the reader, In the words of the ex-editor of a well-known
Journal they are written in a style "seldom seen except in personsl letters
between close friends," Be that a3 1t may, my hope is that a well-inten-
tioned resder will still be able to penetrate these notes and learn some-
thing of the beautiful peometry on an algebrailc surface.

It was expected, when these notes were written, that the
readsr had the follewing background: he had taken a graduste course in
commitative algebra, he had studied some Algebraic Gecmetry and, in partie-
ular, he had some acquaintance with the theory of curves, and the theory of
gchemes, and ¢f thelr cohemology {e.g., Dieudonne’s Mapryland and Montreal
Lecture Notes). Nonei:heless, botk tc fix 1deas, and to prove some special-
1zed results that are needed later, Lectures 3-10 are devoted to a quick
and rather breezy digression into the generel thesory of schemes. ILecture 11
sumnarizes what we need from the theory of curves. I apclogize to any
reader who, hoping that he would find here in these 60 odd pages an easy
and conclse Introduction to schemes, instead became hopeleasly lost in a
maze of unproven assertions and undeveloped suggestions. From Lecture 12
on, we have proven everyshing that we need.

The goal of these lectures iz a complete clarification of cne
"theorem" on Algebraic surfaces: the so-called completeness of the charac-
teristic linear system of a good complete slgebralc system of curves, on a
surface #. If the characteristic 1s O, this theorem was first proven by
Polncaré (ef, References} in 31910 by analytic methods. Until about 1960,
no algebraic procf of this purely algebreic theorem was known.* In 1955, -
Igusa had shown that the theorem, as stated, was false in characteristic p
thus making the theorem appear even more analytlce 1n nature. But about
1960, a truly amezing development occurred: .in the course of working out
the master plan that he had laid out for Algebraic Geometry—incorporating
some of the key ideas of Kodaira’s and Spencer?’s deformation theory—Grothen-
dieck had cecasion to wrlte out some of the Corollaries of his theory (cf.
his Bourbeld exposé 221, pp. 23-24). Putting his results together with a

Although an endless and depressing controversy obscured this fact.
vii
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cwiit’ ‘ LEQCTURES ON CURVES ON AN ALGEERAIC SURFACE

vesult of Cartier—that group schemss in charscteristlc O are reduced-one
Finds that this old probism has been ccmpletely solved: a) a purely alge-
breic proof is avallsble in characteristic 0, b) all the machinery is
ready at hand for obtaining, in characteristic p, necessary and sufficient
aonditions for the validity of the theorem. What was the key, the essential
point which the Itallans had overlocked? There is no doubt at s811 that it )
is the systematlc use of nilipotent elements: in particular, a systematie
apalysis of all families of curves on a surface over a parameter space with
only one point, but with non-trivial nilpotent structure sheaf. The Ital-
ians had, in a sense, dono this, but only when the ring of functions on the
bagse was Study’s ring of dual numbers kl£31/(=®). This is the seme as look-
ing at first-order deformations of a curve. But they ignored higher order
niipotents and higher order defcrmations.

The outline of these lectures is zs3 fellows—Lectures 1 and 2
give an intuitive introduction to the problem and present in cutline 2 an-
alytie proofs. Lectures 3 through 10 recall basic notions about schemes.
Isctures 11 through 21 desl with basic questions on the thecry of surfaces.
In particulsr, they glve a econstruction of universal families of curves on
a surface—the so-called Hilbert scheme; ang of universal families of divisor
clasges on & surface—the so-called Picard scheme. Iectures 22 through 27
deal with the application of the whole thecry to the main problem: these
include & long lecture by G. Bergman giving a self-contained description of
the Witt ring schemes.

I would like to call attention to several generalizations and
applications of our results which were omlitted s0 as to get directly to the
main result. )

a) The method by which we have constructed the universel
fa.mily of curves on & surface F gives without any change a construction of
the universal flat family of subschemes of any scheme X, projective over &
noetherian 8, i.e., of the Hilbert acheme. In particular, the explicit
eatimates obtained in Iecture 14 enable ont to carry through this construc-
tion~which 1s Grothendleck’s original construetion—without the indirect ar-
guments using the concept of "limited families" which he used (ef. his
"Pondements"),

b} The method by which we have constructed the Picard scheme
of & surface F generalizes so as to construct the Picard scheme of any
scheme X, projective and flat over a noetherian 3, whose geometric fibres
over 3 are reduced and connected and such that the components of its ac-
tual fibres over S are absolutely irreducible. This construction 1s re-
lated to the one I outlined at the International Congress of 1962, and ties

up with the methods used in Chapters 3 and 7 of my book Geometrls Invariant

Theory.

INTRODUCTION ix
¢) One can use the results of Iecture 18 to give a very easy
proof of the Riemann Hypothesis for curves over finite fields, This 1s the
proof of Mattuck-Tate {cf. References). If you have resd through lLecturs 18,
and knovw the formilation of the Rismann Hypothssis wia the Frobenius mopr-
phism, you can read thelr paper wlthout difficulty and you should. .

Cambridge
March, 1966
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LECTURE 1

RAW MATERIAL ON CURVES ON SURFACES, AND
THE FROBLEMS SUGGESTED

We shall be concerned entirely with algebralc geometry over a fixed
algebraically clesed fisld k (of arbitrary characteristic). Our chief
purpose ls to study the geometry on a non-singular slgebraic surface F,
projective over k, and, in particuler, the families of curves ¢ on F.

By & curve we mean either a finite sum of irreducible, 1-dimension-
al subvarieties of F, with positive multiplicity: ¥ nici ; or a sheaf of
prineipal ideals on F. {These are equivalent concepts—for precise defini-
ticns, c¢f. Lecture 9.}

Bxample 1: F - p,. Then, as 1s well-known, every curve C on Py is
defined by a homogensous form F(xo, X, xa) . In particular, one can ate-
tach to C 1ts degree d, i.e., the degree of F, and the famlly of all
curves of degree d is perametrized by the set of 8ll F of degree d,
up to scalars: 1l.e., by a projective space of dimension

(d+ 1)(d+2) _,
2

-Example 2: F = P, x P, (i.e., a quadric in ?3). Then every curve C
on F 1is defined by a bil-homogenecus form

Flxy, %3 Tos Ty) .
with two degrees d and e. d and e can be Interpreted as the degrees
of the coverings

P] (] p2= c had P-l
given by the two projeetians of P, x P, onto P,. Again, for every d
and e, there is a single famlly of curves parsmetrized by a projective
space, this time of dimension;

(d+ 1{e +1) =1

The phenomenon of the last two examples can be generalized by the
concept of a linear system. If f 1s an algebraic function on F, let,
as usual, (f) stand for the formal sum:

1




2 IECTURES ON CURVES ON AN ALGEBRAIC SURFACE

2 ordg{f) - E
all 1-dimensional
irreducible subverieties
E

where ordE(f)"\ 18 the order of the zero or pole of f at E. Then as-
soclated to any curve C one has the vector spaece of functions with poles
cnly at O:

' 2(C) = (£] (£) + G > 0)

(Bere I nEy >0 means all ny > 0.) If fg,...,f, &re a basis of
£(C), one then can define the following family of curves, which contalns
C: '

Cy = (Zoyfy) + C
Since 'ca' only depends on the ratios of the «,, this is an irreducible

family of curves parametrized by a projective space of dimensicn:
dim £(C) ~ 1

Linear systems are the simplest families of curves cn & surface F and
the only type occurring in Examples 1 and 2.

.Definition: Two curves C, and CE are linearly equivalent 1f eguiva-
lently:
1) 3 & function f on F such that (f)
i1} ©,, C, s&re in the same linear system.
We write C; = G, for this concept.

=€, - Gy, or

Example 3: Iet & be an elliptic curve (over k), and let F = P, x&.
Again, given a curve C on F, we can assign to C two degrees d a.nd. e,
ag the orders of the coverings

C—Py5 C6&
‘obtained by projecting. Both d > 0 and e > 0 and either @ > 0 or
e > 0,

Case 1) d = 0: Then C is of the form I 7 , P, x §, and all these C
form & single e-dimensicnal linear system.

Case 11) d > 0t The set of all ¢ of type (4, e} forms an irreduc{:iple
d{e + 1)-dimensicnal famlly of curves, but it is not a linear system.
- Rather it is fibred by d(e + 1)-1-dimensional linear subfamilies.

Definition: Two curves ¢, , G, are algebraically equivalent if ¢, and
C, are both contained in cne family of curves parametrized by a connected
varitety.

_ With this terminology, we cen say that on P, x §, algebralc and
linear equivalence differ. Ancther point to notice is that the dimension
formia in Case 11} dces not specialize to the dimensional formula in
Case 1) when d = 0: this is the phencmenon of superabundance. '

ot
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Example k: Iet 7 be s "generic" curve of genus-2, 1.e., a double cover-
m_l'.' branched at six points with independent transcendental coordi-
nates over the prime flsld (if char. # 2). 1Let F be the jacobian of
7. Recall that

(1} ¥ 13 a non-singular slgebreic surface,

(2) F 1s elso an algebrale group,

(3} in a natural way, » itself is a curve on F.

It turns out that every curve C on P 1s algebralcslly equivalent to a
curve dy, for & sulteble positive integer d. Moreover, € 1s linearly
equivalent to a sultable trenslation of dy (in the sense of the given
group structure). The set of all curves algebralcally equivalent to dy
is an irreducible famlly of dimension a® . i, and its linear sub-famlliles
have dimension de - 1. In fact, one can define a mep: '

r [ all curves alg. equivalent to dy ]

lineer equivalence

where & = image of dy under translaticn by . In fact, this map
factors as follows: :

F mait, by 4 .

p bljection o [ curves alg. equivalent to dy ]
linear eguivalence

This indicates a general point: the set [algebrale equivalence modulo
Linear squivalence), tends to be Independent of the family of curves con-
sidered.

One should contrast thils surfece F with its "Kummer" counterpart
K: +this is defined as the double covering of P, branched in a generic
sextic curve (char, # 2). Here all curves are llnearly equivalent to
@ -h, where h 1s the 1nverse image of & line in P,, sand the dimen-
sion of this family is @° + 1 (as sbove). It iy similar to ¥ also in’
that (&) (7 ) <2 on F, (h) =2 on K [(De) denotes self-intersec-
tlon—cf. lecture 12], and (b) both P and K admit double differentials
with neither zeros nor poles. Thls K 1s of the same type as the quartic
surfaces 1in P

In fact, we have touched briefly con every class of algebralc sur-
faces admltting a double differential with no zeros (i.e., an anti-canoni-
cal linear system): for reasons stemming from Serre duality, the gecmetry
on these surfaces 1s particularly simple. To bring out scme further fea-
tures of surfaces, we will discuss another rational surface:

Example 5: Iet F be the surface obtained by blowing up two polnts Py

P, in P, [or by blowing up ons point In p, xP,]. Ist E, and E, be
the rational curves which are the Inverse images of P, and P, on F.
Iet 4 be the line in P, from P, to Py, and let D be the curve
on F which is the closuz'e of the invarse 1mage of £ - P, - P,. Then

to every curve C on F, one can attach three cha::-actex-s k,, k,, ard L,
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all curves with chsracters k,, k;, £ form the single lineer system con~
taining ‘ '

s on-negative and not all zero; and the set of
vhere k,, k¥, and ¢ aren g2

KE;, + KB, « £D
But unlike the situation on P, x P,;, not all these systems are "oood"
sygtems of curves.
Case 1) If L3>k, t>k, and I + k, > £, then none of the three
curves E,, E;, or D 1is a component of all curves in the linesr system
containing kB, + kB, + D, and this linear system has the predictabie
dimension:

{e+1) (R+2)  (L-k ) (- 41)  (R-K,) (£-kye)
SO T - ™ - ) -1

Cese 11} If £< K, 2 <k, or k +k, <L, then one of the three

. ocurves E,, E,, or D is a canponent of all the curves in guestion, and,
‘in general, this family is also superasbundent, i.e., 1ts dimension is

bigger than that predicted by (*}.

Another way of telling the "good" from the "bad" systems of ourves
1s this:

the syatem of curves
linearly equivalent
tok1E1+k2E2+£D ﬂ>1c,'

1s the family of hyper- <==> L3>k,
plane sections of F K . ]
for some embedding of B 1 ke

in PN

Here the conditlon on the left defines the notion: KB, + kB, +
D is very ample.
With all this data before us, what questions emerge as_the natural

mes to pose in studying the curves on 2 general surface F 7 I think
four basic lines of study are suggested:

(1) the problem of Riemasnun-Roch: Given a curve ¢,
to determine the dimension of the linear system of curves
containing €. We shall see below that this is equlvalent
to the problem of computing
- dim B(8)

where © 1s a sheef on F, locally isomorphic to the shesf
op of regulsr functions.

{i1) +the problem of Picard: To deseribe the family of
all algebraic deformaticns of & curve (¢ modulo its linear
subfamilies. Tt turns cut that this quotient is independent
of €, 1f ¢ 1s good, and this quotient leads to the Picard
scheme and/or variety. '

s

L
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(111} Good vs. Bad curves: What makes ¢ good ang dadz
Ons can ask when 1s € very ample, when is © super-
abundant, what are the reslly bed "exceptional ¢ which
play the role of E,; E;, and D in Example 5 sbove?
Particularly significant is the question of the "regularity

of the adjoint” (= "Kedairs’s vanishing thecrem™ of. Lecture 14,

(1v} the components of the sst of all curves C on F:
Especially, what finiteness statements can be made? Ex-
amples are the theorem of the base of Nercn and Severi, and
the theorem that only a finite number of components represent

curves of any glven degree.




IECTURE 2 '
THE FUNDAMENTAL EXTSTENCE PROELEM AND

TWC ANALYTIC FROOFS

We shall analyze problem 11} mare closely.' The real nature of the
problem beccmes clearer when one passes from curves to diviscrs. By a
divisor cn F we mean elther a finite sum of irreducible, 1-dimensional
subvarieties, with (positive or negative) multiplicity: ¥ a0y, ny ez,
or a sheal of fractional ideals, i.e., a coherent subsheaf of the constant
sheaf’ K:

' K(U) = function field k(F), all U

(ef. Lecture 9 for precise definitlons). The set of ali divisors on B
forms a group, which we denote G(F). Put:

Ga;(F) = subgroup of divisors of the form C, - C,, where
01 s €, are algebraically equivalent curves,
GE(F) = subgroup of divisors of the form ¢, - Ce’ where
C.l = C,, or, equivalently, the subgroup of divisors
of form (£), £ e K(F),

Now if ¢ 1s any curve on F, end fc | @ € 8) is tie famlly of ali
curves algebralcally eguivalent to C = Gy, one can define a map:

modulo linear
s/ subfamilies Ga(F) /G!I (F)

by mapping o to the divisor Cy - Cy+ One checks immediately that it
1s always Injective, and 1t ¢an be shown that for sufficiently "good"
(1) curves, 1t is surjective. For this reason, problem (i1) becomes
independent of ¢, 1in most cases, and asks simply-what 1s the structure
and dimensicn of the group G, (F)/G)(F) invariantly sttached to F ¢

Again without proofs, we would like to menticn the cchanological
Interpretation of these groups:
Tet 0% = sheaf of units in the structure sheaf o
E* = shea? of units 1n K.
Then:
0—&9_*-.-12*——.5*/2*—0‘0

leeds to:
T
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o — B(E") /xx - EO(KJov) - H'(o®) — o
Fi] ]
@ (F) a{F

Therefore, G (F)/G,(F) 1isa subgroup of H (o¥), the so-called Picard

group of F {definable on any ringsd-spsce}.

Kow the work of Castelmuovo and Matsusaka has shown that the group
Ga(F) /GB(F) ‘can be given, In a natural way, the atructure of an slgebreic
group—in fact, an sbelian variety. The essential point 1s, however, what
is the dimensiont Here we have an existence problem: can we predict the
dimension of the set of sclutions of an essentlally non-linear problem by
means of some linear date, e.g., the cohamology of o coherent sheaf? It
wag conjectured by Severl that:

(&) , aim G (F) /G, (F) = dim H (0)

where o0 = structure sheaf on F,. (in his language, q = pg - pa). This
wasg proven by Poincaré in 1909, when k = ¢, and was disproven by Igusa
in 1953, wher char(k} # 0.

The simplest way to motivate (A) 1s to note that the term on the
left is a subgroup of H’(g*), and to guess that there should be acme
Xind of "exponentiel" from H' {9) to "' ©*), (ef. below). A second
way 1s to transform  (A) intc a statement concerning the deformations of
acurve C on F, and in this form, i1t is a speclal case of the general
Kodaira-3Spencer existence prchlem for deformations. To see this, suppose
sgein that {C,| @ € 8} 1s a famlly of deformations of € - Cy- Let XN
be the sheaf of sections of the normal bundie to ¢ in F (assume C is
non-singular); Then there 1s 2 fundamental characteristic map:

Tangent Space L,
to 08 st o o} B(W)

.

Roughly speaking, a small neighborhood of C in F 1is neerly isomorphic
to the pormal bundle to C in 7, whlle a curve (_,, for o near o,
defines & section of this neighborhocd: as o« =0 thersfore, these curves
can be asymptotically ildentified with section of the normal bundie to
in F. The key existence problem is now:

{B) for suitable (C,}, » 1s bijective

Incidentally, In this form, the conjecture can be equally well posed for
subvarieties in other varieties of arbitrary codimension, s.g., for de-
formations of curves in Pa. Unfortunately, it is false even iq char. 0
for same pesthologlcal space curves.

To connect conjectures (4) and (B), we use the exact sequence of
sheaves:

R TR R

R P e s

R

H
:
I

9

FUNDAMENTAL EXTSTENCE PROELEM: TWO ANATYTIC PROGFs
0 —vg-»g{c)—?—p N—0

where
o(C) = sheaf of functions with simple poles at G

¢ maps the funetion A/f into the normsl veector
field X such that X(df) = A

(Here f = 0 i3 a local equation of c.)

Then cne can show that, for "good" curves €, there is a commutetive
dilagram:

0 — Ho(0))/x HO () —— 1’ (o) 0
[+ [»] T - )
— [tang. sp. to} __, ftang. sp. to } _, ( tang, sp. to)_, .
° {so 5 5.5 {878 %%} G:?%)/gﬁ(mo °
at o

where 8 € 8 is the linear subfamily through o, and 8. mod linear
equivalence is identified to G, (@) /GI(F) Morenver, ¢ 1s always an
isomorphism. Therefore p is hiject:l.ve if and only if T 1s bljective,
and (A) is equivalent to (BY.

Before passing to our systematlc discussion, I would llke to sketeh
two proofs of conjecture (A) in case k = C.

Proof T (GAGA): Let Sy = sheaf of holamorphic i‘u.nctions [s!5} F‘
and let of C o, be the subsheaf of units. Then the exponential defines
an exact sequence:

) eawi{ b
O— T — o ot — 0o .
hence:
Hop) 222 ®'(op) .

But by GAGA:
- B(o) =~ &(g)
B(o" = ®(op) ,
hence there is an induced exponential on the algebraic level from " (9)
to I-I {0%).

Proof II {POINCARE): In this proof, the only GAGA-type assertion
We require will be that mercmorphic funetions defined on the whole of the

complex projective line P, are algebraiec.

We pick a pmice pencll of curves Gt on F, Lepr;. Let Jy be

"the Jacobian (or generalized Jacobian) of Ciy and let J =V Jt be the

variety of all the J‘ *s. Let p = genus (ct), and g = dim " {@). If
we deflne a q—dimensicnal family of sectionsof J over P then we can
define, for each section 8, a 0-cycle t( s} of degree p on each Cy,
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e !

T T
P

hence, a curve D(s) on F such that D(s) - Ct = ilt(s). One can prove
that this gives a g-dlmensional family of non-linearly equivalent divi-
sors. Moreover, by our remark above, it is the same to construct these
sections algebraicalily or holomorphically.

Recall that J " is obtained by considering the integrals of the
simple differentials with no poles on G;, modulo their periods: or,
what 1s the same,

Dual space of Ho(né )
J t

=

t
Iinear functionais given by pericds

where né = sheaf of simple differentials on Gt, with no poles, By
t
8erre duality on G,

1 o it
Dusl space of Ho(nct) = H (gct) .

Therefore, one obtains the gq-dimensicnal family simply by choosing
aeH (o), restricting o« to i (95.}, for every t, and mapping this
element to a point of J t by the abové identifications.

7

it

IECTURE 3
PRE-3CHEMES AND THEIR ASSOCIATED "FUNCTOR OF POTHTS,"

We first recsll the most basic definitlions and results in the theory
of pre-schemes: ’

19 Pre-schemes are (1ike all structured geametric objects) topological

spaces X, endowed with a sheaf of rings VSX {or o}, whose stalks are
local rings. Their characterlstic property is that they admit an open
covering {U,) such that (Yy, glUi) is iscmorphic (for all 1) to cne
of the standard pre-schemes:

a) as point set, the set of prime idesls p C A
b) as topologlcal spaces, a basis of cpen sets
is glven by the subsets
Zp = (plf ¢ p}, for fea
¢) its structure sheaf is defined by:

M o} = Arpy

for any cammutative ring A wilth 1.

X = Spec(A) =

Pre-schemes, &s local ringed spaces, are very "un-classical" in ap-

"pearance. In the first place , they are full of non-closed polnts: we

shall say that a closed subset Z in a pre-scheme X 1s irreducible if
1t 1s nct the union of two properly smaller closed subsets. Then one
finds: glven any irreducible closed subset 2 in X, theré is cne and
only one point 2 € 2 such that 2 is the ¢losure of 2. This z ig
celled the generiec point of 2. Since, if A 1s a noetherian ring, the
closed subsets of Spee (A) will setisfy the descending chain condition,
a scheme such as Spec (A) bag in general plenty of irreducible closed
subsets, hence plenty of non-closed points. In case all the local rings
9y &re nostherien, one can introduce & numerical measure of the non-
¢logedness of points by:

codim {x) = Krull dimension of Oy
and, consequently also for the slze of irreducible subsets:
codim (2) = codimension of“the generic point of Z.

This has the good property: if Z, ; Z, are two closed irreducible sub-
sets with generlc points z,, 2z, (l.e., 2, 1in the closure of Z,, but
1%
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not vice verss) then: .
codim 2, > codim 2,

and codim z, > codim z,

(For-proof, chsck that o,  1s a localization (g, )P for & prime 1deal
2 ™
. pCo,, P notmaximel.]
1

The following simple property, given directly in terms of the data
of a local ringed space, distinguishes pre-schemes from most other local
ringed spaces:

Propogition 1: Iet X be & local ringed space, x € X, and 9, the lo-
cal ring at x. Iet

8, = [y € X| x 1s In the closure of y).

Then if X 1s a pre-sdheme R sx with its induced topology and sheaf of
rings 1s isomorphic to Spec (gx) .

fpProof: Reduce to the case X affine, where it is clear.]

Even leaving out non-closed polnts, pre-schemes are very un-
Heusdorff: Look at X = Spec k[Xl, the affine line over an slgebralcally
closed field k. The prime ideal (0) glves the generic point, and, for
all o e k, the prime ideal (X - @) gives 2 closed point Py € X
These are the only point.ss_‘of_ X, and every open sget is of the form:

X - U

P
o e (finlte) ¢
. . set
In particular, no two open sets are disjoint.

Another unclasgsical aspect of the pre-schemes should be stressed
at the cutset. Just as in any locel ringed space X, & section f €
(7, -9-}()’ for U CX open, can be regarded as a function on U. At a
podnt x € U, its values are taken in the residue field ¥ (x) of the

stelk o., eand the value of f is:

f(x) = image of £ in H({x) .

However, 1t is quite possible that f # 0 while P£{x) = 0 for all x.

It is this aspect of pre-achemes which was most scandalous when Grothen-—
dieck defined them. BSuppose U = Spec (A), and f € A. Then, in fact,
such sections f are easy to describe:

The following are equivalent:
i) f{x) =0, all xe T
i1y f e p, all prime idesls p C A,

111) f is nilpotent, (since in 4, Y(0) = {1  p 1)
all prime
ldeals

PRE-SCHEMES AND THEIR ASSOCIATED "FUNCTOR OF POINTS" 13
2% Ir X and Y are pre-schemes, the morphlisms f frem X to Y ave
taken to be arbitrary morphisms of ¥ and Y as local ringed spaces;
i.e., continucus maps :

f1: X—=+Y
plus homomorphi sms
£ oy = filoy)
inducing local homomorphisms on the stalks. The key result in interpret-
ing these morphisms conceretely 1a: '

THEOREM 1: Let X be any pre-scheme, and let ¥ = Spee (A)}. To
any merphism f£: X — ¥, one can attach a homomorphism: E

A= (Y, oy) — DY, fyop) = P(X, o) -

This sets up an iscmorphism

lHom(a.s pre-schemes) X, v = Hom(as rings with 1)(A’ T(X, 9}())

Corollary: The category of affine schemes (schemes of type Spec (A)) 1s
equivalent to the category of commutative rings with 1, after reversing
arrows. :

Example: If k is e field, a morphism f: X - Spec (k) 18 equivalent
to maldng £(X, gx) inte a k-algebra; or, locally, 1f X is covered by
open sets Spec (Ai) , to maidng each Ay = k-algebra, so that each stali

Oy x Pes a unlque k-algebra structure.
>

Remark: Suppose f: X = Spec {A)}) corresponds to the homcmorphism
o: A-T({X, gx) . The map f, as 2 map of sets, is reconstructed from
¢ as follows: let = € X, and let Py be the composition:

A= (X, o) 0o, .
Then £(x) corresponds to the prime ideal
! {(me)

where m, C Oy is the maximal ldeal,.

Px

The more classical pre-schemes are characterized as follows:

Proposition-Definition. ILet f: X =¥ be a morphlsm of pre-schemes.
Then f 1s said to be of finite type, 1f either of the following two
equivaelent statements 13 true: -
{1} there is an affine open covering Ui = Spec (Ai) of ¥,
and for each 1, there iz e finite affine cpen covering vij =
Spec (Byj) of £7'(U;) such thst for each 1, J, Byy as an
Ai—algebra of finite type, B
(11) for all affine open sets U = Spec (A) in Y, £ (U}
i1s gquasi-compact (i.e., every opsn covering admits a finite
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‘aub-covering), snd for every affine open set V = Spee (B}
~in £ (W, B is an A-algebra of finite type.

Definiticn: Iet k be a field, then a pre-scheme X, plus a morphism
m:: (k) 1s said to be an algsbralc pre-scheme /x if £ is of
fimite type. Moreover, if k is algebraically closed, then we will call
X & pre-variety f/k if X ditself is Irreducible, snd 0y has no nil-
potent elements ("X 1s reduced"). This is equivalent to saying that X
is covered by affine open sets Spec (A;), vhere the A, are integral
domains in the same field X, and the prime ideals (o} _C Ay all corre-
gpond to the same point - x of X with stalk Qx,X =K.

3® sinee the points of a pre-schems ere so odd, it might be thought that
they don't play exactly the same role as points in other gecmetrie theo-
ries. (This is true.) It 13 natursl to ask the question: What 1a the
categorical meaning of pointst With respect to thls question, the cate-
gory of pre-schemes exhiblts slgnificant structursl differences from other
categories.

Bxample 1: Let C - category of differentiable manifolds. Iet 2 = the
manifold with one point, Then for any manifold X,

Homc(z, X) = X as a point set .

Example 2: Iet © = category of groups. ILet 2z = Z. Then for any group
g,

ch_nc(‘z, G) = @ == a point set .

Example 3: Iet C = category of rings with 1 (and homomorphisms f such
that f£(1) = 1). Iet 3z = Z(X]. Then for any ring R,

Homg (2, R) = R as a point set .

This indicetes that if C 1s any category, 2nd 2z is an cbiect,
cne can try to conceive of Hcmc(z, X} a3 the underlying set of points
of ths object X. In fact:

X+ Homy(z, X)
extends to a functor from the category € to the category (Sets), of
sets. But, it 1s not satisfactory to call Homc(z, X) the set of points
of X unless this functor 1s faithful, i.e., unless a morphiam f from
X, to X, 1s determined by the msp of sets:
T Hamg (2, ;) = Hoamg(z, Xp)

Example 4: Iet (Hot) be the category of CW-complexes, where Hom(X, Y)
ia the set of homotopy-classes of continuous meps from X to0 Y. If
Z = the 1 point camplex, then

Hom(Hot)(z, X = =y(X) (the set of camponents of X}
and this does not give a faithful functor.
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Exemple 5: ILet C = category of pre-schemes. Taking the lead from Ex-
amples 1 and 4, take for z the flnal object of the category C: =z
Spec (2). Now

Hom,(3pec (Z), X)
is ebasurdly small, and does not give & faithful functor.

Grothendieck’s ingenious idea 1s to remedy this defect by consid-
ering not one 2, but all =z: attach to X the vhole set:

U H , X .
; oma (2, X)

In a natural way, this always glves & faithful functor from the category
C to the category (Sets). Even more than that, the "extra structure" on
the set U, Homs(z, X) which characterlzes the object X, can be deter-
mined. It consists in:
(1) the decomposition of Uz Homp (2, X) into subsets
3, = Hom,(z, X), one for each z,

(11) the natural maps from one set 3, to ancther G
given for each morphism g: 2'-+z in the category.
Putting this formally, it comes cut like this:

Attach to each X in G, the functor by {contrsvariant, from C
1tself to (Sets)) via

{(*) hy(z) = Homg(z, X), = an cbject in G,
** ) = induced map from Hom.(z, X) 1zl - nl
(**) hy(g p from Hgﬁng(z*,x)} g %'~ 2 & morphlm

Now the functor hx is an object in a category too: viz,
Funct (C°, (Sets)),

{where Funct stends for functors, ¢® stands for C with arrows reversed).
It 1s also clear that if g: X, =X, 1s & morphiam in G, then one cb-
taina & morphism of functors h,: h'K - hX . All this amcunts to a
[23 1 5
functor: .
h: ¢ = Funct (C°, Sets)).

Proposition: h is fully faithful, l.e., if X,, X, are objlects of C,
then, under &L,

Hamg (X, , Xp) = Holpnoy My by}

Proof: TUtterly trivial.

The conclusion, heuristically, is that an cbject X of C can be iden-'
tified with the functor hX’ which is basically just a structured set.

The exampies of algebraic geometry: If X is a pre-scheme, then mor-
phisms from & to X, i.e., elements of hx(S), will be referred to as
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' S-valued points of X

T
° 3-rationel points of X .

For example, very lmportant is the case 2 = Spec 8, 4 en algebraically
closed field. Then O-valued points of X are called gecmetric polnts

of X (with respect to @). The full functor hX is the absdliute func-
tor of points of X. Equally important in slgebraic gecmetry, ‘however,

is the relative cage-here one fixes a hase pre-scheme & (such as Spec

(k)), and one looks at the "relativized category”:

(*} all oblects are pre-schemes X, plus structure
. morphisms f: X =35, ¢
{(**) a1l morphlisms are morphisms g: X1 — X, such that:

X
1

g X,
N /2 cammites.

3

{4n enalogous example is the category of anslytic spaces, where 35 -
Spec (C}: & morphism of analytle spaces is required to "pull-back" con
stant functlons to constant funetions.)} :

4s a Pinal illustration, we contrast two exemples: let C = cate-
gory of algebraic pre-schemes /k, where k- is an algebralcally closed
' field, and let Go be the full subcategory of reduced algebraic pre-
schemes. If =z = Spec (X), then the "points" hy(z) of an algsbraic
scheme X are preclsely: :

1)
1)
ii1)

the elosed points of X as a scheme,

" the k-valued points of X, as defin 4 sbove,

if X 1s reduced, then the "points" of X in the
clessical language, e.g., in Serre's PAC.

z 1is even a final object in the category €. Serre's treatment becomes
very simple insofar as X = h}(( z) 1s a falthful functor so long as one
gtlcks to the subcategory Co: these pre-schemes may as well be thought
of as sets of k-rational polnts. PBut X= hy(z) is not faithful on ¢,
due to nilpotent elements, and one must look at the whole functor hy
o C.

=

L

IECTURE b
USES OF THE FUNCTOR CF POINTS

1% Grothendicck's Existence Problem: First of all, if $ - Spec (R),
an S-valued point of a pre-scheme X will be called simply an R-valued
point of X. An R-velued point 1s simply a generslizatlon of the concept
of a solution of a set of equations in R. Thus suppose

f1,..., f, € z[x,,..., an

X = Spec z{XI/(f) .
Then one checks immediately that an Rk~valued point of X 1is precisely a
solutlon of the equations

fi(cx”..., c:n)=0, 1<i<m

with aj € R. The interesting point is that & pre-acheme is actually de-
termined by the functor of its R-valued points as well as by the larger
functor of its S-valued points. To state this preclsely, if X is a
pre-scheme, let 19) pe the covariant functor from the category (Rings)
of commutative rings with 1 to the category (Sets) defined by:

h-_;((o)(R) = hy(8pec R) = Hom(Spec R, X) .

Regarding h._)({o) ;3.3 a functor in X in a natural way, one has:

THEOREM: For any two pre-schemes Xy X
Hom(X,, X,)=> Hom(h:,((?), h)(cz))

Hence h(o) is & fully feithful funector from the category of pre-schemes

“to

Funct ({Rings), {S8ets)).

This result is more readily checked privately than proven formally,
but it may be instructive to skeitch how a morphism F: h)(co) - hfco)- wiil
1 2

induce a morphism f: X, = X,- One chooses an affine open covering
U:L = 3pec (Ai) of X,; let

L,: Spec (Ai) =T, X,
be the inclusion. 'hen L; 'is an Ai-va.lued point of X,. Therefore,
17
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ez

F(Li) =f; is an Ai-va.lued point of X,, l.e.; f.‘i defines
U; = Spec (A;) = X,

[

Modulo s verificatlion that these f; patch together on U, n Uy, these
Ty give the morphism f via
T
i
Uy Xz
n £
x‘l
Grothendieck?s exlstence problem comes up when one asks: Why not
{0}

identify a pre-scheme X with its corresponding functor by, and try
to define pre-schemes as sultable functors:

F: (Rings) = (3ets)

The problem is to find "natural" conditions on the functor F to ensure
that-it is isomorphic to a functor (o)'. For example, let me mention

one property of &ll the functors hj({ ) which was discovered by Grothendieck:
{Compatibllity with faithfully flat descent):

‘Iet q: A—B be a homomorphism of rings maldng B into & faith-
fully flat A-algebra, i.e.,

(*) Y ideals I C A,
108 % I.B, and q '(I.B) = I.

Then, 1f p,, Pyt B= B®, B ere the hamomorphisms g~ p® 1 and
B=1® B, the Induced dlagrsm of sets:

F{p,)
F(8)—FD | p(p)ml — p(B ® BY
T F(p,) A

is exact, (i.e., F{q) injective, sand Im F(q) = [x:P(p,)x = Flpy)xl).

This approach to the definition of pre-schemes, or of objects in
other categories has been used, for example:

(a) by Matsusake—the theory of Q-varieties is basically an
attempt to look at the properties of more general functors P,

(b) by Tate—to glve a definition of a glcbal y-adlec analytic space R
by a suitable functor F, which cen have more structure than a
mere loeal ringed space, 7 :

{e) by Murre—in the case of functors from (Rings) to (Groups),
vwhere a satisfactory solutlon to Grothendieck’s existence

) problem seems possible,

(d) by Brown—in the category (Hot) , "essentially" all functors

turn out to define CW-complexes.
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2% Set- theoretlc operatlons lifted to categorles: by using the functors
, a concept in the thoery of sets may be often defined in a.rbitrary
categories C:

Case 1: "One point." The obJect X 1in C which is the anslog of "one

point"” should be that objeet whose functor satisfies:

hy(8) = & set with one element,
for 211 8. Such an X 18, of course, called the "final object" of C.

Case 2: "Group cbjects" (or, by cbvious generalizations, a "ring object,”
"rield object,” etec). One can say that X has the structure of a group
oblect in C irf
(i} for all 5 in G, one endows the set h.x(s) with,
the structure of a group,
(11) for all s-f-—» 3!, in C, the induced map of sets
hx(f): hx(S‘)-"‘ hx(S) is & homomorphism.

Equi'valently, cne asks for a 1ifting of the functor hx:

g —-—- - (Groups)

. hx (Bets)

If one applies this concept to the category of pre-schemes /S, the
cbjects sc defined ere called group pre-schemes /3. If 8 - Spec (2Z),
1.e., cne considers the category of all pre-schemes, the cbjects are
called absolute group pre-schemes. I wlll give two examples of such group
pre-schemes: '

{a} let = ©De a finite group. Consider the functor P such

that:
. F(S) = =,

for all connected pre-schemes & (the maps all being the
lgentity from n to = ). More generally, one is forced
to put:

continuous functions ¢ from
F(3) = S to ¥ (with the discrete topology on )

Then F is represented by

one copy for each o

= Spec (29 Z®...8 1) = 8pec (2™

{check this via Theorem 1, Iecture 3), and = 1s the ab-
solute group scheme corresponding to .

gpec (2/2),
Y. Consider

(b} Work in the category of pre-schemes over 8
i.e., those pre-schemes where 0 = 2 in r(X, EX
the functer F defined by:
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f‘(}{) = {g € T(X, QX)I a® - 1)
(a group under muitiplication) .

F 1ls, so-to-spesk, the set of square roots of 1 in
characteristic 2: non-trivial such s certainly exist
in rings with nilpotent elements! F 1s represented
by

o spee {(2/2}{X1/(X% + 1))

(check vla Theowrem 1, Iecture 3).

Cese 3: "Hae-objects.” Suppose € is a categery where products exist
'(cf. below). Then one can try to lift the set Hom (X, ¥), for two ob-
jeets X, ¥, into a third cbject Hom (X, ¥} in C. One method is by
the "associativity formula®: .

Hom (S, Hom (X, ¥}) = Hom (S x X, ¥) .

If one asks for the above iscmorphism of the left and right toc hold be-
tween both sides as functors in 8, this dstermines the functor

hHom(X vy w to isomorphism, and hence determines the object Hom (X, ¥).
el ]

3° pibre products and their uses: by far the most important categorical
notlon for algebraie geometry is that of fibre product. One is given a

diagram:
X Y
q1\ / P
Z

(%
Ir XY a.n.d Z are sets, then the fibre product 1s simply

x;y = {(x, V]l xeX, yvyev, 4, (x) = qu(y))-

If X, Y and Z are cbjects in a category (, one can at least form the
functor: :

F(3) = ny(8) W S -

It hw =P, then W is writ.ten X %z ¥, and called the fibre product,
Ons checks that to find W 1s the same thing as completing (*) to:

1 2
x/ \Y
A Aa

Z
with the universal mapping property:

(commuting)

B R A

25
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{(OMP) for all cbjects 3, and morphisms 8 L—-x, 8 LY, such that

B, X Xy Y such that

f=p, oh g= Pz e I, This h will be written (r, g)z or (f, g).
The notations D, and Dy will always be used for the projections of
X Xz Y. The basic result is:

gy » I =2q,* g, there i3 s unique morphism 3

THEOREM: In the category of Pre-schemes, fibre products always
exigt., (Of. EGA, Ch. 1, §3.) This should be used in conjunction with
the more precise result:

Spec A % Bpec B = Spec (A ® B) ,
Spec © c
and the fact that, if UCX amd V CY are open subsets, then U xgV
1s an open subset of ¥ Xg Y. The proof of both results 1s very easy.
Encwing what fibre producta are, we can define many cperations and con-
cepta: :

Application 1: Field extension—as in classical algebraic geometry. Iet
k C K be two flelds, and let X be an algebralc pre-scheme over k.

To consider the "same" X over the larger rield K, one forms the fibre
product:

Spec (_K) (= Xk, perbaps)

X x
Spec (k)
X / ,
Spec (K)
Spef.l‘. (k)/

For example, suppose K =9 1is slgebraically closed. As an applicetion
we prove:

ts

Propositicn, The following sets are canonically isomorphic:
(1) the geometric points of X (with respect to a),
(11) HQmSpe_c(k) (Spec 7, X),
(111) points x ¢ X, plus k-injections

K(x) —»a (H(x) = residue fieid of o),

(iv) Homg .. o (Spec 8, X.),
(v} closed points of Xn.

Proof: (1) and {ii) are equal by édefinition. Theipr equality with (ii11)
Tollows immediastely from the definitlion of a morphism in a local ringed®
space. The equality of (1i) apnd (iv) results from the definition of ths
fibre product X,+ To check the equality of {iv) and (v), we may assume
X, 1s the affine scheme Spec (A), where A is a finitely generated
algebra over 1, then

Homspec g (Sree g, X)) - Hom, (4, @)
and cne uses the well-known:
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(*} if mCA is a meximal 1deal, then A/ m =4q.
. - | D

* Application 2: Fibres of a morphi_sm. Iet f: X—=Y Dbe a morphism of
pre-schemes, and y € ¥ be eny point. Iet H(y) = residue field of O 1

¥ determines s canonical morphi sm: 1 y
. ¥
Spec H{m Y
via the pt. — ¥y
{ H (¥} = o_. (canonicalily)

v
‘Qne forms the fibre product:

s = 716 }
/x;;_ pec H(y) = £ (7)), or fx

X
r

/Spec 887)
¥ y

This i1s ths scheme-theoretic fibre of f. Similerly, iff g: Spec o — Y
is a geametric peint of ¥, then the fibre product:

: X X Spec a
/ Y
x I
£
Spec o

Y —F

is called the geometric fibre of f over the given geometric point, In
this lanpuage, one has the droll result:

Propositio:i: Iet k CK be two fields, and let f: Spec K—~ Spec k be
induced by the inclusion of k In X. Then,

{K/k is separeble] <w-- [ one (and hence all) geometric fibres
of f are reduced schemes

(Proof is left to reader.)

Applicaticn 3: Direct definition of a group pre-scheme /3. After all,
& group is simply & set X plus three maps:

mult: Ax X=X

inverse: X=X

identity: fe} = X

satisfying well-known relaticns, Therefore ; 8 group pre-scheme X/8 con-
sists. in the functor hy (on the category of pre-schemes /3) Plus three
morphisms of functors: '
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mult: he x by = hy -
Inverse: hx i 'hX
identity:

{1 elt. functor} — hx

gatlafying the ssme identities. But: (=) hy x by iz isomorphic to
by xgX? and (b) {1 elt. functor) is isomorphic to hg, S5 being the

final objlect in our category. Therefore, X 1s a group pre-scheme /s
1f one is given three morphisms:

mult: IxX—X
]

inverse: I—X

ldentity: 5—+X

satisfying the same identities.

A final polnt not to be forgotten: if X 1a a group pre-scheme
/8, for all T/3, the T-valued points of X form a group: but in no
sense do the ordinary points of X form a group {even if S = Spec a).

Application b: Definition of a scheme, Iet X be a pre-scheme, and let

1X: X=X be the identity. The induced morphism

A= (1x, 1x): X=XxX
1s called the diagonal. '
Proposition-Definition: X is a scheme 1f equivalently:

1) A(X)}) 1s closed in X x X, £
ii) for every palr of morphisms Y

1
fp
{y e Y| (7 = £,(y)) is a closed subset of Y

X,

Progf: 11) ws=> 1) by taking ¥ =X x X, £; - 1*" projection p, of

X% X on X; 1) ===> 11} by factoring 'f.‘i:
(£y,55) P
Y XxX X,
Py
and noting that
ly e ¥l 1,3 = £,30 = (£, £ (aR)] .

QED

From now on, we will deal only with schemes, unless otherwise -
apecifiled.
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APPENDIX TO LECTURE %
RE FEPRESENTARIE FUNCTORS AND ZARTSKT TANGENT SPACES

As an application both of the conceptsof functors and of nilpotents s
we connect these to the geometric concept of the Zariskl tangent space.
Assume that X 1s a ascheme over a field k, and that x€ X is a k-
rational point, 1.e., the glven honomorphism k = O induces an isomor-
phism k <=+ K(x). :

Definition: If m C Oy 1z the maximal ideal, then the dual vector space

to m/me is the ZE.I'iSki tengent space T, to X at x.

Now consider the interesting class of schemes:

Definition: If V is a vector spaece (elways finite dimensional) over k,

let
Iy = 8Spec (k@V),

where k &V 1s a ring via Va - {0). HNote that one has two homomor-
phisms:
k

keVv

{via @ + a4+ 0; @+ v = o), hence two morphisms:

Spec k Jz I .
We work entirely in the category of schemes and morphisms cver Spec (k).
Now suppose f: IV- X 1s any morphlam over 3pec (k). IV' has only
one pelnt, and its image under £ must be a k-rational point x e X.

Then f 13 determined by =x, and by 2 locel k-homomorphism:
f*

Or kov.

But £* 1s just & linear map fram m/m° to Vv, i.e., an element of
Ve, T+ This glves:

Proposition: For all schemes X/Spec (k), there is a natural iscmop-
phism between

Homk(Iv, X) and fk-rational pts x e X, plus elements of V ®k T, 1.
In particular, regarding k as a i1-dimenslonal vector space over

itselif, the subset of Homk(Ik, X) with given image x 13 iscmorphic to
25
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the tangent space T, itself, i.e., the Zariskl-tangent-space can be re-
covered fram the set of I -valued points of X. :

In fact, even the vector-space structure on the set of Ik-va.lued
points with given imege can be defined directly in terms of the functor
of points of X. More than that, there is a very general class of contra-
variant functors F (from schemes [k to (sets)) for whlch cne can in
the same way define Zariski tangent spaces, even though they msy not be
representable.

To see this, fix such a functor F. Then the set F(Spec (k)) 1s
the set of k-rational peints x - of F. Fix cne such x. For all vector
spaces V, the subset of F(Iy) "whose image point is x" cen be inter-
preted as: .

F(Iyly = (&€ F(Ip)| "e) = x in F(Spec (K))) .

(vhere J: Spec (k) — Iy is the morphism defined shove). I claim that
for "reasonsble" functors F, the set F(I,), hes a cancnical structure
of vector space and that this ig the tangent space to F at x! The
property F must have is:

(*) for all vector spaces Vi, Va3
Py g, x =5 BTy Y FlIy )y

[where the map is given by the projecticns V, & V, — Vi which induce
morphi sms -+ hence maps F( Y, (I, ) 1.

v, = Iyev, Tyev,x ™ Flly x

Agsuming this, fix &,, e, € F(I,),, and «, p e k. Uhat 1s

at, o+ BER Well, use the diagram:

. ~ 4 ]

Iy x Py “=Fllygdy EBlerpry,
where [e, B] is induced by the homomorphism (¥, s8) — {&y + ps) from
k®dk to k. The Image of £, X &y is defined to be o - £, + B - Eg

We leave 1t a3 an exercise to check that this does make F(Ik)x into a
vector space.

e
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LECTIURE 5
Proj AND INVERTIBIE SHEAVES

So far, the only schemes which we have constructed have been affine
gchemes Spec (R). We now introduce a second fundsmental construction

Prof (R} which attaches to a graded ring:

o0
R = z Rn
n=0
& scheme which is almost never affine.

a) as point set, the set of hamogeneous prime
ideals p C R, such that

@
P pz Rn )
n=1

b) as topologlecal space, a basls of open sets
1s gilven by the subaets
X =Pro] (R) = )
s X, =[p| £ ¢p), for £eRy, n>o,
¢} as local ringed space, its structure sheaf
is defined via:

MXps o) = Ripyl(o)
subring of R(f) of elts. of
degree 0.

It

Proposition 1. X is a scheme {(n.b. not Just a pre-scheme).
High Points of Proof: One shows that

X z_Spec [R(f)](o)

by mapping a homogenéous prime p C R (such that £ ¢ p? 0o p - R(f) fn
[R(f)](o); the topologles correspond in virtue of

Xp 0 xg = xf.s = [open subset of Xp defined by { peci }y # 0]

where 1 ¢ Rm, g€ Rn-
The most important Pro] is:
P, = Proj Z[X,, X;,..., X,l.

Incidentslly, the actusl "appearance” of P, can be deseribed scmewhat-
27
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we have divided up points via the dimension of their stalks, and via their
images in 8psc {Z)}; also the closure of 1/5 and ¥=t are "illustrated":

GENERIC PES ovER ) o CODIM 0

coom . , '} ) THE GENERIC
:::_:::'_-;:-::: ":::::\ h _f\ POINT
™ :!f | 'STALK Q(Xy/ %o}
!
1! !
It ,'
; 175
I ] cooms
convueacy J ¥ FT:
: CLASSES OF ] % i !
CODIM 2 NOS. 3 R
OVER Z/(P} “f i
e A
— . , — 4 } SPEC(Z)
] L) kny Ly ST —
2) (3 (5) (7} {P) (o]}

STALK Z(p) STALKQ
Exercise: What ia the point (*)?
A more weighty question is what are the S-valued points in P
i.e., what is the functor of h.p The answer to this gquestion involves

ua immediately In a new concept.:

Definition: If X is a2 local ringed space, a sheaf £ of gx-modules
such that there exists a covering EU’ii of X for which

P.IUi nghji ’
-_ as _o_x-modules,

1s called an invertible sheaf.

More coneretely, what 1s such an £ 7 Since locally it 1s isomor-
phic to Ok the essential part of £ is in the patching: i.e., ¢
can be conatricted by starting with Oy on each Ui' and patching these
2s sheaves of op-moduies on Uy N Ui' But ‘

HoMys sheaves or (2lujnu,» Sxlyyry,) = T(Uy 0 Ty, op)

_c_)x-modules
[wh.ere' h ¢ Hom corresponds to h(1} € r{l n j’ X) snd f ¢ r{U; N
ox) corresponds to the homomorphism given by multiplieation by fl.
Ncrw define:

Definttion: An element s € T(U, 3}{) 1s & unit 1f equivalently:

. 1) there exists a muitiplicative inverse s e r{T, _gx)
or 1i) for all x € U, the induced element s, in o, is not in
‘ © the maximal ideal m. '

i
1
2@

R A I T
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It 1s c¢lear from (11) thet the units form a2 subsheaf of Oy ~which we will
genote of. . It is clear from (1) that o isa sheaf of groups under
mzltiplication. Now it is clear that the lsomorphiams of o with itself
are:

183y sheeves of (Oxly ouy °x|U ny,) = units in T(Uy N Uy, o)
ox-modules

Therefore, to construct £, g¢p must be patehed to itself ‘on 0, n '(I.j by
miltiplication by a unlt 844 OVer Ui n UJ‘ Sinece all these identifica-
tions must be compatible on T; 0 l.'IJ n U, it follovws that:

siJ-sjk-sld_=‘lonUinUJnUk.
This meens that [s ) form a 1-Czech co-cycle, and we have defined an
element i of H (X ojg) The main, but elementary, result in this di-
rection is: _ ' :
Proposition 2: » depends only on £, angd this sets up an isomorphism
between the set of lnvertible sheaves on X-modulo isomorphism—and the .
set H (X, o).

i

| Definition: Pie(X) = H' (X, of).

.Remarks: A) Ple (X) 1s a commtative group—this is clear aince g_i is
a sheaf of groups. More directly, if £, end 22 are invertible sheaves,
their product is 21 [ 22; and if £1 is given by the co-cycle sij_with
respect to (U;}, and 1, is glven by t;; for the game covering, then

e 2, is simply the sheef given by the patching 814 ° t:Lj'

N . B} Ple (X) 1s a contravariant functor with respect to X. Glven
any XL Y, there is & homomorphlasm o -f—*-gi, hence an induced
homomorphism of H'’s. More directly, if & 1s an invertible sheaf cn ¥,
then f#(2} = S ®°§[ 2 is an invertible sheaf on X; sand if 2 is

glven by the co-cycle Sy4 with respect 5o {Ui} then f*(2) is given
by the co-cycle f*(sij) wilth respect to {r (Ui)} Note also that sec-

tions
- s € T(Y, &)

Induce sections

1

f*(s) e n(X, £*{2)) .

SR C) BSuppose s is a seotion of an invertible sheaf £ on X.
Then although s does not have values at polnis x € X, 1t does make
sense to say s8{x) = 0 or s(x) # 0. Namely, if we chocse an iscmcrphism

" of £, and o, and If s corresponds to g€ Oy, Tthen at least whether

In particular, one has the subset of X°
S:{xex | 8(x) ;éo]

which is easily seen to be open. These open seta inelude as special cases

‘the value g(x) € H{x) of g is 0 or not is independent of the isomorphism
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the open sets xf used to deflne the topology both of Spec (A) and
Proj (R) . (ef. below (iv)).

Returning to Proj (R), assume that: ¢

(" Ry 1s sperned, as Ry-moduls, by K,8...@ R, .
Then we find that ProJ (R) has more structure:
i} X = Proj (R) is covered by X, for T € R,.

[Proof: If xe X - UXg, then x corresponds toa p CR such
that a1l f in R, earein p; Tus R, Cp, and IT R, C p, contrad.]

i1) on Xp N Xg, f/g 1s a unit. Therefore the covering (Xpl .
and the units /g define & 1-Czech co-cycle on Proj (R),
hence an invertible sheaf. This 1s called of1).

111) If ofn) 4is the nth tensor power 2(1)&" of oft), one
has & canonical homomorphism

P
R, -2 r(x, o(n))
whlch is the geometric significance of the graded ring R.

[Congtruction: o{n) 1ls defined by the co-cycle (£/)? for the
covering (Xc}. If ke R,, then k glves rise to the sections k/t?
. of oy om Xfi since these differ precisely by factors (f/g)n on
Xp 0 Xg, they pstch up as sections of ofn).]

1v) One checks that, for k € R;, the open sets X, defining
the topology on X = Pro) (R) are the same as the open sets
an(k) defined as In C) sahove.
Let us apply thls new information to study the structure of the
functors hProj (R} Given an S-valued point

s L pror 1)

of Proj (R), one obtalns on S an Induced Invertible sheef f£#(o(1)) on 8.
Putting this functorislly, one has a very basic morphism of functors:

h’ProJ (R) - Fic .

This is interesting from two standpolnts: 1t explains the non-triviality
of the funetor of polnts of a Proj; and it is a beglmning in representing
the functor Pilc. Although it may seem strange to view Proj (R), or p_,
&3 approximate group-schemes, really representing Plc, thls 1s qulte ac-
curate in the category (Hot). Here we have the CW-complex ¢ L { complex
projective n-space) and

' cp, "~ CP,,
hence

| Proj AND INVERTIBLE SHEAVES L

[i‘unctor represented] - [fu.uctor represented:l
by ¢ P, by cp
U
, ) functor
_ [ 8= 83, z )J

W
[f‘unctor
S = group of topological
equiv, classes of
line bundles on S

via ¢ p, = Eilenberg-Maclane Space K(Z, 2) .
We can now glve the explicit description of the functor 'h'P which
we have been driving at. Iet n
¥ e rlpy, o01))

correspond as in (1ii) to Xi in the R;-component of z[Xo,..., Xn].
Then for all S ~— P,, one cobtaina:

2 = f*(o(1))
s; = D*(X) € r(s,8)

3

- Propogition 3: fThis glves an isomorphism:

hy, (8) = (23 85,..+, 8,)| £an invertible sheaf on S,
n 8gs+++s 8y Sections of £ e
such that for 281l x € 8, modulo

there 1s an 1 such that S
si(x) Z0

iscmor-
phizm,

Proof:; Not a difficult exercise, ({(cf. EGA 2, §4); f: 85— P, 1s
Elven by a collection fj: Ss;—" ( Pn)Xi’ 0 <1<n, vhich pateh to-

gether; since ( -Pn)X is affine, use Theorem 1, Lecture 3.
1

A nice Corollary ties this in with the elementery definition of
Proj. space over a field Ik—except we may as well at least replace k by
a local ring o:

Coroliary: If o 1s a leocal ring, the set of p-valued polnts of Py is
isomerphic to:
(g, eee, czn)] o; € o, not all o; in the max. ideal )

(G, eees o) ~ (Mg, ,0), all units » € o*

Proof: BSince Spec (o} 1%self is the only open subset of Spec (0} '
conteining the one clcsed polnt, it follows that Spec (o) has only one in-
vertible sheaf, Oapee | 0)* Since the automorphisms of Sapec (o) 2FE Pre-
clsely multiplications by units A € o*, the Corollary is a specIal case
of Proposition 3.
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As. a finsl point, 1t is interesting to give the generslization of
this last Froposition to Grassmannians. Before defining the actual Grass-
mannian explicltly, we can characterize 1t by giving its functor:

Dafinition: A sheaf’ & of gx-modules 1s locally ffee of rank r '1If
there exists an open covering EUii of X such that

el =ogly .
U, =Xy

Then the functor is:
locally free sheaves § of rank r on 8; plus (n+1)-sections
Sgr Syseccs By OII; & which generate &, 1.e.,

&y = z Sy " 8y, all x e S} modulo
1=0 iscmorphism

and the embedding in projective space via Plicker coordinates correspands
to the functorlal map:

8

L& 8y,00e, Sn]"'{ArE Foaees 8y Aualh sir,...}.
! t
one for each
0L, <kl K

S-valued pt.
of Grassmannian = S-valued pt. of a projective space.

Iet p = 8; Aeeoh 8 and & = AT §. Then the sections
Lyaeeeady = 51, 1,

Py ir gatisly the well-lmown gquadratic relations
'ELLETE :

b S o]

# Y (D py

- ®p Iy = 0
Tl 12 2!"’!11’_11-1}' 31’32’."’jh'."’jr+1

for any sequences it"“’ iI,_1 and jj,..., Jr+1 .
THEOREM : The sbove morphiam from the Grassmannian functor to the
functor of projective space 1s injective and its image consists precisely

of the S-valued polnts of rrojective space satlafying (#).

Proof: An S-valued point of the Grassmanmian can be regarded as
a surjective homomorphism:
QEH*—'L' §—0
Up to iscmorphiam, this point is determined by the kernel of ¢; since
the kernel iz a subsheaf of a fixed sheaf, 1f it is given locally, it 1s
determined globally. Therefore the result follows if, given any S-valued

.
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point of proJective space satlsfying (#), there is an open covering of 8
such that over sach open subset, the 3-valued polnt lifts uniquely %o a
point of the Grassmannian. Therefore, we can pass to an open set where a
fixed Pllcker coordinate

Py, 70
i.e., this p generates £ globally. The relations (#) can then be
"solved,” and one checks that they take precisely the form

5 .
, FleewsPy 03,000,,0,
Jipeeerd. © IS
1 4 Py ,...,1,)
whsre at least two of the ]’z are not in the set 1,,..., i, and where

F 1is a homogeneous polynamial of degree N i1n the r(n+1 - r) free

variables p. : . On the other hand, for the S-valued
Lyserrsdysersiy,d ’

point ¢ of the Grassmannian functor to induce a projective polnt where

Py N # 0, 1t is necessary and sufficient that 8y =08y },...,
greeesly 1 1
sir = q)(ai ) i1z 2 basis of the sheaf §. Then the ideal which is the
r

kernel of ¢ has a unique basis of the form:

r

[eJ -z B4y aik]j € £0,1,...,n)-{1,,...,1,]

k=1

(where o,,..., e, 1s the standard basis of of''). In terms of 83ps

the Pllcker coordinates come out:
L& IS ST .

r-k
8y = (=1} 5
IR DU

Therefore there is one and only one cholce of a'jk € T(S, 93) correspond-
ing to the given Pliicker coordinates. :
QED

Corollary 1: The Grassmannian functor is represented by

Gy p = Proj zl..., qu ORI 1/ (Quadz-s.tic#relatioqs) .

Corollary 2: The open set of G, , vhere p; , i # 0 1s isomorphic
S ey S , 10 -

may

to affine space of dimension r{n+l - 7).
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A further development of the theory reveals that the operation
Proj], as defined above, is of'ten too speclal. To understand ths generalil-
zation 1let R = Z;BO Rn be & graded ring. Suppose R, happens to be an
S-algebre; as such it gives & guasi-coherent sheaf
L]

Raz Rn ) 7

n=0

R-R, R, =R,

of gx—modules on X = 8pec (3)., Here R 1is actually 2 gquasi-coherent
greded sheaf of %{—algebrasl {a mouthfui, but simple enocugh}. The point
is that one can encounter such sheaves even on nen-affine schemes X,

Thus say R = Z;_o R, 13 such a creature on some scheme X. Then for all

affine open U C X,

L)
r{v, R) = Z rU, &,)
. n=0
iz a graded ring over (U, %(). ‘Therefore ocne gets a scheme Projlr(U,
R}1, together with a morphlsm

T : Pro] (U, R)— U .
One chseks (ef. EGA, 2, §3) that these patch together canonically to a
scheme Proj (R) together with a morphism:

T : Pro} (R)— X .
The following ls the most lmportant example: Iet E be & locally free

| . ©  sheaf of rank r on a scheme X. Put Ry, equal to the nth symnetric
- pover of E (a8 op-modules), and R = ZR,. Then cne writes:

P(E) = Proj (R) .

This scheme generalizes P, 1tself: il.e.,
[ ]
Pn = P ifo Xi b gspec z N

35
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On the othsr hand, it is not much more compllceted than ? for 1f E
i1s iscmorphic to the free sheaf (ox)r on the open covering [T.T } of X,
then over U:L'

[

PB Iy, = P ((op") o,

Pry in .

[l

{This follows from the general fact that if f: X—Y is sny morphism,
and R 1s a quasi-coheren. graded sheaf of Q_Y—algebras, thens

Proj (£*(R)) = Proj(R) ;X .

ef. EGA 2, §3.5.]

For p(E) ,' o(1) 1is constructed exactly as before, and one finds a
canonical homomorphlsm:

B =7, (0(1)})
(if 7 18 the projectlon from P{E) onto the base X}. Moreover, the
Induced homomorphism on P(E}:

T#(E} — of1)

is surjective. Now suppcse a morphliam g: S— X is glven. Then to any
lifting h:

h P(E)

T..

5

I3 X

we can associate the invertible sheaf T = h*(o(1}), and e surjective homo-
morphism: .
p: B*(E) = h*(mE) — h¥{o(1)) = L .

An easy genere.}iza.tion' of the result for P states that this sets up a
functorial isomorphism between the set of S-valued points h of p (E)
lifting g, and the set of I and ¢.

LECTURE 6
PROPERTIES OF MORPHISMS AND SHEAVES

N Affine ccncepts: Iet X = Spac (R). We recall that for all
R-modules, M, one can defins a sheef N of ox-modules ; Va:

(X, M - Mpys 811 fER.
This defines & fully faithful and exaet functor:

Category oi‘] Category of sheaves
R-modules of gx-modules

(1.e., (M, ) = Home (M, N), and 0=M=N—~F=~0 1s exact if

“ox

C+M=+N—+P—=0 is exact].

Definlitlon: A sheaf §F of gx-modules 1s quasi-coherent 1f ¥ is iso-
morphic to M, for some R-module M.

Example: Iet R be a diserete, rank 1 veluation ring with quotlent field
K. Then there ere two nonempty open sets in Spec(R): the whole space X, and
the generic point itself U, A sheaf F of oy-medules consists, therefore, -
in .

a) an R-module A = F(X); a K-vector space B = F{U),

b) =& homomorphism over R

) A-B.

This F 1s quasi-ccherent if and only if:

B=AG®K.
R
THEOREM 1: If X is affine, and ¥ is quasi-coherent, then
(A) § 4ia spenned, as Oy-module, by its ssctioms TX, F),
(B) HY(X, §) =(0), 1f 1> o.

We can now generalize these concepts in various ways:

Definition: Iet X be & scheme, A sheaf § of oy-modules 1s guasi-
coherent, if equivalently:
i) there exists a covering [Ui} of X by affine open sets,
such that §|Ui is guasi-coherent;
37T -
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i1y YU C X, U affine and open, §1U 1s quesi-coherent.
A very useful applicaticn of this concept is in:

Proposition-pefinition: ILet X be a acheme, A closed sub-scheme ¥ ¢ X
1s a local ringed space Y whose underlying topological space iz a closed
subspace of X, and whose sheaf of rings Oy 1s a guotlent of Oy 1l.e.,
one has 0-§—vgx—>g¥-o (4 & sheaf of ldeals in 9-1{)' provided that
equivalently § is quasi~coherent, or ¥ is 1tself s scheme.

The fact that if ¥ 1s a scheme, then ¢ is guagi-ccherent comes
from:

Proposition 2: Iet X L. Y be a quasi-compect morphlsm of achemes {1.e.,

if UCY is open and affine, f"(U) edmits a finite affine open cover-
ing). Then if ¥ 1s a quasi-coherent sheaf on X, all the sheaves
Rif*( F) are quasi-coherent on Y.

One finds, fram the sbove definition: the olosed subschemes of
X = Spec (R} are the schemes Y - Spec (R/I}, for ldeals I C R. We
alsc make the definition:

Definition: If Y-*-—f—- X 1s an lsomorphism of ¥ with a ¢losed subscheme

of X, then f 1s a gclosed immeraion.

Definition:‘ Iet X be a schems. A sub-scheme Y ¢ X 1s a closed sub-

scheme of an open subset T ¢ X. An immersion Y-E-t X 1s an lscmorphism

of Y wlth a subscheme of  X.

Example: One of the most important subachemes of & scheme X is xred
("X reduced”). As a closed subset, X, 4 = X, but its defining sheaf of
idesls ¢ 1is-the subshearl:

U, {) = (3 € (T, gx)l Equivalently, s(x) =0, all x € U;

3, € gx 1s nilpotent, all x ¢ U}

One checks that if U = Spec (R), then ]y 1is the sheaf T , where

T = {a € R | Equivalently, a € every prime ideal p;
or & 13 nilpotent}.
Therefore, ¢ 18 quasi-coherent. (Compare lecture 3, 1°).
Ancther generalization of the concept of "afrine” ia:

e
Definition: A morphism X — Y 1is affine if equivalently:
i) there exista an affine cpen covering {0y} of Y such that
£7(U;) is affine, for all 1;
11) v affine open sets V C ¥, f (V) is affine.

S
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-Corollary of Thecrem 1: If X LY ~1is affine, and the sheaf F of Sy

medules 1a quasi-cohsrent, then:
(4} the canonical homomorphism:
£*(f, F} = F
is surjective;
(B) Rf,(§) = (o), for 13 o, _
The concepts of fibre proguct and affine morphlsms are connected by
the very simple but importent: : o

g

£
Proposition 3: Igt X ——7Y be an affine morphism, and let ¥' =Y

be an arbitrery morphism. We write X' for X x ¥' with morphisms
lsbelled as follows: 4
SI

X! X

! r

YI

z Y

Therr ' 1s an affine morphism. And if P is a quasi-coherent sheaf on .
X, )

g, (F) TR8™*(F) .

(ce.non:Tca.lly)
2" We define several concepts by speclalizing the above to a more
finite situvation: ’

Definition: A scheme X ia noetherian if, equivalently:
1) there exists a finite open affine covering (U;} of X
such that I‘(Ui, 9}{) .13 noetherian;
ii) X 1is quesi-compact, and for all open affine T C X,
™UT, 9)() 1s noetheriang
1i1) the ordered set of closed subschemes of X satiasfies the
descending c¢hain condition.

Definition; A quasi-coherent sheaf ¥ on a ncetherian scheme X 13
coherent if, eguivalently:
1) there exlists an affine open covering {Ui] of X such that
~U;, F) 1s a r{U;, ox)-module of finite type; .
11) same for all affine open U C X .
Note. Quasi-coherent subsheaves and quotlent sheaves of coherent sheaves

are coherent;. o, 1is coherent; 1if the stalk &“x of a coherent sheaf ¥
at x 1is (0), then ¥ = (0) in a neighborhocd of x. : :

f
.Definition: An affine morphism X—— ¥, where Y 1is noetherian, is

finite if equivalently:
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1) £ ( %{) is echerent on ¥;
i1) £ is of finite type (hence X 1is noetherian) and for all
coherent § on X, f,(F) 1s coherent on Y.

Proposition k: If X £ Y is finite, then for all y ¢ ¥, the set of
points £~ (y) 41is finite, (thls property is what Grothendieck calls
"quasi-finite"),

Proof: If A = f {(o,)_®& H(y}, then it is easily seen that the

scheme-theoretic fibre £ (y} 1s simply Spec (A). Bubk since f£,( g_x) is
coherent, A 1s a finite dimensional K(y)-algebra, hence Spec (A) is
finite.

QED

Concerning the topology of noetherlan schemes, the key point is
that these are noetherian topologlcal spaces, 1l.e., satlisfy the d.c.c.
for closed subsets. Consequently, every cliosed subset ia a finitte unien
of irreducible closed aubsets which are called 1ts components. This is,
of course, the global topologlcal analog of the decomposition of an ideal
in a ncetherian ring into an intersectlon of primary ideals. The finer
gspects of the decomposition theorem came in via the operetion "A":

Definition: Iet F be a coherent sheaf on a noetherian scheme X.

A(F)={xeX|3 asection s e ¥ x Wwhich is ammihilated by
en ideal I C 0y Drimary to the maximsl
ideal, 1.e., 3 an open neighbhorhood U of x,
and s € P{U) such that the support of =
1s the closure of x}

[ef. BOURBAKT, Alg. Comm., Ch. %, for a thorough discusslon of this con-
ceptl, It follows immedietely from the decomposition theorem for modules
that A(F) 1s a finite set. Moreover, A(¥F) includes in particular,
the generic points of every component of the support of § (as a2 closed
subset of X)-but, in general, it also ineludes "embedded asscclated
points.” On the other hand, if Z is a closed subset of X and we make
Z into & closed subscheme via the sheaf of all functions which are every-
where 0 on 2 (this is known as the reduced subseheme structure on 2),

then A( EZ) is preclsely the set of generic points of the components of
Z.

_ 3" Flatness:
Definition: Tet X ——Y be 2 morphism of schemes, and let F be a
sheaf of oy-modules. Then F 43 flat over Y 1If for all x € X, ¥,
is a flat Or(x) -module; §F 1s of finite Tor-dimension over Y 1f there

is an n such that for all x ¢ X, Fyls an O (x) -module of Tor-dimen-
glon ¢ n. ' '
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Using the fact that forming Tor’s coammites with localization, one
checks easily that, 1f ¥ 1s quasi-coherent, then

{*} F 1s fiat (reap. of f. Tor-dim.) over ¥, if and cnly if

for all affine cpen sets V C ¥, U C £7'(V), the moduls (U, §)

is flat {(resp. of f. Torvdim.)_ over the ring v(V, 9-Y) {the

Tor-dim, heing bounded independently of U and V). -

The key point of flatness is that 1t commutes wlth all base exten-
sicns: 1.e., suppose '

glven, where X' =z X Xy ¥'., Then if F is a sheaf of g_x-modules, flat
over Y, it follows immsdiately that the sheaf g'#(F) of ogp,-modules
is flat over Y'.

A priori, flstness would appear to be a falrly ungecmetric concept.
However, I think that this is untrue. The hsuristic meening of " F flat/Y"
is that §F 1nduces a conti_nuously verying family of sheaves con the fibres
XY of f. I think this is best shown by & series of 1llustrative examples:

Example 1: Assume that X and Y are noetherian and that ¥ 1s coherent
on X.
Now if § 43 to induce a continuously varying family of sheaves on
’ sﬁrely s point of X at which § 1s exceptional should lie over a
point of ¥ which is exceptional.l In fact, one has:

Proposition 5: If ¥ is flat/¥, and x € A(F), then f(x) € A(gy).

Proof; ILet 3= £(X). Recell that y e A(QY) if and only if -
(*) depth (93') =0, 1l.e,, all nen-units in 93. are 0-divisors.
Therefore, if f(x) ¢ A(oy), there is a non-undt a € o such that

a
Q = O —-vP_

¥
is injective, If ¥ 1s flat /¥, 1t follows that:

f*({a
Qﬁgx __..L.)_. g'x

is injective, whers f*(a) is the induced non-unit of Opr But then mul-
tiplication by f#(e)? 1s injective in ffx, for all n, hence no s ¢ Fq
is Xilled by an ideal primary to My« :

A more precise result can be found in BOURBAKI: Alg. Comn, Ch.bk,
§ . DNamely, If F 1s flat /¥, then
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X € AMF) <==> 1} f(x} ¢ A(Y)
11) x e A(F ® H(yH
where y = f(x).

In fact, there is an even stronger_result making use of the conecept of
depth: recall

Defindition: Iet © be a nogtherian jocal ring, and let M be an Q-
moduie of finite type. Then d = depth (M} if there are exactly d ele-
ments in every meximal M-sequence f1 ey fd [1.8., in every sequence
Liper-y fgem such that: :

fypgre € (Fyeee, fi)_. M=>a€ (fi,..., £;} - Ml .

Incidentally, one should regard the depth of © itself, for example,
a3 o measure of the topological complexity of the singularity at the
closed point of Spec {@): if the depth is meximal, i.e., equals the di-
mension of " @, then ¢ is, in a weak sense, non-singular, while if the
depth is much less than the dimsnsion, the singularity is very bad. The
result z propes of flatness is:

THEOREM: For all x ¢ X, if F_ 1s flst over

x EFJ y=f(x):

then
depth ( :Fx) = depth ( gy) + depth ( S’x) ® M%)

(the last being an gx/my-gx—mcdule). [Cf. BGA, 4, 6.3]

Exemple 2: Suppose we assume, in addition, that Y is a "non-singuler
curve," 1.e., for 8ll y e ¥, o 1sa regular local ring of dimenslon
o or 1. Then we have converse:

Proposition 6: ‘
[ § flat /Yic=> [for all x e Af .’r‘)fmsi‘(x) is 2 point ]

of ¥ whers o - dimension ©
Proof: We have proven "=> ". WNow suppose F is not flat fY,
i.e., for some x ¢ X, JF, 1s not flat over o , y = f(x}. Then o

mast have dimension t: let (w) C p_y be 1ts maximal ideal. But .‘Fx is
flat /9-11' if and only if multiplication by f*(#} 1is injectlve in ?x.
Therefore, there is an s € '.‘fx such that £*({7) « § = 0. Iet

4 ={teo

e |t s =0,

and let p hé a prime Idesl in Oxs minimal among the prime ldesls con-
taining %. By Proposition 1, Tecture 3, there 1s a unique point x' € X
such that = 1is in the closure of x', and Oyr = (—O—X)y « With respect
to the given homomorphism:

*

—

o o ™ 9

=xi
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gince f*(m) € % C p , the inverse imsge of the maximal.ideal o, 1s
exactly « By the remark following Theorem 1, lecture 3, this means
that f£{x'}) = y. {i.e., use the diagram;

Spec (9) & X

Spec (-‘?-y) — Y J.

© The proposition will therefore be proven if we verify that x' e A(F).

But !(gx, 1s primary for the meximal ideal Ty, C 9z1 ard it kills

the induced sectlon s' ¢ ?x. .

QED

Example 3: Now consider the case of a finite morphism X. f—- Y, Y no-
etherian, end a coherent sheaf ¥ on X. The contimaity of § over Y
expresses itself as follows: ' co

Eropositien Tt -
[ F flat /Y] <==> [f, F 1is locally free on ¥YJ .

Proof: The result belng local on ¥, suppose Y = 3Spec (B); then
X = Spec (A), where A 18 8 B-algebra, end 1s of finite type as B-module.
Let F correspord to the finite A-medule M. If F 1s flat /¥, then -
M is flat /B, hence for all prime ideals # C B, Mp = M @B ]3.‘D is flat
over B, i.e., f*“”? = M, is flat over o =B, . But & module of
finlte type over & noetherian local ring is flat only if it is free.
Therefore, there 1s an iscmorphism '

Il

oF = .l ff)y

of gir-modules. But such a homomorphism is induced by a homomorphism:

21; —_— 5 F)

in scme neighborhood of y; =and the kernel and cokernel, having 0 stalks
at y, also vanish in a neighborhood of y. Therefore f,(F) 1s local-
ly free. :

The converse is clear, since the stalk Fp at xe X is e locali-
zation of the Op,y-module Tul Fhp(xye

QED

Example %: We shall further analyze the situation of Example 3, in case
Y 1s reduced and irreducible. Suppose ¥y € ¥. Via the fibre of £ over

¥, one has the dlsgram:
X" TY
,/ Spec  K(y)
Y
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and § on X induces a sheefl S’Y on XY Algebraically, if Y = Spec B,
X « Spec (A), and F corresponds to the A-modules M, then y comes
from & prime idesl ¥ C B, H{y) 1s the guotlent field of B/p ,

= 3 AG X
% = Spec (4@ ()

Yy

—— ~—~—~—_J .
M®(A® X¥)) = M@ Hy) .
- A B B

Since A 1s a finite B-module, A & H(y) 1s a finite dimensional com-
mutative algebra over X(y).

Note first of all that
*
(*) P(K_V, ?y)

{CGf. Proposition 3 of this lecture.

i

(%) @ Ny gmg H(y)

—r

Proposition 83
[ ¥ flat /Y] <=—> [the function y -+ dim J{(y)f*(?) ® H(y

is constant] .

Proof: The " =>" follows from Proposition 7, Y belng irreducible
and hence comnected. To prove "<=", 1t suffices to show thet for all
yeY, f£(F )sr is a free gy-module.

lemma: Iet A be a noetherian local damain with residue field k, and
quotient field K. ILet M %be a finite A-module. Then

[dimKMtiK=dimkM§k] => [M a free A-module} .

Proof: Note that if m C A 1s the maximel ideal, M ®, k =M/m - M.

et fy,..., T, be clements of M vhose images f, in M/m - M form a
baais over k. Then the fi define a homcmorphism e:

(* 0 =L =A% =24l =N =0

(L and N being the kernel and cokernel resp.). Tensoring with k, we
chtain:

B oM oM =N N —o .

But § is surjective since the T, span M/m + N; therefore, N = m - N.
By Nakayama’s lemma, N = (0). Now tensor (*) with X, Since K 1s flat
/A, we obtain:
0—+LB®K -K* —M&8K — o .
A A
By hypothesis, K wnd M ®A K are both K-vector spaces of dimension n.

Therefore, L @ K= (0}, i.e., L 1z a torsion module. But since L C
A", this implies that L = (0). : QFED
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Exemple 5: As & final point, let us consider two completely. concrete

cases: : \ ‘ :
(I} Y = 8pec kiy] : ‘ i
X = 8peec kixl
T = xg:.e ’
(k alg. closed), i

Then 1f w C kly] is the maximal idesl (y - o),
kixl/e » klx]l = kixlf(x -a) ® kx]/(x+a), a#0
kixl/fe « KIX] = k[x]/(xe) s ’ _ o =0

4

It

3
and both ere commtative algebras of dimension 2 over k. This being a
constent f d1s flat. (One should also check non-closed points of Y.)

(IT) Y
X

Spec ‘;,k[x.le, X Xq, x:]
Spec kix,, x,l

B

‘/.
/
/

4

N ] -
N
~

—— e

Then if & C k{xf, £ I xzi is the maximal ideal (x12 - ora, XX, - OB,
xg - ﬁa), one finds

klx,, xa]/p © klx,, x,]

1

kix,, x1/(x, - @, X, = B)
kix,, x,1/(x; + @, X5 + B)

]

if o or B#0,

kix,, x,1/e - klx, %1 =k % K+ xa-ék‘
() = XXy = %5 =

if ¢a=p =0,

o)

The former is a commitstive algebra of dimension 2; the latter 1s one of
dimension 3. Therefore f 1s not flat.



LECTURE 7
RESUME OF. THE COHOMOLOGY OF COHERENT SHEAVES ON P

As sbove, let P = Proj 2zlX;,..., X, ], let 0o(1) bve the canoni-
cal sheaf on P, and identify X,,..., X; with sections of o{1). For
all schemes 8, on P, x3, put )

o(1} = PT(E(‘)) (by abuse of language)
X; = the induced section p{(X;)
(by abuse of language).
If ¥ is a coherent sheaf on P, x 3, put
fm = 5§ e (o01fT) .,
L S EanS
_-,fcmd’: O =)
1° Serre’s resulta. We look first st the readily visualized case
3 = 8pec (k), k & field. Fix ¥ (again coherent), and write Pn K for
il
P, % Spec (k)2
(1) Hi( Py ¥ } is finlte dimensional over k, for all 1;
and is’(o) if 1> n; _
{i1) PFor all ¥, there exists m, such that if m > m,
Hi( Fn,k-‘ F{m)) = {0), 1> 0 and F(m) spanned, as
Sp o x"odule, by its global sections;
E .
(111y I, (-t ddm, ol Pn,er F(m)) is a polynamiel in m -
the Hilbert polynamial of §F .
‘(iv) Consider the functor:

- y-—»miao T Pn,k' Fi{m)) .-

Here F 1s an object in the category @ of coherent sheaves on
LA and ofF)} 1s an obJect in the category €' of graded k[Xo,...,
xni -modules of fintte type. }

If ter( Pn’k, F(m)), then xi + £ 1s the section tsxi
" of F(m) ® of1) = F{ms1) .

%7
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Take morphisms in &' to be:

s (10 - 318 Morasation [m T ] ~
Then o is an equivalence o_i‘ categories, egpeclally o is exact, and
takes Hom’s into Hom’s. The key step in proving this is ths expliclt con-
struction of the inverse of a. This functor is a graded generalization
of the ~ operation In the affine case. Start with a graded module M,
of finite type over k[X,,..., X,]. For each i, form the tensor product.

vt Ly & K[Xy,.0n, X, X'I 1,

and let Méi)' be the suvb-module of degres 0. Then Méi) 1s a mcdule of
finite type over the affine coordinate ring kI[X,/X,,...; X, /%] of
{ Pn) Xi . One verifiea that the sheseves Méi) on the affine spaces patch

- together in a natural way: the result is called # and this iz the in-
verse of <. '

{(v) Before proceeding to generalizations, we want to make soms
ettempt to describe the "yoga" of cohomology. The cchomology of sheaves,
in a general geometric set?mg, 1s just a plece of machinery designed to
analyze the commection between the local and global structure of space;
viz. given any local data, the set of all such local data will form a
sheaf and its cohomology groups are a sequence of invarisnts describing
how "twisted" these data can be from a glcbal point of view. The essen-
tial point 1s that (a) these groups are almost always very computsble,
{b) the cbstructions to making global constructlicns are elements of such
cohamology groups.

In the case of algebraic geametry, the cbjects of globel geometric
interest are the global sections of coherent sheaves. These arise for ex- .

s¢heme..with prescribed poles; 1in whe
bg, embedded; how many glcbal diffe; : 5 _of
some scheme; and In the infinitesimas 1 :Ij.neaz- form of many non-linear
existence problems. Buf to compute the vector space of sections of a
coherent sheaf § on P,, the essentlal difficulty is that I 1is not a
right exact functor. Thls was realized by the Itelian geameters, who
worked indirectly but still (as we now realize) very closely with the

higher echomology groups.

It should be polnted out that the fancy definitions given cohcmology
recently—via standard resclutions, derived functors, especially in the
category of all sheaves-which look very uncomputable—are just technical
devices to simplify scmebedy’s genersl theory. One may as well treat the
cohomology of a coherent shesef on Pn. Just as the satellites of r in
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' the workable category of ccherent sheaves. [In technical terms, coho-

mology is effacable in this small categoryl: e.g., the group Hl( Pys
°p (-2)) =k 1s nothing but the cokernel of the sequence:
1

e=r{ P, 0 Pl(—2)) ~Pr( P, 0 Pt(-”} - r{ ry, H(x})

caming from the exect sequence of sheaves:

o ® X,
3P1(-2) am—- 3 (-1) = H(x) =0

on P,, where H(x) 1is the sheaf wilth support only at the point =x
where X =0, given by the module which is the resldue class field of
O | e
We must recall, for future use, the facts about the cohamology of
Cp {m) 1tself:

n

2 e

n,k? 2 Py (m})

I

(0}, if 0 <i<n

= {0}, if 1 =n, m>» -n -1

= (0), 1f 1 =0, m<O

= a vector spabe with basis giveny L = 0

by the moncmlals in v
of degree m. %or * *n m20

V.-
’év e ( 2° Grothendieck’s globalization. Now suppose 8 is any noether-

ian scheme, and § 1s agaein coherent on Py x 3. Iet p: Py % 3-3
be the projection. Then:
(1) Blp.(¥) is coherent for ell 1; and is (0) 1f 1 >n .

(11) For all. ¥, there exlsts m, such that if m > m,,
Rip { F(m)) = (0), 1>0, end '

p*p* F(m} = F(m)} is surjective.
{1ii1) Consider the funector:

-]

ar F- @ p, Fm)
m=0

Here ¥ is an cbject In the category € of coherent sheaves of o By 8"

modules; and of F) is an object in the ocategory &' of qu.s.si-coherent
sheaves of graded o4lX,, X;,-.., X,l-modules of finite type—here the,
morphlsms are glven by:

Hom g (W, M) = U HMgragation

[ s Nm; @ Rm :| .
My preserving 28,

o >m,
Then o 1s an equivalence of categories.

In fact, the inverse ~ to & is constructed exactly as in 1°:
start with the sheaf ¥ on 8. PFor simplieity, assume S8 1s affine,
ey 5 = Spec (R). Then ¥ is nothing but a graded RI[X,,..., Xn]-module
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of finite type. For all i, put
s | deg:'ee 0 component of { R @ RI 1 '
° (Rix] Fos :xn:x;)

Then f{ is patehed together out of the sheaves i‘éi) ons

Xy

SpecR[g,...,JFxl—l}=(anS)xi

3* ' Connectlon of hipher direct images with cohomology on the
fibres. The prineciple difficulty in using the results of 2* is in re-
lating Rip*( ¥) to the cohcmology esleng the fibres of p. Thus, If
s €3, let Pn,s = the fibre of p over s, and let § induce ths co-
herent sheaf Fq on pn, g - Is there any comnsction betwsen;

Rlp,(§) ® K(s) and E( e, ., F) .

n,s* s

This is a speclal case of the more general problem; given a “base exten-
ston” g: T—5, look at the diagram:

P xT h pn'xs‘_f

q P

What is the relation between
g*klp,(5) and Rig,(n*§) ,

for coherent sheaves ¥ on P, x S? But, for any cpen set U C 3, one
has homomorphlsms: p¥ ‘ of

B pyx T, 5) =~ B by x &7/ (0, 1° %) = (gD, Rla ("))
hence & homomorphism:
R'py(5) = g, Rg,(h"5)
hence s homomorphism: g Rip,{ ¥ ) -»_R:L (h* F).
N At

If, for every g, this is an isomorphism, we shell say that Rip*
commites with base extension..

First of all, there is a simple "stable" result when ¥ has been
twisted sufficiently: ’

(1} For any ¥, and any T-S—-S, there is an m, such that
if m > m,, then:

gDl F (M) qb*( §(m))
{of course, both sets of higher direct images are zero).
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I&ea of proof: This really ass_erts' nothing more then the compati-
bility of the equivalences of categories gy and on with tenscr pro-
ducts. Thus, over 3, F 1is defined by the sheaf of graded 0gfXgyasa,
Xn] -modules: '

ag(5) = X = @ p( F(m)
ma0

and, over T, h* § is defined by the sheal of greded oplXys-ue, X, 1-
modules:

an(b* ) = 1 - @ q,B*( F@Nl .
=0 ’

One wents to know that the naturel homomorphism from g* X to % 1s an
isomorphism in owr funny category (where any finite number of graded
pieces can be ignored). To prove this, use the Inverse ~ to «! Since

tg and o are equivelesnces of categories, 1t suffices to prove that

Frn

gl

'z

-

. [

But this is an Immediate consequence of the definition of ~ ([for de-
tails, cf, EGA, Ch. 2, §§2. 8, 10 _when S, T affine; 3.5.3 in generall.

However, to obtaln really precise relations between these higher
‘direct images, we must look at the case when F is flat over 3;
(11) -Assume F is flat over 3, and that for same 1, and
some s, € 3, the homamorphism:

Ripu($) @ K(s) = H'C ey g, %)

is surjective. Then there is an open neighborhood U of
8 in B such that for any base extension g: T — U, the
homomorphi sm i ’

2RI, (F) < Rlg,(h*¥)
ig an iscmorphtam. {See EGA, Ch. 3, §7.7.) X

(13i) With the same assumptions as in (ii), 1t follows that the
homemerphism:
R'pa(5) @ H(sg) = E( Pr, s, Ts,)
is also surjective if and oniy if Rip*( F) is a free
sheaf of gs-moﬁules in same neighborheod of S5 (Bee
EGA, Ch. 3, § 7.8.) .

" Gorollary 1: In the flat case, if HI*'( Pn,s,7 Fs,) = (), them there

is an dﬁén U C8 containipg s, such that, for g: T-—TU:
£'RID.( F)"= Rig, (h*F)
In particular:
Rip, (%) ® H(s)=~ nd( Prsr Fa)
for all s e U.
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o PIfOOf. Use (1i1) for 1 « j+#1 ard then (il1l) for 1 = J.

g or-olggx 1% In the flst cass, if R'D,(F) = (0), forall 13 1,,
TEHen HY( Ph,g» Fg) = (0) forall ses, andall 11,
’

Proof: Apply Corollary 1 first for ] = n to prove that
Hn( Pp, s Fg) = (0}, all s € 8; then for J = n-t %o prove that

B P, a0 §g) = (0), all s e 85 ete.

Corollary 2: In the flat cass, given a cchsrent sheaf & on S5, amd a
homomorphism ¢ frem & to p,(F) such thet the induced

&8 Hs) ~H( By, 5)

is an isomorphism for all s, then ¢ is an isomorphism, £ 1s a local-
ly free sheaf, andg

* -~

3 M W
for all g.

Prcof: Apply (ii) for 1 =0, and (:Lii) for 1 = 0. Then use
Naimyema?s lemma. ‘

Corollary 3: Given & coherent sheaf ¥ on P, x 3, ¥ 1s flat over 3
if and only if there exists an m, such that if m>m,y, B F(m) is
locally free. Hence, in this cass, the Hilbert polynamial of F, on

P is locally constant.
n,s

Proof: If F is flat over 8, then let m, be large enough so
that Rop,( F(m)) = (0), if 135>0, m> m. Using Corcllary 1 and 13
one deduces that p.{ F(m})) ® H(s) mp&mto H°( n, 82 53(111)) for all
' :Li:f} Pel F(m)) 15 locally free: As for the con-
verse, the point is that. '

. P ,..,»-f' @(F) = & p,( Flm)
G et A g S m=0

is & flag gs-module after throwing away a finlte number of terms. Again
using the -~ operation inverse to «@, 1t comes out imnediately that ¥
1s defined over suiiable affine. sets by medules obtained in 2 steps:

(a) localizing a(F) with respect to X:L"

{b) paBsing toc the sub-module of degree " 0, which is a direct

sunand .

These are certainly flat over Og if o(F) is flat, hence § is flat
/8. (Cf. EGA, Ch. 3, §7.9.14.)

QED
Corcllary 4: The projeciion p: Py 5—=35 1s (topologically) clozed.

Proof: Iet Z ¢ P, x 3 be a closed subset. Iet F be the struc-
ture sheaf of the reduced closed subscheme with support Z. By 2°, plck
en m, such that p*p,.( Fm)} = F(m) is surjective if m > m,.
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T claim:
p(Z) = n> Support {p,( F{m))].
m

25,

-8ince the sectlons of p,( F(m)) genera.te F{m), 1t follows first that
. pe( Fim)) &(0) for any s ¢ p(%). Therefore p(Z) %s contained in the

intersection. On the other hand, suppose s ¢ p(2): then Fq = (0).
By result (1) of 3°, for large enough m

De{ F(m)) ® W(s) T H( Py o, F(m)y) = (0) ;

hence, by Nekayams’s lemma py{ F(m))y = (0).

QED
Gorol. 5t Rip*(g_(m)) =(0), if 0<1<n
={0), if 1 =n, m>» -n -1
= free sheaf of og-modules, with basis given’
by moncmials in X,,.v., X of degree m,
1f 1 =
Proof: Use 3° (1i) and (1ii) andﬂ? (v}. " QED

4® It seems worthwhlie to give one ncn-trivial exsmple of this
theory:
(i) let n=1, S =38pec klt), %k an slgebraically cloged
field
P, x S = Praj klt; X,, X;15 let R = kl[t; X, X 1.
(11) For all integers m, and graded R-mcdulss M, - put M(m)

equal to the R-module such that
Mm)y = Mgy -
(111} Define the graded module M as

R ® R @ R(-1) /modulc the element (X, X,, t)]
of degres 1.

Put F = M. Corresponding to 1ts definition as module, ¥ 4is the coker-

:H,,‘

_.. - F = 0
0""OPXS( R °P1xS$EPxS -P.IxS( 1) -

where ¥ = (X, X;, t) [Li.e., tensoring with X; maps o P1x3(k) to

] P, x S( k+1?; and multiplication by the ordinary function t maps

9'P1x S(k) to o P xS {k).] Since the mep ¥, gotten by tensoring ¥ with
Kx), (xc¢ B, 8), 1s mever o, it follows that §F 1s a locally free
gheaf of rank 2, and it is flat over 8.

(1v) Iet 0 € 8 be the polnt ¢ =
F, 1s defined by: "

0, Then the induced sheaf
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(Xys Xy5 O)

0o p (-1} ——————"—0p @0, ®p

(-1}~ F, =0 .
2R Y Ep, o=

and one checks that this means:

F

o g_g_[,‘(ﬂ) e_q_l,1(-1) .

On the other hand, 1f s € 3 is a2 k-rational point where © = o
#0, {oe€ k), then the diagram:

2]
o

‘Irs
0=op{-1) ——0p®op

e

0 LS

Spl-N—=F, =0

Pq

]

[e] — @ o - 0
= p 2P TP

where Py is defined by the 2 x 3 matrix
( 1 0 "-XG/a
o 1 X, /e )
mekes ¥, I1somorphic o o P, & o "1. .
{v) The cohonologlcalily interesting point isr

{ Pl 5(-1) = ()

E°( Py ,00 Folm1)) =k,
i.e., p, does not map onto the H° along the fibre;
which is consistent with the theory in vliew of':

{ H( Py 0s Fol-1)) =k
R'pel #(-1)) =k,

l.e., the sheef concentrated at t = 0, which as nodule

is the residue class fleld k of o .
. 0,3

[Prove this by sett:l_ﬁg up an exact sequence

0-5’(—1)—»3’-*9_Z@QZ -0

where Z C Py x 8 1s the closed subscheme X, = 0, using the results of
3° to compute Rip*( ), and using the cohomology segquence. ]

IECTURE 8
FLATTENING STRATIFICATIONS

The prcblem we want to consider 1s this: Given a coherent sheaf
¥ on P, %8, S e noetherlen scheme-for all morphlsms T £E.g , one
has the Induced sheaf:

58=(1ng)*.‘f on Py xT.

Can you describe the set of 2ll morphlisms g such that ¥

g is flm% over
T 7 - To answer this, we first make:

Definition: If S 1s a scheme, a stratification of 8 1s a finite set

8y,.5., §; of locally closed subschemes of 3 such that every point -

a3 € 85 1s In exactly cne subaet Si'

masmenmee  THEOREM: In the sbove situatlion, there is a stratification 3:s

eery Sm of 8§ such that for all morphisms T £ S (T poetherign),
ng is flat over T 1if and only if the morphiam g factors:

m
i=1

f—3 .

i

We will call this a flattening stratification: If it exists, it
18 cbviously unique. There i3 an analogous problem when Pn‘ X 8 i3 re-
placed by any scheme X proper over 8. Grothendleck has then proven a
glightly weaker thecrem, but by much deeper methods.

1° Look first at the case n = 0; F 1is a ccherent sheaf on 8
1tself. Now .‘fg is simply g*(F)}, and it is flat over T if and only
if 1% is locally free over T. Por all s € 8, let

R
e(s) = dlm p o (7, %, Ke)) oo €V

Fix a point s for a vhile, let e = e(s), and choose &,,...,
vwhose images in :Fs ® HX(s} are a basis of this vector space. Then
these 2y extend to sectlons of F 1in a neighborhood Uy of s, and
via the &y one defines a homcmorphiam:

55
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in U,. Simee the g, generate ¥, @ H(s), by Nelnyama’s lemms, the
ay generate F s itseif. Therefore the homomorphiam ¢ i1is surjective
in a (possibly) smaller neighborhood U, of s, Passing to an even
smaller nelghborhood U3, we mzy assume that EKer (¢) is generated by
its secticns over U3, and we have constructed an exact sequence;
Eg S g 2—7F =o

in U3 {(for scme f). ILet U3 be called UE.

Note first of all that F 1s generated by e(s8) sectlions every-
where in Uy, hence:

(*) it s' e Uy, .e(s") L els)
~l.e., e is upper semi-continuous., Therefors ‘the set
Ze=(sesle(s) = &)

1s locally closed., Moreover, if s! € Us’ then e(s'} = e(s) if and
only if the homomorphism

i((s')f '——’W(S')

H(s"*®
is o©. Therefore, if v is expressed by an e x f matrix "'1:1 of fune-
ticns on Uy, the closed subscheme Y, of U, defined by the ideal

]
Wi,j)a.]_'l. 1,1 has support Ze n Us . I claim that Yﬁ5 has the property:

(*) 1r - U, 1s eny morphism (T noetherian), then g*(¥) is
locally free of rank e = e{s) if and only if g factors
through the _closed subscheme Ys'

Froof of *: g factors through Y, if and only if all the func-
tions g*(""ij) are 0 on T. But since the sequence: :

9&" gx(n) 2; 2*(p)
is exact on T, this is eguivalent to asserting that g*(9) is an iso-
morphism, Ceriainly this in turn implies that g*(F)} 1s locally free
of rank e; conversely, say g+¥{F)} 1is locally frée of rank e, and let
€ be the kernel of g*(¢). Tensoring with the residue fleld k at any
point % € T, one finds:

B (F) —0

Tor,(g*F, k) = @k = K = g*(F) @ k=0

H]
{0)
S8ince g*(F) ® k 1is a k-veotor space of dimension e, g ®k=(0),

FLATTENING STRATIFICATIONS ST

hence by Fakayama’s lemma, @ = (0) near t. Therefore @ = {0) every-
where, and g*(p) is an iscmorphism,

QED

Note that property (*) pharacterizes the subscheme p in
a nelghborhood of any point of Ze fn Us‘ Therefore, if 3, &and s, are
any two points of Z,, in the cpen set U, n U, the two subschemes
1 2

Ys and Ys are equal. In other words, the subschemes ¥y rateh to-
1 2

gether to endow the locally closed subset 2, with a structure of gub-
geheme. Call thls subscheme Y_. The collection {Y_ ) is a stratifica-
tion of 3, and, by virtue of (%), 1t follows immedimtely that EYe} is
a flattening stratification for F.

For use in 3°, I want to make expliclt that we have proven
more than thet a flattening stratification {¥,} exists: We have even in-
dexsd the subschemes ¥, so thet F @ Sy is locally free of rank e. . s
‘ 95 ~¢

2" PBefore attacking the general case of the theorem, we
need an elegant piece of "hard" algebra (of. EGA, Ch. 4, §6.9) which glves
us scmething to start with:

Propeosition: Iet X A Y Dbe a morphism of finite type of noether;}.a;‘a
schemes, and et F be a coherent sheaf on X. Assume that Y 1s '%-educed {2
and irreducibla:;. Then there 1s 2 non-empty open subset U £ Y such that

the rvestrioctlon of ¥ to h'1(U) is flat over U.

Proof: We may clearly replace Y be some affine open sub-
set Spec (A); and since X can be covered by a finlte set of affine cpen
subssts V,, 1t oclearly suffices to find one T for each Vy so that in
that affine cpen piece F 1s flat over U. Therefore, let X = 3pec (B},
let  make B 1into an A-algebra, and let F correspond to the B-module
M. Then we shall prove:

{*) there is an element f € A such that Mf =M ®A Af is a free Af-
module.
Note first that if
Q=+L=M=N=0

1s an exact sequence of B-modules, and Ly 1is free over Ay, N, 1s free
over Ag, then M, 18 free over Afg. To use this, recall that M beling
& B-module of finite type, admits & composition series:

{9) =M, CM, CM; C .o CH, =M
guch that each factor M:“.l /Mi is isomorphic to B/“’i for scme prime

ideal ¢; C B (BOURBAKI, Alg. Com., Ch. 4, §1.4%). Therefore it suffices
to prove (*) for these B/pi and then it is proven for any M.
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Therefore we may assume M = B, and B 1s an Integral domsin.
Iet K be the quotient field of A, and 1 the quotient field of -B.
‘We shall prove (*) by lnduction on the transcendence degree n of L
over K. First, apply Noether’s normalization lemma to the K-algebra
B®, K; it follows that there exlst n elsments f,,..., f, € B such
that B @ X is integral over the polyncmial ring K[f“..., f ‘1. Then
although B is not nécessarily integral over Alf,,..., 4 1, there are
only a finite number of dencminators occurring in the relations of inte-
gral dependence of the generators of B over XI[f,,..., fn]: Therefore,
for same f € A,

(# ) By is integral over Af[fl,..., £l -

Then By is an Aqlf,,..., I ]-module of finlte type: consequently, we
cen find m elements c¢;,..., ¢, € By generating a fres Af[f.l,..., r,l1-
submedule of Bf., such that the quotient is a torsion module

0= Aplfy,en, £ 1" =B =D=~0 .

Now Af[f.l,..., ntm is clearly a free Ap-module, so it suffices to prove
(*) for D. But, finally, replacing D by the quotients of 2 sufficiently
fine camposition series, we are reduced to proving (*) for integral A-
algebras B' of transcendence degree less than n over A.

QED

3° We are left with the general case; a coherent § on P, % 3.
Iet p be the projection from p, x 3 to 3, and put:

&y = Dl F(m) .

As o first step, we note:

(%) there 1s a finite set of locally closed subsets Y1,...., ¥,
of S such that 8 = U Yi’ and such thet If Y; 1is given
its reduced subscheme structure, ¥ &, Sy is flat over Y.
=3 i

Proof: Immediate by 2° and the d.c.c. for closed subsets of 3.
From this we conclude several simplifying facts:

(1) there.is a uyniform m, such that if m > My, then for a1l

ses, H(P, ,, Fm) = (0), for 1> 0 (notations
as in lecture 7) and &, ® K(s) 1s isomorphic to H°( P g»
F(m)). : !

Procf: Put together (*); §7, 2° part (1i) applied over the base
schemes ¥,; §7, 3°, Corollary 14; and 3%, part (i) applied to the ineclusion
Y., C 8.

1

(i1} Only a finite number of polynomials Pysees, P cocur as Hilbert

polynomials of the shesaves ¥, on the fibres Pn; g over B.
x
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, as in (1), and let g: T=- 3 be any base extension (T
noetherian). Suppose first of all that S’g on Pn x T is flat over T. .
Then by Corollary 2 in 3°, Iecture 7, the canonical map

Fix m

2% &) 4q*(_fi=g(m)), for m Zmo

is an isamorphism, and g*( &) 1s locally free on T (where gq: Pyx T
- T 1is the projection). Conversely, suppose g (. g, 1s flat, for all

m > my: then by Corollary 3 in 3 ; lecture 7, .‘Fg is flat over T.

Now any two stratifications of 8 have "g.c.d. stratification":
i.,e., glven

S=UY =UzZ,

~thenr 5 1s also the unicn of the locally closed subsets . wij Supp (Yi)

n Supp ( Zj) and one cen endow W,y with a scheme structure by taking
the sum of the sheaves of ldeals defining Yi and defining Z,. By the
result of 1° , each of the coherent sheaves 5 has an assoclated flatten-
Ing stratification. What we have Just proven is that a flattening atrati-
flcation for ¥ 1is essentlally the g.c.d. of the flattening stratifications
of all &, for m» m,. To be precise, let Yém) be the camponent of the
flattening stratification of &, on which &, becomes locally free of
renk &, Iet P,,..., P Dbe the Hilbert polynomiels of (11i). Then I claim
that, for all i, w
% - ﬂ I(’r;%m) _
makes sense: Each finite intersectlon 1s, as just explained, a locally
closed subscheme, But, set-theoretically,
. Gyen
59 2 -, s () -
Proof: Iet s be in Yl(ﬁr;_l%m) for the n+) values of m between

0
Since the higher cohomology of 33 va.rlishgs by (i1), we have

m, and m-+ n. Let P, be the Hilbert polynamial of F, on P .
14} k| . ] n,s

Pj(m) = dm oy By @ His) = Py(m} .

But Py - P‘.j has degree at most n, and ns+t zZerces: therefore 1t is
identically zero.
QED
Conseguently, 2, is the 1imit of z descending chain of locally
closed subschemes with fixed support, i.e., of closed subschemes in =
fixed open set U. By the d.c.c. for closed subschemes, it terminstes and
Zi i1s setually a finite intersection which makes sense.

It 1s now trivisl that Zygean, Zk is a flattening stratification
for § over B5.
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An cbvlous strengthening of the result is this:

Corclliary: Iet X i S be a morphism which can be factored:
X ‘i—" P, x5
ki) Py
S
where 1 1s a clogsed lmmersion. Iet F De a coherent sheaf on X: then
F defines a flattening stratification (Zi} on 8.
Another lmportant consequence of our methed of proof is that the -
stratification [Zi} can be indexed by Hilbert polyncmials P, so that
1) the induced sheaf ¥ & 9y has Hilbert polyncmial
=5 4L
Pi on Pn % Zi'

i1) if 1 # §, then Py # Py

IECTURE 9
CARTIER DIVISORS3

1" We assume that X 13 a noetherdan scheme with sttmucture sheaf
ox¢
Definition-Proposition; There 1s a unique sheal EX (of gx-modules) on
X suoh that for affine cpen U C X,

MU, K;) = total quotient ring of (U, oy)

and for U €V, the restriction is the natural one.

Proof: Everything 1s easily reduced to this polnt: Sey U =
3pee (R), and Ufi = Spec-R(fi) ere glven where Ufi, t1<1<n, form

a covering of U: 1.e., 1€ {f,..., f;}. Suppose a,, by € R(fi), By

' not & o-divisor in R , and essume f{a,/b; | 1 <1 <n agree on
(fi) 171 =" =

o n Uj' i.e., bja'i - an_i. 13 0 in R(fli.j). Then we must find «,
B eR, pnotad-divisor in R such that oby - pa, 1s 0 in R(fi).

1) Multiplylng &, and b, by £ (for N>> 0, end all 1),
‘we cen sssume that all elements &y, b, &re in R, and
that a'ibj “&Jbi in R.
11) Put ¥ = {p € R | fo; 1s in the 1deal (b;) InR.p y, &ll 1l.
i 1

Then one checks that b;,..., b, € %. Now say ¢ €R and ¢ - % = (o).
Then ¢ - by =0, all 1. But by is a non-0-diviser in R(fi)' so ¢
mst go to © in R(fi), i.e., I‘g ©c=0. Binee 1t € (fi,..., T3},
this implies that ¢ = o.
1i1) Put since R 1s noetherlan, any % with this property con-
tains a non 0-dlvisor g. Now 1t follows that g - ai/bi
is actually a section of o over U, hence for some
@ € R, ﬁ'a.ifbi=a.
QED
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We mention that K, 1s not elways guasi-ccherent! Also, one
checks that the stalks 5 of KX are Just “the total quotisnt rings of
the stalks o, . Finally, we can define Kx to be the subsheaf of units
of the sheaf of rings K, i.e.,

r{U, g{) = invertible elements of (U, i)

*
Note that E‘-XCE’{ and EXCE‘X'

Definition:r 'A Cartler divisor D on X 1s a section over X of
K,}/g; . More coneretely, a Cartler divisor 1s glven by & collection of

elements
*
Dy € Kefox

such that, for all x, there 1s en cpen neighborhcod U of X, and an

element f ¢ r(U, Ky) which induces D, for all x € U. The element f
will be called a local equation of D in U: It is unigue up to & unit
in o. A Cartier divisor can be determined by speclfylng local equations

{I‘ } with respect to an cpen covering (U;1, 30 long as fi/:{‘ is a

Note that the set of all Certler divliscrs froms a group. Although
this law comes fram multiplying local equations, we follow hallowed con-
vention and vrite it additively: i.e., as D + D2 for the conbination

f1 . %‘ of loeal equations.

Associated to & Cartler divisor D 1s a ccherent subsheaf:

- ox(D} C Xy

which is an invertible sheaf of gx-modules. Namely, for all x, put:

RECINEE NS 4

where fx is the element of _I& induced by a local equation f of D.
This is clearly independent of the choice of £, and, if f is a loecal

equation in U, then
LY

miE oy~ % g
-1
f

Ex|U

is an isomorphism of sheaves of oy-modules.

It is not hard to check that this actunily gives af iscmorphism
between the set of Cartler divisors on X, and the set of invertible co-
herent subsheaves of _ng
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Definition: A Cartier divisor D is effective 1f equivalently:
i) 1its local equetions f are sectiona of Ox»
or i1) oy C oy(D) C Ky,
or 1ii) EX( -D} 1z a sheaf of ldeals.
We shall write: D > 0 to mean D 13 effective. Suppose D 13 an effec
tive Cartier divisor, ard let op denote the cokernel:

(*) o—h_(')_x(.D)—t_QX—-gD-—oo

If one takes the strueture sheaf oy on the topologlcal spsce which is

the support of O, One obtalns a c¢losed subscheme of X: By abuse of
language, we shall also call this closed subacheme D.. Slnce this closed
subscheme detsrmines its sheaf of ideals gx(-D) , which in turn determine
local equations £ in o (via o, (D) =f - o ), the Cartier divisor D is
termined by the clesed suhsch&me D and our confusion should net be dan-
gerocus.

' Moreover, when D > 0, the image s of the sectlon 1 € r(X, gx)
in X, Q_X(D)) will be called the global equation of D. 1In fact; if we
let

0,

9 (D) Bx

be any iscmorphlsm of modules, o(3) Iis a local eguation for D at X.
Moreover, in the exsot sequence (*), the inclusion of ou( -D) in ox
can be interpreted =s tensoring with s.

A Certier divisor D determines even more things:

Definition: The support of D is the closed subset conslsting of thosze
X € ¥ at which 1 is not a local equation,

Definition: 'The divisor clags assoclated to the Cartlier diviser D 1s
the element of ¥Plc (X) ocbtained by the co-boundary:

B(X, K'/g) = H(X, o)

bl
Pic (X} ,

via the exact sequence:
(#g 0~ op~Kx—~ Kp/og—~o0 -
One checks immediately that this element of Pic (X} is, in fact, given by

the invertible sheaf _QX(D) .

Definiticn: Two Cartier divisors D,, D, are linearly egulvalent {written
D Da) if, equivalently,

; T
1) gx(D1) = EX(DE)' as _qx-modules,
i1) the divisor cless of D, equals the divisor class of Dy,
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i11) there is an f € I(X, K) such that

f'-QX(DI) = O¢(Dy)
AN
Defimition: If f € I(X, Kj), then the Cartier divisor with f as its
local equation everywhere will be denoted (f). Such divisors are called
principal, snd by use of the exact seguence (#)c, one sees:

D, =D, if and only if D, = D, + (f), for same f e (X, E;()-

Wext, suppose an invertible sheaf I 1s glven—consider the set of
all effeciive Cartier divisors D whose divisor class is L. That 1s to
say, look for iscmorphisms a:

L

Zcx
!
Ox C oy CE

Istting ¢ be the composition in the diagrem, one sees conversely that
for every injective homcmorphism o, there is a unigue Cartier divisor D
such that ¢ extends to an iscmorphism o of EK(D) and L. Thus D
can be determined, for example, by letting s = @{1), and choosing local
iscmorphlsms+

® 7/
P
’

Then the image of s in r‘(Ui, gx) 1s a loeal equation for D. As above,
we ¢all 8 € r(X, L) a glcbal eguation for D. ©Note that the fact that

¢ 1s injective corresponds to the fact that s 13 not a o-divisor. The
above reasoning leads to:

Proposition: If L 1s an invertible sheaf, then there is = natural 1so-
morphi s
{ effective Cartier divisors} ~, +sections s.e r{X, L}, not

D s.t. gx(D) =L O=-divisors, mcdulo
s~u- 3, forac (X, gi)

Exemple: Let X = Proj kiX,,..., X,J, k a field. Then as in Lecture 5,
. X carries the sheaf gx(ﬂ, and there are homomorphiams:

vector space of homogenecus
{forms in Xo,..., Kn of degree df X, Ex(d)) :

Therefore, each form F(Xpseev, &) of degree d is the global equation
of an effective Cartier divisor D C X such that gx(D) =4 gx(d). Thig

d 1is called the hypersurface with equation F, (or, if d =1, the
hyperplane).

CARTIER DIVISORS ’ 5

2" Ccartier divisors are closely related to the concept of depth,
If z € X 1is a point where depth (Ez)_ = 0, then K, = 9, hence
(¥*/o*), = (1), and every Cartier divisor is trivial in a nelghborhood
of %Z. The remarkable thing is that Cartler divisors are determined by
their equations at polnts of depth 1

Proposition: ‘Let X be & ncetherlan scheme, Dy, D, two C-dlvisors on -

X. Then D, = D, if and only if.their images in the stalks (g*/g*)x
are equal for all x where depth ( Ex) =1.

Proof': It suffices to prove that the lmages (D1)x' and (De)x
of D, end D, are equal In all stalks (g* /g*)x. But, multiplying

both by & suitable non-0-diviser in o,, Ihis reduces to proving:

(%} Glven two prineipal ideals I,, I,, generated by non-0-divisers,
in & local noetherian ring @, then I, - I, if I, (@ )r =
I(0), for all localizations (0), of depth 1.

But certainly I, = I, if I,(O), = Ie(a)y for sll prime
ideals p associated to I, or I,. And 1f » 1is associated to I, =
(a1), then in (o )P, a; 1s a non-0-dlvisor such that all non-units in
(0)9/‘31'( @), &re O-divisors: i.e., depth (6)9) = 1.

QED

In a very similar way, it can be proved that a Cartier divisor D
is effective if =and only if 1t 1s effective at all points x, where depth.
(og) =1
Corollary: let X be a normal noetherian scheme, i.e., all local rings
o, 4are integrally clesed domains. Then two Cartier-divisors D,, D, are

==
egual if and only if they are equel at all points x of codimensicon 1,

Proof: By the principal ideal theorem, & normal local ring of
Krull dimenslen » 2 has depth > 2.
) m

Now assume for the rest of 2" that X 1s an irreducible normal
noetherian scheme., If K 1s the stalk of °x at the generic point of X,
then & is simply the constant sheal:

MU, ) = K, 8ll U.

Incidentally, this proves immediately that H (X, Kx) = (0), hence by
the exact seguence (#)G (1"): every invertible sheaf £ on X 1is the
divisor class of scme Cartler-divisor.

Definition: A Weil divisor on X 1is a formal sum

Tl
Z ryEy
121 :

where E,,..., E, are closed irreducibls subsets of codlmension 3.
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If, for 811 x € X of codimension 1, we define a sheaf zx by:

(0) if x ¢ U
U, Z,) =
2 % {z if xeU

then one checlks that & Weil divisor is the same thing as a section of the

sheef
¥ AR

5]
x of codim 1 ¥
N_ow there is & canonical exact sequence:

). 0= of = @ .
(#)W S "ISE X of codim 1 %

Nemely, given f € r{(U, _K_;) = K*, define its image to be:

z ord (f) + (B ,

. XeU
x of codim t

where ordx(f) is the order of f at x. In other words, say U =

Spec (R}. Then let f = g/h, where g, h ¢ R, and let
{sy) (34 EW
(g) = ?, n e, Neoun ¥ ’ 8y >0
(t) (t5) (t,)
(B) = ¢, ' fwy o Bng O

where the ¢, are minimal prime idesls, and #{t) 15 the t¥0 *symbolic"
pover of ¢  [pt®) - ROM(p'R)F). Then the imege of f is:

n

z (84~ t;)} felosure of point given by .

I=i
Note that 1f s; = t; for all i, then (g).- (h), hence f is a unit
in R: this shows that (#)w is exact.

Putting (#)c'and {(#),; together, we obtain en inclusion
g*/g* C ex Zx 4

hence the group of Cartier divisors is embedded in the group of Weil di-
visors, This 1s, in fact, just an interpretatlon of the Corollary just
above: for if x € X has codimension 1, and (7} 1s the maximal idesl
in s then the stalk of a Cartier divisor at x has & loeal eguation
of the form m, for 2 well determined integer r, fThe corresponding
Well divisor is then just the sum over x of r . (X}.

Proposition: The group of Cartler divisors equals the group of Weil di-
visora 1f and only if all local rings Oy are UFD?’s; e.g., if X is a
regular scheme, :
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Proof: The two types of divisors are equal if and only if the
hamamorphlsm of stalks in (#)y: : '

(K_;{)Y - [x of c?dim 1 zx]y

is surjective. But this is simply:

K* = @& zZ
FCop
minimal primes

easigning to .f = g/h the difference of the orders of g and h at all
P . This 1s surjective if and only if every s C 9y 1is a principal ideal:

i.e., 1f and only if oy is = UFD.
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1° The simplest operation to perform with Cartier divisors i1s .to
take inverse images: say X——Y 1s a morphlsm of ncetherisn schemes,
and say D 1is an effectlive C-divisor om ¥. Then 1t 1s quite clear what
g¥%(D) ought to mean: Fix an open covering {U’i} of ¥ and locsl equa~
tions f; for D in U;, where f; € I'(U;, o). Then g*(D) should
be defined by local equations g*(fi) In the open covering 3'1 (Ui).

However, g*(fi) can be a 0-diviscr, even 0. The best thing is to as-
sume s

(%) for all x € A(X), g(x} ¢ Supp (D) .
Then g*(fi) is not & o-divisor, and g*{D) makes sense.

Proof:; Suppose a - g*(fi) =0, where a ¢ Ops and x € X.
Then let =x' be the generle point of scme component of the support of
the section a of % (defined near x}: We may take

X' € Spec (gx) CX.

Then o,, has depth 0 since the Induced element a' € o, i3 idlled.
by 2 power of the maximal ideal m, (ef. Lecture 8, 2'), and since a!
# 0., But then x' € A(X), hence g(x') ¢ Supp (D). Therefore, the lo-
cal equation f, for D is a unit at g(x'}; therefore g*(fi) is a
unit at x'. Therefore, in, Oyt

al = [a' - g giepT = o
This contradicticn proves the result.

Note that if g is filat, (*) ls autcmatic. PFor if g 1s flat,
then for all x € A{X), g&(x) € A(Y}, (Iecture 6), hence g(x) is not in
the support of any C-divisor (Lecture 8, 2°).

2° A more interesting question i3 when can one define a direct
image g,(D) of an effective C-divisor D on X. In this section, we
treat the "elementary” case:

£1 finlte and flat.
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Then g, cen be defined by Norms! The problem 1s esaehfia.lly algebrale,
sinee 1t 1s local on Y: let U = Spec (A) he an open affine subset of
Y, and let g""1 (U) = Spec (BY. Then B 1is an A-aigebre, which is of fi-
nite type as A-module. Morsover, since 2. 3}() ig a loeally free sheaf
on ¥, if we take U sufficiently small, B 1= a free A-module too.

We are then set up for norms:

if e B, let Tﬁ: B=B be meltiplication by 2.
if by,..., by, ere a basis of B over 4, let
n

T,(5,) = jz ayyy -
=1

n

Then: )
Nm{g) = det {aij) .

This is naturally independent of the 'basis bi, and has the obvious prop-
erties; '

No(B, - B,) = Mm(p,) * Mm(B,)

Mm(e) = o, 1f xe A .

Although the norm is not always a product of p and 1ts conju-
gates, at least one has:

(*) for &11 p, there is a p' such that Nm(g) = p - B' .

Proof: Iet P(X) = det (X * ldentity - Tﬂ) be the eharacteristic
polynanial of Tﬂ. Then (Ceyley-Hamilton theorem} P(TB) = 0, hence
P(B) = P(TB)(t) = 0, or, weiting out P:

g e 8™ i - B (A - o.
QED
One alsc has the important:

(Y If B € B 1s not a 0-divisor, then MNm(p) is not a o-divisor.

Proof: We use a simple general fact:

Iemma A: Iet Xg—v Y be a finite flat morphism of noethsrlan schemes.

Iet x e X. If g(x) has depth 0, then x has depth 0, and con--
verasely.

Proof: If depth g(x) = 0, then thore exlsts a € o
whose amnihilater iz m

(x)? a #o0,

h x)* the maximal ideal. Since g 1s flat,
g1 Eg(x) _”—Jx is injective and g*(a) € Sy Iz not ©¢. BSince g is
finite, ms(x) C o *13 primary for the maximal ldeal m,,: since
mg(x) - kills g (a}, the depthof x 1s ¢. The converse was
proven In Iecture 6.

QED
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Returning to B/fA: Suppose Nm(p) i1s a 0-dlvisor. Then there
is & prime ideal s C A such that depth (Ay) = 0, and such that WNm(g) -
is a O-divisor in 'A“‘[i.e., let a - Nm(p) = 0, and let 4 be & minimal
prime ideal containing the annihilater of al. Replace A by A, and
B by B, =B ®A A. Then B 1s a semi-logal ring all of whose localiza-
tions have depth © by the lemma. Then if B 1s not & ¢6-divisor, g is
in none of the maximal ideals of B, i.,e,, p 13 a unit in B. Since
Nm 1s multiplicative, HNm{gf) is'a unit too, which contradicts ocur as- -
sumption,

To apply the norm to the definition of g,, we need:

lemme B: Iet X—g---' Y be & finite morphism of noetherian schemes, and

let L bDe an invertible sheaf on X. Then there exists an open covering
(U;) of ¥ such that L 1is iscmorphie to 94 1in each open set g"(Ui).‘

Proof: For &ll ¥ e ¥, look at the module M = g,.(L)_ over
B = 8(0y)y Since g 1is finite, B 1is a semi-local ring, and if R
is its radical,

B/‘;l_g @ H(x)

Therefore, M/#% + M 1s certainly free of rank 1: hence M is free of
rank 1 over B {(cf. BOURBAKT, Alg, Comm., Ch. II, §3, Frop. 5). Iet w
he a bagis of M; then, u_y_ is induced by a section e of g, (L) in
an open nelghborhood U, of y. Multiplication by » defipes a homo-
morphism;

By (0y) —= 2(1)

in U1. The kernel and cokernel sre coherent sheaves on ¥ whose stalks
at y are {0): therefore, both are (0) in a whole nelghborhcod U, ¢
T, of y. Then in g"(UE), multiplication by u glves an iscmorphism
of o and L.

QED

Now in our case, we are given an effective C-divisor D on X:
By the lemma, there 1s an open affine covering U, = Spee (Ai) of ¥
such that D is principel in g"(Ui) = 3pec (Bi). Therefore D 1s de-
fined by an equ.za.‘c.ion1 8; € B;, for all i; By not & o-divisor. Ome
checks thet B, ; a; is & unit in r(g" (T4n Uy), o), hence
No(pg;) + Mm(p,)” is aunit in r(Uy N Uy, oy).  Therefore, the ssctions
Wm(p;) define a C-divisor g, (D).

3 Remarkably, the direct image g, {D) can be defined in a very
much more general case: 2" 1s really just "case 0" in an Infinite set
of cages, in each of which g,(D) can be defined, but requiring, in each
successive case, the computation of cne more determinant, smong other
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things. We have in mind the following situation:
FoxY2XOV

N

YoUu

where {8) X 1= a closed subscheme of P.x¥, U 1s open in ¥,
(b)) V = g"(U), g, 1= the restriction of g,
(c} g, 1s finite,
(d) g 1s of finite Tor-dimension,
(e} all points 3y e ¥, where [ has depth © or 1, are in T.

Then in this situation there is a natural definition of g,(D)}. (Cf.
Munford, Geamstric Invarisnt Theory, Ch. 5, §3.} 1In fact, if g, 1s
also flat, g,(D) 1s unlquely determined by the requirement:

g«-(D) IU = SO,*(DIV) *

+* In this seetion, I want to define the eoncept of a relative
(effectivé) C-divisor. Suppose X-f-—- Y iz a flat morphism of finite
type of noetherian schemes. The question is, when should a divisor
D CX he regarded as a family of C-divisors on the varlious fibres of f.

Propositicn-Definition: An effective C-divisor D ¢ X is said to be a
relative divisor over Y 1if equivalently:
1) D 1is flat fY,
or i1) for all x € X, the local equetion F of D at x 1s not
a.zero-divisor in the ring o, &, N(y), where y - f(x}, ‘
or i11) for all ¥ e ¥, -

Ae™ gy n supp (D) = B .

Proof: (ii) and (iii} are obviously equivalent. To prove them
equivalent to (1), pass to the algebraic setup, since the problem is lo-
cal on X and Y: then one has B, a flat A-algebra, and F € B & non-
o-divisor., Iet # C A be a prime ideal. Since B is flat /A, Bfp - B
is flat over A/fp : therefore all prims ideals 5 C B/¢ + B assoclated
to (0) comtract to prime ideals in A/¢ associated to (0), i.e., con-
tract (0) 1tself since Afy¢ 1is an integral domalin (this is Example 1,
Iecture 6). In other words, all prime ideals ¢ ( B assoclated to ¥ * B
satisfy ¢ N A = ¢ . Therefore, gll such ¥ are asscclated to {0) in
B ® [quotlent fleld of Af 1, 1l.e., such ¢ ocorrespond to x € A(i"1(y))
if y corresponds to ¢ . Therefore, hypothesis (111) asserts:

1i1)* F 1s not in any asscclated prime ideal of ¢ + B,
for any prime ldeal e C A .
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To prove thls is equivalent to the flatness of B/F + B over A, recall
that flatness is equivalent to:
Tor? (B/F'B, Ale) = (0,
all priwe ideals ¢ C A, (this 1s easy— ¢f, BOURBAKT, Comm. Alg., Ch, I,
§4). But using: )
F
Tor? (8, A/v ) — Tory (B/F-B, A/p) ~B/p - B——B/FB
and the flatness of B over A, the venlishing of this Tor is equivalent
to (1i1)*,
QED

The important point concerning relatlve Cartler dtvisors iz thia:
given a fibre product situation:

e
_ f'l\gx
Tl

and an effective C-divisor D in X, relstive to f, then g'*(D) 1is
always defined. For, by the remarks at the end of Iecture 6, a point
x' € A(X') 1s also in A{f"1(y')), if gt = £'(x). Anmd

oy =ty x  Spec M(y")
Spec  H(Y)

where ¥ - g(y'}. Therefcre f"‘(y') 1s flat over £ ! {(y), hence
gl(x") € A(f"(y)). Therefore
g'(x") ¢ Supp (D) .

This implies that g'+(D) 1s defined. (Cf. 17).

In particular, one can take Y' = 3pec K(y)} for various ¥ ¢ ¥,
and cne cbtains a family of C-divisers on the fibres f'"(y) of f -as
required!




IECTURE 11
BACK TO THE CLASSICAL CASE

After gpending so long in the arid generality of arbltrary noether-
ian schemes we return to our proper program—to investigate the set of
curves on a given surface., In this lecture, we simply set the stage for
working over a field k, recelling without proof scme of the basic facts:

F:Lx; once and for all, an algebraically closed fleld Xk,

Recall, an algesbrelc scheme /k is a scheme X of finite

type over k. All schemss, henceforth, will be algebraic

schemes, and all functors will be functors on the category

of algebraic schemes. Recall, a variety /k 1s a reduced

ard irreducible scheme /k. Fram now on, P will denote

Pro] klXy,..., Xn], (not Proj zlX,,..., xn]).

{I.) Recall also the main result of dimension theory in thls case (cf.
ZARISKI-SAMUEL, vol. 2, p. 193):

{(*) If X 1s an irreducible scheme, there 1s an integer n,
the dimension of X, such that

Krull dlm (3::) + trans. deg. K(x}/k - n
for all =x € X.

Definition: If X is any scheme, let dim {(X) be the maximum of the

dimensions of the components of X.

It can be shown that dim (X} is also the cohomological dimen-
sion of X: thus if 1 > dim X, H(X, ) = (0) for all sheaves §
{cf. GOTEMENT, Theorie des fajsceaux, p. 197).

(II.) Definition: A scheme X is projective (resp. guasi-projective)
if it 1s isomorphic to a closed (resp. locally closed) subacheme of Py
(for scme n),

Definition: An invertible sheaf L on & scheme X 1s very ample if
there exlsts an immersion

9: X =P,
{for same n) such that ¢*(o(1)) =L .
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There are ssveral important remarks to make about this concept:

a) Suppose more generally that L = o*(o(1)) for any mcrphism
9: X=P, at all. Then the induced sections 8y = cp*(xi) of L. span
L. Conversely, 1f L is spanned by its gicbal sectlons, ome can choose
e finite set s, ®;,..., 8, of sections which span L. Then (L; 8gs
+ovy 8,) defines an X-valued point of P,, i.e., a morphism g¢: X — P
such that ¢*(o(1)) = L . In particular, a very ample sheaf is spanned
by 1ts global secticns.

b) Suppose HO(X, L) is finite-dimensiocnal, e.g., suppose X
is a projective scheme. Then if I, 1s spanned by 1ts sections, there is
a nearly canonical morphism g: X — P sach that L = p*(o(1)): namely,
take a basis 8,5, Sy,..., 5, oOf H(X, I). These canmot all vanish at
any one point, so (L; 8g,..., sn) defines such & ¢. More functorially,
this defines a morphiam: '

p: X= PIEO(X, L)} .

Note that in this embedding, ¢(X) 1s not contained in amy hyperplane
(in the scheme-thecretic sense: 1.e., ¢ does not factor through a hy-

perplane H C Pn) . Por if this happensd, then for sultable e,, «

0r Fyrcrs
¢,, one would have

*(Z X)) = I @8y = 0
in H°(X, L), contradicting the independence of the 8-
Definition: An invertible sheaf L on a scheme X is smple if there
eXlsts a posltive integer n such that It 1g very ample.

(II7.) An important fact sbout projective varieties X 1is that:
X, gx) =k .

This follows because, in any case, the ring A = T(X, Oy)- is & finite di-
mensionel commutative algebra over k. And since k 1is algebralcally
‘cloged, 1f k ; A, then A contains 0-divisors. But sinece X 1s re-
duced and irreducible, even Oy contains no ¢-diviscrs.

If X 1is any projective scheme, the finite-dimensional vector
spaces Hi(X, EX) are important invarients of X. One of the most in-
teresting is the alternating sum of theirp dimensions, x%( gx) . For historl-
cal reasons, when X is a projective variety of dimension n, cne dropsa
the term dim H(X, o) - 1, and counts down from H", obtaining the so-
called arithmetic germs:

Pa(X) = dim HY(X, oy} - dim B N(X, op) + ... + (-1)27 amm ®'(x, o)

= (% x(gp -1 .

This has the advantage that when X is a.kcurve‘,
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Po(X) = dim H1{X, Oy) = usual gemus of X .
On the other hand, when X is a surface we get
P{X) = dim B*(X, o) - dim H (X, op) -

[The point is that the Itelians regevded dim H°(X, oy) as the dominant
term, and called 1%, for non-singular surfaces, the geometric genus,
p.(X}; while dim Ht{X, oy) was considered a "eorrection" term, and was
called the irregulerity q(X). The reason is that for surfaces in P3 -
which were looked at first—q -0 and p, = p .1 In any case, for any
projective scheme X we shall make the definition:

(%) = (-1 X (xoy - 1)

(IV.) A thecorem which one can only use without thinking twice when the

base is e fisld is the Klneth form:la. This simple but convenient tool
has grown to really awe-inspiring slze in Grothendieck’s tome (cf. EGA,

§6, esp. Th. 6.7.3), but for our modest needs the following suffices:

For any schemes X, ¥, let ¥, @ be quasl-coherent
sheaves on X, Y respectively, then:

BN x ¥, p"F® ppg) =2 tel(x, #) @ Bl(y, ¢)1,

{Proof by Czech-cohamology, and theorem of Eilenberg-Zilber.)

A Corollary of this 1s:
Py WPy F@pigl = ?ﬁHO(Y, 8)
El

i.e., apply the Kinneth formule to Ux ¥, for U C X affine and open.
In particular, in view of (I.):

Py [Opy) =2y

if ¥ 1s a variety.

(V.) Defirnition: A variety X 1s non-singular if all local rings O
are regular, x € 3. '

Definitien: A variety X i1s pormal if all the local rings ¢, are in-
tegrally closed, x ¢ X.

The product of non-singulsr varieties is non-singular; more gen-
erally, if XL—' Y is a flat surjective morphism with non-singular
fibres, ther X 1is non-singular If and only if ¥ 1s non-singular. [A
flat morphism with nca-singular fibres is known as a simple or "lisse” or
smooth morphism. ] '
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Moreover, the product of two reduced schemes is reduced; more pen-
erally, if X——Y is a flat surjective morphism with reduced fibres,
then X 1s reduced if and only if ¥ is reduced. A simple consequence
of the former 1s that for any algebraic schemes X and Y:

(X % Vypeg & Kpog X Ypeg -

If X is an algebraic acheme, the set of all x € X such that
O is reguler is an open subset U C X. In perticular, if X is a vari-
ety, and x € X 1is its generic point, then 9y 1s a fleld, hence regu-
lar; therefore there 1s an open dense subset U ¢ X which is non-singu-

lar.

(VI.) PFinally we want te recall the Riesmanm-Roch theorem for curves
which is the fundamental result describing the geametry on a curve,

Definition. A curve X 1s a 1-dimensional projective scheme all of

whose closed points have depth 1, i.e., all its local rings are Cohen-
Macauley. If D C X 1is an effective Cartier divisor on X, let Iy be
a local equation of D at x € X. For all but a finite set of points,

S8Y Xy,..., Xy, We may assume that f, - 1, Then one defines
- n
a) deg (D) = z dimk[gx /(.f.‘x 1.
1= 1 1
Wote that is just O /(fx } at x., end (0) elsewhere,
so that: 1 1
b) deg (D) - dim E(X, o) -

If X 1is non-singular, and {(t;) is the maximal ideal at

: Xy
then let

ry
fxi = {(unit) - x5

Then D 1is the Weil divisar 2§=1 Ty - X, and
n
c) deg (D} =z r; .
’ i=1
The interesting thing about this invariant is that it depends

only on the divisor class of D, not on D itself. This can be
geen by using the definition (b) and the exact sequence

Q#EX(_D) —ogx—b%—» o .
d) deg (D) = X(oy) - X(oy(-D))

Using this formula, one can extend the definition to arbitrary.
invertible sheaves 1L
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e) deg (L) = x(gp) - X(L7") .
Riemann’s half of the Riemsnn-Roch thecrem then asserts simply:
+ - .
THEOREM 1: a) deg (L® M ') = deg L +« deg M bence

b} dim #%(L) - dim B (1)

deg (L) + %(gy),

deg (L) + 1 - p&(X) .

In other words, degree glves & homomorphism:
Ple (x) 482, g,

{If X dis irreducible, then ths kernel will be called Pic™{X), and it
is well-known to be canonically isomorphic to the group of k-rational
points on & group-scheme—the so-called Jacoblan variety of X. We shell
have much more to say gbout this below. ]

Roch’s half of the Riemann Roch theorem tells how to compute the

1 in terms of ',

H

THECREM 2: There is a cancnical coherent sheaf @y on X such
that the vector spaces

H (X, L) and HY(X, oy @ L7)

and the vector spaces
BAX, 1) eand H'(X, oy @ L")

are canonleslly dual to each other {for any invertible sheaf I1).
In particular, x(L) = *(oy ® L'T) .

{For a proof when X 1s reduced and Irreducible, cf. SERRE, Groupes
algdbriques et ..., Ch. 4; in the general case, ¢of. Grothendieck’s talk
at the Bourbaki Seminar, exposé 149 and Hartshorne’s fortheaming notes on
Duality in the Springer Lecture Note Serdies. Actually, the proof here 1a
quite simple. One Chooses an embedding

Xcr, (some n) .

Then put ay = EXtD

[5{,‘0 {-n-1}]. Then one uses the standard re-

P - P

n n .
sults on change of rings in Ext’s, the connectlons between A and Extt
in the genersl theory of sheaves—cf. Grothendieck’s Tohoku peper, or
Godement’s bock §7.3-end finally the last theorem in Serre’s paper FAC:

viz., if F 1is any ccherent sheaf on P, then

Bl P, F) amd Extg': (§,2p (-0-1))
= n

are canonically dual. n

One further point which we will need: If X is reduced and 1r-
reducible, then 13 torsion-free and of rank 1 ag oy-module. This
can be geen in Serre’s bock, or by computing the Ex‘l'.n"1 above, }
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The following consequence is the prototype of a large class of use-
ful results: the vanlshing theorems:

Corollary: Let L be an invertible sheaf on a reduced and irreducible
curve X. Assume
' deg (1) > 2p (X) = 2 .

. Then H'(X, L) = (0).
Proof: Suppose H1(X, L) # (0). Then

dim H' (X, o ® L") = aim B(X, 1)
' deg (L) + 1 - p (X) + dim H'(X, L)
2 Py(X)y + 1

while
dim B2(X, oy ® L7') - dim H'(X, L) » 1 .

Iet o be a section of By ® I.."'; ¢. defines a homcmorphism h:
: h -
oy=——w, L ,
If h 18 not injective, then h sannihilates a whole ccherent sheaf of
ideals. 8ince X 1s reduced and irreducible, a non-zero coherent shesf of
ideals is iscmorphic to Oy &t all but a finite set of points. Therefore,

if h is not Injective, the support of ¢ is O-dimensional and oy would
" have torsion. Therefors, we get an exact sequence:

. O*EXme_@L:L—*K*O.
Moreover, since the rank of mXGL" is 1, the homomorphism h':
ht -1
O= Ky === (g ®L7) @Ky >k @Ky =0

is an isomorphiam; hence « @ _K_x = (0), and «x is a torsion sheaef. There-
fore we get the exact sequence:

B (X, o) = H' (X, oy @ L7) = H' (X, ©)
i
(o) .
Since dim H’(X, 2-}{) = Dy, this 1s a contradiction.
QED
A further develomment of the theory shows that there is another con-
stant N, depending only on X, such that when the degree of the invertible
sheaf I is at least Ny, then L 1s very ample {(cf. MATSUSAKA-MUMFORD,
Am. J. Math,, 1964), This gives the elegant Corollary: I is ample if and
only if deg (L) > 0. [To show that "deg L > 0" 1s nscessary, use Serre’s
theorem that "L smple" implies H (L) - {0), for large n, hence

*X(IL®) =+ asn-— 40,  hence, by Theorem 1 deg (L) > 0.]
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Flpally, there is a third part of the Rlemann-Roch theorem which we
shall use in the next lecturs. This is & result which enables ¢ne to compute
the sheaf o, in some cases: ' '

THEOREM 3: Iet ¥ be a non—éingular rrojective surface.
Then there i3 a canonlcel invertible sheaf 9 on F with

the following property: Ist D C F be any effective di-
visor, Then D is a curve and

ng,tn @(_:F(D)] @0y v

Exemple: If F = p,, then , as is well-known, # = o{~3). Then suppose
D C P, 1s a plene curve of degree d, l.e., o p.(D) = o(d@). Then Thecrem
3 tells us that 2

oy = o{d-3) @ [
For example, if d = 3, then ©on = o, and for all invertible sheaves L
on D, H{D, L) and H 1(p, L") &are dusl; in particular ¥'(D, o) and
HO(D', 99) are dual, hence .

pa(D} -1 .

Such curves are kmown as elllptic curves when D 1s non-singular.




LECTURE 12
THE (VER-ALL CLASSIFICATION OF CURVES QN SURFACES

We now turn ocur attention to geametry on & fixed projective and non=-
singuler surface, F. On F we have divisors (Well or Cartier, it makes no
difference), and the group of dlvisor classes Pic (F). Among dlvisors, the
efrective dlvisors will be referred to simply as curves: these are now 1-
dimensional closed subschemes, but they are not necessarily reduced cr irre-
ducsible.

°

1 Iet DCF be a curve. Unlike the case of effective divisors
on curves themselves, one camnot count the number of points in the support
and cell it the degree, since the support is positive dimensional. What we
can do in the way of counting is this:

Iet D,, Dy be two curves in F such that
aim (Supp (D,) N Supp (Dp)) =0 .

Let (x,..., x;} = Supp (D} n Supp (Dg) «
Iet fi(resp. gi) be a local equation for D, (resp. Dp) at -

Define i
(D, * Dy} = dim [o_ [(fy, 2}]
1 2 4 kS, /e By

This makes sense because the ideal (fy, gi) defines a subscheme of F at
X, which is set-theoretically the intersection Supp (D,) n Supp (Dp), i.e.,
which is £xi} itself. Therefore

N
{fy, 8) 0 =)
for same W, and the dimension 1s finite.

This is the intersection nuwmber of D, and D,, and it is easy to
check that it 1s bilinear whenever defined. Like the degrse in the geometry
on curves, it depends only on the divisor classes, not the divisors:

Proposition 1: If (D, * D) 1s defined, then
(D, * D) = %(op) - X(0m(-Dy)) - X(2p(-Dp)) + X(gp(-D; - Da)).

a3
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Proof: Consider_the two complexes of sheaveg

Op(-Dy) = o
and
opl-Da) = op «
Tensoring them, we get the complex
(*) op{-Dy= Dp) = op(-D,) @ op(-D;) — on

since the originsl complexes are resolutions of % and
free %-modules, the cohomology of (*) consists in'the shea.vgs

'I'or?F (%1, &32) .
But if x e F, and if f and g are local equations of b, and ‘D, &t
X, then f and g are elther cne or both units, or f and g are an
o, ~sequence. In either csase, the groups

by locally

0,
Toryt (o, ME), o /(g)) = (), t>o0.

Therefore (*#) 1s a resolution of o 8952' which has stalk _c_:x/(f, g) &t
: 1

X. Therefore this sheaf is (0) except at x,,..., x,, and at x; it is
isomorphic to

Qxi/(fi: 81}
Therefore,
(Dy - Dy}

It

dim HD(F, 2131 ® '992)

x(_gD1 ® EDa)
X(op} - *[op(-Dy) ® cp(-Da) ] + %(op(-Dy- Dp))

x(op) - X(op(~Dy)) - X(@p(-Dp)) + %(0p(-Dy- Dp)) .
QED
This l;lotivates; )

Definition: Ilet L, and I, be any invertible sheaves on I,

(L, * Lp) = x(gp) - ¥(IyH) - x(L3") + x(L]" ® 13"
If D, and D, a&are sny divisors on F, then

Dy Do) = (op(D;) " op(D))

1) {Ly r Lg) = (Ip' Ly)
11) (Ly @ Lj * Lp) = (L, - Lp) + (L} + Ly)
131} (L7 ¢ Ly = - (L, * Ly) .

Proposition 2: ( , } is a symmetric integral bilinear pairing, il.e.,
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Proof: (1) is obviocus, and (111) fellows from (ii) in virtue of
the cobvicus fact:
(EF . L) = 0.

In fact, I claim:
(%(D) * L) - degplL@ QD]
for any curve D on F. Use the sequences:

O-EF(-D)—.‘EF_’&)“O
and

-1

0~L" @ op(-D) L = (L@ g =0

Therefore,

(op(D) * L) = Dx(og) = X{og(-DN] - (x(E™) - x(L™" @ gg(-D))]

I

%(op) - X((L® g ™"

degD[L ® _gD] .

Therefore, if L, admits & ssction, (L; - L) 1s ldnear in L,, by the
Riememn-Roch thecrem (Theorem 1, Iecture 11).

Finally, let of1) be a very ample invertible sheaf on F. If L
is any invertible sheaf on F, then IL(n) has a section if n 1is large, by
Serre’s theorems. Now by writing the whole thing out cne checks that the ex-
pression

(L, * Lg) + (I} - Lp) - (L ® L * Ly}

is symmetric in the three variables I,, L and L,. Since it is o when
L, admits a secticn, it is also 0 when Lj admits & section. Taking I] =
o(n), this implies that

(L1 . LQ) = (L1(n) . Lg) - (2(11) * Lg) .
But both o(n) and L,(n) admits sections, hence the two terms on the right

are linesr in L,. Therefore (L, - Lp} 1s linear in Ly,
. GED

This bilinear form on Pic (P} takes the place of the degree homo-
merphism on Piec (X} for X a curve. It induces the followlng decomposi-
tiomn:

Definlition: PlcT(F) is the subgroup of Pic (F) oconsisting of those in-
vertible sheaves L such that . ' .

(L~ L") =0
all L'e Pic (F).
Definition: Wum (F) = Pic (F)/Pic™(F)




86 IECTURES ON CURVES ON AN ATGEERAIC SURFACE

By definition, Num (F) - the pumerical divisor class group of P -
13 endowed with & non-degenerate symmetric integral pairing into Z. The
fundamental result concerning Num (¥), due to Severl and Néron, is that it
is finltely generated as an sbslian group; hence isomorphic to zP, for scme
integer p, lknown as the base nmumber of F. We will not need or prove this
thearem {for the best proof, however, cf. LANG-NERON, Am, J. Math.,, 1959,
Rational points of abelian varieties over function fields)

2° Although to understand the whole situation coneerning the numeri-
cal characters of a divisor class {D} one must look at lts imsge in Num (F)
or, equivalently, at the numbers ( op(D} - 1), for all I, ncnetheless for
most purposes some of these numbers are more important end usually suffice:

Definition: If of1) 1s a fixed very ample invertlbls sheaf on F, then
relative to o(1) one defines: )

- deg (L} = (L * o(1)}

S deg (D) = deg[gF(D)] = degylon ® o(1)] .

Inc_identa.lly, 1f D is effective, then deg (D) > 0: let o(1} on

F be induced by:
i: » "'—‘I’n .

let HC P, be a hyperplane not containing any of the points i(x), X &
generic point of Supp (D). Then the curve H' - i*(H) 13 defined and
dim {Supp (D) n Supp (H)} = 0 .

Therefare,
: deg (D)

(op(D)  og(H")
(D - H)
> 0.

But suppose deg (D) = 03 then Supp (D) N Supp (H') = ¢, To prevent this,
choose & closed point y € Supp (P} and choose the hyperplane H such that
i(y) € H while i{x) is still not in H for generic points x e Supp (D).
This is certainly possible, and, therefore deg (D} > o.

Returning to an srbitrary invertible sheaf I. on F, the other
number of great importance is its Euler characteristic. This number is given
by an intersection product too. To derive this, use the third part of the
Riemann-Roch theorem on curves. ‘

Proposition 3: Let L be an lnvertible sheaf on F, =and let 9 - be the ca-
nonical invertible sheaf on F° given' by Theorem 3, ILecture 1. Then

(L) = HL-Lea™) + oy
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Proof: The formle gtates:
2(X(1) - X(gg)) = (L L®a™)
—(Lﬂ

- x(og) + XL} + 2L @ ) - %)

[l

cLea™h

It

or
(# L) - (o) = X(a ®LT) + X(B) - 0.

If L' has a gecticn, them L EQF( -D) for same curve D. Then use the
exact sequences:

o—1L— %, - ED -0
and

0-+a=a@L " =amy=—0

(cf. Theorem 3, Iecture t1). By Theorem 2, Lecture 11, x(mD) + x(gD) =
hence (#) follows whenever L~ has a sectiom. '

Finally, let o(1) be & very a.mple invertible sheaf on F. If M
is any invertible sheaf on F, then M (n) and of{n) both have sections
if n is large, by Serre’s theorems. Now a simple camputation shows that
the expression on the left in (#) is lineer in [. Namely:

[X(L @ M) - x(og) - x(o e o ! ) + %]
- [%(1) - x(op) ~ x(2 ® L~ ) + X(0Y]
- [X(M) - x(_%,‘) - Yo @M Yy xta))

= {%X(e )-x(L)-x(n@L @ M )+x(n®M)
+ (x(o)-x(M)-—x(n@L ®M )+x(n®L)
- [X(EF)-X{L®M)-X(Q®L M )+x(n)
= (VW -a'ernem e s 2ot em

- e et e Lew

= 0 .
Put then the expressicn in (#) iz 0 for L = M(-n}) and for L = e¢(-n) by
the first part of the procf. Therefore it is o for L = M.
QED
This result is the weekesst version of the Riemann-Roch theorem on F.

As one consequence of this result, we see that the only really important
mmerical chapacters of an invertible sheaf T are

deg {I) = {L * o(1)}
() - (L -1
and
(L - a)
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3’ 80 far ve have studied ths discrete aspects of Pic (F), and
hence the dlscrete aspects of the set of curves on F. To get at the exis-
tence questions of Lecture 2, we shall look st the continmous part of these
two sets. The "glueing" which gives contlmuity must came from the concept
of families of invertible sheaves and families of curves. We malee the fol-
lowing definitions:

Definition. Iet 8 be & scheme (algebraic k). A fami 1y of curves on F,
over 3, 1is a velative effective Certier divisor PCFx3, over S. A
family of lnvertible sheaves on F, over 8, is en invertible sheaf I on
F x 3: except that two invertible sheaves L,, Ip will be seid to define
the same famlly of invertible sheaves if thers is an invertible gheaf M on
8 such that:

L = Ly, ®pa(M) .

How does the concept of & family really provide the glueingz This
comes about because the collection of families forms a functor:

‘ a) Curves F(S) = set of famllies of curves on F over 8

and
b} Piec F{ 8) = set of familles of invertible sheaves on F over 8.
Given T ~Sm 3, one obtains:

FxT k2, Fx8;
hence for D CFx 3 (resp. L on Fx 3), one obtains h*(9) C Fx T
(resp. R'(L) on F x 7). This is a map
a) CurvesF(S) £ Cu.wesF(T)
and g
b) P_:L_qF(S) == Pigy(T) .

The glueing 1s now equivalent to the problém of representing these functors:
to represent these functors is the same as to find a universal Tamily of
curves or invertible sheasves. And iIf you f£ind such a family, say over 3,
then the set of kK-rational polnts of 8 will be canonically iscmorphic to
the set of curves on F, or to the set Pic (F); 1. .€., you have put these
3ets together Into whole schemes. Notice also that we have a m morphism of
Tunctors:

Curves, -2 Pleq
whichmaps 9 C F x 8 to the invertible sheaf Smys (D). Consequently if
C (resp. P) were schemes representing these two functors, one would auto-
matically get a morphism of schemes,

] 2. P
which, on k-rational polnts, restricts to the obviocus map from the set of
curves on F to the set Pic (F).
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In terms of this glueing, we can say precisely why the mumerical in-
variants of 1" » 2° are discrete, Say }‘_.I » Ly are two invertible sheaves
on F x 3. For each closed point s € 8, they induce sheaves L1 and
La,s cn the fibre F, and we can compute (LI,s . La,a)' this nunber ig
constant on each connected compenent of 8 ! [3lnce (I, 8" a) s &
sum of Euler characteristics and these are values of Hilbért polyncmia.ls,
this follows from Corollary 3, Iecture 7.) In other words, glven any family
of invertible sheaves over a connected base 8, the lmage of each sheaf Ls
in Num (¥) is the same. Therefore, if an object P represents the functop
Picy, for each element of Thum (¥}, the set of invertible sheaves inducing
this element would form an open and closed set of P. The natural thing to
do 1ls to break up the functors EF gnd curveF accordingly into menage-
able pleces: ’

Definition: Iet & ¢ Num (F). For all schemes 3, let %(3) be the sub-
set of %(5) conslsting of those L on P x & such that for all closed
polnts s €3, if L, 1s the induced sheaf on F over s, then L, has
numerical class . Moreover, let curvegFg(S) be the subset of CurveEF(s)
mepped by ¢ 1nto %(S) Both form subfunctors denoted CurvesF and

£
Pir.'.F .

The principal results at which we are aiming are:

FIR3T CONSTRUCTION THEOREM: For all ¢, Cm::'w.res_.!‘,g is
1scmorphic to a functor hc(g)’ where C(:) 1s a pro-
jective scheme.

SECOND CONSTRUCTION THEOREM: For all &, PigF; 1s
1somorphic to a functor hP(g)’ where P(f) is =
projective scheme.

Az a corollary, it follows readily that the full functors Curvesp
and % are represented by (non-algebraic) schemes which are the disjoint
unicns:

1;1 o(y) end Ig P(8)




IECTURE 13
LINEAR SYSTEM3 AND FXAMPLES

Before looking at the general problem of constructing C(g) and
P(t), we want to describe same special cases Inwhich the answer is very
simple and then to show how some of the Examples of Lecture 1 fall in this
category, hence can now be treated rigorously.

1" We start with & case in which the group Piec (F) and hence th
group Num (F} 1s particularly simple:

Assume i) H C F 1is an irreducible curve,

i) F - H 1is affine,
iii) r{F - H, gF) is a unique factorizaticn domain.

Proposition 1: Then Pilc (F) 1s an infinite cyclic group generated by the

image h of H; end
Pie (F) = Num (F}.

Proof: We must show thet any diviser D on F 13 linearly equlva-
lent to nH for some integer n. Since divisors are Welil diviaors, every
divisor 1s the difference of two effective divisors and we may as well as-
sume that D 13 effective, Let the closed subscheme Dn (F - H) of F-H
correspond to the ideal

!Cﬂar‘(F-H,gF) .

gince A 1induces a principal ideal in each localizsticon Rp of R, it
follows that all prime ideals asscciated to % are minimal; hence, since
R 1is a UFD, 9 1itself i= principal. Iet ¥ = (f). Then the divisor

D - {f) has neither zeroes nor poles in F - H, i.e., Supp [D - (£)] C H.
This menas thsat .

D~ (f) -nH, some neg 2z,
hence D = nH. Therefore h generates Pic (F), and hence Num (F). It
remains to check that Num (F) 1s infindte cyeclic-for then so is Plc (F)

and these two groups are iscmorphic. But since F 1s prolective, the divi-
sor nH is very ample for some n (i.e., gFm_H) i1s of the form of1}).
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Therefore, 88 remerked in Lecture 12,

n(H * H = (cp(H) - op(nH))
= {ep(H) * oM}
=deg H
> 0

and therefore the image of h iIn Num (F} hes infinite order.
QED

Clearly this result spplies to P,, since 1f H 1s a hyperplane,
T( Py -~ H, _qpa) = kIX, ¥ .

Therefore, sll curves D in P, have some degres d, and D =dH, l.e.,

9 p (D) =0 P (d}. Since HO( Py, © Pztd)) is spamned by homogeneous forms
in the homogefiecus coordinmates X,, X,, Xp of degree d, it follows that all
.arves on P, are of the type we expect.

) Incidently, the Froposition is velld 1ln any dimensien, sc 1t can be
applied to verious Grassmannisns, Hyperquadrics, ete, (alse to hypersurfaces
of scme types, cf. ANDREOTTI, SATMON, Monatshefte fur Math., 61, 1557, p. 97).

2° In cases where the Plcard group is simple, the set of curves is
algso fairly simple. Actually, what 1s alweys simple are the fibres in the
set of curves over the Ploard group, l.e., the set of curves lineariy equiva-
lent to a fixemrve. However, to-state their structure properly, again we
have to find the glue to put these "linear systems" of curves together. What
is required is the fibre of the morphismm & from the functor (31.1.1"\:':35F to the
functor 2_1:9_1;. .

Quite generslly, Grothendieck hss defined the fibres of a morphlism
of functors. Iet F, & be contravariant functors from a category € to
(8ets). Iet @: F—G be a morphism. Iet S bs an objeet in €, and let
‘@ € G(3): we shall define the fibre of & over o. It is to be a functor
too, but not from € to (Sets). It is & functor from the category /8
of objects over 8 [i.e., an oblect is = morphtsm T — 3, and a morphiam

13 a commutatlive diagram g

T2
x %2
1

3

T
f

to the category (Sets). Call it o%:
f
(T = 8) - (g e MM oB) = £*(a) in &) .

The rest of the definition is clear,
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In our case, € 1is the category of algebrale schemes over k; and:
a € G(Spec (k)), 1.e., @ would be & closed point of the object represent-
ing G. Then % is again & functor on the category of algebraic schemes
over k because Spec (k) is the final object in this category. The key
point i3 this: If ¥ and G are pepresented by schemes X and Y, then
¢ 1s induced by & morphism ¢: X-=7Y, ¢ 1s z closed point of ¥ and 2%
1s represented by the actual fibre q:"(a) .

{Proof: immediate.)
of Curves, and Plcy, the fibre functor is:
Definltion: Iet L he an inwertible sheaf on F. Iet

In the case

Lin Sys (S) = (9 CF x 8|9 = relative effective Cartier divisor
over S such that
Opygl @) = pJ(L) ® py(K) for
_ soms invertible sheef K on 3) .
Via the usual maps, this 1s a contravariant funeter in S.

In Iecture t we gave heuristic reasons for deacribing Lin st; &s
a projective space. The full result can now be proven:

Proposition 2: Iet 1 bs any invertible sheaf on F. Iet N = dim HD(F, L.
Then
Iin Sys, = h
Lin o8y Pyt
Proof: BSoppose D C Fx 3 is an element of Lin Sys, (3): then
EFxS(D) = pT(L) ® p;(K) . In other words, D is determined by an invertible
gsheaf K on B8, and a section:

s € B(F x 8, p}(1) @ py(K))

{i.e., the Image of 1 ¢ I'F x 8, ngS(D))]. Moreover, .since the Cartier di-
visor s = 0 1is relative over 8, it must happen that s(x) # 0 for 8ll x
in A(p;' (Py(x))). Now if y € S, and X = H(y), then the fibre p,' (y)
over ¥y 1s just F sPe’é K) Spec (K): this is reduced and irreducible since
P 1s a variety, hence its only assoclated point 1s its generic point. There-
fore the condition on s 13 Just thet s £ 0 con any fibre p;}(y) of Py

Now suppese K, and s, determins the same D as K, and s,:
I claim that there 19 an isamorphism of X, and K, under which the sec-
tions 8, and 8, correspond. Now we have isomorphiams:

pT(L) @ py(K;) = op o(D) = pi{L) ® pa(Ky)

Iet £: 3 —F xS be a seotion of p, gotten by mepping 3 to [x) x 8
Fx 8, for same closed polnt x € F. Then:

g*(pJ(L) ® py{K,)) =K, .

[

K, = e"(py(L) & pa(K,))
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Therefore, we may a3 well assume K, = K,. Wow If the seetions s, s, are
not equel, they differ by an element :
' ¢ e HOF x 3, oo

since thsy define the same Cartier dlvlsor. But

* ’ *

HD(F % 8, EFXS) = HO(S, Pi’*(gﬂ!xs))
- (s, 9g) -

Therefore, if we modify the identification of K, and K2 by this scalar,
we cen agsume 8, - §,. Thus

set of invertible sheavea K cn 8,
and sections of p¥(L) ® Ds *{K) not
zero on any fibre %i‘ Py — up to iso-
morphism.

{set of families of curves =
DCFx3 inLingEL }

Now recall that:
E°(F x 8, py(L) ® pi(K)) - E°(F, L) ® (S, K)

by the Kinmeth formula (Lecture 11, (IV.}). FIx a basls e,,..., &y of
HO(F, I}. Then sections of p1(L) ® pz(K) are of the form

98,

'M

for sy € B(S, K) " Moreover s =0 on Dp (y) if and only if s,(3) = O
for 811 1. Therefore: _
set of invertible sheaves get of lnvertible sheaves XK on
3, sectlons of 5, and N sectlons 8y,..., Sy
(L) ® py(K) not zero on 4 of K not all simltaneously

aﬁ fibtre of p, —up to zero st any ¥ € 8 —up to lso-
2
isomor;phism morphiam,

But the latter is exactly the set of S-valued points of P,

N-1° This sets up
an’1somorphism of the functors Iin Sys; and h

P *
-1
) QED
' Looking more closely at the proof of this Proposition, cne can say
that the space Py_y representing Iin _E:"_L 1s not just any projective space:
if 1%t is ldentified canonleslly, 1t is the projectlve space

/\
pLEO(F, 1)),
(vhere ¥ 1is the dual vector space to V).
3° It would seem as if we were now in a position to describe C{#)
and P(t) completely in simple cases: for Py, Ple { Py) 1s very simple

and the fibres of ¢ are always eesy. But there is one possibility still
to be checked: even the discrete set of points Ple ( Py) = Z could be en-

'
H
I
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dowed with nontrivial scheme structure, i.,e., nilpotents in 1ts structure
gheaf. In fact, this ocours for some surfaces, and even under the assump-
tions of 1  (as far as I know) an additionsl hypothesis is needed to prevent
this situeticon. Also, in Iecture 1, we saw quite a few other cases where
the only families of curves were linesr systems, so that Pie (F) was a dla-
crete set. We need a direct way of checldng when this will happén:

Proposition 3: Suppose H1(F, gF) = (0). Iet 5 be any comnected algebrele
scheme, and lst £ bhe an invertible sheaf on F x 8, Then there are invert-
ible sheaves L on F and K on 3 such that:

£ = pi(L) ® pp(k) .

Proof: For all closed pointa 2 € 8, £ induces an invertible
sheaf 1, on the fibre Dp;'(s) - F. Ist :

%, .=
M, = 2@ pJ(I]) .

Look at the cohomology of Ms with respect to p,. )
a) the indueced sheaf M, @ ¥(s) on the fibre p2 (8) 1=
isamorphic to O by the very definition of Ms
bh) therefore, by the key hypothesis of the Proposition,

H (p7'(s), My ® K(s)) = (0) .

Using Corolla.ry 14n 3° , lecture 7, 2ll sections in H°(p§1(s), M
@ X(s)) lift to sections of 92,*{%13) in sawe neighborhoocd of s,

¢} But as” M, ® K(s) = op, the sectlon 1 of op Lifts to a section:
@€ MU, pp (M) = E(F x T, M) .

d) Then o defines a hcmomorphiam:
pj(L) -2 2

in P x U. Moreover, since o cames from 1 In Pa (8}, o :I.s an isomor-
phism of the Ilnduced sheaves L and £ @ H(s) on the fibre p2 (8)., There-
fore ¢ 1s an isomorphism of p1 (Ly) e2nd £ atald points over a, hence
9 is en lisomorphism 1n an open neighborhood W of pE (8). 8ince Dyt

Fx S—=5 is topologically closed, there 1s an open neighhorhood U’ o
of s such that W ) F x U,. This proves that P1(L) and £ are lsomor-
phic t¢ P x trs. )

&) Therefore if s' € US, Ls. and Ls are isﬁnorphic. Since 38
is connmected, this implies that all the sheaves L, ave isomorphic. Ca.ll
this sheaf L. Then we have an open covering U, of 8 such thet p1 (1)
and £ are isomerphic in each open set F x Ui'

£} Fix isomorphisms

&%
) *13 p1(L) - £
in FxU. Thenin Fx (U n Uj), *31 * ¥; 1s an automorphism of p’;(]'..).
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This is given by miltiplication by & unlt:
. _ .
013 € ™{F :‘(Ui rn Uj), &q.xs)

(U N Ty, 2;)

{cf. Iecture 11,IV). Then “’11] is a 1-Gzech-co-cycle on 3 fér the cover-
ing {0;}. Ist this co-cycle be the transition functicns for an invertible
. sheaf X on 8. Then 1t follews from our construction that £ is lsomor-
phic globally to py(L) © Po(K).
QED

This result iz closely related to the see-saw prineiple of LANG
{cf. his Abelian Varieties).

Corcllary: If H1(F, QF) = (0), then Pley is represented by the disjoint
union of a {(infinite) dlscrete set of polnts, l.e., of Spec (k)ss. Therefore
CumregF is represented by the disjoint union of projective spaces (of veri--
ous dimensions).

This campletes our justification of our description of curves on

P, Perhaps to add the last point, we should coupute:

at
{ofn) * o(m)) ~nm+m .-
[immediate by bilinearity, and the check:
{o(1) » o{1)) = (H, - Hy) =1
for two distinct lines H,, @, in p,l.

Fxercise: Write down explicitly the unlversal families of curves cn P,.

Further Examples: Without proofs, we want to supplement Examples 2 ang 5
of Lecture 1 by relating the results there to our present theory., Beoth of
these surfsces are "birational" to P,, i.e., are isamerphic to P, on
open dense subsets. In faet, 1t follows from this that

7 (F, o) - H(F, o) = (0)

in both these cases. Thersfore both fall under the Corollary Just given.
Now, in the caze P = P, % Py, then

Plec (F) = Num (F) =2Z2®@ 2 .
-In feet, a basis is glven by the two sheaves
*
L, = Ph(o(1)) and L, = py(o*1))

and the degrees d and e of a diviscr D described before are just the

d and e defined by:

- d
Q_F(D) =L ®@L, .

l
f
[
i
{
I
|

. LINEAR SYSTEMS AND EXAMPLES
The palring is given by
. L, " L;}) -0
(Iy - Ly} =1
(Ly * Ly} = 0 .
Now in case where F is obtained by-blowing up two points
Pic (F) s Nun (F) =2 Z@ 1@ 2 ,
In fact, a basis is given by the three sheaves
My = 0p(E;), M, = op(By), L= gu(D)

The pairing is glven by:

My " M) = =1 (M M) = 0 (M - D)
(Mg * M"I) ‘= O (ME - MQ) = =1 (Ma . L)
(L - M) = 1 (L " M,) = 1 (L - D

in

~1

T



IECTURE 1k
30ME VANISHING THEOREMS3

Bome of the deepest results 1n algebraic gecmetry concern the prob-
lem of giving criterlia for the higher cohomology groups of a sheaf to be o,
The plvotal role played by these results is due to the fact that the Rulepr
characteristic of a coherent sheafl on some varlety ls generally very comput-
able: elther directly, or by use of the very powerful Hirzebruch-Grothsndieck
form of the Riemenn-Roch Theorem; on the ¢ther hand, 1t is usually the group
of secticns of such sheaves which has geometrlic Interest and direct signifi-
cance. Therefore, whenever one can prove that the higher cohomology is © ’
one should expect many ¢orollaries.

A first theorem of this type was proven in Iecture 11. The general
problem was formilsted by the Itallans: it was knowm as the problem of postu-
lation (i.e., when does the dimension of scmething turn ocut to squal the num-
ber which cne had postulated!t?). Pilcard proved by amalytic methods a very
famous result of this kind (the theorem of the regulsrity of the adjolnt,
cf ZARISKI’s book on surfaces); thie result was greatly extended by KODAIRA
in one of hils meost famous papers (Proc. Natl. Acad. Scl., 1953, p, 1268: A
differentisl-geametric method in the theory of snelytic stacks), and today
1t is lnown a8 Kodaira’s venishing thecrem. Another result in this direction
is Serre’s duality theorem (vastly extended by Grothendieck): +his is the
direct descendent of Roch’s result and it tells, on an n-dimensionsl non-
singular variety, how to compute an E' by means of an B, which at
least cuts the problem in half.

We shall prove here (with the help of techniques developed and used
by Nekai, Matsusaka and Kleiman} only a weak vanishing theorem, but one which
is yniformly applicable to & large clags of sheaves. ILet § be & coherent
sheaf on Pt

Definition: § is m-regular if HY( P, F(m-1)) = (0) for all 1> o.
This appsrently silly definition reveals ltself as follows:
Proposition: (Castelnuovo) Iet F be an m-regular ccherent sheaf on P,.
Then )
8) E% g, §(k)) 1is spanned by
B( Py, F(k-1)) @ HO( P, o(1))  4f k> m;
99
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) Bl P, $(K)) = (0) whemever 1>0, k+1>m.

Hence &') fr(k) is generated as 0, -module by its glcbal sectlicns if
: n
k> m.

proof: We use induction on n: for n =-0, the Tesult is obvious.
In generel, given ¥, choose 2 hyperplane H not conteining any of the
points in the finite set A(F). Tensor the exact seguence:

O =0 -H) =0 - Q= 0
e Pn( 2p, T

u
0 {=1)
=P,

with ¥(k). For 81l x e P, if f is a local eguation for H at =x,
then multiplication by £ 1s injeetive in !fx. since by construection, T
15 a unlt at all associated primes of Ex' Therefore the rasultiﬁg_\._‘saquencm

('!")k 0~ Flk=-1) = F(k) = { T@gﬂ)(k)-—'o :
St
:FH(k)

is exact. In particular, we get:
i ( § (m-1)) = BN Fg(m-1)) = B ( F(m-1-1))
This implies that if F 1is m-regular, the sheaf SFH on H is m-regllm"

; f
Since H =P, _,, We use the inducticn hypothesis to cbtain &) and b) for

‘TH' In particular, use
B Fmel-n)) = BT F(m-1)) = BV ( Fglme1) .

If 130, byb) for Fg, the last group is (0); by m-~regularify the
first group is {0)., Therefore, the middle group is (0) and § is (m+1)-
regular. Continuing in this wey we prove b) for JF.

. To get a), lock at the diagram:
B 5(k-1)) @ B0, (1)) = H( Fy(k-1)) ® B(og(1))
n
Iy T

Ho( Fg(x)}

HO( §(k-1)) = HO( F(K)

Note thet ¢ 18 surjectlve if k > m beceuse i4 { F(k-2)) = (0). Moreover,.

t is surjective if k> m by conclusion a) for S’H. Therefore, w{Im )
is the whole of H( Fy(k)), L.e., E°( F(k)) is sparmed by Im (p) and by
B F(k-1)). But Jet n eB( P, 2, (1)) e the global equation of H.

Then the image of H°( F(k=1)) in I-I°( F(k)) 1s more precisely h @
R°( F(k-1)). In other words, this is part of Im n too, Therefore u 1ls
surjective and a} is proven for ¥.

1
1‘.
|
|
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Now by Sei-re’s thoorem, we know that F(k) 4is generated by lts -

gections provided that k 1s large enocugh. Putting this together with a)
implies that HO( F(m)) ® Ho(o (k-m)) generates the sheaf §(k) of o p -
n

moduleg if k >» 0. But for every X€P, fix an isomorphlsm of o P (1)
) n
and o P at x: this identifies op (k—m) with o P at =z, a.nri F()
n n n
with F{m) =at x. Then Ho(o (l-m) ) beccomes Just a vector space of ele- -

ments of the local ring Oys a.nd the statement simply says that Ho( F{m))
® o, generates the stalk F(m),, i.e., F(m}) 1s generated by its global
sections,
QED
Our mein result is:

THEOREM: - For 21l n, there is a polynomial F,(x,,..., x} ’
such that for all cohsrent shesves of ideals 4 on #£
If &g, 8y,0e0, a, are defined by:

I

m
x(4m) =) (%),

i=0 )

then ¢ 18 Fp(=,, &,..., 8,)-Tegular.

Proof: Agsin we use induction on n since for n = 0 the result
is cbvious., Given ¢, let ZC Py be the correspending subscheme; choose
& hyperplane H such that H is disjoint from A( gz). As above, we get
the exact sequence:

®h
(M O = §(m) == 4(me1) = (§ ® o) (me1) =~ O
. e e
‘m
which is injective on the left since multiplication by a loesl egustion for

H 1is inJective in the sheaf 9, as 1t 1s a subsheef of o p - On the other
hand, fg 1s a sheaf of ideals on H: let x ¢ P, and let Pf be a local

equation for H at x. Then

Q=+ §_—0 —+ 0 - O
x —X,Pn ==, 3

glves: , .
Tor, (fo'gx’ Qx,Z) = Ugg~ ox,H

by tensoring with o /f S = 9,1 And Tor; (o, /T O Oy g) = {0)

since f is not a O-divisor in’ O ,Z (since f 1s a unit at all associated
primes of Ex,Z) . This shows that iH is a sheal of ideals, and we can use
induction. -
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Now, by (*)m:
x(QH(ma-i))

It

XS (me1)) - X(4 (m))

n
- Y an ™'y -
150
n-1
- 84,8 1)
12

Therefore we can agsume that !H is G(a,, 85,.-., 8,)-regular, for a suit-
asble polynanlal G depending only en. n. Put m; = G(2y,.., an). Then we
got, by (Mgt
(1) o= EO(s(m)) —~ B8 (me1)) Lo Pmel g0 (mm)
~ E'(4(m)) = H (§{me1)) = 0
for mzlrﬁr-e. And for any 1 » 2, Ve get:
(11) o — Er(4(m}) = EN(s(ms1)) = 0
for m» m-1i.

Now alnce Hi(S(m)) =4{0), for 1>1 and m>> 0, this last sequence {11)
tells us that Hi(g(m)) = (0) Bs soonas i>2 and m Zm1'i° This means
that as far as HE, €,..., B are concerned, § 1s also m, -reguler. On
the other hand, sequence (1) tells us:

{#) If m> m-2, then either Pt is surjective or
dim B (§(me1)) < dim X (4(m) .

But suppose that for m = m,, where m, > m, is surjectlve. By the

Proposition we know that
HO(4g(mp)) ® B2 (1)) = Bo(s(mp 1))

[
Wy

1s surjective. Therefore it follows that the image of Ho(g(m 3 ® Ho(op (1))

in E°(4(my+ 1)) 1s mapped surjectively onto HY{ ig(mg+ 1)). Hence, a for-

Hord, op . is surjective. In other words, lookdng at &ll m > m,, onece
2

P is surjective, it is surjectlve for all larger m. Hence:

#" If m»m, -1, dim H'( (m)) is gtrictly decressing,

g3 a function of m, until it reaches O.
Therefore 'clea:oly:
§ i3 [m+ dim H'( $(my - 1)) 1-regular .

Up to this polnt, we have not used the fect that ¢ 1is a shesaf of
ldeals. But now we coumpute:

i
|
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dtm B'( $(m,~ 1) = atm B £(m- 1)) - X( ${m - 1))

< atm B0 P’ﬂ(‘m, - 1)) - x( 4(m- 1))

= H(ao, Biyeery By m1)

where H 1s & polynamisl in the a’s and in m,. In short, ¢ 1s

G(a.1,..., an) + H(aq,..., a,i G(a1,..., an))

regular.
. QED.
A few remerks: FPirst of all, the thecrem ig falge unless § is
agsumed to be & sheaf of ideals., Thus, take n - 1, and let

Fe=op (+ k) ®0, (- X .

Then %( gk(m)) = 2(m+1), which is Independent of k: but the least m
such thet ¥, is m-regular ls m - k] -1

Sscond, suppose we &re concerned with the geometry on a fixed pro-
Jective algepraile scheme X; then the analogous result is true—

Fix an immersion X C P,, and sey T - dim X; then there
is a polynomial P(X,,..., xr) such that if 4 ¢ % is
any sheaf of idesls, end *( 8(m)) = I _, &;( §), then

i 18 Flag,.-, ar)—reg::;lar. .

To prove this, for a given §, let ¢ define the closed subscheme 7 C X,
bence Z C Py, and let § be the sheaf of ideals on P, defining 3z.
Moreover, 1et ¥ be the sheaf of ideals on P, defining X. Then one hes
the sequences ' ‘

O+ K= j—=g=o0

Tt follows that if § 1s m -regalar, and H-( K(m)) = (0), for Lem -

Mo+ ', them ¢ is mo-regula.r- as a sheaf on X, But since

¥ §(mY = x( H{m)} + %( K{m})

e

independent of ¢

.the corollary follows from the theorem. It also follows from the Proposi-

tion that HO( J{my+ K)) @ BO(gp(1)) — HO( d(mys k + 1)) 1is surjective if
k> o0, and that s(m) is generated by its global sections if m > mg




i
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IECTURE 15
UNIVERSAL FAMILIES CF CURVES

We are novw ready to prove that the scheme C{t) of Iecture 12
exists. Fix a non-singuler projective surface ¥, and Fix an embedding

FC P As usual, let o{1) be the induced very ample invertible sheaf.
In Lecture 12, we made the decomposition:

Curves,(8) ~ U Curvesk
Curves.,(3) €N (F) Curvess(8)

(for S commected ). Actuelly, for the purposés of this particular proof
we will only need a coarser decomposlition. In feet, glven D C F, we will
only look at the Hilbert polyncmisl:

P(n) = x{on(-D + n)) .

In virtue of Proposition 3, Lecture 12, P(n) is determined by the numerical
image ¢ of D. In fact, P({n) 1s determined by a) the degree d of D,
and b) the arithmetic genus Pg(D). Thiz is seen by
(# 0= 0p(-D + n) = og(n) = gpy(n} =0 ,
hence
P(n) = %op(n)} - %(op(n))
- x(gF(n)) -d*n-1+ pa(D).

In any case, we wlll use the deccmposition:

gurvesy(S) = ]1.:[ GurvegFP(S)

(for S connected), where CurvesP(S) is the set of D C Fx 8 such that
L4 _—_.—.-...F
9Fx3("D) has Hilbert polynomial P on each fibre., To be precise, if S

is not comnected, then say & - I, 8, wvhere B3, is connected, and let

CurvesPF(S) = (l;I cuweg._FP(Sa) .

It is very easy to check that this 13 a subfunctor of CurvesF; and 1f this
is represented by a (algebraic) scheme C(P), then C{PF) is a disjolint union
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of open subsete C(t)} ropresenting the varlous sub-functors CurveaFg . Now

fix same  P.
(I.) By Iecture 14, there is an m, depending only on P,

such that 1if D C F 1s any cur\‘_fe giving the Hilbert poly-
nemisl P, then ogl -D) is mo-regular._ We may as well
also assume that
H'(gF(moH = (0} .

Then we conelude:

(8) H'(gp(-D + my)) = B(0p(-D + m)) = (0),
and QF(——D + mo) is spenned by its sections.
Using the exact sequence (#) for n = m,, We also conclude:

(B) H (gp(my}) = (0).
(II.) MNow suppese D C F x 3 1s any family of curves glving
the Hilbert polynanial P. First of all, we get:

(b)s p*(glj(mo)) iz locally free, of rank

r = X(QF(mo)) - ?(mo) ,
(depending only on P), and the formation of p, commutes
with base extensions T —— 5 .

This follows from (b}, from Corollary 1, 3°, Lecture 7, and
from the exact sequence (#).

The useful consequences of (a) will be:

i
(&1.)s . R p*(_qFxS(-D + mo)) = (0},
and
) p*p*[_QFXS(—D +,mo)} - EFQS('D + my)  is surjective .

The first is true by Covollary 1, 3°, Iecture 7; and the second is trus
because Pylop,ql-D + m,)] maps onto HO(QF(-DS+ m,)} for all closed polnts
s €3 and Hé(gp(ms + my)) gemerates 0g{-Dy + My) = op oD+ m°)95 ®
H{s).

(ITI.) Again suppose D C F % S is & Tamily of curves. Fram
the sequence (#) for n = m, and (e.)s, we get:

9 = P[0, (D + mg) ] = Belog qfmy) ] === pylop(my)d =0
Ul
o
9 € H{op(my))
Fixing a basis €4y €qs->
a) =2 locally free sheaf p*[%{mo)] of rank v,
D) N s 1-sectlons sy = o(1 @ ei} which span P*[En(mo)]'

., ey Of H%(og(m,)), we have determined:

|
1
L
3
|
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This is an S-valued polnt of the Grassmannian GN p? In virtee of

‘(blg, the formation of Pylop(m}] . 1s functersal in 3, and the -
vwhole procedure defines a morphlam of functors:

P ®
GurVeS_F thNr
»

(IV.) Now suppose we are giiten an 3-valued point, .S i—v GN r
of GN p - Then £ defines = locally free sheaf & of rank’

r
r and (N + 1)-sections Buseees SN spanning &, This defines
a surjective homomorphism; '

03 § B(gp(my)) ~Bew § ~ 0 .

Ist K be the kernel of o¢. Then puiling upvia p: Fx3—-3g,
we cobtain

* +*
PK) =P log®Kgem))] ~p* 6 —~o

Spya ()

Define § to be the image of p'(K)(’-mo) in op ot & sheaf of
ideals ot F x 3, This whole procedure defines a morphism of
functars:

by < All Subschemes
N,r _ -

(V.) What is ¥+ ¢ v Start with DCF x 3, and construct f
as in (IV.). Then following ths procedure of (IV.):

& = p,(gy(my))

K 2 pe(Spel{-D + m)) .

But we saw in (a)s that the subsheaf gF.xs(-D + ) of Omealmy)
was spanned by the sectlons in this X, i.e., the image of p*(X)
in op q{m)) is exactly Opygl-D + my). Therefore § 1a '
255(3("}3); t.e.,

and

¢e b - [na.tura.l inclusion of
Curves in &L_ Subschemes

(VI.) We can abstrect the rest of the argument: glven the set-up
A @

n
113-/th

of morphisms of functors (from the categéry of sligebraic schemes
/& to the category of sets), assume thats
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(# for all o € B{3), there 1s a subscheme ¥ ¢ S such that for
all T-E—3,

g*(o) € B(T) g factaors
iz In ths subset Comep | through ¥ .
A(T)
Then there 1s a subscheme G, C G such that A a.hG , ¢ being
A .
the inelusion of in .
hGo hg

{(Proof left to the resader.)

(VIX.) We must verify (#). In our case, it means

(#)0 for all closed subschemes 2 ¢ F x 8, thers 1s a subscheme Y C 3
such that for all T -2 3, _

ZgTCFx‘I‘ is a

family of curves
-over T, whose- Ly g factors
sheaf of ideals has through Y

Hilbert polynomiasl P
But by the key result on flattening stratifications, there 1s a
subscheme Y € § such that Z x T 1s flat over T, with Hilbert-
polynamial A

(0 (m)) = X(op(n})} - P(n)
s

if and only if. g factors through ¥. It remains to analyze when
X x T is actually a Cartier divisor. This is deali with by:
s

lemme: Iet ZCF x T be & closed subscheme, flat over T. Iet t e T be
a closed point such that Zt is & curve cn F. Then there 1s an open neigh-
borhood: U of t in T such that 20 (F x U} is o Cartier divisor on
u. ‘ . .

Proof: Since p FxT-~T 1s a closed map, it suffices to prove
“ that there 1s an cpen neighborhood W of F x {t} in which 2 1s a Cartier
divisor. Iet X e FPx T be any point such that p(x) = t. Lat L F = be
the 1deal defining 2 et x, and let m, C =2 be the maximal ideal. Since
oxfmy - o, 1s the local ring of x on F x {t), and since 2, is a Car-

tier divisor,
fg v Wyt O = (D) v my - o

for sane f € .Ex' Choosing  f suitably, we ms:y assume.tha.t'. fed,. Then

190]{ at the exact sequence:

0= 4 /(£) = o [(f) =0,/ 8, —~0

i
|
|
!
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Sinee 2 is flat over T, wg get:

(o]
TDI'.!_t(Qx/!x, H(t)— §.x[(f) ® H(t) -b'g_x/(f) + mt-gxﬂgxfﬁx + mtngx) - 0,
I¥

{9

Therefare, [ 4. /{f)1 & H(%) = (0), hence by Nekeyama’s lem, ’ !x/(f) = {0).

This proves that 4§ = (f}, hemce 2Z 1is a Cartier divisor at x, hence in

a neighborhood of x. )

' QGED

(VIII.) This proves the first construction theorem: that a unl-
versal femily of curves exlsts. One point, however, does not
follow from our dlscusslon. We do know that the perameter scheme
for this universal family is a subscheme Y of Gy p+ However, '
it is even & glosed subscheme, hence Y 1s even a‘projective
scheme .

Proof: let ¥ be the closure of ¥ &3 a subset of GN pe AS-
sume Y ; Y. Then pick a cloged point y e ¥ - ¥. Fix ’

i) U - Spee (R), an affine neighborhood of ¥y ¢ ¥,
11} the meximal ideal m C R defining 7,
11i) an idesl #% Cm defining the closed subset (F - Y)Y n U .

Then it is easy to check that there is some prime ldeal ¢ such that:
pCm, g FH, d_'I.m['Rv/'p-RP] =1 .

Iet S be ths integrel closure of the domain R/e in 1ts quotlent field,
end let O = Spec (8). Then C 15 a 1-dimensionsl non-singular variety,

- and the given homcmorphiam from R to 8 induces & morphism

f -
C—TCY.

If »C 5 is 2 prime idesl lying over m ¢ (Rfw ), then ¥ defines a
closed point 2 € € such that ¥y = f(2). Let Gy = f"’(Y), and let fo be
the restriction of £ to Cyp- Then f, isa Co-va.lued point of ¥ which
is not the restriction of & O-valued point of ¥, i.e., because in the clo-
sure of the graph of f,, f£(x) ¢ ¥.

We shall show that thls is absurd. But by 1s isanorphie to’
Curveg,_FP . Therefore f‘o defines a famiiy of curves

DOCFxCO

(glving the pclynomial P) which is not the restriction of a family of curves
over G. But since ¢ and F are non-singular, ¥ x ¢ 1is non-singular,
and divisors on F x C are the same as Well divisors. In particular, let
D,, as a Weil diviscr, be written out as:
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Dy = znizi,o

where Zi,o is a closed subset of F x C; of codimension 1. Iet Z; be
the closure of Zj_‘0 iIn FxC. Let D= InZ. Then D 1is certainly
an effectlve diviasor on F x C. Moreover, 1t is a relative divisor over ¢
pecanse its support does not contain any of the fibres F x {2}, z € C.
Therefore D 1is a famlly of curves over § extending D,. Finally, since
¢ is connected, the Hilbert polynamial of gﬁ,(—D) is censtant, hence equal
to P. This contradiction proves the theorem.

‘r
\

IECTURE 16
THE METHOD OF CHOW SCHEMES

Since the existence of these universal families has such pivotal
importance in the proof of the msin existence theorsms, 1t seems reascnable
to sketch the only other lmown approach to their construction—that of Chow
and van der Waerden. Again let F C P be glven. In this approach we only
fix the degree d of a curve D L F, not the polynomial P as sbove, i.e.,
we decompose:

d
CurvesF(S) = dyo CurvesF(S)

(for S comnected), where Curvede(S) stands for the set of D CFx 8
such that the induced curves D, o the fibres all have degree d.

3ay X 1is a projective scheme: then we can define a functor:
Divx(s) ={ DCXx 3 9arelative effective Ga.rtier}

divisor cver §

generallizing Curvesy . " In some cases where dim (X) > 2, this may be easier
to study then 0uz=ves_F for same surfaces F. For example, if X 13 a
Grassmannian &, the metheds of Iecture 13 enable cne to prove that

DivG = hD

where D iz a disjoint uvnion of projective spaces. In fact DivG 1s
broken up into Divks, one for each integer k > 0, and Dilv, is Just a

=G
linear system.
The method of Chow is to construct a morphism of functors:

curves% 2 D_:ng

for the Grassmannisn G = G

1 ne1+ T do this, we first construct a subscheme
? N
ZCP,x Gn,n-1 .
Heur'istically, every closed point of Gy n;1 correspords to a linear sub-

space L C Py, of dimension n-2, Puttiﬁg these together, they form 2.

To be preclse, recall from Lecture 5 that G = Proj (R}, where R is
” 4 n,n-1
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a graded ring generated by elements

01, €1,< .. <% . <0,
Piap, iyt R 2 n-1 =

If ] <k are the two integers cmitted in the sequences of 1i's, ve can
simplify notation by putting
i i N

8 18 s P W S

14

Then Z 1is defined as the scheme of zerces of the sections
' n

k-1
Comq JZ) SREE LT y 21 SUELIWY,

=k+
of py(o(1)) ® py(o(1)), for 0 < k¢n. Then, in fact, Z is & bundle
of P, _p’8 over Gn,n_” and also a bundie of Gn-I,n-a’s aver P,.

Ciassically, 7 1s called the incidence correspondence, and 2 1tself 1s
a flag manifold. :

Wow form the fibre product 2 = F Xp Z: :
’ n

q o o In-1
P
-7
-~
. z

(1Y p is a flat morphism; in fact, s 1s a bundle of G , ,o-

over F in the sense that F admits an cpen covering
(U,) such that p"(Ui) 2Ty %G -1,p-2 + 1IN particular,

dim 4 = aim P + dim G

n-1,n-2
= 2 + 2(n-2)
= 2(n~-1}
= dim Gn,n-'l s

and s 1s non-singular.

{11} Moreover ¢ Iis a surjective morphism of two non-singnler
varities of the same dimensicn. This iwmplies that there 1s

an open subset U L Gn n-1 containing all polnts of co-
dimension 3 over whidh q 1s finite and flat.

(111} More generally, you can make any base extension to obtain a

situation:
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s-XS
o\
Fxsd Gn,n—1x5 .

" One still has:

p flat

q of finite Tor-dimenslon

there exlste cpen subset T C G’n n-1 ¥ 3
containing all points of depth 1,
over which q 18 finite and flat.

Therefors, If D CF x 8 is & femily of curves over 3, we can
form: '

(D) = 3,p"(D)
socording to 1° and 3‘, Lacture 10. o

The rest of the work comsists in showing, as in Iecture 15, that
¢ 1is injective, and that if wg_ = hpN » then there exists a closed sub-
scheme Y C Py such that an S-valued point of Q;Llrg i1s in the image of ®
if and only if the corresponding point of Py is a point of' Y. Then it
follows that CUInrede = hy. Even the method is similar to that of Lecture

15: one constructs an "inverse" morphism:

¥: Divd — Al subschemes,

and then applies the seme categorical argument &s in part (VI.) , Lecture 15,
In same sense, the deepest part of the srgument is the same—the invoking of
the existence of flatiening stratifications to verlfy the hypothesis in the
categorical argument.

An Interesting corcllary of this approach is the stronger finite-
ness theorem that it yields: for any given degres d, there are only a
finlte number of elements &t € Num (F} such that:

a) degt = 4,
b} & 1s represented by a curve.

The essential facts behind thls finlteness are quite interesting and useful.
What we want to do 1s to prove campletely a closely relsted result which
seems to eontaln the key polnt, and which we will use subssquently. -

THEOREM: Iet D C F be a curve of degree d. Then
gF( D + 4} 1s spanned by its sectlons.

Proof: We are givén an embedding F C P, inducing the sheaf o(1).
Suppose L C P, 1s a linear subspace of dimensfon n-3. Then recall that

there 1s a "projection"
x: P, - L) —~ P, .
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[In our approach, we can define x &Bs a | P~ L} -valued point of P,.
Wamely, let L = H 0 H, N Hy, where H, 1s the hyperplane defined by

hy € Ho( P, 2 1)). Then the three sections hy, h, and h3 of o1} have
ne common zeroes in P - L, end they define the point x.]

In particular, if Fn L =#H, then = restricts to a morphism

AR F'-"P2 .

I claim that «' is finite and flat.
a) = is affine: P, is covered by affine open sets PE—Ei
(2,, 25, ¢, the three fundsmental lines) and n ' ( Py- ;) =
Phm Hy 1a affine.
b) Therefore «' 1s affine because «' i3 the restriction of
x to & closed subscheme.

c) Iet 3 denote the inclusion of F in B,. Then ::7‘

factors: (£, «)
e
F Pn % Py

. \ I Pa
Pa
Since (1, n') is an iscmorphism of F with a closed sub-
gcheme of Py %X Pg, the direct image sheaf “*L(QF) is
Just the ssme =2s Pas « _(_J_F) {where S is 1dentified with

the structure sheaf of the Imsge of F in Pp % Pg). This
is coherent (of. 2°, Lecture 7). Therefore x' is finite.

d) The fact that =o' 1s flat follows fram the general result:

lemma: Iet "A be a regular local ring of dimenslon n, end let B be an
A-eglebra, finliely generated as A-module. If all lecalizations of B
with respect to maximal ideals are Cohen-Macaulsy rings of dimensica n,
then B 1s a free A-module.

{Cf. NAGATA, Local Rings, (25.16), and EGA &, § 15.4.)

Now suppose that D CF is & curve of degree d and =#' is
such a morphlsm., Then =}(D) is defined by Norms, as in 2°, Iscture 10.
This is a plane curve, and I claim that its degree is 4 too.

Computaticn of deg x}(D}:

Start with a line £ C P, which doesn’t contain any of the generic
points of the set xj(D): then £ n Supp }(D) is o-dimensional, and

deg n(D) = (£ * 24D .

iet {x”..., J&,l] = £ n Supp #}{D). At each point Xy, 1let oy = Exi R

THE METHOD CF CHOW SCHEMES 15

fy € 9y & local equaticn of ¢, Ry = [ni(op) ]xi, 8 €Ry ‘a Llocal sgua-

tion of D in a neighborhood of the set x'~) . '
generated free o,-module, and Wm (Xi) ot Ri iy ﬂnite;v

o4 ’ (gi) is & loeal equation of ni(D).
Morsover, ' .

i n
(2« 21 (D)) = z dimk 21/('!‘ » Nuogy) .
. 1=1
By an elementary result on detez'ln:l,na.nts* sy We get
ang, by definiticn: |
n
) dm R /(E, &) = (14(8) - D)

1=1
{o(1), omp{D}}
= deg D

= d
We now come to the main point:
¥ (xl(D}) =D + D'

where D' is effective, by statement (*), 2°, Lecture 10! And, in fact,
siilce the dlvisor elass of (D) 1s o(d), the divisor class of ’
' (x4(D)) 1is also p{d), hence the divisor class of D' 1s op(-D + 4).
The theorem, therefore, will be proven if we can show the follewing

(*} For all closed points x ¢ F, there 1s a2 linear spece T,
of dimension n-3 such that LN F = @, and such that
the divisor D', constructed as shove, does not pass
through x.

In other words, we require:
T (D))y = Dy .

First of all, let’s analyze what we need to get this cut: let o be the

local ring of P, at n'(x), and let R be the stalk of n_,',(gb_..) at ::'.(x). ;
Let g€ R be a local equation of D at all points n"'(n'(x)*),' end let l
m CR be the maximal ideal such that R, 1s the local ring of F at x.

" .
Iet' A be a 1-dimensional loeal ring, M a free A-module of finite type
T: M-—+M an A-linear injective homomorphiss. Then: ' )
length {M/T(M)) = length (A/(det T)) .
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Passing to the completicns, we find .

~ ~ -~
R=R®3g :—:(Rm)ﬁ?z . {(Rg1)
c other maximal
ideals m' C R
The image of Nmn (g) in § is then the product of the Norms of .g fram
each component (Rm ) to o . But we want g and Nam (g) to differ by a
unit, Therefore, first we need: ’
8) g 18 a unit at all other locallzations R, of R;
i.e., Supp (D} does not contain any points x! #x such
thet ' (x') = ='(X).
- P
If this holds, the Image Mm (g) in o 1s just the Norm from (Rm) to
Therefore, secondly we can use
"o~ )
b) 2 =R ; i.e., R, 1s unramified over o, or equivalently
the map from the Zerislkd tengent space to F at x to the
Zarisid tangent space to P, at a'(x) is an isomorphism.

jo?

o~
If this-holds, Nm (g) and g daiffer oniy by a unit in R ; thereforse
they differ only by a unit in R,.

What are the corresponding geometric conditions on L ¢t Clearly
a) becomesi
a'} If I 1s the linesr space of dimension n-2 spanmned by L
end x, thenr Xx dis the only intersection of L and
supp (D).
on the other hand, look &t the Zariski tangent space T to P, &t X;
this contalns the tangent space T~ to L of dimension n-2, a.nd the tan-
gent space TF te R, of dimension 2. Moreover, the full projection =«
- induces an isomorphism of T/T'ﬂ with the tangent space to P, at ={x).
Therefore b) becomes:

b') The tangent spaces 'I"L”a.nd Tp to L and T intersect
transversely at x.

The rest is easy: let M be the 2-dimensional linear space through =x
with tangent space TF at x. First chcose h ¢ HO( Po» of1)) such that

h(x) =
h(y) # for y the generic point of M or for
¥ a generic point of Supp (D).
Iet H be the corresponding hyperplane. 3econd, choose h' € H°( L of1h)

such that
h'({x) =

hi(y) # 0, for y the gereric polnt of Mn H
or for ¥ a generic point of F N H
or for y € {3upp (D) n H - {x].

;
i
i

it iy o e
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Let H' be the corresponding hyperplane. ILet T=8#nE. Thn T ‘satig-
fied a') and ') and LN F is O-Gimensional. Iet I be a linear sub-
space of I, of dimension n-3 not conteining any of the finlte set of points
T n F.
QED
The corollary of the thecrem which can be used to bound X(E‘r‘( -D))
in terms of deg (D) 4is thls: .

If D isacurve on F, then
(D + D) » -A - deg (D)2
where A = (o{1) - o(1)) - 2.

We omit the proof since we heve no other applications for this fact.




LECTURE 17

GOOD CURVES.

;
|
g
}

In this lecture, we want %o give a partlsl answer to the third

j- question posed in Iecture I: What 1s a good curve on our surface F 7 More

precisely, we don't want to distinguish hetween llnearly equivalent curves,

so the question becomes—what 1s a good divisor class on F 7 The point is

this: Given an arbitrary invertible sheef L, for very large n the sgheafl

I{n) should have every "good" property one can ask for. Also look at the |

analogous question oz a curve C (C reduced and irreducible for example).

Then an invertible sheaf I on C is "good" if its degree is large enough.
|

1" Let's be precise: fix once and for all an embedding F ¢ P,
‘ and let o{1) be the induced invertible sheaf. Then the set of divisor
classes Pie (F) has a fixed automorphiasm: L+~ L{1}. The following are
’ various gocd propertles for L:

(I.) L 1is o-reguler: HY(L(m)) = (0) 4f 141 =0,
1>0, f(hence HML(M) = (0) 4if Ls+n30, 15 al,

; (II.) L 1is spanned by 1ts sections; equivalently, for every
i closed point x € P, there is a curve D C F such that
|

gF(J_D) =L
{x ¢ Supp (D) .
(IZI.) L 1is very ample.

I
i
|
i (IV.) There 1z a curve D C F with no multiple camponents such
|
i that

f

14

op(D) =1, .

What 1s the relationship between these various properties? Note first of all,
that 1f 1L has any of thsse properties, then L(n) has the same property for
agll n > 9.

Proof: This is e¢lear for (I.) and (IX.). For (III.) we need:

119
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I1FMMA A: Iet L and M be two invertible sheaves on F.
Assume L 1is sparmned by 1ts sqctions and M is very ample, Then L @M
is very ample. ’

Preof of lemrpas since I, 1s spenned by its sectians, there is

a morphism ¢ F-— P such that L = ¢*(o(1)}; since M 1is very ampls,
1
thers 1s & closed immersion v: F— Pma such that M = ¥*(o(1)). Together

these define & closed immersion

(9, ¥}z F"Pm1>‘ Pm2 .

On.ths oﬁher hand, cne has ths canonical Segre Immersion
s Pm1x sz ¢ pm1n:|2+r.u1 i,y
This is defined by the requirements:
' 1*(o(1)) = p*(e{1)) @ pala(1)),
1*(}{3), for 0 €] <mm, + By + Wy,
are the sections pT(Xk) e p;(xl) for
o<kgm, 0LLm, in scme order.
{Exerclse: check that this is a ¢losed immersion.} Thersfore,
1+ (9, ¥) 1is e closed jmmersion of F in Pm1m2+m1+m2
o (9, NI¥2)) = {9, VPN ®pa(aADD)
= 9"(o(M) ® ¥*(o(1))
Me®L. . QED

on the other hand, suppose L h=zs property (IV.). We shall uae wltheout
proof an elementary form of Bertinlss Theorem:

LEMMA B: let L be a very ample invertible sheaf on F. Then
there 1s a non-singular irreducible curve D C F such that L = 9-F(D)‘

Now, if L has Property (IV.), L =gn(D), and D = Iy, Dy, where the
Dy are distinct irreducible curves. Suppose the dlvisor elasses of the
curves Dy,.ee, D are maltiples (necesserily positive) of o{1), whereas

the divisor classlelg of the other components DIlo REIRLY D, are not. B8y

no .
QF(Z Di)a ofr) .

By Iemme &, of(r+1) 1s very ampie; by Lemma B, o{r+1) = _o_F.(E) for sone
irredueible curve E., Then

Ji
\

GOCD CURVES

ay -
I{1) 2 o (E + Z Di)

1-no+1
Dy are dilstinct since the sheaves Op(E)

and all the eurves E, Dnn"'“.“’

and %(D:L) are not iscmorphle for 1 > n,. This proves that L(1} has
property (IV.).

Therefore, all the "good" properties (I.}—{IV.) are swable, in
the sense that replacing L by L(1) never destroys them. Our main re-
sult ig that they are nearly equlvalent: o

THEOREM 1: There is an integer ¥ depending only on F, and
its embedding P C Py such that 1f an invertible sheaf I 18 good ln any
of t_ha senses (I.)—{IV.), then I(k) 1ls gocd in all four senses.

Proof: We prove thls in a chain:
Flrst step: If L 1s good in sense (I.), then by the Proposition of Iec-
ture 14, L 1s good in sense (I11.). If L is good In sense (II.}, then by
Iemma A, L(1) is good in sense (III.). If L is good in sense (I11.), then
by lemma B, I 1s good in sense (IV.).

Second step: Itu_remé.:lns to get back from (IV.) %o (I.). BSuppose L = gF(D),
where D has no multiple cocmponents. Tensor the exact seguence:

0= op(-D) = 2p = op =0
with L(n) to cbtain:
(*) 0 = (@) = L{n) = Ly(n) = 0
where ID =L& e Iet Dy be an integer such that
Elog(m) = (), n2n, 1>0.
Then if n 3 ny, 1t follows from (%) that

i) % H(L(m)) = (D)
H (L(a)) = H' (Ip(n) .

We use the Riemann-Roch Theorem on D to attack this laesat group: let 01 be
the canonical sheaf on F (Theorem 3, ILecture 12). Then 8y = a ® %(D)}
@ op and

11) dim E'(Ip(n)) = dim B(op, @ 157 (-n)) .
But 111) ap ® 15" (-n) = [n @ go(D) @ L' ® o(-m)] ® g = (a(-n) @ o) .
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Now there certalnly is an integer n, such that
mHm) <), m2n, 1>0 .

By what we proved In the firat step, it follows that 87'(n) is very ample
if n > n,+3. Assume that n > n.+3:= t_hen ths induced invertible sheaf

M- (n) ® o on D 1s very ample on D, 1il.e., induced from an embedding
i: D &P, But note: '

IEMMA C: Iet X be a clcsed reduced subscheme of P, all of
whose camponents have positive dimension. Then HO(OX ® op (- 1)) () .

Proof of Lemma: Ist X;,..., X, be the components of X. Since

% Q S, ¢
i= 1
if QX(—U had a glcbal section, then for some 1, ox ~-1) would have a
global assction. Since xi i1s a variety, the only globsl sections of BX:L

are constants, Iet H be a hyperplane not containing the generic point of
X then

gxi(-ﬂ ngi ®_an (-H) C QX.L

Therefore the constant section of _o_xi must be & seetion of &{1( -1, i.e.,
Xy mist be dlsjoint from H. Then X iz a clozed subscheme of P-4
i.e., X 1s finite over k, hence O-dimensicnal.
_ QED
By the lemma,
‘ H(a(-n) @ gy) = (0)

if n> n1+3. Putting i), 11) and 1iil) together, 1t follows that IL{n) 1s
o-regular if _ '
n > maxing + 2, 0y + 41 .

"

2° This clerifies in = general way the mesning of a "gocd" curve.
Ths next question is whsther there are numerical criteria that imply that an
invertible sheaf I is represented by a good curve. In this direction, one
has:

Vanishing Temma D: Thers ls a constant. ¢, depending cnly on F
and the very ample sheaf o(%) such that, for 2ll luvertlble sheaves L:

deg (L) » e, —> B(F, L} = (0) .
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Froof: Iet g(1) = gF(H) where H -1s & non-singular irreduci--
ble curve cn F. For all k, cne. has the usval sequences.
(# 0= L{k-1} = L(k) - (L @ QH)(R) -0,
If deg(l) = degH(L ® oH) > 2p,(H) - 2, then by the vanishing thecrem of

Iecture 11, H'(L ® o) = (0). A fortiori, H'(L ® o{k)) = (0) tdo, for
every integer k > 0. Therefore, one concludes:

(L) < H2(L(1)) = BX(L(2)) ==~ ,.... .
8ince for very large n, H2(L(n)) = {0}, 1t follows that HE(L) = (o);
QED

COROLLARY 1: With ¢, as above, 1f an irwertible sheaf I, satls-
fies deg(L} > €y, X(L} > 0, then there is a curve D CF such that [, =

op(D).

COROLLARY 2: With ¢, as above, and h deg o(1), if an inver-
tible sheaf” L satisfles deg(L) > ¢, + h, and " (®, L) = (0}, then IL{2)
s "good" in all senses. :

Procf: By Corollsry 1, HE{F, L{-1}) = (0), hence L{1) \is 0=
regular, hence L(2) 1s very ample.
QED
With this, together with the result at the end of lecture 16 R

cne can prove:

THEOREM 2: There is a constant c¢,, and a positive e dependihg
only on F and o1} with the following property: If an ianvertible sheaf
L on F satlafies:

a) deg(L) > c,
B)  xX{L} > (1 - €)/(2(o(1) - o(1))) « (Deg L)?
then L 1s 0-regular and very ample.

Proof: Iet ¢, be glven by Iemma D, let c, be the constant
of Theorem 1, and let
h = (oft) - o)
*(opy - x(o{-1))
X(og) .

Let n be a positive number such that

k-]
3

1
2h[1 « h(h-2}]
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iev . . (mpf
= g e
lst ¢ - }
! ; 1= s - )
¢, = max { 1l H 2h(03+1+h(h-g)), —_ {3h + 2p); -p
Fina..‘r_.ly, puk

k=[-d£i—-—1-’-(1-q°h)]_'.

Step I. deg I{ k) > ¢y -

Procf: - deg L(-k) = deg L - k * deg of1)
' degL -k+h

ZdegL—(‘leﬁ-é)(a-n-h) . h
202 n+h
>

Step II. X(L{-K)) >0 .

" preof: let H be a curve such that o{1) = op(H) . Use the
exact sequerice (# in ismme D and the Rilemann-Roch Theorem on H to cbtain
the formulae:

K
*L(-K)} = %(1L) -
i=0

*(L @ oyki))

k=1

It

x{(L) -k * x(gﬁ) - degH{L & Q_H(-i)}

i=0

1
X(L) -k-p-kdegLa,_ELlé‘—)-h

. Substituting all our estimates, you get:

2
X(L(-k)) 3 L9SED" 1o - (1-h) G (zp 4 3m) 4 b

> E E%—I-‘ le, - : = NE (2p,3h) ] >0
step III. It follows from Corollary 1 that L{-k) = QF(D) for some curve
D ¢ F. Now use the results of Lecture 16: let d = deg(D). Then
gF(-D + d) 1s spanned by its sections. In particular, there is a curve
E C F such that 9F( -D + d) = %(E). Also,

deg E = -degD+ 4+ h = d(h-1} .

e it

[
|
I\
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Agein, by that theorem QF(-E + d(h—!_)) iz spanned by its sections. - Now .
op(-B + A(-1)) =op(-D + @)™ ® op(d(h=1))

2 05(D) @ op(d(h-2))
= L{d(h-2) - X) .

Therefore, by Thearem 1, I{d(h-2) - k + 03) 13 0-regular and very ample,
Therefore the theorem 1s proven once you deduce:

Step IV: d(h-2) - k+ oy < O .
Proof: Note that d = degD =deg L ~k + h so that
d(h-2) - k + ¢y =deg L * (h-2) + ¢; ~ k(1+h(h-2})

< d_.s_eh L {-1 4+ ah(1+h(h-2)}} ¢3 + 1 + h(h-2)

%y
- 1 -
< 2h+c3+ + h{h-2)

£ 9.

QED

The important thing asbout this criterion is that, for any inverti-
ble sheal I, the two conditions will be setlsfied for L(n) if n >» o. |
{This is not quite cbvicus, but it is an exercise.]

COROLLARY: Iet h, o € Num(F) be the images of of1) and of 3.

There are constants ¢, and e guch that 1f an element 1 € NMum(F) satis-
fies:

1 OB e,

1) (-2 - o) 2(1-5)[.(&)(_]1_:.#)&]

then a1l L € Plc(F) representing » ere o-regular and very ample.

Proof: TUse the above Theorem and Proposition 3, Lecture 12 (de-
creasing & 1if necessary).



LECTURE 18
THE INDEX THECREM

The Index theorem for curves on surfaces 1s a falrly easy Corollary
of the theory developed so far. We follow an idea of Grothendieck’s (Crelle’s
Journal, 1958, p. 200},

Proposition: Iet L be an invertible sheaf on F such that
(L - L) > 0. Then

[deg L > 0] <m=x> [for some positive n, HO(F, M £ (0)) .

Proof: If H(F, 1™ #o0, then I[P = op(D) for same curve
D ¢ F. Therefore

degL:%(Ln - o(1))
« & (op(D) + o(1)
1
=gdegDd
>0 .,

Conversely, 1f deg L > 0, then HE(F, ™ = (0) for all suffieiently largs
n by the vanié.hing lemma of Lecture 17, Morecver, by Proposition 3, Isc-
ture 12: ’

XL = (17 TP e ™)« x(gp)

2 -
=5 (L. 1) -F (L) + x(op) .
This 1z positive for all sufficlently large n, hence ol (F, T # (0) for
all suffleiently large n.
QED
COROLLARY: Iet L be an invertible sheaf on F such that
(L - L) >0, Then if M, and M, are two very smple invertible sheaves on
F}
UL« M) > 0] Cmd> {(L~ M) >0] .

127
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: - prdof: The point is that the conditlon H(F, I # (0) is in-
dependent of tha given very ample sheaf of1), whereas, by defimiticn,
deg(L) = {L * o(1)). Therefore the condition "deg(L} > 0" must actually be
independent of the cholce of very ample sheaf of{1).
: QED

Index Theorem: OConsider the vector space Num(F) ® g. Iet h
€ Num(F} represent the image of o(1). Write:

Num(F) ® g = {0 ~h} ® (g B}' .

On the second factor, " (Q - h}l, the intersectlon pairing is negative defl-
nite. ’

Proof: By definitlon, the pairing on Num(F) ® ¢ 1s non-degen-
erate. Therefore, 1t 1s also non-degenerate on (@ - h}™. If the theorem
were false, thers would be an eiement k € {Q - h) such that (k * k) > O
Suppose the multiple a - k 1s represent;éd by an invertible sheaf L. Then
Ln(m) represents meh + nra*k, and

(Pm - I*' (@) = (m'h + ek, m'*h + n'-ack)

= m*m'{h, h} + n-n"aefk, ¥ .

In particular, (Ln(m)' - 1P(m)) > 0 whenever {n, m) # (0, 0). Therefore,
by the Corollary (I%m) - M) 4s positive for all very ample sheaves M 1f
it 4s positive for one such M.

Now, ofi) is very ample. Moreover, we saw 1ln Iecture 17 that
for large enough n, sey 0 » o, L{n) will be very ample, too. Then we
have a contradlction because

(LP(-1) = o(1) = - (o) * o) <o
while '
(T-1) - L{ng)) = o(L * L) - a5(0(1) « a(1)) > 0

if n 1s largs enough.
QED

Golng back to the examples in Lecture 13, We can check the result.

For P, x P,, the pairing on the 2-dimensional Num({F) ® @ 1s given by the
matrix :
o 1
( 1 0 )

with one positive, one negative eigenvalue. For the second surface, the
palring on. the 3-dimensional Num(F} ® @ 1s given by the matrix:

-1 0 0 -
( o -1 0 ) .
o 0 1
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One can picture the situation somewhat 11ke this: take the real vector space
Mum{F) @ R, and drav in the "light-cone" (X * Xx) = 0. Look at the closure
of the set of positive real linear sums of very ample divisor clasges:

miitiples of h
very ample

(x-x) » 0
deg x> 0
deg x -- o
{(xx) <0
{x:x} >0
deg x < ©

In terms of this diagram, it is useful to look more closely at
the mumerical eriterion for very ampleness in ILecture 17:

deg(l) > ¢,

%(L) > —1-e

2(o(1) - o(1))

Iet » € Num(F} ® @ be the image of 1L, and let h be the image of of1}.

Iet o be the canonical invertible sheaf on F, and let @ be its :I.m;ge.
We use additlve notation In Num(F) for products of invertible sheaves.

Then using Proposition 3, Lecture 12, the crlteriocn of Lecture 17 becomest

a) deg(x) = {(» * h) > e, ,

) S W S 2% It w2,
o) + (%)z(h'm(l )

In fact, I claim thet, wlth a possible modification of the eonstants ¢
€, b) is Implied by the simpler condition:

+ deg(L) 2,

2and.

') (A e >—E .. (e m? o,
(b - h)
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Proef: In fact, let €'  be any positive number smaller then &,
and suppose *» astlafies . )
' { deg(r) > o,

(o> —E (e B
' 75 e n)

(*)

Then I claim that there 1s s mumber A (independent of 1) such that
[n - @ - 2xX(epd| < A« (b 1) .

Prom this 1t follows immediately that b) holds if deg()}. is lerger than

A+ (h - h)
max {op, A (BSRL}
To construet A, use the fact that (*) implies nx is represented by a
curve for large positive n (the flrst Proposition of this lecture), and

the fellowing easy lemma:

IEMMA: Glven any inwertible sheaf M on F, there is & constant
such that for all curves D CF, :

[(op(D} + M| < ey - deg D .

Oy

, such that M(n,) and M (ny} are very
ample; then (P-F(D) * M(ng)) and (QF(D) . M'1(n0)) are positive, and
the lemms follows if Cy = Ty-

Proof: Choose 1

QED

CORQLIARY: There is a positive e such that iIf N € Num(F} sat-
isfies '
a"  deg(x) >0,
BN () > —E (- mP,
T (h- W
then all invertible sheaves L representing .1 are ample,

Note that these conditions simply define the positive nappe of a
cone in Num(F) ® R. On the other hand, condltlons a) and b') define the
plece of this cone szbove a certsin plane, i.e., s truncated inverted cone.
Hence, the set of very ample sheaves Includes such a cone.” There is one
more result which fits in very nicely with this model. The question arises:
what is the exact shape of the real closed cone G, spanned by very ample
sheaves? It will certainly almost always be bigger than the cone spanned by
the points satisfying our numerical criterion. But a theorem of Nakal and
Moisezon asserts:

* This, at least, makes it quite clear that if L 1s any invertible sheaf,
then IL{n} s=atisfies a) and b) for large enough n.
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If L 1s an invertible sheaf on F, then . I, 1s ample if and
only if:

a} for all curves DCF, (op(D) - L)>0,

B} (L-L}y>¢, ‘

(ef. Klsiman, Am, J. Math., 1964). In our model, let C be the real closed
cone spanned by the invertible sheaves -EF(D) for effective D. By the
PFropositlon, this contains the positive numerical cone: (x, x) > 0, "
deg(x) > 0. Then Nakaira theorem implies that C and co sre just dusl
cones with respect to the intersection pairing!
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LECTURE 19
THE PICARD SCHEME : OUTLINE

Cur next objective is to prove that the schemes P{s) of Lecture
12 exist. Or, equivalently, to prove that there is a universal family of
invertible sheaves of numerical type ¢. In this lecture, we shall make
some general remarks ebout the problem, and sketch our methed for solving it.

Precisely, the problem 1s to show that each functor PigF.; is re-

presentable. The first thing to notice is thet the functors PicFE are all

* iscmorphic: say £,s &, 8re two points in Num(F}, and say L,, L, are

invertible sheaves on F representing £, and t,. Define an isomerphism:

Pic o Pl ,

: ¢
as follows: given M on P x § representing an element of P:I.cF:I (8), map
M to

Mep) (L, eL) .

¢
This represents an element of PicFa(S) and cbvliously defines an isomor-
phism.

The only problem, therefors, is to represent the functor for )
¢t = 0. This functor will be denoted g_:{ﬁ;. (after Grothendleck). This
functor 1s, in a natursl way, & group functor: 1.e., each of the gets
m;.( S) . is a group and each map between then which is part of the functor,
is a homomcrphism. Namely, multiply two invertible sheaves on P x 8 by
tensor product. Therefore, according to the general remarks in lecture %,
a scheme P(¥) representing ﬂﬁ; ls automatically a group scheme. This
is easentlally Grothendleck’s Picard scheme. {Actually, he takes the dils-
Jjoint union of the schemes representing each E..j,, and calls this the
Picard scheme. In the present context, over an slgsbraically closed field,

this is & silly construction: one sees the point cnly over more complicated
base achemes, ]

In faect, it will be more convenient to represent P:Lc.:FE for one
fixed, but very ample t. Our method is to choose one ¢ which satisfies
the numerical criterion of Lecture t7: this guarantees that any L of type

133
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¢ 1s O-regular and very ample. Then we shall construct & section .s of
LH
Curvesf? .. r;igﬁ,
~——
3
If o adrlits g section a, then Picﬁ 1is represented by a closed sub-
scheme P(g) of C(t).

Proof: By hypothesis © o 3 is the idefitity. On the other hand,
8«4 1sa morphism of Mﬁ. intoe 1tself which projects the whole fune-
tor onto a subfunctor lsomorphlc to fg:_f? . But we know from Lecture 15 that
there exists a projective scheme C(t) representing Curvesf,... Therefore
s.+ ¢ 18 indiced by a morphism of schemes:

f: C{g) = C(x)
Define P(t) as the fibre -product in the diagram:

g
P(g) —— C(1}

| s

C{E) ——L—— C(8) x C(¥)

where 4 1s the diagonal morphism.
‘Then Hom{S, P(t)) 1s iscmorphic to the set of pairs «, 8 €
Hom(S, CG{e)) such that af{oe) = (1, £)(B), i.s., the points o x « and
B x £{(p) in Hom(3, C(e) x C(&)) are the same. This means that Hom(3,
P(§)) is isomorphic to the subset of Hom(3, C(4)) left fixed by f, l.e.,
to the subset of 0urves§.(s) left fixed by s o 0. Therefore, the functors
g .
hP(g) and Pig.F are ifsomcrphic
Finally, since a is & elosed lmmersion, the morphism g is a
elosed lmmersion so P{t) 1is a closed subscheme of G(g). )
QED
. To construct s, we must do the following: given an-invertible
sheaf L. on ¥ x 5, of type ¢t along the fibres, construct & relative ef-
fective Cartier divisor D C F x 3 such that

Opya(D) =L @ py()

for some M € Plc(8). The construction must have two propertles:

(a) if we replace L by L @ p;(M') for any M' € Plc(8),
we should get the game D,

(b) it should cormmte with base extensions T— 3 .

The keys to ouwr construction are the following sheaves: given I on I x 8,
then for any c¢losed polnit x e ¥, let ix: S—=F x 3 be the section of Py
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which maps 3 onto the closed subscheme {x} x8 CFxS. Then let:
M = a3y .
Moreover, let J
& = pp #(L) .
Then there is a ca.noniéal homomorphd sm
Bet & My

Tor every =x; l.e., & sectlon of & over UcC S glves a section of T,
over F x U, hence & section of i;(L) over U - 1;(F x ).

Now recall that ¢t wes assumed to satisfy the mumerical criterion
of Iecture 17, Therefore, if an invertible sheaf T!'. on F is of typs ,
we know that H (P, L') = HX(F, L') = (0), and that L' is very ample. Tn
particular, the restriction of I to any fibre of P, 1s of type ¢. There- -
fore we know that § 1s lotally free and that its rank v is determivied by

t alone. Now suppose we choose any r-1 closed points Kygroey 1 € F.

X
Then we have:

h = hxi? 5—""e1Mx

hence

Dualizing, this gives

~e T .
{ah) : if1 Mxi'—~ Hcm(A &, og) .
But
Hm(A™" &, og) = & ® (4T §)""

{i.e., the canonical pairing of Ar-1( £) and & into the invertible sheaf
A" & induces a homomorphism from & to Hon(A™ ™' &, 4T}, hence frem

E® ¥ 87 to @E(.\I"1 B, 94). It is cleer that this is an iscmorphism],

Putting all the invertible sheaves together in curly brackets
this gives a hamamorphism: :

r-1
h': o4 -ge{(f\rs)"@[ ® ]}
121 Xy

hence a global ssction:

ser(Fxs, Lep {(A"t;)'1 ® [:é: Mxi]}) '

Suppose that o does not vanish ldentically on any of the fibres of Pa-

Then o = 0 defines a relative effective Cartier divisor P C P x 8 .such ‘
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r-
(% w1}

i=1 1
which 1s exactly what we want. Moreover, 1t is ¢lear that all cur steps
commite with base extension, and that one winds up with the sams D even
if you replace L to start withby L @ pE(M) Therefore our problem would

be solved and s would be constructed, provided only that o doss not van-
ish identically on any of the fibres of Pa-

that ’ o ‘*' ]
__QFxS(D) =L &p, { (Fery ' e

What does it mean for ¢ to vanish identieally on the fibre
p;‘(s) 1 Iet Ly be the invertible sheaf induced by I, on this fibre, and
let
Pyt Fo- Pr_y

be the cancnical F-valued point of P
Iined by Lg, and 8,, Sy,:..,

el defined by L [i.e., the one de-

s,, & basis of HO(F L o5 ¢f, Lecturs 11].

IEMMA: o -is not Ildentically o0 on pg (s) 1if and only if
q;s(x1),..., cps(xr__l) span a hyperplane in Prge

Proof: Since the construction of ¢ is functorisl, we may as
well make the base extensicn

Spec(k) = Spec (s} =38

and replace L by L and ,9ee whether ¢ comss out 0 or not, Then & =
(X, 1) and My, = Ls ® K{x;). Clearly o # 0 if and only if the r-1
linear functionals

L B 1(X, L) - L, ® H(x,)

are independent, 1.e,, 1f the intersection of the kernels of the h, 1is1-

. 1
dimensional. But under rp:, HO(PI,_.I, o(1)) end HO(X, La) are lgcmorphic.
And the linesr functionsl 1'5: corresponds to

1

By (x,) P,y o) — o(1) @ Kpglxy)) -
But an element h € Ho(Pn, o(1}) goss to zero in of1) @ H(y) 1f end only
if the hyperplane defined by h contains y. Therefore the kernel of the
hx ’s 1is 1-dimensional i1f and only if there is a unique hyperplane contain-
the r-1 pointa q)(xi).
QED

Now we know that the imsge tps(F) is not contained in any proper
linear subspace of Py (ef. Iecture 11), Therefere for almost all (r-1)-
tuples xi,..., x,, of points F, the points g(x,),..., cp(xr 3} will be
independent and o ;é 0 on P Y(s). The @iffieulty, however, is to find one
(r-1)-tuple which works for every 4.

|
}
|
|
|
g
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We will not solve this problem: indeed, it may well be that no .
such (r-1)-tuple exlsts. Instead we shall generalize gur method of con-
structing the section s. We start by choosing a total of N-r-1 points.
en F. We group them into N-1 sets of » points, and one set of p-1
points:

(x X veey Xy o}
1,12 207000 M op

(x X

vrey Kot
2,220 ¥a p

Grouping
{7} [XN_1’1, xN_1,2’-.-, IN-",I'}
AT R RNV

For the last r-t points, make the same construction as sbove, obtaining:
r-1
E°[1191 "’N,i]}) )
For each of the other sets of points, however, we form
z r
1; Bt ® T LR

henoe afl: AT 6 = e, M"k L This glves
: .

o[ &%)

L € BFx s, o {(Ar&" ‘8[ ?1 M 1]})

We now put these all together by tensoring to obtain:

6=0, 0,0 .., 00, R(Fx8 L@p*{(,\rs)'“@[ ® ]}
1% % N (r"E allkiMxk,i)

td

2,17

oy e ©(F x 8, Lo vy {" &)

n'r gg = (AT 6)7

hence a section

Abbreviate:
(Art;)'N®[ ® M ] = K .
all k,1 “k,i

Now K, up to canonical identiflcations, is independent of the grouping (7).
Therefore, the result is that for every grouping (y), we can form a sectlon

o, € B'(Fx 3, L®Dy(K) .

Suppose that to each y we assign a scalar a.? € k., Then we alzo have the

gections 2‘. a8 g .
7Y
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MATN THEOREM: For o suitsble choice of &, and of N, and of
Ner-1 points on F, and of scalars aT, we can reach the result:

for all invertibie sheaves L on F of type &,
the canonical secticn

Z a0, € HO(F, L)

r
7
i1s never zeiro.

When this is proven then, indeed, the sections I aTuT always define rela-
tive effective Cartier divisors, hence & section s of ¢ has been found,
" and P(E} has been constructed.

I
j
i
i
{
i
|
i
i

IECTURE 20

INDEPENDENT 0~CYCLES ON A SURFACE

In this lecture, we will consider the question of finding finite
ssts of points on & given surface which are, roughly, "in general position.”
Fix the surface F, and a very ample invertible sheaf L on F.

1” Definition. A O-cycle % of degree N on F 13 & formal
sum of N (not necessarily distinet) elosed points on I:

. N
aeY e

i-

Definitlon. A o-cycle I Pi 13 i-independent 1f, for all curves
DCPF,

{Number of Pi in Supp(D)} < A -+ {deg D)2

First consider the independence of a 0-¢ycle in the plane: for
example, If & 0-¢ycle is to be 2-independent, then no three points in the
eycle should be collinear, no 9 polnts in the cycle should be on a single - .
conic, ete. This Is very wesk, of course: there is no reason why even 6
points need be cn a single conie. To construct Independent o-cycles by in-
duction on thelr degree, it 1s convenient to prove the strongest resuls:

Proposition 0: For all N, there is & o-cycle o I‘L‘ Pi of
degree N on P, such that, for all S ¢ {1, 2,..., N}, and for all in-
tegers n, if '

Iy g - [FI F a hatogeneous form in X, X, X,
s .
of degree n such that F{Py) =0, if 1 ¢ 8} ,
then

a) Iy g = (0)if Cerd(s) > (n+i)2gn+2)

) dmlI, - ne1)(0+2) . caras) otherwise.

139
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. "Proof: For N =1, let ¥.=F, be any closed point. Now asay
o = z‘,i'} Py 1s constructed.. We must chcose Py S0 that % + PN meets
a1l requirements: how we need not worry sbout subsets 8 € {1, 2,..., N=-1}
as they are already taken care of. Say T C {3, 2,..., N-1} and 8 =

T U [N}. Also, let Ln T and I".n 3 be the linear spaces defined above.
Then the requirements boil down tot

Ly, s ; In,r
ir ]'.h T £ (0}, 1.6., 1f Card(T) < ({n+1)(n+2)) /2", Namely, by induction,

dim I'h is glven by &) and b); and Ln g bas at most codimension ! in
L, e 'I'lmrefore , if it 13 a proper subspace, Jts dimensicn is given by a)

a.n& b) too.
et Z, T be the intersection of the plene curves defined by
' ’ hen:
forms Felh’Tr.’En .
Ln,s § Tnp <=y {25 -

clea.rly, if Py € Zn o then the conditlon F(P } = 0 is redundant, so
. t :Lf P then there ls a.n Fe such that
Iy,s = Ipp- B {2 Ln,r

F(PN)#O, 80 Felh,'l‘ LnS'

Moreover: Zn zm] o Namely, let Q € zn 1,T and let
Fe Ih pe Suppose Q) ;é 0. 1et @ be & linear form in X » Xy wnich
is not’ zero at Q. Then F - G e Ln+1 T and FGQ #0 which is a con-
tradiction. Therefore. F(Q) = and’ > Z,,q p- Also, by conditicns
a) and b) for T, Z, q=P, 1¢ and only ir cardfT) > ((ma1)(me2)) /2 .

Putting all this together, the conditions on Py boll dowun to:
neoc e U mn Gmp
where v(T) 1s the least n such that:

) _(B.*i).é.r.“_e). S Card(T) .

Such 2 PN 4obviously exlsts.
QED

COROLIARY: For all W, there is a 2-independent O-cycle on P
of ‘degree N.

2

Procf: The 9 Just constructed has the property that at most
((ne1)(n+2)) /2 - 1 of i1ts points are on any given curve of degree n., Since

n+1) (e} _ 2
2 —

for all n > 1, the Corollary follows,
Now consider a general surface F 1instead of the plane:

-

|
|
\
|
i

INDEPENCENT 0-CYCIES ON A SURFACE - a1

Propeosition tr Let F be a non-singular projective surface, and
o(1) & very ample Invertible sheaf. There 1s a positive A such that,
for all N, there exlst ix-independent O-cycles on F of degree N.

Froof: ILet the embedding P C P, be defined by o{t). As in
Iecture 16, thers ls a projectlon of P, onto &, vhich defines a finite,
flat morphism '
n F —-p, .
Morecver, we proved in Iecture 16 that 1f D C F 1s any curve, then

deg D = deg =, (D)

Iet h be the degree of =, i.e. the rank of the locally free sheaf

e (Cp }. [Actually, h = {o(1) . )) but this is irrelovant.] Put » =
3h. " Given N, W, =[N/, sothat N=h- N, +r, where 0<r < h-1,
Choose & 2-independent o-cyele b on P, of degree N,. Iet %' = 2*(b):
how is n* defined?

Definition: a) =*(I; Q) = I; »*(Q,) ,

b) If Qe P, isa closed point, let x ' (Q) = (P,..., B,
set-theoretically. Then the scheme theoretic fibre is-glven.
by:

«(Q) = Spec (xe(oplg ® H(Q)) . .
end ny(oglg ® M(Q) = @, A;, where A, is an Artin
local ring whose Spec 1s the point Pi'

n(m-zamkmi).ri .

Note that the degree of =« (!t) is h times the degree of w. Finally,
let Py,..., P, beany r points in F, and let % = %' + I , Py, Then
I claim that % 18 r-independent and of degree N. ILet D C P be any
curve:

[Number of points in 9% in Supp D)
r + [Number of polnts in %' in Supp D) .
k-1 + b + [Number of points in b in Supp{x,(D)}]
h-1 + 2h *{deg(x,D)}?
3.h-+ {(degD)? .

IAAA A IA

QED

. .
2 The purpose of this secticn is to show that A-independent 0-
cycles are good in some other senses too. Firat introduce a new concept:

Definition: A o-cycle 9 on Py 1s strongly staeble if for all
hyperplanes H C [
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Proposition 2: . Iet 4 be a’strongly stable O-cycle of degree
k(n+1). Then there 1s a decanposition {y):

k
1 = Z By,
11
where bi is 0-cycle of degres mn+l1- consisting of n+i projectively inde-
pendent points, 1.e., points not contained in & hyperplane.

Proof: Look at all decampositions

2
A =z bi + %!
1=

where each of the bi’s consists in 1 ~indepnedent poj.hts. Pick one _
such decanposition such that £ 1s maximsl: we want to show that £ = k.
Moreover, let L be the linear gpace spanned by the points in %'.. We shall
make & secondary induction om dim L. Clearly, if L = Py then one can
find n+1 independent points In %' and form a new cycle bp_+1 out of these,
30 that 2 is not maximsl. Therefore, éim L < n , Now chcose & decompo-

sition such that dim I, is maximal among all those with mesimal £,

I claim that for seme 1, 1 {1 <2, the o-cycle by is dis-
joint from L. If not, then one point of each ‘bi would be in L. This
would give a total of at least £ +« deg{ %'} points in L. But then

> [Bumber of points inm ® in L]
> 1+ deg{ a")

2 os (ke2)(ne1)

> k.

This contradiction proves the claim.

Now say b, 1§ disjoint from L. Zet b, - I , Q;, and let

H(i) be the spen of all the points 4Q,,..., @, except Q;. On the other
hand, let q = dim L end choose q+) points Py, Py,.s., Pq from o' which
span L. Iet P* be any point in %' other than Py, P,..., or P,. Since
the Q's are independent

n

n B =¢ .

i=0
Therefore, there is an 1, say 1,, such that P* ¢ H(1,). Now let

n
¥* >
b1 = Z Q'i + P
i=0
:L;éio
and let @* = %' - P*¥ 4 Qi . Sinee P* ¢ H(io), bT at1ll ccnszista of nyl
0

i :
|
;
|
|
|
i
|
|
i
|
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independent points. But nov w” conteins Py, P,,..., Pg amd @ .
. 0
Since b, is disjoint frem L, Qio ¢ L. Therefore these points span &

lineer space bigger than L: 30 dim I waes not maximal. -
QED
CORCLIARY: Let % be a strongly stable o-cycle of degree
k{n+1}-1, Then for all clesed points Q € P, there is a decomposition (y) H

k-1

*

A = Z bi + blc
1=1

where bi,..., by ; are cyeles of n+t independent points, and where b; ‘
is a cyels of n independent points spanning a hyperplane H such that
Q¢ H o

Proof: Apply the Proposition to % + Q.

The relationship between the two concepts of a-independsnce a.nd
strong stability is glven by: '

Proposition 3: Iet F be a non-singular projective surface, let
o(1) be a given very ample sheaf on F, and let % be a O-cycle on F,
h-independent (with respeet to of(1)). Iet I be an invertible sheaf on
F sgpanned by 1tz sectlons and let -

¢: F =Py

be the canonical morphism defined by L and its sectlons. If deg(9) >
A(n+1) (deg L)2 then o { %) is a strongly stable o-cycle on P

Proof: If HC P, 1s a hyperplame, then ¢*(H) 1s defined amd
is 2 curve in the divisor class ¢f L. Therefore:

.

[Mumber of points in g.(%) 1in HI]

< [Number of points in % In Supp ¢ (H)]
A+ {deg 9*(}1)}2
At (deg L)2

&l | e

IA

I~
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LECTURE 21
THE PICARD SCHEME: CONCLUSION

We can now camplete the proof of the exlstence of the Plcard.
scheme, Recall that we have made & basic choice of & mumerical class ¢
of invertible sheaves. We shall, at a later point, put more conditions on
£, but et tho moment we mow only that the values of deg(t) amd x%(t) (de-
fined because of Proposition 3 » Lecture 12) satisfy the hypotheses of Theo-
rem 2, Iecture 17. Iet A be en integer such that F admits A~-independent
0-cycles of all Gegrees. Choose an integer W such that

N>+ (deg )2
and choose a r-independent 0-cyele ¥ on F degree N - %{f) - 1. Now
suppose 1 1s -any invertible gheaf of type ¢ on F: then

&) H(F, 1) - BF, 1) - 0, so that
aim B(F, L = X(L) = x(8),

b} L 1is very ampls.

2

et o: F— Pi_y be the closed immersion defined by I. and its sections,
(r = x(8))., Then for all closed points X e F, g9,( % + x) is strongly
stable by Proposition 3 of ‘the last lecturs. And, for all x € p %

can be written
Ni
*
A = bi + bN

1=1

r-1?

such that, for 1 <1 £ N-1, q)*(bi) consists of r independent polnts in
Py » amd for 1 =N, q:*(b;) consists of r-1 independent points spanning
a hypertlane H where x ¢ H. {Corollary to Proposition 2, Lecture 20.)

Now recall the definitions of Lecture 19: use the N'r-1 polnts
of #, and thelr grouping (y) into the b’s to define:

v, € (F, L®K) |
4 It

where K is a certain 1-dimsnsional vector space over k, canonically asg-
soclated to L and % (X is ineluded here not Just 1o be pedantic, but so
that the reader does not think anything is being unobtrusively slipped under
the table).
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Under ths above hypotheses, o, # 0. o
Proof: By definition g, = a9, @0, B...8 oy, where if 1 £ 1 .<_'
N1, o3 1sa canonical element of the 1-dimensionsl vector space

g - whmmTel o w]
"o

If i =N, tl;en oy 1z a cancnicel section of L @ K, where Ky 1s the
1-dimensicnal vector space: .

-1
KN”‘frHO(E' L) ®‘[Q?b§ MQ] .

We saw in Lecture 19 that oy # 0 1if the kernel of all the hamomorphisus

B(F, L) — Mg,

L@ HQ .

for Q€ b;, was one-Gimensional and if so that oy Vas a nen-zero element
in the kernel. Morecver, such an element ¢corresponds to h € HO(PI,_“ o{1})
such that h(p(@)) = 0, all Qe by . But the o-cyele ox(by) spsns a by-
perplane H not conteining x. Therefore, such an h 1s uniquely deter-
mined up to a scalar and h(x) # 0. Therefore o # 0.

How sbout the other o,’st Going back to the definition, they
are not zero if and only if the whole set of r homomorphisms
B (F, T) =My

for Q € bi' are independent; for this 1s equivalent to asking that they
indiice an isomorphism:

r

Pib: ol (N DI .

' Qeby i)

on the other hend, it is =lso eguivalent to asking that the set of I hamo-
morphisms: ’

E(PL_y, 0(1)) = o(1) ® H(p(Q))

for Q € by, are jndependent. This 1s true since the O-cycle g,{(b;) ocon~
sists of r independent points.
QED

COROLIARY: For fixed L, but different groupings », the ele-
ments o, generate B(F, L 8, K.

Proof: In the.proof just given, ths element h can be chosen so
that h(x) # 0 for any x € P, ,. Therefore, the set of h’s which occur
span the vector space _I—ID(PI,_.l, o(1)}. Therefors, the set of oy’s which
occur span the vector space HO{F, L ®k K,N). Therefore the set of u__"s
which occur span -HO(F, L2 K.

|
!
i
|
|
|
i
|
;
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The obstacle still is that only certaln’ groupings (y) glve rise
to non-zero elements in one space HO(F, L ®, K}. Varying L, which (4)
should be chosen? But we have one more gun: we can choose Scaia._rs a.,
one for each grouping » so that the sum Z a,o, 1ls not zero for any L.
To do this, however, we must look at one very camprehensive family of in-
vertible sheaves of type ¢&. One such is gotten as i‘o:!.lcws: let D(¢) C.
F x C(t) be the universal family of curves of type i. Lock at 2 o
Omec( t) (D(§)). This is a family of invertible sheaves over C(g) such .-
that every invertible sheaf on F of type t appsars on cne fibre. BRut

the dimension of the base grows with & which is awlwerd. Insteed, let kg
be cne rumerical type satisfying all the same conditlons &8 & and let & -
be a much more ample numerical type: - in fact, satisfylng:

* X(8) > dim () -

[This can be schieved by first choosing LI and then letting i be to *+

m e+ n for large m, where n € Num{F) vepresents of1).]  Fix one inver-
tible sheaf M of type & - &4, and let I go) CFx C(go) be the univer-
sgl famlly of curves of type Ey- Then ' :

£= Emc(go)(n( £) © by ()

is a family of invertible sheaves of type & which also induces every pos-
sible sheaf on F of type ¢ on same flbre. This 1s so, becanse if I is
any sheef of type &, then L ® M™' 1s of type 3, so that (F, Lo M)

. -1
# (0). Therefore L @M ' = 0p(Dy) end L = 0n(Dy) @M for same curve . Dy.

If D,. defines the closed polnt & € C(go), thert L occurs ag the sheaf
induced by & on the flbre over &.

Now, abbreviate OC(f,) "to 3, but let £ on Fx 3 still de-
note the family of sheaves Just constructed. Ist & =D, 4(£). Note that
by (*), the rank of § is bigger than the dimension of ’s. et

k=erVe<s e x
Qe Q}

and mQ = ia(s’_). For all groupings (y) of 9!,' let
o, e B(F x5, £epy(X))-H(s, §0K)

be the corresponding section.

If the scalars a  have the property that for all closed points
s € 8, the imege of the section I 8,0, in (&6 ®X) @ H(s) 1s not zero,
then I a._’u,r meets all the' regulirements. For the whole c¢onatruction cam-
mutes with basge extension, so if L is the gheaf induced by £ on p;‘{s),
then the image of I a_ru_’ 1s '_bhe corresponding I 8.0, in HO(F, L} 2K
And every L occurs over same point s. On the other hand, the sections
°, have gquite o bit of freedom: for every closed polnt s € 8, the jmages
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generate the vector space (& ® X) ® ¥(s), (by the Corolliary
Everything now follows from an easy lemma of Serre:

of the 5,
Jjust above).

LEMMA (Serre): Iet X be an (algebraic) scheme, and let & be
& locally free sheaf of renk r on X. Iet V C HO(X,&) be a finlte di-
mensional vector space and assume: : ' .
i) r>dimX,
13) for all closed points x € X, the map fram V to
& ® X(x) 1s surjective.

Then there iz an element s € V whose image in every space & ® K(x) is
non-zerc.

Proof: Iet N =dim V and let Syaeeey Oy be & basis of V.
Construct a homomorphiasm h .
' o= 2l Bogoo
by h(a.l,..., a.N) =X 8,6y. This is surjective by (i1)}. Iet R be 1ts
kernel. Then X is lceally free of rank N-r: I1n fact, tensoring with
the residue field H(x) of any x € X, we obtain:

Y
_T.QE%X {6, H(x)) — N &H(x) —E— WY~ 6 @ H(x) =0

{0)
and T;or%x(n, H(x)) = {0).
Pass to the dusl exact sequence:
o—r@(g’ QX)_.EE L’.HL.@.(NI gx) -,
Then % induces (ef. EGA 2, (4.1} and {3.6)) & morphlsm:

P(2\): !‘tl{_gn;(n, _ch)l—»P(ng) = Xx Py,

Now P[Hon(n, gx)] is lecally a product of X with a projective space of
dimension one less than \the rank of Hom(N, gx) . Therefore, by hypothesis
(1,

Qim P[Hom(N, o] = dimX + Wwr -1 <N -1

Look at the canpesite:

Pp = B(¥): PIHM(N, op)) =Py, .

Because the dimension of the domain is leas than that of Py.ys 1t is not
surjective. Iet a e Py, _be & closed point outside Im(p, » P(3}}, &and
let a,,..., &y be hemogeneous ccordinates of a&. Then I claim that T aye
iz the sought-for section. Suppose I ayey is zero at the closed point

171
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x € X. Then (8'1"”’5'1\1) is in the sub-vector space N @ K(X) of ng @ H(x),
under the inclusion xx' Therefore (31,..‘., a.N) -defines a lineer func-
tional on Hom(T, 9}{) ® H(x), hence = homomorphism P from the symmetric
algebra on Hﬂ(n,&() @ H({x) to H(x). The maximal ldeal and the
kernel of P defline a graded sheaf of ideals in thisz graded sheaf of alge-
bras: i.e., a point of P[{Hom(N, _qx)}, (cf. lecture 5, Appemdix). It fol-
lows immedietely that p, - P(3») maps this point to a, _which iz a contra-
diction. oo :

QED



I
|

IECTURE 22
THE CHARACTERISTIC MAP OF A FAMILY OF CURVES

We are now ready to sttack the existence problems A and B
ralsed in Lecture 2. We shall conslder first problem B. The first step is
to define preclsely the "characteristic map" » indteated roughly in Isc-
ture 2: this 1s the fundemental linear estimate for families of curves.
Firat soms preliminaries:

(A) We will need the following easy criterion for regularity:

Propositicn: Iet g be a noetherdan locel ring, and kCog a

subfield isamorphic to t_he residue fleld. Then g 18 regular i1f and only

af:

for all finlte dimensional local k-algebras A, Ao,
and surjective k-homcmorphisms A - Ao , the map

(*) B Homy (9, A} ~ Hom (0, Aj)
is surjective.

Proof: The condition that g I1s regular and the condition (*)
are both equivalent to the same conditions on the campletion 5 of g,
Therefore assume o 1s complete, hence _by strueture theorem on complete
local rings, there is a surjective homcmorphism

KEX ,enn, X )12 o

Moreover, we can essume that [ O cpxn induces & basls of m/m2 (m C Q)

.Then 1f ¢ 1s regular ¢ 1s an isamorphism and cne easily cheeks (*) for

formal power series rings. Conversely, start with ths homomerphism
A\
Q—_’Q/m "—k{[x'“ ey xn}]/(x1a ey xn) .

Iift 1t via (*) to homomorphlsms:

Ypet AKXy e, XM/X), 00, X )T
.- .

o 7 kmc,,...,_)gllll(x,,...,xn)m .
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Passing to the limit, cne cobtains & homomorphi sm;
o~ k[1X;, .00, K1)

But it is clear that ¥ - ¢ 1s an automorphism of k[[X,,e.., X,11, and
sinee q) is surjective, this implies that ¢ 18 an isomorphism, i.s.,
o is regular. ° e
QED
(B} Suppose A 1s a finite dimensional local k-slgebra. We
will look quite frequently at the schemes F x Spec(A), so 1t seems worth-
while to put together at the outset the basie facts on their structure:
1). As a topological space, F x Spsc(A) is just F. The
only thing changed 1s the structure shsaf.

ii) SpwSpec(A) is canonically ifsomorphle to Op &y A,
Wemely, notlce that the projectlons p,: F x Spec{A) = P,
and p,: F x Spec(A) — Spec(A) make Cpoanogray 10O
& sheaf of gF-algebr‘a.s snd a sheaf of A-algebras respec-
tively. Therefore, thers is a cancnical hemomorphism:
™ Op & A~ Opygpec(a) -
But since, for affine cpen sets U CF,

T(U, op @ &) = T(U, op) & A

(T, QEwSpec(A)) = (U, op) & 4,
(#} is an lsomorphism of sheaves.
. 113) ‘Now let 1 = &,, ®,,.+., &, be & basis of A over k,

where €,,..., 8, Span the maximal ideal M., Then

n
Spxspec(4) = OF *122 °1 " O

and
n
R * z e, * o
Srxspecta) " F L °1 7 I
i-2
o
*
-5 ( +§ e " o)
1=2
Moreover, the truncated exponential sequence defines a hamo-
morphism: .
. n, n
(Z o+ op), — (‘+Z ei'SFl .
i=2 i=2

provided eP = 0, all e €M, P = char{k).

5
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IEMMA: The truncated exponentlal is always an isomorphism.

Proof: Use the truncated log 1_;6 get an inverse.

We now came. to the main point of this lecture: to 1nve'stigate.
the families of curves on F over 3Spsc k[s]/ee. We denote Spec k[s]/s2 i
by I. Wot only 1z I & scheme over k, but the augmentation

]u:[t—:]/s2 -k

defines a closed immersion of Spec(k) Into I. 3In this way; g famlly of
curves over 1 defines exactly one ordinary curve on F, I 1tself 1s like
8 vector personified: it 1g a single point with the amallest possible
amount of "tangential material" sticking out in one direction., A family of

curves over I 1is basicelly a curve on F, plus en infinitesimal deforma-
tion of this curve. :

Fix a curve D CPF.

Definition: Ky = op 895' {%(D)].

This is an invertible sheaf on D, and if D is non-singular, 1t can be

shown tc be the sheaf of germs of gections of the normal bundle. Note the
exact sequence: :

Q-—-EF—-QF(D)—bNDatD .

Proposition: There is a natural isomorphiasm between the set of
families of curves 9 C Fx I, over I, whichextend D C F, and the set
of glcbal sections of ND

Proof: To define a Cartler divisor 9 C Fx I is the same asg’

to give an open ccvering {Ui} of F, and loeel equations for 9. In view
of (B), local equaticns are of the form:

Fi = Gi + & Hi »
where
Gy, By € (U, op)

The induced curve on F 1itself is defined by the first terms Gi‘ Assume
that this curve is D, Recall that on Ui n I:f:j we must have:

Fi = (unit) - Fj 2
or
(Gi * 5%) = (a'ij + Ebij) - (GJ + EHJ)
where
{ aij € I‘(Ui n Uy 9_;)
bij e (U n UJ, QF)' .
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This gives the equations:
. ) . Gj_ - 31_1 - Gj
By -yl By

hence ‘
H
Iﬁ - —J- =b ta .
G:'L' 1 13 ji
But since & is a local eguation for D, H_L/G:L Ils a section of %(D),
and these equations say that {Hi/Gi} paten together as sectlons of ND B
This is the sectlon corresponding to J.

‘Now ‘suppose that wlth respect to some open covering EU’i}, two
gets of local equations Fi’ Fj'_ gave the same sections of ND Then

gl;-aﬂ-i{ = ¢y € MUy, o) -

~ Also, _since Gi and Gi' are both local equations for D, Gi/c—i' _is a
unit di in U:L‘ Then it follows that

(Gy + eHy) = (dg + 8¢y » Q) © (Gy' + sHy ")

hence the two divisors © and 9P' are equal., Finally, 1t is easy to check
that every sectlon of “D defines a divisor 9 extending I in this way.
QED

COROIZARY t: Given a family of curves 9 C F x S, and a closed
peint s € 3, there is & canonical linear homcmorphism

{ the Zariski tzngent
pt

space. T, to 5 a% s} - HO(F' Iq]:‘s)

{where D,s C F is the curve induced by 9). This is the characteristic mep
of the family.

Proof: given t e T, we have a canonical

f: I—=+5

with image 8 (ef. Lecture 4%, Appendix). Then, by base extension f, we
obtain a family of curves ﬁ)f CF x 1 which extends Ds' By the proposi-
tien, ﬂ}f corresponds to an elsment p(t) € I-IO(F, I\ID ). To show that p
is linear, use the functorisl characterization of thePvector space structure
on .Ts (Appendix, Lecture 4), and check that this agrees wilth structure we
have introduced directly.

CORCIIARY 2: For the universal femily of curves 9 € F x C(&),
p 1s an isomorphism at all closed polnts s € C{g).
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Erocf: Following the proof of the previous corollary, the set
of t .is always lsomorphic to the set of f; and the set of o ¢ EO(F,
Ny ) 1s iscmorphic by the proposition to the set of families %' CF x I

3

extenéing Ds‘ But by definition of 2 universal family, every o' equals
a P, for a unique f, so the'set of $' and the set of f are isamor-
phie too.

QED

This would appear to answer the fundamental Problem B of Lecture
2. But in fact, 1t does not. We have only generalized the concept of a
fa.mily of curves from the intultive one where the base 1s a non-singulsr
variety, to a "phony" one where the Zariskl tangent space to the base can
be hige, but the base can still be only one point! The burden of the proh-
lem of really constructing femilies of ourves 1s shifted to the question of
ascertaining whether the universal base 1s reduced, or (better) ncn-singular,

Exsinple: The foliowing is due to Severi and Zappa: let £ be an slliptic
curve over k, and consider vector bundles & of rank 2 over C which
fit into exact sequences: ’

0= oy =& oy =0,
By the general theory of sheaves, such extensions are classified by elements
of': : : : '
1 1
EXtQG(QC’ gc) = H(C, 90)' .
But H-1.(C_, o) 1is a 1-dimensionsl vectar spaces let & correspond to s

non-zero element. We take F = P{§ ), {cf. Lecture 5). This is a ruled’
surface, i.e., there is a canonical projection

t: F=C

meking P lnto & bundle over € with fibre P,. We can be very explicit:
let P, @ be two distinct peints on C. Up to adding a constant and multi-
plying by a scalar, there 1s a wiily . functiom f on € with simple poles
at P and @, and no other poles. The covering
L= (C-PYU(C-Q
= U UQ
£er(UpnTy, o)

glve a 1-Czech co-cyele on € which represents the generator of H‘(C
{up to a scalsr). Then one can check that

. )

F = [P1'x UP} u [_P1 x

Ul l
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and that if tP ig a coordinate on P, in the first patch, tQ one in the
.gecond, then the patching identifies the closed polnts

{tp, ) € P, xTp

(tQ, x) € Py % UQ
when erPnU,tP-tQ = £,

Now the curves given by () x U Emd (=) x UQ coincide over
Up N Uyt i. e., the first has local equation tP , the second has local
eq_ua.tion tQ , and

-1 1

# tp' /ey = 1 - £ " t3', & unit in a neighborhood of

(=) x (U N UQ)- .
Call this curve E. E is & sectiod of the morphism =x, and therefore is
an irreducible non-singulsr curve on F, iscmorphic to C. 7 Moreover,
9p(E) =tp - op
"_!tQ'QF in P1XUQ.
Therefore, Np =0, in E N (P, x TUp)
’ ;gEinEn(EHxU’Q)

and the patching on the intersection ia defined by the restriction to E of
tg /t.é1 . By (#), this 1s 1, hence Ny =op globally on E. Therefare:

B (F, ) = H(E, o) =k

This means that the unilversal famlly CF' of curves of degree d, genus 1
contelning E has a non-trivial Zarisid-tangent space at the point e  cor-
responding to E.

in P, xUP

On the other hend, it 1s easy to check that e alone 1s & gom-
ponent of G%” . For one can show that if a second curve E'C F corre-
gponded to & point - e' in the same component of G TR e, then E 0 E!
= §. [It would follow that the sheafl QF(E') was a deformation of the sheaf
op(E}, hence op ® op(E') would be a # formation, on E, of Ng; but the
former hes a gection which vanishes at 7 7 E', and Ng has & seetion which
is nowhere gzero; since their Euler characteristics are the same, this means -
that E N E' = g.] .But alsc the degree of E' over © must be t Ilike
that of E over C: therefors E' would also he a section of x and would
have local equations:

t

It

p = 8p(X) 1a <UL, g € (U, op)
ty = gg(x) 1in {HUQ), g € T(Uy, 8g) -
Then g - g = £, and f 1is a Czech co-boundary which is a contradiction.

4
i
i
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LECTORE 23
THE FUNDAMENTAL THEOREM VIA EKODAIRA-SPENCER

We are now ready to prove the theorem announced in Iecture 2, for -
which two analysic preoofs were sketched. We will prove the strangest known
form of this result in the form B given at that time.

Definition: A curve D CF i1s semi-regular if
H;(EF(D)) 4 (N;) is the zero-map .

THEOREM: (Severi-Kodsira-Spencer), Iet D0 CF be a curve of
type t. let D, correspond to the closed point & € (). If

a} char{k) =

b) D, 1s semi-regular,

then C(:) is non-singular at s,

Proof: We shall use the criterion of section (A), Lecture 22,
Iet A be a finite dimensional local k-slgebra, I C A &n ideal and A =
A/I. We must show that every curve D C ¥ % s;oec(K) which extends D . also
extends to a4 curve D C F x Spec(A).  Clearly we can alsc assume that dim I
=1, and let I = n + A, Fix local equztions Fi of D in same affine
open covering {Ui] of F. To start with, lift F‘i arbltrarily to elements

Fi € r(Ui, op &, Ay .
The trouble is that these do not define s curve D unless Fy de._nd B‘J Gif~
fer by a unit in* Uy N U,. But, in any case, there are units GiJ on Ui i}
ﬂj in {op ® A} such that: .
FL=Gy Fy o
Lift Gy arbitrarily to Gy; e r(U, Uy, (op @ &%), Then
Fy =Gy - Fy = n - hy, hyye ©(T; 0 Uy, op)
and we must show that for s suitable cholce of Fy and Gij we can ma.ke
all the hj_‘j equal. to ©. First note the identlty:
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ﬂ(h‘ij +-Gij . hjk)' =F - GijFJ + Gij(Fj_ Gjl{Fk)
' =Py - Gy GFy

=0 Bypex (Gyy - Oy gGpd Py
Iet Gﬁ) and F{®) demote the images of Gy and P in g Thenve
get:
Gy - G (G
0y . ke 7 Gag8qcy L L (0)
hij’fc'i;j) hyy = hik"'(__"'ﬁ"—"_'l") Fi

) (o) _ af0) . p(0)
Since Ff{ is & local equatlion for I, and Fi‘ = Gj_‘j F‘.1 , this
ves:
gt h,. h 1

-1
e . By [ - Gy 405k
{1t | Fio * = = F—(mi + T ]

3
by
{ F{‘Jﬂ }an' 1,3

is & 1-Czech co-cyele for the sheaf Ny. Let this correspond te kX HT(ND) :

hence

§ is the obstruction to finding D! ILet’s check that if § = 0,
then D exlsts. In fact, suppose we meke the changes:

Fi = Fi + T]f 7
Gij[= Gij-l-‘l'l'gij -
Then one computes: -
. “.hi_'j‘ = Fi'-Gij, .th
Py - GiJFj + 0 fi - nfj . G:Lj - qFjgi.‘]
by e Iy fyfyy - Fygyy)
3ince 83 is an arbitrary element of T(Ui ft UJ, g_F), we can make hij'
equal to 0 for all 1, J if we can make

ny N g, - 2,69 € &,

13
by & suitable choice of {f;}. But this means that
h iy f
= i
-—(-ino () -7-1)0 (rﬂodgF) »
Fy F1 Fj

or that - & is a Czech co-boundary in the sheaf ND This proves that D
aexists if § = 0.

Now by hypothesis b), the homomorphism
3 . )
7 (M) — H(op)
caning from the exact sequence
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is injective. Therefore it suffices to prove that d($) = 0. But since.
the sectlons hij/Fj(_o) of 0p(D) 11ft the co-chain representing $ into -
op{D), it follows frem formala (t) that 3($) 1s represented by the Czech
2 co-cycle:

o - [ 1 - Gi‘1 ;G_.}k . Gi;c]

But fo;4,) 13 an cbstruction to lifting the 1-co-cycle in [EIJ] in

(EF ® A to a co-cycle in (EF @ aY*: for 1f it can be lifted, then we
may choose EGiJ] such that c-:»j_J ’ ij = Gy, L.eo, Tiqp = O Everything
follows now from: '

IBMA: (o ® A)° = (op ® )" — 1 splits.

Proof: One merely uses the exponential, as the ¢hsracteristic

is o
(cp @ )" (op @ DY
al
¥
E;' (1 + o ® M) _o;.'(l-u-%@m
u exXp . ilexP
o (p M), op (og ® M),

Now since M—M splits es a surjection of vector spaces, Sp @ M- Sp eN
splits as a surjectlon of sheaves of abelian groups. This proves the lemma.
‘ @D

GOEOLLARYz Iet D CF satisfy the hypotheses of the theorem.
Then & 13 c¢ontained in only cne component Z of C(t) and

dm Z = aim BY(F, Npy).

Proof: Since the local ring 2 of C(e) at 5 1is regular

dim Z » dim o, ~ dim 7, = dim B'(F, W)

by Corollary 2 of Iecture 22,

To properly understand this theorem, it should be added that the
requirement of seml-regularity is very weak. Of course, it must be violated
by the quite pathological curve E 1in the exsmple of Lecture 22; but a 1--
regular curve ls a seml-regular, and we know that for every invertible sheaf
L on F, there is an m, such that all curves with glcbal equations in
HO(L(m)) are 1-regular 1f m 2 ;. Looking back at the examples of Lec- .
ture 1, 1t will be seen that all the curves not desecribed as superabundant -
are 1-regular, hence seml-regular. Moreover, look at the anslogous case
where F 1s replaced by a non-singnlar curve y and C(t) is replaced by
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c{d)—the universal family of O-cyclea on y of degree d, Then every 0-cycle
D Cy 1s seml-regular since ND has 0-dimensional support, hence

H (N = (0) -

In fact, a8 is well-lknown, C(d) 1s Just the d-th symmetric power of ¥
which is non-singular.

On the other hand, the requirement of characteristic o \13 quite
central. For the last four lectures we shall try to get closer to the heert
of the theorem so as to bring out seversl ways in which the characteristic
restriction can be "explained.” To see what should come next, note that
what the proof really does 1s to reduce the lifting problem for D to the
problem for its associated invertible sheaf QFxSpec( 0 (D) defined by the
co-cycle G:LJ' Then why not eliminate D entirely from the problem, and
prove the theorem in form A of Lecture 2-entirely in terms of invertible
sheaves?

]
i
[
|
\
|
i
!
i

IECTURE 24
THE STRUCTURE OF ¢

1° In this lecturs we want to put together our whole set-up:
in [ecture i5, we constructed the schemes Cf:) parametrizing curves; in
lecture 21, we constructed the schemes P(¢) parametrizing invertible sheaves.
The morphism of functors :
D ofD)

induces a fundamental morphism of schemes
&2 G(8) =~ P(8)

In lscture 13 we described the fibre functors Lin Sys;: now that ve have
represented Cuwe% a.nd P:I.gF we get the Corollary:

COROLIARY: The fibres of ¢ are projective spaces. In fact,
if the gheaf L on F corresponds te » € P(t), then canonically:

N
o7 () = PIEO(LY] .

The global structure of ¢ ocan be described somewhat similarly (cf. Grothen-
dieck’s Bourbekl talk, exposé 232, p. 11). The interesting thing is that,

for different &’s, the schemes P(t) are all isamorphic, whereas the schemes
C{t) over them are very different—for deg(:) < 0, they are empty; for
deg(s) — + =, they inerease indefinltely in dimensicn., For some ¢, ¢ 1s a
fairly compllicated fibering, and its explicit description requires some tech-
nical concebts coming out in the further development of the theory of 3°,
Iecture 7. Therefore, we cnly give the result in a speclal case.

Iet U C P(t) be glven such that:
(%) for all closed points x € U, if Lx 1s ths Invertible
sheaf on F corresponding to x, then g (F, 15[) {o}.

For example, 1f D C F 1s a curve for which " (F, op(D)) = (0), amd if D
corresponds to the polnt s € C(e), then some nelghborhoed U of a{s) €
Pt} satisfies (*) ({in virtue of the resulis of -3°, Lecture 7). : ;
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Froposition: There is a locally free sheaf & on U, and a
.

comnutative dlagram: .
C(8}2 o (U) =p(&)

| A

P(e}2 U

Proof: Iet L be the universal family of invertible sheaves on
F x U. Abbreviate p,t Fx U=TU to p. According to Lecturs 7, 3%, pell)
i3 a locally free sheaf on U, and if g: T =17 1s any morphism and if one
makes the base extension:

FxTPet—eFxU
a P
g [t}

then q_*(h*(L)) = g*(p*(L)). Now let & be the dual locally free sheaf to
D (1}, 1L.e.,

& = Hom, (Pa(l), 2gp -
We shall now prove that e_I(U) end p{£&) are isamorphic over U by the
same method used in Iecture 13 to show that Lin sst is represented by pro-
;jectivs space: we shall glve an isanorphism between their funetors of points.
More precisely, given a T-valued point g: T—-T of U, we shall give a
natural iscmorphism between the set of T-velued points of o (U) over g
and the set of T-valued points of P{&) over &g. Since this iscmorphism
willl be functorisl in g, the theorem will be p:-oven. But proceed in sever-

al stages: .
sot of T-valued polnts set of families of curves D CF x T
(1) i of o (U over g = such theat, for scme invertible sheaf

M oan T, Op(D) =h(L) ®q (M) .

‘This follows by the functorial definition of C(t} and of &,

set of invertible sheaves M on
DCFxT such that, for | T, and sections of h*(L) @ q (M)
(11} scme invertible sheaf M = inducing non-zerc sections in each
"} on T, fibre P x {t)- over T.
O =B (L) ® a ()

set of familles of curves

This follows because D 1is Just a rela.tive Cartier divisor cver T whose
global equation is a sectlon of a sheaf of the form n* (L) ® q (M) ; and an
arbitra.rsr Certier dlvisor cn F x T 1s a pelative Cartier dlvisor if its
global equstion is a non-zero dlvisor in each fibre over T, 1.e., if 1t 1=
non-zero there.

)
P
i

THE STRUCTURE OF : ¢ - 163

But a section o of h*(L) ® q*(M) over F x T 1ia the same thing
ags a section T over T of h
Q. (0" (L) @ ¥ (M) =aH* () oM
s g (D, (L) @M .

Moreover, the condition that ¢ should induece non-zero sections on each

fibre over T la the same as the condition that + should have a non-zero
image in

(' [p, (L)l ® M} @ K(t)

for all elosed points t & T, But a section +* of g*[p*L] @M is the same
thing as a homomorphism h:
. " h
Hom_'r: {g (pel), QT] — M
s given a homomorphism from g*(p*L) to O and a section of g*{p*L]
@M, one gets a sectlon of M: this Is an h. Moreover, the condition on
T 1s equivalent to the condition that h be surjective. PFinslly, since

Hcm (S {PeL}, Op) = g "{Hom_ (L, o]

_—_OU,
. =g "
we pet:
set of invertible sheaves M on T, set of invertible sheaves
11 and sections of h'(L) ® 4 (M) in- M on T, and surjections

o
ducing nen-zero sections in.each -

¢: gEY M.
fibre F x {t] over T

But by the Appendix to Iecture 5, this latter set is isomorphic to the set
of T-valuad points of P{&) lifting the glven T-valued point g of T.
This gives the scught-for lsancrphlsm.

QED

2 Next we want to describe the infinitesimel structure of B(),
i.e., its I-valued points, Just as we have described thoss of G(t) -intrin-
sically on F. We mey as well look at the case & = 0: this is the scheme
we called P{t) before. P(t) is a group scheme, and consequently hc;mogene- '
ous in the following sense: 1f x, y are two closed points of P(7), there
is an automorphism T of P{7) such that T(x) = y. This, in 1tself, im-
metidately implies that all topologlcal ccomponents of P(t) are irreducible;
that they sre all iscomorphic to each other; that they have no embedded com~
ponents; and that P(T)red is non-singular. [The last by homogeneity and
the fact that there is an open dense subset U (¢ P(T)red which is non-singu—
lar—cf. lecture 11, (V).] In fact, P(7),,q 18 easily checked to be a group -

scheme itselfl, using Remsrk (V) of. Lecture 11, Also the component of P(-r)red
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containing the identity e 1s a group scheme: this is the classical picard a) H°(ND) o I:Zariski tengent ] by Lecture 22
variety of F. : ; space to C(t) at 3
Because P(t) 13 a commutative group scheme, for any x, ¥ i
there is even & canonicsl automorphism T such that Tx) = ¥. In perticu- ‘ b) g (EF) o~ [Zs.risld. tangent ] by 2°’
ler, these autcmorphisms give canenical iscmorphisms of the Zeriski tangent | space to P(t) at »

spaces at all the closed points of P(7) with sach other. Therefere, we

mey limit ourselves to considering the I-valued points of P(r} whose under-
lying k-valued point iIs the ldentity 0. TUse the truncated exponential se-~ i ! - l.e.
.quence: -

snd by the autanorphism T ofH P{e) taking:- O to A
A ;
, T is translation by .
o] . 3 ; !
—_ —r ey — ; H
0 [ Ot o 0 . Proposition: The homomorphisms o, and & in (#) end (#)' sre

. . the same under these ldentifications of the vector spaces.
where o(f) =1 + € « £ (ef. Lecture 22, (B)). This splits since Oyt is ’

also a sheafl of QF-a.lgebr-as via the projection p,: Fx I—F. This glves : Check of compatibility: Ist D be defined bz l:;a,l e:uatj:ons
the diagram of growps: . } Gy in affine cpen sets {U;]}. Any section of N, 1s defined by data:
o — H'(gp) R (efyg) —————— 7' (o) 0 HyfOy, Gy By € Ty, op)
’ ) E : where
al M Pic(F) ‘

Hi/G:L_" I-'I‘.]/(}‘j € I‘(Ui n UJ, Q_F) ’
and the corresponding curve 9 in F x I 1s given by local equations:

Group of I—va.lued] [Group of I-valued:l [c—roup of k—va.lued] o : _
- [pts. at 0 e P(T) ] — 7 pts. of 1] P(€) pts. of [[P(e) ! Fi =G + 8l
Then the invertible sheaf o(D) = -qFxI( D) 1s defined by the 1 Czech co-
In other words, the Zariskl tangent space T, at the identity i eycle
is canonically iscmorphic to H' (F, op). One must check that this is actu- : 93 = (F'i_/Fj)
ally an isomorphism of vector spaces. This is left to the reader: it can i . o
- i en F x I. This is computed out as:
be done via the methods of the Appendix to Iecture L. - x- s 18 comp 8 - 1)
uij-_-(Gi:feHi) . (GJ) * {1 —E‘-I-'l.':j 'GJ)
. : -1
. . - (G - GTHY - [ 1. ef - ]
3° Now suppose that 5 is a closed point of O(¢). Iet A = } (G 30 * (G Gy )
#{s6), The morphism ¢ induces an exact sequence of vector spaces: L Since [GiG ] 1s & 1-co-cycle def g P.F(D)- i.e., 1, one trenslates
# . - [Zariski tangent Zariskl tangent o, Zariski tengent-] ~ j the I-valued point [ui } back to the origin in Hg P(:) by dividing by this
o - space to fibre — | space. to C(&) —we—et | gpace Lo P(E) | term, This gives the 1-co-cycle
¢ (0 at s at & at . i "
; 1 4 el == - ]
We want to interpret this whole sequence intrinsiecally on F. But look at ‘ [ * ( Gy GJ )
the exact sequence of shesves: : which is the imege under the truncated exponentia.l of the 1-co-cyele ~
. 0 = op —0op(Dd) =Ny =0 . . ( _‘1)
where D C F is the curve corresponding to 8. Thls deflnes the exact se- —
quence of vectar spages: _ . in St Then {"ij] is the point of H (QF) corresponding to o( D). On
' . HO(EF(D})' ; the other nand, (v;,} 1s certeinly the ccboundary of the section {H, /6,}

{#'

- - B .._..Q_. 1 of .
’ T_(EF) (By) H' {og) | N .
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The finel identification 1s left to the reader to carry ocut:
viz, that if I is an invertible sheaf on F, and if the section: s €
I{o {F, L) corresponds to the curve D, hence to the cleosed point & 1n
the linear system

s
= PIEP (L))

of L, then the Zartskl tangent space to P at & 13 canonically iscmor-
phic to: :

(P, I/x - s .

|
i
'
i

|
b
|
.
[

LECTURE 25

THE . FUNDAMENTAT. THEOREM VIA GROTHENDIECK-CARTIER

Buppcse D CF is a curve of type &, that D corresponds to
3 € C{r), that _(_)F(D) corregponds %o X € P(t), and that L < Q_F(D). If
H1 (F, 1) = (0}, then the following are eguivalent:

i) P(t) 1is non-singular at 2,
11) ¢(&) 1= non-singular at s,
111) ©(t) 1s reduced =t 3,

iv) P{&) iz reduced at A .

Proof: By the results of 1° of the last lecture, there is a
neighborhood U of X € P(E} such that the subset 0'1(U) of C{x) is of
the form Py X U. This implies that i) and 11) are equivalent, and that iii}
and 1v) are equivalens. Naturally, i) implies iv). But conversely, since
P(sY is isomorphic to P(7), and P(T) 1s a group scheme, 1f P(t) and
hence P{T) 1s reduced, then they are both non-singmiar (2", Iecture 24).

In characteristic 0, these condltions always occur becsuse of':

THEOREM 1 (Cartier): Iet G be a (algebralc) group scheme
over Lk, If char(k) =0, then G 1is non-singular.

Proof: Iet v be the completicn of the local ring 8, of G
at e, DMuoltiplication is a morphiam

GxG——0

guch that u(e x e} = e: therefore u defines a homomorphism

w¥*: v — [completion of o ] =uv

Loxe v

oL

where ® is the completed tensor product [i.e., use the fazct that Cexe ia
the localization of [ ® = with respect to the maximal 1deal ( b, @m, +

m, ® o)), But since w 1s a group law, the restriction of w to elther

Gx(e}y CAGxG
or

(e}x G CGx G

is just the identity from G to G. Algebraically, this means that 1f you

167
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map U ék ¢ ontc v by mapping either of the two factors onto its residue
field k, snd compose this with u”, the result is the ldentity from v to
v. This means that if & € m, the maximal ideal of v, then

n*e) -1 @2 -a®1

" mst go to ¢ if elther factor of w ék v 1s mapped ontc its residue fleld,
i.e., :

(a) u*(a)e1®a+a®1+m§:m .
. k

We now prove:

(*) for all lineer functionzls f: m/m2 = k, there ls a derivaticn
D: v—+ 1 amnihilating k and inducing f,

Proof of (*): Extend f to & linear map F: v— k by requiring
that F =0 on k and on m®. Let D be the composition:
D: v-—-—E—-»* vé.u JEF . uék = v
. k k
Then D 1s clearly linear snd D annibilates k. Morecver, by the expres-
sion (@), 1f & € m, a ’

Da) -18F1@a+2@14+(R)], Remdmn
F(a) + {1 @ F)(R) .

But (1 @ F)(R) e m, hence D induces f as & map from m/m2 to v/m = k.
It rem=ins to check: )

D(a *h) =a +Dba+b " Da
if a, b € m. Put Just compute:

w*e) ¢ utm
(1®2+a®14+R} * (1®2b+b®@1 4+ 8)
(a®1) " Wb + (b 1) + u(a)
+{1®ab-ab®1 +R+*IQ®b+35*1®@a8s+R - 3]
{(a@1) * 1¥b) + (b@1) » p¥a) « T

w'(a - )

It

where R,Semém, and Tev®1l s+vdD
D{a * b)

Therefore,
(1o®Mi(a@1) * v'b+ (b® 1) - p*a + M
=a* [(1®Mr'd] + b+ [(1 @ Fu*al

=2 *Db+bDa .

To complete the proof of the theorem, let 5{"1,..., '}'('n be a basls of m/me.

Iet Iy,..., f,, be a dual basls, and extend these to derivations D,,..., D,

of v, Writing

THE FUNDAMENTAL THEOREM VIA GROTHENDIECK-CARTIER

%= (2,0, an)

1
o =yl al

[a[=2ai, aizo
o a

o 1 . wn

Di‘=])1 LI Dn by

!
|

Vi
we can map v honomorphicelly into k[[x1,..., Xn]] via

£ - z % 2 . A

=
oglaj<e %

fwhere 1; is the. image of an element b e v in k). On the other hand, by
the general theory of complete locel rings, there is & surjection

B Kl[X,..., L) 1— v

such that B(X;) = :'ci (mod me) » Then A« B isa homdmorphism of k[[X,,
vens xnll into itself inducing the identity modulo (X,,..., X.n)2 . There- -
fore A . B is an sutomorphism; and since B Is surjective, thils implies
that A 1is an lsomorphlsm, ‘

QED
COROILARY: If char(k) = 0, then all the schemes P(t) .ave
non-singnlar. Therefore
dim B(¢) = aimH'(F, op) -

. Proof: By Cartier’s theorem, and the lsomorphism of the Zariski
tangent apace of P(r) &t 0 with I-I1 (F, gF).

This proves Exlstence Theorem (A), and re-proves the theorem of
Leoture 23, for curves D such that H'(F, op(D)) = (o).



IECTURE 26
RING SCHEMES; THE WITT SCHEME

§0. Outline
In ssction 1, the viewpoint of the ring schemes is introduced,
with some basic definltions and constructions.

In sectlon 2, we develop the Witt ring scheme associated with
a prime p and apply i1t to the problem for which 1s was origlnally used—
the inversion of a functor which one would not offhand have suspected was
invertible! The problem 1s developed in parts A and B, the Witt scheme
is described in part C, and it is used to solve the problem in part D. The
reader wishing to skip this tangentiasl discussion can reed part C only.

In seetion 3, part A, we develop the "universal Witt schems,"
a modification of the construction of §2; (a "generalization" in the sense
that the Witt scheme amssoclated with any prime p oan be gotten by "trun-
cating" the universal scheme). We use it in part B to cbtain & "ring of
logarithms'-a ring whose additive structure is iscmorphic to the multiplica-
tive structure of the set of formal power serles {over a given ring R) with
first coefflclent 1., In parts G, D and E, we descrlbe certain meppings
and truncations of the Witt scheme, for which we shall have use later in
dealing with power series.

§1. Generallties

In any category ¢ having direct products, and having a final
object P, we can define "ring objects": sextuples (H, 0, ¢, v, @, u),
# an object, o, L, v, @, and p maps;

o: P - H {zero element)
P - n (unity)

v: H = H (sdditlve inverse)
o Hx H — H (addition)

u: Hx i = H (multiplication)

which satisfy the obvious generallzations of the ring axioms for sets and
*
set maps.

We shall not count 1 # 0 among the ring axloms; we allow the trivial
ring.
17
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@given any other cbject A of our category, we find that a ring
structure is induced cn - hH(A) , 80 that h, becomes & contravariant. functor
from € to Rings.

We sre actually already familiar with same examples of ring ob-
jects 1n the category of schemes. The vardety of all nxn matrices is a
non-eammitetive ring schems. A simpler example is the affine line, which
hag an obvicus ring scheme structure.

. Though our definitions hold in the category Schemess of schemes
over an arbitrary scheme 5, we shall here only be worldng with ring schemes
over Spec Z {"sbsolute ring achemes") and certain localizations of Z.
Also, in all cases which ve shall deal with, the underlying schemes will be
affine. The maps defining the ring scheme structures will thus be given by
ring homomorphisms. These will go in the opposite direction to the scheme
msps (since the relstion between affine schemes and rings is contraveriant)
put they will actually be the expected equations, looked at differently.
Thuas, where we would be aceustomed to describing addition on the affine line
as the map (x, x') — x" (sending A w Al = 4"y x" = x + x', 1t becames, in
ring terms, the mep Z[X] - z2[X] ® Z[X} determined by X—~X &1 +1 & X.

(A less trivial exsmple is the "Argand plane functor,” associat-
ing to each ring R the ring of palrs (x, 7) € RE, with termwise addition,
and with multiplication glven by (%, ¥} (x', ¥ = (xx' - y¥', xy' + X'7').
it 1s represented by Spec zIX, ¥} with additlon

X)) =X®1 +18X and rltiplication p(X) =X@X-Y&XY
YY) =Y®1+18Y p(Y) =X8Y+Y®X .

Calling this scheme @ {for the moment), to what element of the
ring hG (@) does the identity map correspond?)

We shall here be interested in ring schemes H mainly for the
sake of the assoclated functors nﬁ . The ring schemes represent a certain
class of functorial constructlons of rings h“ (R} from rings R. (Essen-
tially they glve those gonstructions in which the resulting ring can be de-
scribed as the set of all n-tuples {(n finlte or infinite) of members of R
satisfying certain polyncmial conditions, and where addition and multiplica-
tion are given by polyncmisl funetiona.)

- A ring scheme over scme localization of 2z will correspond to 2
construction in which the polyncmials used may involve certain fracticnal
coefficlents, and which thus can cnly be applied to those rings in which cer-

tain integers are invertible.*
one functor which 1t is easy to represent 1s that assoclating to

& ring R -the ring RI[X]] of formal power series in an indeterminate. We
shall call the representing ring scheme V. The underiying scheme 1s

Spec z[AO', A1 se++] (where the A’s are indeferminates, representing the co-
efficients of the power series), and the additive and maltiplicative maps
are given (in terms of the ring 2Z[A,, Ai,e00]) by
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ofA;) = Ay ®1 + 184

1 .
Blhy) = ) ayeny
=0

] The trunceted power series rings, R[X]/Kn, are represented by
the (finite-dimensional) schemes v, = Spec ZlAy,..., A, ;], quotient-ring-
aschemes of V. These form a projective gystem: for every psalr of positive
integers m ¢ n there 1s a truncation map from vn to Vi corresponding
to the inelision: Z{ly,..., %_1,] C2lAg, -0, A, 41, and v 1s the In-
verse limlt of thls system. .

{ Some random notes on representablld ings - : ing
ring Sobemoss 34) ntabllity of functors of Rings — Rings by
Such functors must have the property h(R ® R') = h(R) ® h(R'), hence the
functor sending every ring to a fixed ring A cannot be représex)l d. (But
gne i%nigo:sdtiugg % s&niheme w?ich is_endsfevery ring with connected spectrum to
— screte union of coples of Spec Z.
net affine, since 1t ia not compgct. ve If A s infintte, th-is' is
If A= B is & 1-1 mep of rings, h(4) — h(B) must be & 1-1 map of r
E'E/EG.B. g.he functor R — R/p cannot 1’16 represented: the 1-1 map ZP' Q gii'?rg:.
Thcuéh the "power series ring" functor can be represented, the (finite
ggggméﬁuz:jjng“ functor spparently can't, What would be a’“gene;ic f:l.n}.te

§2," P-adic rings and the Witt functor
Most of this material appears in Serre, Corps Locaux, but the
presentation there 1s more rapld, and it is done somewhat differently: " the

" formelism of ring schemes is not there used.

A: Musical Chairs (while shrinidng)

Iet p he a prime number.

Iet A be any ring in which p generates an ldeal which is its
ovn radical {i.e., such that A/p has no nllpotents). Then if two elements
are in distinet resldue c¢lasses mod p, so are thelr p-th powers: a® -1t =
(a-b)P £ 0 (mod p). In other words: the Frobemius endomorphimm of Afp 1is
1-1.

However, if two elements are the same ¢lass mod p, their p-th
powers will be in the sams class mod % : '

{a+px)F - &P & (p)a.p'1px + (g)astp"a(px)E + oo =8P (mod pE) .

Mcre generally, replacing a + px by & + pkx in the sbove, we
see: 1if two elements are congruent mod pk(k # 0); then their p-th powers
will be congruent mod pk_‘”, whence, by inductlon, their pl-th powers will
be congruent med PSR,
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- Thus the operation of raising to the p-fh power, though 1t keeps
the congruence classes (mod ) .distinct, casuses each to "shrink down"
under the p-adic metric. Since the Frobenius endemorphism of Afp will
not, in general, be the identity, these congruence clagses wiil be pleying
a wild game of musical chairs as they shrink, confusing the sitvation s blt.

However, suppose that A/p 1s perfect. (I.e., tha.tfth.e Froben-
ius endomorphlam is t-1 onto.) Iet [al be any congruence class (mod p)
of A. For every n, gome congruence class will have 1ts (pn) ~-th power
in [al. B&ince the (pn) -th powers of’ 1ts members are all congruent to each
other med pn'”, we get a canonical congruence class mod p11+ defined in
{a]. Furthermore, as n increases, esch successive sub-congruence-class

in [al will belong to the preceding.

Clearly, whet is being defined is a member of ﬁ, the p-adic
compietion of A. (We should here assume the p-adic topology separated, to
make this meaningful.) Or, assuming A complete to begin with, we get:

IEMMA 1. Iet A be a ring complete under the p-sdic topology,
such that A/p 1s perfect. Then theré is a canonical map f: Afp — A
sending each residue cless to its unique member which has (pn) -th roots
for 2il n. f cen be characterized as the unigue myltiplicative homcmor-
phism of A/p— 4 which sections the quotient map A — A/p. (Proof of the
lagt sentence left to the readsr.) '

Exsmple: If A 1s simply the ring of p-adic integers f(A/p) consists of
the (p-1)}-3t roots of unity and zero.

B: The Teichmiiller construction

it is well-known that a p-adic number can be represented uniguely
by & "power series" ag + &P + 850 + ... where a; =0, 1,..., p-1. But
this 18 of little mathemstical interest, because the set of representatives
0, 1,..., p~1 of the residue classes mcd p 18 clearly rather arbitrary.

Now, however, we have a beautiful functoriasl set of representa-
tives of the residue classes! Maldng use of them (and generalizing to the
rings A dealt with In the previcus section — we need only add the hypo-
thesls that p not be a gero divisor in A, s0 that these power series will
be unique), we get:

IFEMMA 2: Iet A be a complete p-adie ring where p is not &
zero-divisor, such that A/p is perfect. Then there is a 1-1 correspondence
between members of A and sequences (go, §1,...) -of elements of A/p,
glven by

:
{
i
i
[
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Suppose we can dlscover how to celculate in A wusing these
sequence-representations. Then it should follow that we can reconstruct
the structure of A from that of A/p!

It will turn cut that we ¢an do this, but the resuits will be in
& more convenlent form if we use, not precisely the above correspondence,
but the correspordence :

-3 -2
(m (Egs Eys tpyees) = £08) + BE(EP ) + DOE(EE ) + or.

(This can be seen from the exemple worked ocut in Appendix A.)

C: The Witt Scheme (an apparent interlude)
Ist ¥ be the scheme Spec Z[X,, X sv..], and let us map w
into A7 = 8pee Z[W,,...] by the map given by the Witt polynomials: “

(&) - Wy = Xy

W, = X2+ pX,
2 2
W2=Xg+pX$+pX2
: n n-i
Wn Xg +pX}1) 1-...+pn)('.1,1

e ||

(p 1is still a fixed prime. Note the confusing terminology: the W's are
the coordinates of A", and the X’s the coordinates of Ww.) :

Define & ring scheme structure on A" by the maps
(W) s W, @1 +18W
8 2 3} all s,
u(Ws) = Ws ] ws

A" represents the functor thet assigns to the ring R, the ring of infinite
sequences -(wo s Wyser.) of elements of R under componentwise addition and
multiplication, i.e., the direct product of infinitely many coples of R.

We claim that the ring scheme structure on A™ induces a ring
schems structure on W; the unique structure malking this map a homomorphism.

To see this, we first note that ir we allow ocurselves to divide
through by p, we can solve the equations (2) for the X’s in terms of the
W’s, This means, in terms of R-valued points, that if p 1s invertible in
R, we can think of the X’s and the W’s as simply elternstive systems of co-
ordinates for elements of the ring R'; the W-coordinates sre “simpler,"
in that addition and multiplication in the ring correspond to coordinate-wise
addition and multliplication; but we can clearly find polyncmlal functions to

deseribe these ring operations in terms of the X’s—polynamials, we should ex-

pect, whose coefficlents lle in z[1/pl.
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whe "basic miracle" of the Witt rings is thet the cosffleients
of these "apitimetic polynomials" turn out to actually lie in Z. We shall
now prove this fact: We let wy deslgnate the n-th Witt polynomial—
wn(%!..., Xn) = Ky + een pn'x.n. For a generalizatlon that will cover
all the sritimetic operations {(ve meed addition, multiplication, and--though
we skipped mention of it above—additive irverse and the constants’ 0 and 1),

Substituting v (X) = w,_,(XP) + p"X, 1in the left-hend side
now, and noting that the "p"X " terms can be discarded (mod p™),.this
side becames w(wn_l(xp), wn_i(X'P)). We rewrite this as w__ (o(xF, X'F)).

i To show this congruent to wn_,(q;P(x, X")), 1t suffices to note (because of
. the sublemma) that (pi(xp, Xt1P) = @f(x, X') (mod p)-by the Frobenius auto-

morphism. And that is where we use the inductive a ticn that the g
we let ¢ designate any polymcmlal in two variables (one or both of which TP ( zat 18 Ve assump L7

ars integrai,)
may, of course, be dummies), with integral coefficients. We now that there i _ ' m
will exlst polyncmials ! ) ‘

9 (Xgs F§)seees mn(xo;..., Ky 5 Kdaeees XD,y one

such that for every n,

. ; . The consequence of this 1s that these polynanials can be used

| to define a ring structure on the set of Infinlte sequences of elements in
any ring R. The operations will satisfy the ring axloms because they are
glven by polynomials which satlsfy these axioms for all elements of z[1/p], '

°(Wn(xo"“’ Xn)' wn(x(l),..., X:'i)) = wn(q;o(xo, Xé),..., q’n(xo""" xn ; | and hence satlisfy them ident;ca.lly.

|

X(',, vee, xﬁ)) I‘ The resulting ring will no longer be iscmorphlc to R"; rather,

- ; the Witt transformation will glve us & homomorphism to R™.. In the cese
or, in abbrevieted style, ‘”Wn{x)’ Wn(xl)) - Wn(‘P(K: X'Y). {(In using this b where p 18 not & zero-diviscr in R, we can see that this transformatlion
abbreiria.tea style, when we wish to remind curselves that "n(x) involves only | is 1-1, so that the Witt ring can be ldentlfied with a subring of R®. 1If

x we shell write 1t w.(X  .).) ! p . is & zero-divisor-e.g., 1f R is of characteristic p —this too feils

preecs Ko n't. .’ ! : - -
. : ~  to hold. _
IFMMA 3: The coofficients of the g, ore Integrel. : In scheme-theoretic terms, the sbove discussicn is rendered as
ublemma: If X =7y (mod fR) (1=0,..., 03 X;, ¥4 € R, R : follows: . We have a map w: W - A". Tensoring with Z[1/p], we discover
any ring), then w,(x) = v (y) (mod ™' R). that

w': W x Spec Zf1/pl — A" x Spec z[1/p]
Proof: Follows immediately from the definmition of w, and the

|
!
?
t A of thi “on: i 13 an iscmorphlsm of schemes (because the system (2) is invertible over
I, :
observatlons of part A o 8 sectiy : zZ{1/pl. Hence  A™ x Spec Z{1/pl’as structure of ring-scheme-over-sSpec z{i/pl
] | induces a simllar structure an W x Spec Z(1/pl. The latter 1g dense in W
s, the result true for all i < m. ’ . - ?
Proof of the femma, Assume th . and it turrs out thet the ring operations extend continuously to all of w.
We note that W (X) = Wn_l(Kp) + ann- Applying this to the (That is, they are defined by equations with integral ecoefflclents.)

i
!

right hand side of the equation o(w, (X}, w (X')) = wy(e{X, X)), and { : These operations will satisfy the ring exiams, because they do so on a dense
%

‘solving for e¢u(X, X') we get gubset; and since w 1s a ring homemorphizm on & dense subset of W, 1t is
R e(w, (X), wy(X")) - W, -1(‘9]?..11_1(}{: N 1 a ring hememorphism, It 1s clear that the ring scheme structure which we
Pt o pn have put on W is the unique orne making w & homomerphlsm.

The assertlcns made at the beginning of thls sectlon are thus
This is, in fact, the recursive formule by which the 9’3 are .

defined. To show o integral, we must show @(wn(x), wn(x')) = . | .
g (9P(X, X)) (mod p). %

proved,

D: The Grand Finale

We recall the situation of part B. .

We claim thet the polynomials defining the ring structure of W
sre exactly those we need for computing with our "power serdies.” We shall
first try to glve an intuitive idea why this 1is =o. .

If n - 0, we interpret w.i as 0. Since this is s polyncmial in
"those X*s with index less than n," and satisfies the-sublemma, the proof
goes through perfectly well.

i
'
b
-
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A member of the ring A can, we know, be represented in infi-
nitely many vays as a {finlte or infinite) power series a2,y + pay + paae +
ees « If we think of the unlgue representation in which each ay is In
£(A/p) =s the "correct" représentation, and call a representation "correct
mod P 1if each term piai is congruent mod p© to the correspording
term of the "correci” expression, then 1t is easy to cheeck that a sufficient
condition for a representation to be correct mod p© is that each ay be '
a (pn'j_') -th power (for 1 < n).

If we now subatitute arbltrary values Xgs Xq4-.» fram A for
the X,, X;,-.. of transformation (2};

Wo = X

4] 0
w1=x:ga+px1
“’2=xg+ 1+3’2x2
3 2 2
w3 x:g +pxz1) +pxg +px3

we see that the successive w;’s are more and more nearly "correctly” re-
presented. Looking closely at this situation, we cen get some understand-
ing of why the polynomials that tell us what to do with the x’s in order .
to do ardithmetic with the w!s should aiso tell us how to handle the terms
of the "correct power serles representation” of an element, to do arithmetie
with that element. The faet that the x*3 appear with descen@:{.ng exponents
matches our use of a representation of the form £ go) + pf(;lf ‘) e
rather than f(go) # PE(E) + wee o

The explieit statement and proof are ag follows:

IEMMA 4: Given A and f as in lemma 1, and ¢ and ey a3
in Lemma 3, for all &g, &y,...; &}, &{,... in A/p we have:

-1 -1
o((ey) #oeus pHECEY Vs £(8) 4o PR ) . L)
i ' 1 p'i
= Dlog(tns EG)Y #erer D0y {Bp,-mvy Bg5 Efuneey 8507 ) + e

Proof: It will suffice to show that the equation holds mod pn"'1
for given n, Hence in our calculations, we may discard all terms of the

sbove power series past the "p™ ‘terms.

-1 =K
t

Lot us substitute x, = ¢f , x{ = 47 . Noting that p-th
power exponents cammute with all operations in A/ (by Frobenius), and
with f (since it is a multiplicative homomorphism), we rewrite what we are
trying to prove asa: : '

n n-i
¢(f{xo)p et Pif(xi)p Favey 1ea)

n ) } n-i
= flog{xy, xa)p Faeak pif(cpi(xo,..., Xy LaE Foee (mod ™y

f
i
i
1
1
|
i
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. We note that the right-hand side can be rewritten i (flalx, x)),
and the left-hand side as o{w (T(x}}, wy{f(x'})), which reduces to ’
wn(qa(f(x), f{x)).

By our earlier Sublemma to show these congruent -mod p™', 1t
suffices to show f(q;i(x, x1)) = qai(f(x), £{x")} (mod p). This is immedi-
ate, because f "preserves" congruence class mod p, by construction.

QED

We cammented hefore that if we could find out how to campute -
with these "power series," we could reconstruct A from A/p. We have
now found out how to do thls, and we have thus proved: ’

THEOREM: Let A be as in lemms 2, k = A/p. ‘Then by (X) = 4,
by a canondecal isamorphism.

{It 18 now not hard to show the converse: that if k is a
perfect ring of characteristic p, hy (k) 413 a ring where p 1s not a
Zero-dlvisor, camplete in the p-adic metric, whose residue ring mod p i
k. Needlsss to say, the functors hy and "/p" turn out to be (for the rings
in question} inverses on the map level as well as the cbject level., So we
get an isamorphism between the category of perfect rings of characteristic
b, and a certain category of p-adie rings,)

§3.4. The Universal Witt Scheme
Let us designete the Witt scheme associated with a prime p, -
described above, #F; and let us relsbel the coordinates Xor Xygees and
Wos Wyyeao as X, Xp, er, ess anit W, Wp, wpa,... + The transforma-
tion (2) then becomes:
W, = X,

WP=XI1)+po
: 2

W, =% @+ p%x
L2 =k % x
: k-1
W= Zpi}{pi .
p P

This famlly of polynomial functicns is clsarly a subfamily of
one which does not depend on any prime p, namely:
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W.I =X1
2

=X1 + 2}{2

X? + 3X

b 2
X1 + 2}{2 + hXh

Y = Zd{{g/d

(¥4}
it

We shall show for (3) ad we did for (2) that the aritlmetic
operaticns on the W*s correspond to polyncmial operations on the X*s
with integral ccefflclients.

As befcore, given ¢, we construct funetions 9n such that
o(w, (X}, w (X)) = wyle(X, X'})). Just as our earlier functions "q}n“ de-
pended only on the X; and X; with 1 <mn, so these ¢, depend only
on the X; and Xi such that d|n. These g, could have coefficlents
in ¢, but we find for any prime p:

. IAMMA 4': The denominators of the coefficients of v, are not
divisible by bp. )

Sublemma: If p<|n, and x

(mod $*1). '

(Proved as befors. )

¥ (mod p), then wn(x) = wn(y)

proof of the lgmma: Assume the result true for all proper di-
viscrs of n.
Iet pl'c be the greatest power of p dividing n, n = pkm .
We note that
0 = iy (B + ) P xm/d
dtim

L /p(xp) * pl.{(mxn + terms involving

lower X?s} J

Substituting this in the right-hand side of the eguation o(w, (X}, wn(x’” -
v (e(X, X)), and solving for the last term, we get:

$(w(X), Wy (X)) -y (eP(X, X1)

plc

m-og, terms involving lower ¢fs =

As before, if pln, we set W fn = ©- Tote that by "lower X’s," we
mean, of course, X's whose Indices ers proper diviscrs of n.

i e i e 4‘__-; R, A._.____4
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Since the "lower o’s" are "integral" (l.e., have no denomi.nators
divisible by p) by inductive hypothesis, it suffices to show

B(uy (D), (XD = v (P(X, XY (mod )

This we do exactly as before: we substitute our "wn(x) =" fopr-
mala in the left-hand side, now discarding the "tail" term since it is di-
visible by pk, and "commite" ¢ and w, Jpr 50 that the deslred congruence .
beccmes

vy (00, X)) = v PwP{x, X)) (meap .

This holds by our sublemma. : : F QED
Hence all the coefficients must lle In z .

S0, &s before, we get a ring scheme W, witha hamomorphl sm '

Ano

] i
Srec Z[X, Xpyee.] Spec ZIW,, Wayer.]

vhich becomes an ilscmorphism on tensoring with 8pee (Q).

B: Logaritlms of power series

Recalling that v designates the "formal-power-seriles" ring
scheme, let us deslignaté by v’ the closed subscheme corresponding to the
squatlion Ao = 1, This represents power series with constant term 1, and
iz a commtative group scheme under the restriction-of nmltiplication in v.
We shall write the R-valued point (1, a,, a, yeea) of v’ in the more
familiar form 1 + &,5 + 8,t° 4 ... . We shall deal with V* in terms of
its funetor of R-valued points in order to make available to us well-known
results about formal power serles.

Consider the following maps of schemes:

W . ¥
¥ x Spec (Q) —=—= A” x Spec (@) —=—— V° x Spec (Q)

where

¥y, Woyees) = exp[- Z %.tm] ]

We claim thet the composition extends to an iscmorphism of the schemes W
and V°*. To check this, we first recompute this map on R-valued points,
in the case R D Q. BSay,

. . .
z a,t" = vlv,, Wopees) & ¥ 0 WX, Kyyeud) -
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. We get: . : .- - | cn Wg 1s the unique structure meking this & ring homemorphism, Given two
zaiti - truncation sets 8 € 8', we get a truncation homomorphiam TS,S" Wt =~ ¥

[0l

4
v BN BNV
P g

Bé

J,

‘g‘
Bl
5

32
‘ and TS,S' ° TS[’SII = 'I‘S gt o« W itself is, of course, LI and

%1,0,02,...] 18 wP, fhe scheme constructed in -§2, The scheme
w[“_”,n_]} are isomorphic to the truncated power series groups V;H but
the other truncations do not correspond to any familiar construction with
power geries rings.

™~
fa]
Jh

§

d
(x, + & ]
d We neea some general nonsense at this peoint: A homomorphism

" ] | f: A~ B of comutative group schemes will be called "1-1" if the induced
log (1 - xpt) ' maps of groups: hp(X): hy(X) = hy(X) are 1-1 for 211 schemes X, "onto"
; if the hf(x) are all onta.

it
o]
3
[

o |
H {1 - xntn) . i The property of being 1-1 behaves quite nicely. It is equiva-
N=1 ) | lent, by definition, to being & mohcmorphism in the category of schemes.
. . i
|
|
|

Glven an arbitrary homomorphism f: A— B, we can get a 1-1 homomorphism
K—'A whose functor is the functor of kernels of the induced group maps.

: | (We construct K es the fibre in A  of the Z-valued point ¢ of B, How
QED i do we show that the group operation 1ifts to X ?2)

'I‘hé &, and the x; are now clearly mutually related by polynomial equa-
tlons with integral cosfficlents.

Now the map from A” x Spec Q@ to V° x Spec @ 1s & hosomor-
phigm from the additive group structure of the former to the (multiplica-
tive) g'oup gtructure of the latter. Henece the composite map is such a
howemorphlsm. Hence the scheme-Isomorphism between ¥ and v°, being a
group homomorphism on a dense subset, 1s, in fact, an lscmorphism of group
schemest

' On the othér hand, the property we have called being "onto" is
! stronger then being an epimorphism both of schemes snd of group schemes,
It 1s equivalent to the existence of a scheme map g from B back to A

; which "seetions" f — e right inverse map. This iz clearly sufficient; to
| see that 1t 1s necessary, we note thet by our definition of "ecnto", the
‘; identity map in hB(B) must come from a msp g in hy(B) such that fg =
% is & ring scheme whose additlye structure is that of the group scheme v°. identity. (But g will not in general be a group scheme homomorphlsm!)

(The question "o what operation on V® does the multiplicative " We cannot in general construct a group scheme with the proper-
structure of ¥ corpespondt” is investigated in Appendix B.) ! ties of a cokernel of f. Hence, though exaect sequences can be defined (by
the condition that the induced sequences — h,(X) - hB(X) - hC(x) -
all be sxact-note that this implies that the kernel of each map is a co-
kernel to the preceding}, they are not so easy to come by. However, ven
an onto map A— B-— 0, wWe can get an exact sequence O —Ker f= A—~RB—0,

)
E
C: Truncations .
We can "truncate" the power-serles ring-scneme V because its }

aritmmetic operations are such that the n-th term of the sum or product de- [ Note that the conditicns "1-1," "onto" and "exact" respect
4

pends only cn the n-th and lower terms of the elements glven. In W, the base extension.
n-th term deperds only on those terms whose indlces diylde mn. The result
1s, that given any set S of positive integers which ecntains every divisor
of & mmber if it contains that number, we get & ring scheme wg = |
- Spec Z[X) .o, & "gruncation” of ¥. We shall call such sets 3 of inte- l
gers "truncatlion sets." For eny truncatian set 3, we get & truncation ? -
i)
[
i
|
1
3

The truncetion maps we have defined are all onto: Given 8 ¢ &',
we get a section Wg back to ¥y, by "filling in" the missing cocrdinates

X ¢ in any way we like, e.g., with zerces.

_homemorphlsm Tg: W= ¥g. ‘ D: Canocnibal maps
- Wariocus facts are trivial to verify about these schemes: The There are two sets of maps from W to w which are useful.

map w: W= A®  truncates to & mep wgt Ws-v AS, and the ring structure
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a) Define-vn: W% by

. T Xy if nm
V. =
a(%y) {o othsrwise.

{In terms of R-velued points, for instance, V3(x1,_x2,...) =
{0, 0, X, 0, 0, X5y...}.) We claim:

i) vnnvm=

Vem
11} V. is an additive iscmorphism from w onto the kernel

n .
of the truncation T

zt-n z*

1} 1s obvious, and cne checks that Vn is at least an isomor-
phism of the scheme w with this kernel by locking at R-valusd polnts. To
check the additiveness, 1t suffices to tensor with @ and show that the
induced map on A" x Spec ¢ 1s additive. We find, in fact, that 1t Is
descrlbed by

N { nwm/n if nlm
m 0 othervise.

For any truncation set S, we observe thai we have, similarly, a map
vS',I].: wS/Il - Wy

where 8/n = {m e Zimm € S8}, which identifles ¥3/n with the kernel of
the truecation ’

¥3. = ¥3nz+ .

b) Define F,: W —7¥ by its action on R-valued points of the
isomorphic scheme v°: let P(t) be a pover series In t with first co-
efficient 1. Iet us designate by T ,..., T the formal n-th roots of *t;
then the product

IBIEN)
1 i

being symmetrie in the t’s, will agaih be a power series in t, and its
coefficients will be polynomials in the coefficlents of P. An examination
of the map defining the relation between v° sand A" shows us that F
corresponds to the mep

(Wi Wopeee) = (W, Wop, el

of R-valued polnts of A®. We note that this 1s a ring homomorphism, so

Fn . 1z a ring.homomozfphism. Also Fp, o Fm =P -
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Wo deduce (by the usual "only-those-indices-that-devide-m" sr-
guments) that similsr maps (also ring homcmorphism) ere defined between the
truncated schemes:

Fs,na Ws - 'S/n .

¢) Look at F, ¢ V,: checking it on R-valued polnts of A,
we find: :

F, + V, = miltiplication by n,”
In scme cases, one can divide by ns:
IEMMA 5: n 1s invertible in W x Spec zf1/nl.

Proof: We recall that one can take n-th roots of monile power
series 1f we allow division of the coefflcients by n: hence cne cen divide
by n in ® x Spec Zl1 /al. ' '

GED

Thus, over Spec Z[t/n], LV_ 1is & right inverse to F,.

E: Direct product decompeositicns
The direct product of two ring schemes H and H' over 5 is

defined just iike the direct product of two rings. (Do not confuse this
with the tensor product!) Its underlying scheme is the product over 8. of
the schemes for H and H'. ’

Starting with a commutatlve ring scheme €, there is a 1-1 cor-
respondence between decompositions ¢ = H x H' and S-valued idempotent
points € in 6: the element (1, 0) of HxH' 1s an €, and H and H' are
the kernels of multiplicaticn by 1-¢ and & respectively.

Look at A” - Spee ZIW,, W,,...} over Spec Z. Far every sub-
get I of the positive integers, A~ has a (Z-valued) idempotent polnt
"II= :

*
nI(Wi) =21 1el
=0 1 d1

amd correspondingly decomposes:

[-.] +-
A% oAl A2 T

We meen, of course, the ring-scheme operaticn of multiplication by n
which does not correspond to coordinate-wlse multiplication by n excep{',
for the coordinates wy; of A®, The same should be understood in the fol- .
%I‘.ov/rinﬁ lemma, concernilig multiplication by the Spec Z[1 /nl-valued point

t/n.
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S - fience W admlts all these decompositions too, over  Spec Q.
The question arises: suppose P 1is any set of primes, and

? = Spec Zl..., 1/p"°']p¢P .

Then how many of these décompositions of W @ Spsc ¢ actually occur over
$ 1 Equivalently, which of the eq = w“1(n1) are rational cver 9 — have
no primes in P cecurring in the dencuminators of their coordinatest

Clearly, if ve replace W by a truncation L the same ques-
tions can be asked for subsets I C 3. T

Iet Q be the set of primes not in P. Ist F (respectively
©) designate the multiphcé.tive semigroup of positive integers generated
by P (respectively Q) end 1. Note that the sets nP for neQ
partition ZV . ‘

IEMMA 6: For any 10 € G, e 5 € W 1s rational over 7.

' ppoof: For any n e Q, we note that the projection glven by
=

€z + 18 simply 7V, Fn,' hence is rational over %; in particular,
Enz * itself is rational, Now

es = I (e,s -t s) .

1P peq nz i

This is, formally, an infinite product. However, it "converges"
coordinatewise in the sense that each cocrdinate 1s constant after a certain
number of terms. This is clear in the A™ coordinates, hence it is also
true in the W-cocrdinates. Hence the left-hand term is rational.

COROLIARY: For any truncation set S and n € Q, ¢ pns € Vg
1s rational over 2.

IEMMA 7: Iet S b'e & truncation set. Then over P

s = X e pngf ws) (211 schemes tensored with #}.
€

Froof: If our set of idempotents were finite, the method of
proof would be clear., It turns out that we can here aprly the same proof
without finlteness. We are to verlfy the universal property of products
on X-valued points. Given a family of maps @ : X - &nEns { ws) , wWe

Il

take the map ZQ e X WS. This Infinite sum is defined by exactly the

same reasoning used in the last lemma, and is clearly the unique mzp whose

compoaitions with the projections glve the 2.
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COROLIARY: If & set I 4= the union of sets nP n 8 for cer-
tain n e §, then ey 1s rational over 9.

LEMMA 8: Iet ne 6, and 3 be any truncation set. Then
epng %g) € ¥pnggm (81l schemes tensored with ?).

Procof: Consider the maps

- 50 inclusion . Fs,n truneation
0PN 8 Vg we——0 Y T Ve T ¥Ens/n
projection (1 /n)v ‘ any sectlon of
3,n trancation

All are rational over P, It will suffice to show that the com-
position ‘of the maps golng to the right and the composition of the maps go-
ing to the left are ring scheme hamamorphlsms, and are inverses to one an-
other. fTensoring with Spec @ and using the A-coordinates, we verify
eaglly that thils 1s so. ' :

QED

Hence we have, for every truncation set 3 and set of
primes, P .

¥ @7 = X g = (w29 = X W= ®@ 7
) neq nFns ) ned PAS/n

{Ons might want to know whethsr what we have sohisved is al-
weys a maximsl direct product decomposition of WS ® ?; equivalently,
whether the e, for I & unon of sets WP N3 (neq arethe only
idempotents of LES We prove in Appendix ¢ that this 1s so.)
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&4). (Cf. end of §2B, p. 175)

We shall figure out explicitly how to add the first two terms
of series of the type originally proposed ({1 o)). What we must do 1s solve,
for s, and  8,, the congruence: )

(£(8) + PE(B)) + (£(a') + PE(BY)) = £(s,) + PE(s;)  (mod p%).

Redueing med p, and recalling that f(a) belongs to the resi-

due class &, we get & + a' = 35. .

Substituting this back in, and isclating the term in s,,
ve get
pf(s,) = pf(b) + pf(b'} + (f{a) + £(a') - f(asa')) (mod o).

We lmow that the lest expression is a multiple of p. If we
could express it as such, we could "divide through" by p end would he
finlshed. The problem is to get en expression for f(a+«a'). The solution
1s as follows: (;t‘(a1 /p) + f(a.'”p))-p helongs to the congruence class
a +a', and, being a p-th power, must belong to the subclass med p2 of
fla+al)! .

Kow (x+y)P can be written =P+ ¥*s plx, yl, where [x, ¥yl is

a polynomial in x and y with Integral coefflclents. Hence flawal) =

(£(a' Py & £(arTP))P = £(a) + £(a") + plra' Py, 22’1, Hence

pf(s,) = pf(b) + pE(OY) - pleca' ), £(a "1 (moa BB
£(s,) = £(b) + £(b") - [£(a' Py, £(ar?/P)] (mod p)

S.I =b + b! =« [31/p, al1/P]

S0 (a, b,...)+{a’, b',...} = (2+a', babt - [9}/13’ a“/p],...)

If we would like a set of coordinates in which we can compute
purely by polynomiel operations, we should elther substitute a = of or
substitute b = p /P, The first cholce would be unwise, since when we
bring in the third term of the expansion, we would have to change agaln,
and so on. The secand choice 1s the one we made in the text. In terms of -
the expansion (1), the above result l1s:

(&, By...) + (@', B, .00} = (awa!, B4B! - (o, @'],...) .
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B).  (Of. end of §3b, p: 182} .

We want to investigate the "multiplication" induced on
¥°® by the iscmorphism with %. We shall, as usual, look at R-valued
polnts. What we have to deacribe is then a binary operation on power
seriss, which we shall write "o",

We find first of all, using the formmla for the 1 somorphi sm
betweett A” x Spec ¢ and V° x Spec @ that (1-at)°(1-b%t) = 1 - (&b)t,
when & and b are menbers of any ring containing g. It follows that
this must hold for & and b in sny ring. Since » distributes with
respect to multiplication, we get
' : m,n

m n .
I - oyt NI - Byt) -To - @Byt .

For the sake of simplicity, let us call the o, (rather than
the 1/o;) the "roots" of 1™ (1 - oyt).  (Under this definitlon, &
polynemisl has an indefinite number of zero roots.) Over an algebralcally
closed field k, then, we can describe o precisely for the finite (i.e.,
terminating) power serles: it is the funetion sending any pair of p_c&y_‘:
nomials to the polynemial whose roots are all the pairwise products of
those of the given two. It 13 easy to see from thls that the rational
functions (quotients of polynomials) form a subring, which has, ln fzct,
the structure of the "group ring" on the group k.*

The full power series ring is the coampletion of this ring under
a metlric that makes two polnts "close" 1f the first n symmetrie functicns
on them agree (though, of course, it takes scme rigging to define the
"symmetric functions" on 8 family some of whose members occur with nega-
tive muitiplicity).

This interpreﬁation goes through in a more or less formal way
for any ring without zero divisors. We can construct over any such ring
& unique polynomial whose roots are all the pairwise products of the roots
of two glven polynomials, even if these roots don't e In the ring 1tself.
The rationsl functions in the monic-formal-power-serles group form a sub-
ring which can be thought of as the "semigroup ring" on the nonzero elements—

ing to note that a somewhat similar construction turns up in
algggrg.js.cm%lolsolggy. A camplex vector bundle on a space X induces a
"Chern class' polynamisl over the ring EEVOO(X). It turns cut that the
operation '@ on bundlies corresponds to multiplication of polyncmials,
while the taking of tensor products of pburdles corresaponds to the opera-
tion associating to a palr of polyna:‘:}ia;l‘.s the polynomial who?e roots are
all the pairwise sumg of the roots ('in yof the glven two! Such an
operstion cannot B8 defined in cur power-series context becausclei the “irn-
definite mimber of zero roots,” whieh can be ignored under our "maltipli-
cative multiplication,” wreaks havec with an attempt to set up an "addi-
tive muliiplication.” The essence of the problem is that our polynomlals
are of indefinite degree in t, while the topologlsirs polynomials have a
definite degree, corresponding to the dimension of the bundle.
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but we now must allow not only formal gsums of elements actually in the pring,
but alsc sums of elements (integrally) algebraic over the ring, so long &s

they appear in full gets of conjugates. The full ring is agaln a comple-
ticn.

: ) The W, - the coordinates of the image in A” — are the moments -
T o

C). We shall sketoch a proof that the direct product decompo-
sition of Vg @ ¢ glven in our final theorem 1s maximal.

We first note that every idempotent of Wy over P glves an
ldempotent of AS, and the only ldempotents of the latter are 17 for
subsets I of S; hence the only possible idempotents in the former are
the - What we desire to show then 1s that 81 1s rational over 9 If
and only 1f I 1s a union of sets nF n S (n € Q). An equivelent state-
ment is: for every p € P and elements m, pme S5, wo have M € I womd
e I. : :

It clearly suffices to check this in the case P = {pl}, a
singleton. So suppose we had a ratlonal e; with I not satisfylng this
condition., Then there would exist me @ and k greater then zero such
that m, pm,..., p* 'm e I, pm € 5 - I (interchenging I and S-I if
necessary). Consider the factor of %5 {we shall drop the "2 §*s" for
convenience} corresponding to mP n 8, It will be isamcrphic to 1“"1?51 S /m?
& truncaticn of which is W“ Dreres k] . If we now follow cur idempotent
€1 through all these transformations, we find that 1%t gives us a direct
prcduct decomposition of this scheme from which it can be deduced that the
truncation:

w{1,”_,pk} - w[.,’..__’pkq] (3%%}130?)9:1193 tensored
splits. But if we take Z/p-valued points, this means by the results of
§2D that: )

z/plc - z/pk'1 splits. Contradiction!
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THE FUNDAMENTAL THEOREM IN CHARACTERISTIC p
1°, Let H Te any ring scheme over the field k. Then, for
8ll schemes X over k, H defines a sheaf of rings <H>y on Xvia

rU, <H >y) = Bom(U,H) .

1

In particulsr, 1f A’ is given its canonical ring scheme structure, then

<A >y = ' o
i.e., we recover the structure sheaf on X. On the other hand, suppose
the characteristic 1s p. Then using the Witt ring-scheme for p, we can
get an interesting sheaf of rings,
= < ¥ ' Kk
L% ¢ < %t1,p,08,...) X Spec Koy

8imilarly, for every finite n, we get a sheaf of rings from the truncated
scheme: :

Bn,X = <'{1,p,p2,...,pn"3 x Spec KDy .

These sheaves of rings form a projectlve system of sheaves,
under the obvious truncations

Tyt Opx = By @>a),

vith inverse limit B, y, ond with first temm B, y = <Wyydg = <A >y
= Op . Thege sheaves were introduced by Serre at the Mexico Conference
in Topology (1956). To describe their cohomology, Serre introduced certain
fundamental homomorphismg called the Bockstein operations. To understand
these, it 1s convenient to take a very general functorlal setting:

Say €, @' are two sbellan categorles, and
F: €= €' 13 a left exact functor with

_ derived functors RIF.

Assume that a) (A ), . ,+ and ’

b) sur]ective homomorphlsms AL = An" all n' <n
form en inverse system.
193
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Iet Ay = (0}, and A = A, be the 0 homcmorphism, Ist Kn nt be the
¥
kernel of An-'- An" Then there is a spectral sequence, with

2,4 D+q
S0 - R, )

(wBrnihg: thizs 1 i3 not the characteristic of k.)

In fact, 1T .
q D+d — pP+d
%’ = Ker R F(I§p+1 ,p) R F(%*_*] ,p_r+‘|)

2,4 _ D+d L+Q
Zr, = 1o R F(Kp“'r’P) - R' F(KP"'1 ,P)
{(with respeét to the obvious maps) then one checks that
q D,4q
(©) = 8% ¢ B cBf? .0 ZBd ot 2Pt LY.

Then, by definition,
BB . Z%/pR.a

Moreover, one finds that there are canonical homemorphisma

- -r3l
dr_z Zﬁ’q — E%Hr,.q I‘+'i/ B§+I",q '+

Its kernel is the next Z, viz. 2Z52%, and its imsge is the mext B,
viz.:

B§+§',q~r+1 / B¥+I‘, q-r+i
"

I.e., eech successive d 1s defined on the kernal of the previous d, with

values modulo the image of the previous d. This is exa'ctly a spectral
sequence.

[For detatls, the best source eppears in the Séminaire Cartan,
1950/51, exposé 8; hovever, as a matter of my own experlence, it is easier
and more helpful to work these things out oneself for small r, rather
than to follow scmecne else’s sub and super-scripts in detail.)

I leave it to the reader to check that, In good cases, the se-
quence abuts to
Lin EF(AL)
r
We want to apply this machine to give a ceriterion for an ele-
ment of H (X, o) to 1ift to H (X, B, )¢ l.e., teke € as the
category of sheaves of abeldlan groups on X, €' as the category of abelian
groups, F as HO(X, ), and A as mn,x. Then

D,q +q -
B - BT, Rer €D, y~ B, ) -
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In particular, ) .
0,4
B - Byx, w g
- #ix, o))

and 20’ 1s the subgroup of HY(X, oy) vhich lifts to Ei(x, o, M
s »

Definition: The homcmorphisms d, on Zg,q ¢ Hx, ox) are
called the Bocksteln operaticna By -

The point 1s:

(%) N wr (By) = { x e H(X, o) [x Lifts to 7Yz, o, x)}
r ] " for all r ’

Tc have a better understanding of this apperatus, we need cne
more fact:-

IEMMA:T Ker (D - D

n,x!

1

%{ .

n+1,X

Proof: This follows immediately from the corresponding result
on Witt ring schemes, viz,, the kernel of the truncation: i

Y1,0,02,...,0% ¥0,0,0%, . 4,07 1)

1s lsomorphic, as addlitive group scheine, to A‘. This was remarked in

Iecture 26, §3D (a) {take V nn ).
P D

Therefore, Bryt

Ker (B) = EM'(X, o) /In (8,)
n
#x, o

1s a canonicel homcmorphism:

e

2, Iset F be a non-singular projective surfmce over X
(actually nelther the non-singularity, nor the dimenslon being 2 is es-
sential). We can now prove the fundamental thecrem coneerning the families
of curves on F when char(k) = p. ILet P be the connected camponent of
the ldentity in the Picard scheme of F We lmow fram Ieecture 24 that the
tangent spece To,P to P &t ¢ 1is .canonically isomerphic to H‘(F,' gF)=
vla thls identification—
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THEOREM: The tangent space to Pred corresponds to the sub~
space of ' (F, EF) snnihilated by all the Bockstein cperations:

Proof: I1et tET'o,P' Let

. ' n
I(n) = Spee kxlel/(e™) ,
and let t correspond to the homomorphisam

h2= 1(2)""'-’ F

a) t 1s tangent to Pred if and only if, for sll n, ha
lifts to a morphlsm h:

n 7
,/
L(n)

Proof of a): 1In terms of local rings, let v = QO,P’ and
let h, and t define ‘

for v— k[s]/sz .
Iet % C v be the ideal of nilpotnets. Then if 1t 1s tangent to Pred.'
it follows that f,(R)} = 0. Sinee v/J; is regular, by the Proposition
in (A), lecture 22, f, MfTs to I:

f
v —u/n —2 . k{s]/(sa)
£

~xlel/e™

hence L, 11fts to .. Conversely, if h, lifts to h,, then £, 1ifts,
for every n, to an f . Suppose x € X ; then X' =0 .for some m.
Iet fz(x) sa* e, @€k, Then

% = ﬁmn(xm) (£ (%) "

slee+ .00

= B,

i

Therefore o - 0, hence o = O. This means that f, amilbilates X,
l.e., % is tengent to P,.4 - ’ '

THE FUNDAMENTAL, THEOREM IN CHARACTERISTIC p 197

Now translate this into functors: for a2ll n,
Hom(I,y, P) C Bom(Ipy, Ig P(8))
u

Plen(T o)
al

1 *
CHY(P, om )
: 2 *(n)
H (F, (op ® klel/e®™™y .

But [3F ® k[e]/sn]* = 9_;- (1 + op @_(s)/(en)h] where (&) denotes the
ideal generated by &. Therefore ’

' (F, [op ® kle]/e™") a B (F, op) ® H'(F, 1405 ® (J;’l—; )
) E
It follows thats
Subgroup of I (n) -valued points of P &t ©

a
E(P, 1+ 0z 0 L)

)]
5 (F, < 3 >p)
U

1
EAF < ¥y,,,,.,0-10°P ) -

4

Now we use the results of Lecture 26; {E). We are working with the Witt
ring scheme over a field of characteristie p, so every prime except »p
is invertible. Therefore w decomposes as In (E), with

P = (p}

H|
]

'{1’ P, pa,'“:)

Q = all primes but p; integers prime to p .

ol
1

Therefare, if o! < n-1 and p*! >n, we get:
b) Vie the truneation:

"{1,2,...,11-1] x Spec{k) = W{:,p,p2 2, x Spec(k)

PR o)
the latter ring acheme is a direct sumand of the former,

Therefore, for every n, we get & diagram:
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I n)-va.lued ;
; points of P } = B (F, < wh,2,...,n—1}>F )
at 0 \
1
1 / 1
res B (F, <¥(1,p,...,007°F ) *EE 0 p)

= H (F, op)

4

Ia -valued
(2) E H'(F, < ¥y} >p)

1 points of P
at o

This shows that an element o € H (F, g_F) 11¢ts to H' (F, Bp F) (for all
2) Af and only if it 1ifts to H (F, < ¥y o .., n-1)7p ) (For 211 n);
and that this cceurs if and only 1f the corresponding tangent vector &
to P at © 1lifts to an I(n) -valued point of P {for all n). By 8},

the theorem 1s proven.
QED

COROILARY: P 1is reduced If and only if &ll the Bockstein

operations fram ' (F, Q_F) to HE(F, 95.) arg 0.

COROILARY: Iet D C F be & curve such that H (F, og(D}) =
(0). Iet & € O(t) be the corresponding point. Then Ct:) 1is reduced
if and only if the same Bocksteln operations are 0.

COROLIARY (Severi-Naksi): If H(F, op) = (0), then P is
reduced, and the same exigtence theorems ag in char(0} are valld.

For examples whers the Bockstein operations are non-zero, see:
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