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Preface to New Typesetting

This book is a re-LaTeX’ed version of the book “Notes on Dif-
ferential Geometry” by Hicks. We’re the TEXromancers, a group of
mostly math enthusiasts wanting to create more readable content
for the math world. The typesetting credits go to: Aareyan Man-
zoor, George Coote, RokettoJanpu, Carl Sun, Andrew Lin, Nathaniel
Alloway, Prakhar Agarwal, Shuayb Mohammed, Bastián Núñez, Arpit
Mittal.

Here is a link to a dyslexia friendly version of the book: https:
//aareyanmanzoor.github.io/assets/hicks-dyslexic.pdf

Some notations in the original book are rather ancient or just
not as popular, so we decided to change these to their modern
counterpart. For example, set builders are written using [ ] in the
original book; we decided to use {}. We also used TmM , TM for
the tangent space at m, the tangent bundle of M , rather than
Mm and T (M). We further used Ωp(M) to denote the space of p-
forms, and Tp,qV to denote mixed tensors over some vector space
V . We changed LXY to LXY for the Lie derivative. However, we
decided to keep the name connexion instead of the modern name
connection as it has some charm.

The original book had a lot of inline equations to its detriment,
and we decided to display mode some of these. A lot of things
listed were made into an itemized list also. Some sentences were
changed for better readability. A lot of the problems were split
up into parts labeled by roman numbers.
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We added citations and references with hyperlinks. References
to e.g. theorems in the book are in blue, while citations to the
bibliography is in red. The bibliography also has URLs now, for
easy access. Some of the books in the bibliography had newer
editions, so we went with those.

All the diagrams have been redrawn, special thanks to our artists:
Yohan Wittgenstein, Bastián Núñez, John Cerkan.
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Preface

The following paragraph presents a very brief history of differ-
ential geometry and the notation used in these notes.

Differential geometry is probably as old as any mathematical
discipline and certainly was well launched after Newton and Leib-
niz had laid the foundations of calculus. Many results concerning
surfaces in 3-space were obtained by Gauss in the first half of the
nineteenth century, and in 1854 Riemann laid the foundations for
a more abstract approach. At the end of that century, Levi-Civita
and Ricci developed the concept of parallel translation in the clas-
sical language of tensors. This approach received a tremendous
impetus from Einstein’s work on relativity. During the early years
of this century, E. Cartan initiated research and methods that were
independent of a particular coordinate system (invariant methods).
Chevalley’s book [Che46] continued the clarification of concepts
and notation, and it has had a remarkable effect on the current
situation. The complete global synthesis of Cartan’s approach was
achieved when Ehresmann formulated a connexion1 in terms of a
fiber bundle. These notes utilize an invariant local method formu-
lated by Koszul.

The first three chapters of this book provide a short course
on classical differential geometry and could be used at the junior

1Editors’ note: connexion means connection here and in the rest of the text.
The latter is more common in modern usage, while the former likely comes from
the corresponding French term. We have decided nonetheless to keep its use
throughout the book.
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level with a little outside reading in linear algebra and advanced
calculus. The first six chapters can be used for a one-semester
course in differential geometry at the senior-graduate level. Such
a course would cover the main topics of classical differential geom-
etry (except for the material in chapter 8) using modern language
and techniques, and it would prepare a student for further study in
the books of Helgason, Lang, Sternberg, etc. (see list in following
paragraph). The entire book can be covered in a full year course. A
selection of chapters could make up a “topics” course or a course
on Riemannian geometry. For example, a course on manifolds and
connexions could consist of chapters 1, 4, 5, 7 and sections 9.1, 9.3
and 9.4. The reader with a little experience should move through
the first three chapters fairly quickly.

The problems are of several types: (a) those that provide ex-
plicit computations to test the understanding of the theory, (b)
those that require the student to prove theorems similar to those
in the text, (c) those that lead the student through supplementary
material, some of which may be an integral part of the exposition,
and (d) those that lead the student to books or papers in the lit-
erature. An introduction to bundle theory and the theory of Lie
groups is covered via problem material. Our hope is to give the
reader a solid understanding of the basic concepts and to stimulate
him to further reading and thinking in differential geometry.

Besides the specific references found in the notes, we would
like to mention the following general references:

• Point set topology: [Kel17], [HY12] and [PB14].

• Linear algebra: [Hal17] and [Jac13]

• Advanced calculus: [Buc03], [Kap03] and [HS13]

• Classical differential geometry: [Eis15], [HC99] and [Str61].

• Contemporary differential geometry: [AM12], [BC11], [Gug12],
[Hel12], [KN63], [Lan14], [KN63] and [Ste64]
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• History of differential geometry: [Str61] and [VW60]

We will use the following conventions: “iff” for “if and only if”;
“�” for “Q.E.D.”; Cartan3 will refer to the third reference in the
bibliography under Cartan, and when there is only one reference
for an author, we omit the superscript 1;

∑n
i=1,

∑
i,
∑

will all be
used to indicate a sum is to be made, and in the latter two cases,
we hope the omitted information (range or index of summation) is
clear from the context.

At this time I would like to express my gratitude to former
teachers N. Schwid and V.J. Varineau for their early encouragement,
to Miss Margaret M. Genova and Miss Gillian D. Hodge for their help
in typing the manuscript, and to L.M. Dickens for his contribution
to the understanding of the illustrations. Finally, I am indebted to
W. Ambrose and H. Samelson for sharing their insights via courses,
notes, and conversations.

N.J. Hicks
Ann Arbor, Michigan
May 1964
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1. Manifolds

In this chapter we define the fundamental concepts which we
deal with throughout these notes. Specifically, the notions of
manifold, function, and vector, and the concept of differentiability
(smoothness), must be carefully digested for a solid foundation.

1.1 Manifolds

First some notation. Let R be the set of real numbers. For an
integer n > 0, let Rn be the product space of ordered n-tuples of
real numbers. Thus
Rn = {(a1, . . . , an) : ai ∈ R}. For i = 1, . . . , n, let ui be the natural co-
ordinate (slot) functions of Rn, i.e., ui : Rn → R by ui(a1, . . . , an) = ai.
An open set of Rn will be a set which is open in the standard
metric topology induced by the standard metric function d on Rn,
thus if a = (a1, . . . , an) and b = (b1, . . . , bn) are points in Rn, then

d(a, b) =

[ n∑
i=1

(ai − bi)
2

]1/2
.

The concept of differentiability is based ultimately on the def-
inition of a derivative in elementary calculus. Let r be an integer,
r > 0. Recall from advanced calculus that a map f from an open
set A ⊂ Rn into R is called Cr on A if it possesses continual partial
derivatives on A of all orders ≤ r. If f is merely continuous from
A to R, then f is C0 on A. If f is Cr on A for all r, then f is C∞

on A. If f is real analytic on A (expandable in a power series in

15



Chapter 1: Manifolds

the coordinate functions about each point of A), then f is Cω on
A. Henceforth, unless otherwise specified, we let r be ∞, ω, or an
integer > 0.

A map f from an open set A ⊂ Rn into Rk (k an integer ≥ 1) is Cr

on A if each of its slot functions fi = ui ◦ f is Cr for i = 1, . . . , k; thus
for p in Rn, f(p) = (f1(p), . . . , fk(p)) ∈ Rk.

R2

R2

φ

φ ◦ ψ−1

ψ ◦ φ−1

Mu

v

ψ

Figure 1.1: Overlapping Coordinate Domains

We now define a manifold. Let M be a set. An n-coordinate
pair on M is a pair (φ,U) consisting of a subset U of M and a 1

to 1 map φ of U onto an open set in Rn. One n-coordinate pair
(φ,U) is Cr related to another n-coordinate pair (ψ, V ) if the maps
φ◦θ−1 and ψ◦φ−1 are Cr maps wherever they are defined (thus their
domains of definition must be open)1. A Cr n-subatlas on M is a
collection of n-coordinate pairs (φh, Uh), each of which is Cr related
to every other member of the collection, and the union of sets
Uh is M . A maximal collection of Cr related n-coordinate pairs is
called a Cr n-atlas. If a Cr n-atlas contains a Cr n-subatlas, we

1See Figure 1.1.
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Section 1.1: Manifolds

say that the subatlas induces or generates the atlas. Finally, an
n-dimensional Cr manifold or a Cr n-manifold is a set M together
with a Cr n-atlas. When r = 0, M is customarily called a locally Eu-
clidean space or a topological manifold, and only when r 6= 0 is M
called a differentiable or smooth manifold. An atlas on a set M is
often called a differentiable structure or a manifold structure on
M . Notice that one set may possess more than one differentiable
structure (see example 4 below), however, a definition of “equiv-
alent” differentiable structures is necessary before the study of
different atlases on a set becomes meaningful (see [Mun66]).

Each n-coordinate pair (φ,U) on a set M induces a set of n real
valued functions on U defined by xi = ui ◦ φ for i = 1, . . . , n. The
functions x1, . . . , xn are called coordinate functions or a coordinate
system and U is called the domain of the coordinate system.

We list some examples:

1. Let M be Rn with a Cr n-subatlas equal to the pair consisting
of φ = the identity map and U = Rn.

2. Let M be any open set of Rn and let a Cr n-subatlas be (the
identity map, M ).

3. Let M = GL(n,R), the group of non-singular R-linear transfor-
mations of Rn onto itself. Then M can be mapped 1:1 onto an
open set in Rn2 and thus a manifold structure can be defined
on M via example 2. If (aij) is a matrix representation of an
element of M with respect to the usual base of Rn, then map
(aij) into the n2-tuple

(a11, a12, . . . , a1n, a21, a22, . . . , a2n, a31, . . . , ann).

The image set of this map will be open since it is the inverse
image of an open set by the determinant map, which is con-
tinuous (indeed it is Cω as a map on Rn2).

17



Chapter 1: Manifolds

4. Let M1 be the 1-dimensional C1 manifold of example 1, and let
M2 = R with the C1 1-subatlas (x3,R), where x is the identity
mapping on R. Then M1 6=M2 since x1/3 is not C1 at the origin.

5. Let f be a Cr real valued function on Rn+1, with r > 0 and
n > 0, and suppose the gradient of f does not vanish on an
f-constant set
M = {p ∈ Rn+1 : f(p) = 0}. Then at each point in M , choose any
partial derivative of f that doesn’t vanish, say the ith one.
Apply the implicit function theorem to obtain a neighborhood
of p (relative topology on M ) which projects in a 1:1 way into
the ui = 0 hyperplane of Rn+1. This can then be used to define
a subatlas which makes M a Cr n-manifold.

This example covers many classical hypersurfaces in Rn+1,
including spheres, planes, and cylinders.

6. The process in example 5 can easily be generalized to obtain
Cr (n− k)-manifolds from “constant sets” of a Cr map f : Rn →
Rk whose Jacobian matrix is of rank k on the constant set2.

7. Let F be a univalent map from an open set in Rn into Rm, with
0 < n < m, and let M be the image of F . Then the n-coordinate
pair (F−1,M) defines a Cr n-subatlas on M .

For further definitions, let M be a fixed Cr n-manifold. An open
set in M is a subset A of M such that φ(A∩U) is open in Rn for every
n-coordinate pair (φ,U). The reader can verify that M becomes a
topological space with this definition of the open sets. If p ∈ M ,

2Suppose f : U ⊆ Rm → Rn is a Cr map, where m > n. A point q ∈ f(U) is called
a regular value of f if the Jacobian of f is surjective at each point p ∈ f−1({q}).
Thus we can reword this example as follows: if q is a regular value of f , then
M = f−1({q}) is a (m − n)-dimensional submanifold of Rm. Similarly if f : M → N is
a Cr map between two manifolds M and N , of dimension m and n resp. with m > n,
a point q ∈ N is called a regular value of f if the differential f∗ : TmM → Tf(m)N

(cf. section 1.4) is surjective at each point p ∈ f−1({q}). Then for regular values q,
S = f−1({q}) is a (m−n)-dimensional submanifold of M . This is a standard result and
follows from the implicit and inverse function theorems, see e.g. [Hir76, Chapter 1,
Theorem 3.2].
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Section 1.2: Smooth Functions

then a neighborhood of p is any open set containing p. Notice M

need not be Hausdorff. The concept of Hausdorffness is irrelevant
for much of local differential geometry. It becomes relevant in
passing from a Riemannian metric to a distance function.

1.2 Smooth Functions

In this section let A be the domain of a function f and assume
A is an open subset of the Cr n-manifold M . If f is real valued,
then f is Cs on A if f ◦ φ−1 is Cs on φ(A ∩ U) for every coordinate
pair (φ,U) on M . Note the independence of r and s. If N is a Ck

d-manifold and f is N-valued, then f is Cs on A if f is continuous
and for every real valued function g, that is Cs on an open domain
in N , the composite g ◦ f is Cs on A ∩ f−1 (domain of g). Note the
independence of r, k, and s.

R2 R

M

f

f ◦ φ−1

u

φ

Figure 1.2: An Induced Map from R2 into R

The local character of smoothness of a function is captured in
the following definition. Suppose the domain of f is not necessarily
open and f is N-valued. If p is in the domain of f , then f is Cs at
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Chapter 1: Manifolds

p if there is a neighbourhood U of p with f defined on U such that
f |U is Cs on U . As a corollary, if f is Cs at every point in its domain
then its domain is open.

Let us now specialize to C∞ manifolds and C∞ functions. This
is done for convenience chiefly and it allows us to define a tangent
vector in a very elegant way. Our concern in these notes is not
with “the least possible assumptions” but rather with those con-
cepts that arise naturally in a general situation. The restriction
is not too drastic because of the following result due to Whitney:
A Cr atlas on a set with r > 0 contains a C∞ atlas (see [Mun66]).
There is an example of Kervaire which exhibits a C0 atlas on a set
which admits no C1 atlas. For further work on the “equivalence”
of differentiable structures see [MW97] and [Mil56], [Mun66] and
[Mun59], and [Sma61].

Problems

The following list of nine problems are recommended in order
to familiarize oneself with the notion of a C∞ map. In particular
the problems are aimed at obtaining numbers 6 and 7 which are
often useful. The list (remember A is open in M , which is a C∞

n-manifold);

1. The map f : A→ N is C∞ on A iff f is C∞ at each point p in A.

2. If f : A→ N , f is C∞ on A, and U is an open set contained in A,
then f |U is C∞ on U .

3. Let Uh be a collection of open sets in M and let fh : Uh → N be
C∞ on Uh for each h. If f is a function whose domain is the
union of all Uh and if f |Uh

= fh for all h, then f is C∞ on its
domain.

4. If f : A → Rk is C∞ on A ⊂ Rn and g : B → R is C∞ on the open
set B ⊂ Rk, then g ◦ f is C∞ on A ∩ f−1(B).

20



Section 1.3: Vectors and Vector Fields

5. If f : A → N is C∞ on A ⊂ M and (φ,U) is a coordinate pair on
M , then f ◦ φ−1 is C∞ on φ(A ∩ U).

6. Let P be a C∞ s-manifold. If F : A → N is C∞ on A ⊂ M and
g : B → P is C∞ on the open set B ⊂ N , then g ◦ f is C∞ on
A ∩ f−1(B).

7. The map f : A → N is C∞ on A ⊂ M iff for every coordinate
pair (φ,U) in a subatlas on N the functions xi ◦ f are C∞ on
A ∩ f−1(U), for i = 1, . . . , d and xi = ui ◦ φ.

8. If n ≥ k and g : Rn → Rn by g(a1, . . . , an) = (a1, . . . , ak) then g is C∞

on Rn. If h : Rk → Rn by h(a1, . . . , ak) = (a1, . . . , ak, 0, . . . , 0) then h is
C∞ on Rk.

9. Let f and g be real valued functions that are C∞ on the subsets
A and B of M , respectively. Show that f + g and fg are C∞ on
A ∩B, where (f + g)(p) = f(p) + g(p) and (fg)(p) = f(p)g(p).

For the record, we can and so do define a Lie group. A Lie group
G is a group G whose underlying set is also a C∞ manifold such
that the group operations are C∞, i.e., the map φ : G×G→ G where
φ(g, h) = gh−1 is C∞ (see problem 18 and 20).

One last bit of notation, let C∞(A,N) denote the set of C∞

functions mapping an open set A in a manifold M into a manifold
N .

1.3 Vectors and Vector Fields

The definition of a tangent vector generalizes the “directional
derivative” in Rn. If X is an ordinary (advanced calculus) vector at
a point m in Rn and f is a C∞ function in a neighborhood of m, then
define Xmf = Xm · (∇f)m, where ∇f is the gradient vector field of
f . From the properties of the “dot” product and the operator ∇,
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Chapter 1: Manifolds

it follows that

Xm(af + bg) = aXmf + bXmg

Xm(fg) = f(m)Xmg + g(m)Xmf,

where g is a C∞ function in a neighborhood of m and a and b are
real numbers. Notice X is not normalized to be a unit vector. We
generalize now to define a tangent vector on a manifold as an
operator on C∞ functions which obeys the above rules.

Let M be a C∞ n-manifold. Let m be in M and let C∞(m) denote
the set of real valued functions that are C∞ on some neighborhood
of m. A tangent vector at m is a real valued function X on C∞(m)

having the following properties:

(1) X(f + g) = Xf +Xg, X(bf) = b(Xf)

(2) X(fg) = (Xf)g(m) + f(m)(Xg)

where f and g are in C∞(m), and b is in R. The set C∞(m) is almost
a ring (there is a slight problem with domains), and thus a tangent
vector is often called a derivation on C∞(m).

The tangent space to M at m, denoted by TmM , is the set of
all tangent vectors at m. It is a vector space over the real field
where (X + Y )f = Xf + Y f and (bX)f = b(Xf) for X,Y in TmM , f in
C∞(m), and b a real number.

Let x1, . . . , xn be a coordinate system about m (i.e., m is in the
domain of these coordinate functions). We define for each i, a
coordinate vector at m, denoted

( ∂

∂xi

)
m
by

( ∂

∂xi

)
m
f =

∂(f ◦ φ−1)

∂ui
(φ(m))

where xi = ui ◦φ and the differentiation on the right side is as usual
on Rn. The verification of properties (1) and (2) above we leave to
the reader. In a moment we show these coordinate vectors form a
base for the tangent space at m.
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Lemma 1.1. Let x1, . . . , xn be a coordinate system about m with
xi(m) = 0 for all i. Then for every function f in C∞(m) there ex-
ist n functions f1, . . . , fn in C∞(m) with fi(m) =

( ∂

∂xi

)
m
f and f =

f(m)+
∑

i xifi in a neighborhood of m. (Note the equality in question
is an equality between functions, and f(m) represents a constant
function with value f(m); the sum is taken for i = 1, 2, . . . , n, and in
the future this relevant range is to be understood.)

Proof. Let φ be the coordinate map belonging to the xi. Let F =

f ◦ φ−1 and we know F is defined in a ball about the origin in Rn,
i.e., in a set
B = {p ∈ Rn : distance from origin to p < r}. For (a1, . . . , an) in B we
have

F (a1, . . . , an) =F (a1, . . . , an)− F (a1, . . . , an−1, 0)

+ F (a1, . . . , an−1, 0)− F (a1, . . . , an−2, 0, 0) + . . .

+ F (a1, 0, . . . , 0)− F (0, . . . , 0) + F (0, . . . , 0)

=
∑
i

F (a1, . . . , ai−1, tai, 0, . . . , 0)

∣∣∣∣1
0

+ F (0, . . . 0)

=F (0, . . . , 0) +
∑
i

∫ 1

0

∂F

∂ti
(a1, . . . , an−1, tai, 0, . . . , 0)aidt

=F (0, . . . , 0) +
∑
i

aiFi(a1, . . . , an),

where
Fi(a1, . . . , an) =

∫ 1

0

∂F

∂ui
(a1, . . . , ai−1, tai, 0, . . . , 0)dt

is C∞ in B since
( ∂

∂ui

)
is C∞. Let fi = Fi ◦ φ and the lemma is

proved.

Theorem 1.2. Let M be a C∞ n-manifold and let x1, . . . , xn be a coor-
dinate system about m in M . Then if X ∈ TmM , X =

∑
i(Xxi)

( ∂

∂xi

)
m
,

and the coordinate vectors form a base for TmM which thus has

23



Chapter 1: Manifolds

dimension n.

Proof. We first prove the stated representation. Take X ∈ TmM

and f ∈ C∞(m). If xi(m) 6= 0 for all i, let yi = xi − xi(m). Then apply
the lemma to f with respect to the coordinate system yi, . . . , yn and
notice

( ∂f
∂yi

)
(m) =

( ∂f
∂xi

)
(m). Next we see if c a constant map then

X(c) = cX(1) = c(1X(1) + 1X(1)) = 2cX(1)

which implies cX(1) = 0 and X(c) = 0. Thus

Xf = X

(
f(m) +

∑
i

yifi

)
=
∑
i

((Xyi)fi(m) + yi(m)(Xfi))

=
∑
i

X(xi − xi(m))fi(m)

=
∑
i

(Xxi)
( ∂f
∂xi

)
(m)

which proves the required representation. If Y =
∑

i ai

( ∂

∂xi

)
= 0

then 0 = Yxj = aj, thus the coordinate vectors are independent and
span TmM .

A vector field X on a set A is a mapping that assigns to each
point p in A a vector Xp in Mp. A field X is C∞ on A if A is open
and for each real valued function f that is C∞ on B, the function
(Xf)(p) = Xpf is C∞ on A ∩ B. If X and Y are C∞ vector fields
on A their Lie bracket is a C∞ vector field [X,Y ] on A defined by
[X,Y ]pf = Xp(Y f)− Yp(Xf).

If f and g are C∞ functions, it is trivial that [X,Y ](f+g) = [X,Y ]f+

[X,Y ]g, and [X,Y ](af) = a[X,Y ]f for a in R. To check the product
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property, consider

[X,Y ](fg) =X(Y (fg))− Y (X(fg))

=X(fY g + gY f)− Y (fXg + gXf)

=fXY g + (Xf)(Y g) + (Xg)(Y f) + gXY f

−fY Xg − (Y f)(Xg)− (Y g)(Xf)− gY Xf

=f [X,Y ]g + g[X,Y ]f.

Thus [X,Y ] is a vector field and the proof of its C∞ nature we leave
as a problem.

For later use, notice that [X,Y ] = −[Y,X], [X,X] 6= 0, and the
bracket is linear in each slot with respect to addition, i.e., [X1 +

X2, Y ] = [X1, Y ] + [X2, Y ]. However,

[fX, gY ] = f(Xg)Y − g(Y f)X + fg[X,Y ]

and it is this property that prevents the bracket mapping from
being a tensor (problem 10). Problem 13 gives a geometric inter-
pretation of the bracket, and in section 9.1 there are applications
involving integrability conditions. For example, if x1, . . . , xn is a coor-
dinate system then

[ ∂

∂xi
,
∂

∂xj

]
= 0 for all i and j (since cross partial

derivatives of C∞ functions are equal), and actually this condition
on n independent vector fields is sufficient to imply the fields are
coordinate vector fields (section 9.1).

The bracket operation also satisfies the following expression
which is called the Jacobi identity,

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 (Jacobi Identity)

where X, Y , and Z are C∞ fields with a common domain.
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1.4 The Jacobian of a Map

LetM and N be C∞ manifolds of dimensions n and k respectively.
We defined the above concept of a C∞ map f from M into N . Such
a map induces a linear transformation from each tangent space
TmM into the tangent space Tf(m)N . This linear map is called the
Jacobian map or the differential of f and we denote it by f∗ (often
it is denoted df , but we reserve the symbol d for the exterior
derivative3 operator). Let X be in TmM and we define f∗X as a
vector f(m) and setting (f∗X)g = X(g ◦ f). It is trivial to check that
f∗X is a vector at f(m) and the map f∗ is linear.

By selecting a coordinate system x1, . . . , xn about m and another
y1, . . . , yk about f(m), we can determine a matrix representation for
f∗ which is called the Jacobian matrix of f∗ with respect to the
chosen coordinate systems. Let Xi =

∂

∂xi
, Yj =

∂

∂yj
, thus X1, . . . , Xn,

at m, form a base for TmM and we compute f∗ by computing its ac-
tion on this base. Namely, f∗Xi =

∑
j

(f∗Xi)yjYj by the representation

theorem 1.2 above, hence the matrix in question is the matrix

((f∗Xi)yj) =
(∂(yj ◦ f)

∂xi

)
for 1 ≤ i ≤ n and 1 ≤ j ≤ k.

The implicit function theorem and the inverse function theo-
rem can be applied and formulated in this language. The former
we postpone, since we do not really need it for some time (see
Problem 16) but the latter is both useful and instructive. First a
definition. A diffeomorphism is a map f : M → N that is 1 to 1 and
onto with both f and f−1 C∞, and if such an f exists, then M is
diffeomorphic to N .

Theorem 1.3 (Inverse function). Let M and N be C∞ n-manifolds
and let f : M → N be C∞. If for m in M , the Jacobian f∗ at m is an
isomorphism of TmM onto Tf(m)N , then there is a neighborhood U

3See sections 5.2 and 7.1
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of m and a neighborhood V of f(m) such that f is a diffeomorphism
from U to V (i.e., f is a local diffeomorphism about m).

We leave it to the reader to choose a coordinate system on both
sides and apply the theorem from advanced calculus to obtain the
result. Notice the C∞ demand of f and f−1 implies the theorem
could be stated as necessary as well as sufficient condition for
the existence of a local inverse. If one only demands continuity of
the inverse, then the map x 7→ x3 provides a homeomorphism of R
onto R whose Jacobian is singular at the origin.

Now consider the behavior of the Jacobian with respect to the
composite maps. Let g be a C∞ map of N into the C∞ manifold
L. Then at each m in M , (g ◦ f)∗ = g∗ ◦ f∗, for if h is a C∞ func-
tion about g(f(m)) and X in TmM then ((g ◦ f)∗X)h = X(h ◦ g ◦ f) =

(f∗X)(h ◦ g) = (g∗(f∗X))h. In terms of coordinate systems, the above
computation exhibits the chain rule and multiplicative behavior of
Jacobian matrices. When f is a diffeomorphism of M into N , and
X and Y are C∞ fields on M , then f∗X and f∗Y are C∞ fields on N

with f∗[X,Y ] = [f∗X, f∗Y ].

1.5 Curves and Integral Curves

In these notes curves will be viewed as a special case of map-
pings, thus we will deal with “parameterized curves” almost ex-
clusively. A curve in M is a C∞ map σ from an open subset of R
into M . Often we speak of a curve σ from [a, b] into M where [a, b]

is a closed interval of real numbers, and in this case it is assumed
the domain of σ is actually an open set in R containing [a, b]

Let σ be a curve in M with domain U . For each t in U define
the tangent of σ at t to be the vector T (t), or Tσ(t), at σ(t) where
T (t) = σ∗

( d
dt
)
t
and d

dt denotes the usual differentiation operator of
real valued C∞ functions on R. Thus if x, . . . , xn a coordinate system
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about σ(t), then

T (t) =
∑
i

(d(xi ◦ σ)
dt

)
t

( ∂

∂xi

)
σ(t)

.

By differentiating the coordinate parameter functions xi ◦ σ(t) one
determines the coefficients of T (t) with respect to the coordinate
vectors associated with the coordinate system. Notice this T (t) is
the usual “velocity” vector associated with a parameterized curve
in R3.

σ(a)

R

σ(t)

σ(b)

a
t

b

σ

M

Figure 1.3: A Curve

Having the idea of curve and tangent vector we can give a ge-
ometric description of the Jacobian f∗ associated with the map
f : M → N . For X in TmM choose any curve σ on M with σ(0) = m

and Tσ(0) = X. Then f ◦ σ is a curve on N with f ◦ σ(0) = f(m) and
indeed f∗X = Tf◦σ(0). Thus we “fill in the vector by a curve, map
the curve to N , and take the new tangent vector.” This device
is very useful if one knows geometrically the behavior of certain
curves; e.g., let M = {(x, y, z) ∈ R3 : x2 + y2 = 1}, let S be the unit
sphere in R3, and let f : M → S by f(x, y, z) = (x, y, 0). The particular
f just defined is called the “sphere map” or the “Gauss map” from
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Section 1.5: Curves and Integral Curves

M to S, since it essentially uses a unit normal vector field to M

in its definition. Its Jacobian should be trivial to compute at each
point from the above remarks.

We carry the idea of “filling in a vector” to a classical setting.
Let X be a C∞ vector field on the manifold M . A curve σ is an
integral curve of X if whenever σ(t) is in the domain of X then
Tσ(t) = Xσ(t). Thus we say the curve σ “fits” X, and suggest the
physical example of the velocity vector field (which gives X) of a
steady fluid flow and its streamlines (which give integral curves).
The local existence of integral curves is guaranteed by the theory
of ordinary differential equations.

M

Figure 1.4: An Integral Curve of a Vector Field

Theorem 1.4. Let X be a C∞ vector field on M and let m be a point
in the domain of X. Then for any real number b there exists a
real number r > 0 and a unique curve σ : (b− r, b+ r) → M such that
σ(b) = m and σ an integral curve of X.

Proof. Let x1, . . . , xn be a coordinate system about m whose domain
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U is contained in the domain of X. Let X =
∑
i

fi

( ∂

∂xi

)
define C∞

real valued functions fi on U . Then the condition that a curve σ be
an integral curve of X becomes the condition

d(xi ◦ σ)
dt = fi ◦ σ

on the domain of σ, or writing (improperly) as usual xi(t) = xi ◦ σ(t),
we have the system of first order ordinary differential equations

dxi
dt = fi(x1, . . . , xn),

for i = 1, . . . , n. Apply an existence and uniqueness theorem from
differential equation theory to obtain r > 0 and functions xi(t) that
define σ on the specified range with the required properties.

Actually the theorem from differential equations gives much
more than the above conclusion; it also includes the C∞ depen-
dence of solutions as we vary the initial parameter b and the point
m (see section 9.3). We return to this later when discussing the
existence of geodesics and the exponential map (sections 5.1 and
9.3). For global ramifications see [Pal57] or [Lan14].

It is convenient to define a broken C∞ curve σ on an interval
[a, b] to be a continuous map σ from [a, b] into M which is C∞ on each
of a finite number of subintervals [a, b1], [b1, b2], . . . , [bk−1, b].

1.6 Submanifolds

A C∞ k-manifold is a submanifold of a C∞ n-manifold M if for ev-
ery point p in M there is a coordinate neighborhood U of M with co-
ordinate functions x1, . . . , xn such that the set U = {m ∈ U : xk+1(m) =

· · · = xn(m) = 0} is a coordinate neighborhood of p in M with coordi-
nate functions
x1 = x1|U , . . . , xk = xk|U . These coordinate systems are called special
or adapted coordinate systems.
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Notice it is not required that M ∩ U = U so “slices” of M may
approach other “slices” of M in M (see problem 17) and hence the
topology on M may not be the relative topology. The definition
of submanifold implies M is a subset of M and k ≥ n. Letting
i : M → M be the inclusion map, then i is C∞ since xj ◦ i are C∞

maps for all special coordinate functions. The inclusion map is also
an imbedding (see below) since the Jacobian i∗ is non-singular, i.e.,
i∗

( ∂

∂xj

)
(p) =

∂

∂xj
(p) for j = 1, . . . , k. In these notes we will identify a

tangent vector X in TpM with its image in TpM unless there is a
possibility of confusion (just as we identify p and i(p)).

To make some more standard definitions, let M and M be C∞

manifolds and let f be a C∞ map of M into M . If f∗ is non-singular
(thus f∗ has no kernel) at each point p of M , then f is called an
immersion of M into M . If in addition, f is univalent, then f is
called an imbedding of M into M . A subset M ′ of M is called an
immersed submanifold if there exists a manifold M and an immer-
sion f :M →M such that f(M) =M ′. (Thus an immersion is a “local
imbedding with self-intersections”.) One can verify (problem 17)
that if f :M →M is an imbedding and M ′ = f(M), then by defining a
differentiable structure of M ′ so f becomes a diffeomorphism, M ′

becomes a submanifold of M (see [Hel12], p.23).
For examples of submanifolds see examples 5,6 and 7 at the

end of section 1.1.
It is convenient to define a base field on a set A contained in

an n-manifold to be a set of n vector fields that are independent
at each point of A. When each field in a base field is C∞, then the
base field is C∞. Since a set of of coordinate fields is a C∞ base
field on the coordinate domain, we know C∞ base fields always
exist locally. A C∞ base field does not necessarily exist over a
whole manifold (consider the 2-sphere, S2); indeed, the manifold is
called parallelizable if it admits a global C∞ base field.

We now define a concept which we will often use. Let M be a
submanifold of M as described above. An M-vector field Z that is
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C∞ on M (or C∞ on an open set A in M ) is a map that assigns to
each p in M (or p in A) a vector Zp in Mp such that if X1, . . . , Xn is any
C∞ base field on a neighborhood U of p and Zm =

∑n
i=1 ai(m)(Xi)m for

m in M ∩U then the real valued functions ai are C∞ on M ∩U for all
i. Notice Zp is not necessarily tangent to M . Since the restriction
to M , of a C∞ function on M , is a C∞ function on M , it follows that
if Z is C∞ on M then Z|M is an M-vector field that is C∞ on M .

Problems

(For problems 1 thru 9 see page 20)

10. (i) Let W1, . . . ,Wn be a C∞ base field on an open set U in a
manifold M and let X =

n∑
i=1

fiWi be a vector field on U .

Show X is C∞ on U iff the functions fi are C∞ on U for all
i.

(ii) If Y and Z are C∞ fields on U show [Y, Z] is C∞, show that
a coordinate field ∂

∂xi
is C∞ on its domain.

(iii) If Xp is a given vector at p in M show there is a C∞ field
X on a neighborhood of p with X = Xp.

(iv) Let xi, . . . , xn be a coordinate system with domain U and
let
A =

∑
ai

(
∂

∂xi

)
and B =

∑
bj

(
∂

∂xj

)
be C∞ fields on U then

find the representation of [A,B] in terms of the coordinate
vector fields.

(v) Show [fX, gY ] = f(Xg)Y − g(Y f)X + fg[X,Y ] where X and Y

are C∞ fields on U and f and g are in C∞(U,R).

(vi) Prove the Jacobi Identity.

11. (i) Let A, B and C be in C∞(R3,R) with B 6= 0 anywhere. Let
V = Ai+Bj+Ck, X = −Bi+Aj, and Y = −Cj+Bk (advanced
calculus notation). For p in R3, let Pp = {Z ∈ (R3)p : Z ·Vp = 0}.
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Show Pp is a two-dimensional space of vectors at each
point by showing Xp and Yp are a base for Pp.

(ii) Show [X,Y ]p lies in Pp iff Vp · (curlV )p = 0.

(iii) Suppose there is a function f in C∞(R3,R) with grad f 6= 0

such that Pp is the tangent plane to the constant surface
of f thru p. show Vp · (curlV )p = 0 (see section 9.1).

(iv) Instead of seeking surfaces that are orthogonal to V (as
above), one could seek surfaces whose tangent plane con-
tains V and then one has a “geometric quasi-linear partial
differential equation of the first order”. Integral curves
of V are called characteristics of the “equation”. One
generates solution surfaces by taking a non-characteristic
curve (an “initial value” curve) and considering the sur-
face formed by characteristics thru the initial value curve.
Show two solution surfaces must intersect along a char-
acteristic. Show there are an infinite number of solution
surfaces thru one characteristic. Can there be an initial
value curve with no solution thru it?

12. (i) Let f : R2 → R2 by f(a, b) = (a2 − 2b, 4a3b2) and let g : R2 → R3

by g(u, v) = (u2v + v2, u − 2v3, veu). Compute a matrix for f∗
at (1, 2) and g∗ at any (u, v).

(ii) Find g∗

(
4
∂

∂x
− ∂

∂y

)
(0,1)

.

(iii) Find integral curves for the vector field X = yi+ yj +2k on
R3.

(iv) Find a coordinate system x1, x2, x3 on R3 such that ∂

∂x1
=

2i+ 3j − k at all points.

13. Let X and Y be C∞ fields about m in M . For small t ≥ 0 define
the curve σ(t) as follows: go t parameter units on X’s integral
curve thru m to p1, go t units on Y ’s integral curve thru p1 to
p2, go t units on (−X) curve thru p2 to p3, go t units on (−Y )
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curve thru p3 to σ(t). If γ(t) = σ(
√
t) show Tγ(0) = [X,Y ]m. (Hint:

use the lemma in section 9.1 and partial Taylor series.)

14. Let M and N be manifolds with M connected and let f and g

be C∞ maps of M into N .

(i) Show f∗ ≡ 0 iff f is a constant map.

(ii) If f(m) = g(m) at one m in M and f∗ ≡ g∗ at all points show
f = g.

15. Let f be in C∞(M,R) and define the differential of f, df , to be
the linear map of TmM into R where (df)m(Xm) = Xmf . Show
f∗(Xm) = [(df)m(X)]

( ∂
∂t

)
where t is the identity coordinate func-

tion on R. It is because of this case that in a general case the
Jacobian f∗ is often called the “differential of f”.

16. (i) Prove the Inverse Function Theorem (Theorem 1.3).

(ii) State and prove a version of the Implicit Function Theo-
rem of advanced calculus in terms of the Jacobian map.

17. (i) Prove the last sentence in the third paragraph of section
1.6.

(ii) Show that the image of a regular (σ∗ 6= 0) univalent curve
σ mapping an open interval into a manifold M is a one-
dimensional submanifold of M .

(iii) Let X be a unit constant vector field on R2 with irrational
slope. Let T be the set of equivalence classes on R2 where
(a, b) ∼ (c, d) iff a− c = n and b− d = m for integers m and n.
Show T is a two-dimensional manifold (which is called the
flat torus).

(iv) Show X induces a vector field on T such that the image
of one integral curve of X defines a one-dimensional sub-
manifold of T that is dense in T .
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18. Let M1 and M2 be C∞ manifolds. Let πi : M1 × M2 → Mi by
πi(m1,m2) = mi for i = 1, 2. Define a C∞ structure on M1 ×M2

so πi are C∞. Show T(m1,m2)M1 ×M2 is naturally isomorphic to
Tm1

M1 ×Tm2
M2.

19. (i) Let M be a C∞ n-manifold. Let TM = {(m,X) : X ∈ TmM},
and let π : TM →M by π(m,X) = m. If (φ,U) is a coordinate
pair on M with xi = ui ◦ φ let U = π−1(U), xi = xi ◦ π, and
for (m,X) in U let xi(m,X) = ai if X =

∑
ai

( ∂

∂xi

)
. Let

φ : U → R2n so ui ◦ φ = xi and un+i ◦ φ = xi for i = 1, . . . , n.
Show the subatlas of pairs (φ,U) defines a C∞ structure
on TM which is called the tangent bundle of M .

(ii) If f is a C∞ map of M into N show f∗ induces a C∞ map
of TM into TN .

20. (i) Let G be a Lie group. If g ∈ G let Lg, Rg, and Ag denote
the maps of G into G defined by Lg(h) = gh,Rg(h) = hg and
Ag(h) = ghg−1. Show Lg, Rg, and Ag are C∞.

(ii) A vector field X on G is left invariant if (Lg)∗Xg = Xgh

for all g and h. Show a left invariant field is C∞ and is
completely determined by its value at the identity e.

(iii) If X and Y are left invariant, show [X,Y ] is left invariant.
(iv) The set of left invariant vector fields on G forms an

n-dimensional vector space called the Lie algebra of G

which is denoted by g. Define a one-parameter subgroup
of G to be the image of a C∞ homomorphism of R into
G. Show there is a 1:1 correspondence between one-
parameter subgroups and integral curves of left invariant
vector fields thru e.

(v) Show the map (g, h) → gh−1 is C∞ from G×G into G iff the
maps (g, h) → gh and g → g−1 are C∞.

21. (i) Let G = GL(n,R) and for a matrix g ∈ G let uij(g) = gij (see
example 3). Call uij the natural coordinate functions on
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G. Write uij ◦ Lg as a linear combination of the natural
coordinate functions.

(ii) Let Xij the unique left invariant field on G with Xij(e) =( ∂

∂uij

)
(e) where e is the identity element. Compute Xij

as a field on G in terms of the coordinate vector fields.
Compute [Xij , Xrs].

(iii) If A(t) is a C∞ curve in G with A(0) = e and A(t) orthogonal
for all t show dA

dt =
(daij
dt
)
is a skew-symmetric matrix for

t = 0.

22. (i) Let M be a C∞ n-manifold. Let

BM = {(m; e1, . . . , en) : m ∈M and e1, . . . , en an ordered basis of TmM}.

Let π : BM →M by π(m; e1, . . . , en) = m. If (φ,U) a coordinate
pair on M with xi = ui ◦ φ, let (φ,U) be a coordinate pair on
BM with U = π−1(U) and φ : U → Rn+n2 by the coordinate
functions x1, . . . , xn, x11, x12, . . . , xnn where xi = xi◦π and if b =
(m; e1, . . . , en) then ej =

∑n
i=1 xij(b)

( ∂

∂xi

)
. Show the subatlas

of pairs (φ,U) defines a C∞ structure on BM which is called
the bundle of bases over M .

(ii) For g in GL(n,R) let Rg : BM → BM by

Rg(b) ≡ bg ≡
(
m;

n∑
i=1

gi1ei,

n∑
i=1

gi2ei, . . . ,

n∑
i=1

ginei

)

if b = (m; e1, . . . , en). Show Rg is C∞.

(iii) Let sU : U → BM by sU (m) =
(
m;
( ∂

∂x1

)
m
, . . . ,

( ∂

∂xn

)
m

)
for m

in U . Show sU is C∞ and π ◦ sU is the identity on U . The
map sU is called the coordinate section map over U .

(iv) Let φ̂ : U × GL(n,R) → U by φ̂(m, g) = Rg ◦ sU (m) = sU (m)g.
Show φ̂ is a diffeo. onto its image. The map φ̂ is called a
strip map.
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Section 1.6: Submanifolds

(v) If (φ,U) and (ψ, V ) are coordinate pairs on M define sUV :

U ∩ V → GL(n,R) by sUV (m) = g if sU (m)g = sV (m). Show sUV

is C∞; it is called a structural function for B(M). Show
(bg1)g2 = b(g1g2) which justifies the name right action for
Rg.

(vi) For fixed b in BM let fb : GL(n,R) → BM by fb(g) = bg. Show
fb is C∞.

(vii) Call the set Fm = π−1(m) the (vertical) fiber over m in M .
Show Fm is an n2-submanifold of BM and fb is a diffeo. of
GL(n,R) onto Fπ(b).

(viii) If π(b) = π(c), show f−1
c ◦ fb is a left translation on GL(n,R).

(ix) A tangent vector X on BM such that π∗(X) = 0 is called a
vertical vector. For b in BM , let Eij(b) = (fb)∗xXij(e) define
a vector Eij(b) (see problem 21). Show Eij is a global C∞

vertical vector field on BM .

(x) Compute [Eij , Ers].
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2. Hypersurfaces of Rn

In a very real sense, this chapter and the next are too special,
i.e.„ much of the theory belongs to an arbitrary submanifold of a
“semi-Riemannian” manifold. We specialize because we can obtain
many of the concepts and results of classical differential geometry
quickly and easily. In so doing, we hope to develop the “geometric”
intuition of the reader sufficiently to make later generalizations
and definitions seem natural.

2.1 The Standard Connexion on Rn

Recall in section 1.3 we shifted the classical notion of a vector
from a “directed line segment” to an operator on functions, i.e., if
X = a~i + b~j + c~k is a familiar vector on R3 from advanced calculus,
then we rewrite X = a

∂

∂x
+ b

∂

∂y
+ c

∂

∂z
so if f is a real valued C∞

function on R3, then Xf is a derivative of f in the direction X,

Xf = X · ∇f = a
∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z
.

Notice that X need not be a unit vector. When a, b, and c are C∞

functions on R3 themselves (possibly constant functions), then X

is a C∞ field and Xf is a C∞ real valued function on R3,

(Xf)(p) = Xpf = a(p)
∂f

∂x
(p) + b(p)

∂f

∂y
(p) + c(p)

∂f

∂z
(p)
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Chapter 2: Hypersurfaces of Rn

Since both of the representations of a vector field X given above
are awkward to write, let us simply write X = (a, b, c), thus giving X

by giving the coefficient functions (or constants) a, b, and c of the
global base field ∂

∂x
,
∂

∂y
,
∂

∂z
on R3.

We now define the derivative of a vector field Y in a direction
X. Let X be a vector at p in Rn and let Y = (y1, . . . , yn) be a C∞ field
about p, thus each yi is a C∞ real valued function on the domain of
Y which includes p. The covariant derivative of Y in the direction
X is the vector DXY = (Xpy1, . . . , Xpyn) as a vector at p. If X and Y

are C∞ fields with the same domain A, then DXY is a C∞ field with
domain A.

For example take R3, let X = (a, b, c), let Y = (xy2+4z, y2−x, x+z3).
and then

DXY = [X · (y2, 2xy, 4), X · (−1, 2y, 0), X · (1, 0, 3z2)]

= (ay2 + 2xyb+ 4c,−a+ 2yb, a+ 3z2c)

where a, b, and c may be functions or constants.
The properties of D which we now list are one of the main

analytic tools of these notes. Let X and W be vectors at p in Rn,
let Y and Z be C∞ fields about p, and let f be a C∞ real valued
function about p. Then

(1) DX(Y + Z) = DXY +DXZ

(2) DX+W (Y ) = DXY +DWY

(3) Df(p)XY = f(p)DXY

(4) DX(fY ) = (Xf)Yp + f(p)DXY

These follow directly from the definition of D. It is impor-
tant to notice DXY can be computed once one knows Y along a
curve σ that fits X, i.e., if σ(0) = p and Tσ(0) = T (0) = Xp. For let

Yσ(t) = (y1(t), . . . , yn(t)) and then DXY =
(dy1
dt (0), . . . ,

dyn
dt (0)

)
since by
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Section 2.1: The Standard Connexion on Rn

the chain rule,

dyi
dt (0) =

n∑
j=1

∂yi
∂uj

(p)
duj
dt (0) = Xp · (∇yi)p

and T (0) = Xp. Thus if Y is an Rn - vector field that is C∞ on the
curve σ with tangent T , then DTY is a well-defined Rn-vector field
that is C∞ on σ.

Using the operator D, we can define parallel vector fields along
a curve and geodesics. Let σ be a C∞ curve (in Rn ) with tangent
T and let Y be an Rn-vector field that is C∞ on σ. The field Y is
parallel along σ if DTY = 0 along σ0 The curve σ is a geodesic if
DTT = 0, i.e. if its tangent T is parallel along σ.

It is trivial to see these are the usual concepts of parallel
fields and geodesics in Rn; for let σ(t) = (a1(t), . . . , an(t)) and Yσ(t) =

(y1(t), . . . , yn(t)). Then DTY =
(dy1
dt , . . . ,

dyn
dt
)
= 0 iff each yi(t) is a con-

stant function of t, so Y is a “constant” vector field of Rn evaluated
on σ. The curve σ is a geodesic iff DTT =

(d2a1
d2t

, . . . ,
d2an
d2t

)
= 0, and

this implies ai(t) = cit + di are linear functions of t so σ is a linear
parameterization of a straight line.

Notice that the parameterization of a curve is important in the
definition of a geodesic.

The generalization of the definition of covariant differentiation
or a connexion on any C∞ manifold M is clear, i.e. we merely
demand the existence of an operator D which satisfies the above
four properties (listed for D) and assigns to C∞ vector fields X

and Y with the domain A, a C∞ field DXY on A. Notice there can
be more than one connexion on a manifold. In the case of “semi-
Riemannian” manifolds however there exists one connexion which
fits the “semi-Riemannian” structure nicely, and in the case of Rn,D
is this nice connexion In fact, we now explain how D is “nice.”

Henceforth, denote the usual dot product or inner product of
vectors Y and Z tangent to Rn by 〈Y, Z〉. Thus if Y = (y1, . . . , yn) and
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Chapter 2: Hypersurfaces of Rn

Z = (z1, . . . , zn), then 〈Y, Z〉 =
n∑

i=1

yizi. If Y and Z are C∞ fields with

do main A, then 〈Y, Z〉 is a C∞ function with domain A. One checks
easily that

(5) DY Z −DZY = [Y, Z] on A, and

(6) Xp 〈Y, Z〉 =
〈
DXY, Z

〉
p
+
〈
Y,DXZ

〉
p

for any vector X at p in A.
We now generalize and fix some terminology. A Riemannian

manifold is a C∞ manifoldM on which one has singled out a C∞ real
valued, bilinear, symmetric, and positive definite function 〈−,−〉 on
ordered pairs of tangent vectors at each point. Thus if X,Y and
Z are in TpM , then X,Y is a real number and 〈−,−〉 satisfies the
following properties:

(a) (symmetric) 〈X,Y 〉 = 〈Y,X〉,

(b) (bilinear)
〈X + Y, Z〉 = 〈X,Z〉+ 〈Y, Z〉

〈aX, Y 〉 = a 〈X,Y 〉 for a in R

(c) 〈X,X〉 > 0 for all X 6= 0

(d) (C∞) if X and Y are C∞ fields with domain A then

〈X,Y 〉p = 〈Xp, Yp〉 is a C∞ function on A

When (c) is replaced by

(c’) (non-singular) 〈X,Y 〉 = 0 for all X implies Y = 0,

then M is a semi-Riemannian (or pseudo-Riemannian) manifold. In
either case, the functional 〈−,−〉 is called the inner product, the
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Section 2.2: The Sphere Map and the Weingarten Map

metric tensor, the Riemannian metric, or the infinitesimal metric
of M . Notice the word “metric” in the preceding sentence is not
referring to a metric function (distance function) in the topological
sense. In Chapter 6, the connexion of the concepts is clarified.
It is also customary to require a semi-Riemannian manifold to be
Hausdorff; however, as far as the local differential geometry is
concerned, this is irrelevant so the restriction is not enforced at
this time.

If D is a C∞ connexion in a semi-Riemannian manifold M , then
D is a Riemannian connexion if it satisfies the above properties
(5) and (6). In Chapter 6, the existence of Riemannian manifolds
is discussed and the fundamental theorem asserting the existence
and uniqueness of a Riemannian connexion is proved. In section 2.3
one sees that many hypersurfaces in Rn(n ≥ 3) provide examples
of Riemannian manifolds with a Riemannian connexion.

2.2 The Sphere Map and the Weingarten Map

An (n−1)-submanifold of an n-manifold is called a hypersurface.
Throughout this section let M be a hypersurface of Rn, let D be
the natural connexion on Rn, and assume N is a unit normal vector
field that is C∞ on M . Thus 〈Np, Np〉 = 1 and 〈Np, X〉 = 0 for all p in
M and X in TpM . Such an N always exists locally.

For any p in M and any vector X in TpM , define the linear map
L : TpM → TpM by

L(X) = DXN. (7)

The vector L(X) lies in TpM , since 0 = X 〈N,N〉 = 2 〈L(X), N〉 by
property (6) for D. The map L is linear by properties (2) and (3).
The map L is called the Weingarten map, and in the case of Rn, it
has a geometric interpretation as the Jacobian of the sphere map
(Gauss map) which we now explain.

Let N = (a1, . . . , an), so the ai are real valued C∞ functions on
M and

∑
i(ai)

2 = 1. Then the map η : M → Sn−1 defined by η(p) =
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Chapter 2: Hypersurfaces of Rn

(a1(p), . . . , an(p)) in Rn, is a C∞ map of M into the unit (n− 1)-sphere
Sn−1, and η is called the sphere map (or Gauss map). If X ∈ TpM

and σ(t) is a curve fitting X (so σ(0) = p and Tσ(0) = X), then η ◦σ(t) =
(a1 ◦ σ(t), . . . , an ◦ σ(t)) and

η∗(X) = Tη◦σ(0) =
(d(a1 ◦ σ)

dt (0), . . . ,
d(an ◦ σ)

dt (0)
)

= (Xa1, . . . , Xan) = DXN = L(X).

The map L is C∞ on M in the sense that if X is C∞ on the subset
A of M then L(X) = (Xa1, . . . , Xan) is also C∞ on A since each a1 is
C∞ on M .

X

N
L(X)

N

Figure 2.1: The Weingarten Map (derivative of normal)

Our next objective is to show L is self-adjoint or symmetric,
i.e., if X,Y are in TpM then 〈L(X), Y 〉 = 〈X,L(Y )〉.

To do this, let Z be a C∞ field defined on a special coordi-

44



Section 2.2: The Sphere Map and the Weingarten Map

nate neighbourhood U of p and let U be the associated coordinate
neighbourhood of p in Rn with coordinate functions x1, . . . , xn. Then

Z =

n−1∑
i=1

gi

( ∂

∂xi

)
, where gi are C∞ real valued functions on U . We

want to extend Z to a C∞ field Z on U , i.e., we want Z so that
Zp = Zp for p in U . Let us assume the coordinate map φ maps U

onto a ball, B, about the origin in Rn, i.e., xi(p) = 0 = ui ◦ φ(p) for all
i. Then if (t1, . . . , tn) is in B, let π : (t1, . . . , tn) → (t1, . . . , tn−1, 0). This
map π (which is C∞) induces a C∞ map σ : U → U by σ = φ−1 ◦ π ◦ φ.

Letting Z =

n−1∑
i=1

(gi ◦σ)
( ∂

∂xi

)
, the field Z is a C∞ extension of Z to U .

Actually the above process allows us to extend an Rn-field Z

that is C∞ on U to a C∞ field Z on U .
Having the existence of such extensions we prove a proposition.

Proposition 2.1. Let U and U be special neighborhoods of p as above
and let Z and Z be C∞ fields on U and U , respectively. Then Z is
an extension of Z (i.e., Zp = i∗(Zp) for p in U ) iff (Zf)|U = Z(f |U ) for
all f in C∞(U,R). If X and Y are C∞ extensions to U of C∞ fields
X and Y on U , then [X,Y ] is a C∞ extension of [X,Y ].

Proof. If Zp = i∗(Zp) for p in U , where i : M → Rn is the inclusion,
then for f in C∞(U,R), (Zf)(p) = Zpf = (i∗(Zp))f = Zp(f ◦ i) = Z(f |U )(p).
Conversely, if the two extreme terms are equal, then the second
equality follows.

For the rest of the proposition consider for p in U

[X,Y ]pf = Xp(Y f)− Y p(Xf) = Xp((Y f)|U )− Yp((Xf)|U )

= Xp(Y (f |U )− Yp(X(f |U ) = [X,Y ]p(f |U ),

thus [X,Y ] is an extension of [X,Y ].

Theorem 2.2. The Weingarten map is self-adjoint.

Proof. Take X and Y in TpM , imbed X and Y in C∞ fields on a
special neighborhood U of p, and extend X and Y to C∞ fields X
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and Y on U as above. Then

〈LX, Y 〉 − 〈X,LY 〉 =
〈
DXN,Y

〉
−
〈
X,DYN

〉
=
〈
DXN,Y

〉
p
−
〈
X,DYN

〉
p

= Xp

〈
N,Y

〉
−
〈
N,DXY

〉
p
− Y p

〈
N,X

〉
+
〈
N,DYX

〉
p

=
〈
DYX −DXY ,N

〉
p

=
〈
[Y ,X], N

〉
p
= 〈[Y,X]p, Np〉 = 0,

since Xp

〈
N,Y

〉
= Xp 〈N,Y 〉 = 0 = Yp 〈N,X〉.

The fundamental forms on M can now be defined in terms of L
and the inner product. If X and Y are in TpM , then

I(X,Y ) = 〈X,Y 〉

!I(X,Y ) = 〈L(X), Y 〉

III(X,Y ) =
〈
L2(X), Y

〉
IV(X,Y ) =

〈
L3(X), Y

〉
etc., and these forms are called the first, second, third, etc. fun-
damental forms on M . Notice M is a Riemannian manifold with
metric tensor defined by the first fundamental form. Since the
inner product is symmetric and L is self-adjoint, the fundamental
forms are all symmetric bilinear functions on TpM×TpM for all p in
M . These forms are C∞ in the sense that if X and Y are C∞ fields
with domain A, then

〈
Lk(X), Y

〉
p
=
〈
Lk(Xp), Yp

〉
is a C∞ real valued

function on A. The first three forms have a direct interpretation
geometrically since L represents the Jacobian of the sphere map.

The algebraic invariants of the linear map L at each point now
define the imbedded geometric invariants of the submanifold M

at each point. Thus the determinant of L at p is the total curva-
ture (Gauss curvature) K(p) of M at p, the trace of L at p is the
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mean curvature H(p), etc. The eigenvalues of L are the principal
curvatures and the eigenvectors of L are the directions of curva-
ture or principal vectors. Since L is self-adjoint there are always
(n−1) independent directions of curvature. If L is a multiple of the
identity map on TpM , then p is an umbilic point of M . If L = 0 at
p we call p a flat point of M . Non-zero vectors X and Y in TpM

are conjugate if 〈LX, Y 〉 = 0. A vector X (not zero) is asymptotic
if it is self-conjugate, i.e., if 〈LX,X〉 = 0. A curve in M is a line of
curvature if its tangent is a principal vector at each of its points.

The following facts come immediately from these definitions.
An asymptotic direction X is a direction of curvature iff LX = 0 iff X
is conjugate to all vectors. Conjugate directions always exist since
if LX 6= 0 then there exists a Y which is orthogonal to LX. If the
second fundamental form 〈LX, Y 〉 is positive or negative definite
no asymptote directions exist. If X and Y are two directions of
curvature belonging to unequal eigenvalues, then X is orthogonal
to Y . The proof of this is standard algebra, i.e.,

0 = 〈LX, Y 〉 − 〈X,LY 〉 = 〈k1X,Y 〉 − 〈X, k2Y 〉 = (k1 − k2) 〈X,Y 〉 ,

so k1 6= k2 implies 〈X,Y 〉 = 0. If X and Y are non-zero indepen-
dent vectors with LX = kX and LY = −kY , then the vectors X + Y

and X−Y are orthogonal asymptotic directions spanning the same
subspace as X and Y . Finally one notices that L must satisfy its
characteristic polynomial, which will also give a relation between
the fundamental forms, i.e., if n = 3, then L2 −HL+K(identity) = 0

and III−H!I+KI = 0.

When X is a principal vector, the Weingarten map says DXN =

kX, where k is a principal curvature, and this equality is classically
called the formula of Rodrigues.

Another classical concept is the Dupin indicatrix at each p in M

which is the subset of TpM consisting of all vectors in X such that
〈L(X), X〉 = ±1.
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Let n = 3 and let X and Y be unit orthogonal principal vectors
in TpM with LX = kX and LY = hY . If Z = aX + bY , then 〈LZ,Z〉 =

ka2 + hb2. Thus the indicatrix is the curve (or curves) in TpM such
that ka2 + hb2 = ±1. Consider the three cases:

1. If K(p) > 0, then h and k have the same sign (for K = hk = detL)
so suppose they are positive. The indicatrix is then an ellipse
determined by ka2 + hb2 = 1, and p is an elliptic point.

2. If K(p) < 0, then h and k have opposite signs, the indicatrix is
two hyperbolas, and p is a hyperbolic point.

3. If K(p) = 0, say k = 0, h > 0, then b = ±1/
√
h gives two straight

lines parallel to the X vector, and p is a parabolic point. (When
k = h = 0, p is an umbilic and a flat point.)

There is a geometric interpretation of the indicatrix as an approx-
imation to the intersection of the surface with a plane which is
parallel and close to the tangent plane; for details see [Str61]
(p.84).

2.3 The Gauss Equation

As in the last section, let M be a hypersurface of Rn, let D be
the natural connexion on Rn, let N be a unit normal field that is
C∞ on M , and let L(X) = DXN for X tangent to M . Let U and
U be special coordinate neighborhoods of a point p in M and Rn

respectively, and let Z be a C∞ extension to U of a C∞ field Z on
U as usual.

If Y is a C∞ field about p in M , and X in TpM , define DXY by

DXY = DXY − 〈LX, Y 〉N. (8)

This is the Gauss equation. First notice DXY is in TpM for

〈DXY,N〉 = 〈DXY,N〉+ 〈DXN,Y 〉 = X〈Y,N〉 = 0.
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since 〈Y,N〉 = 0 in a neighborhood of p. Next notice if X,Y are C∞

on U , then DXY = DXY
∣∣∣
U
and 〈LX, Y 〉N are both C∞ on U , so DXY

is C∞ on U ; because of this, we say D is C∞.
Thus D becomes a candidate to define a covariant differentia-

tion or a connexion on the submanifold M which is defined very
simply from the natural connexion on Rn by decomposing DXY into
its unique tangent and normal components relative to the tangent
space of M . One must now check if the properties (1), (2), (3) and
(4) are satisfied for D, and indeed they are, since they are satisfied
for D and the second fundamental form is bilinear. The proper-
ties (5) and (6) are also valid for D, so D is the natural Riemannian
connection associated with the induced metric (first fundamental
form) on M (see Chapter 6). The proof of the first four properties
is left to the reader, but we now show (5) and (6). Let Y and Z be
fields on a neighborhood U about p, let Y and Z be extensions to
U , and let X be in TpM . Then

(DY Z −DZY )p = (DY Z −DZY )p = (DY Z −DZY )p

= [Y ,Z]p = [Y, Z]p

and
X〈Y, Z〉 = X〈Y , Z〉 = 〈DXY ,Z〉+ 〈Y ,DXZ〉

= 〈DXY, Zp〉+ 〈Yp,DXZ〉.

Thus the natural metric tensor and connexion on Rn induce a
Riemannian metric and Riemannian connexion on the hypersurface
M .

Since the Gauss equation induces a connexion D on M , one can
define parallel vector fields along a curve and geodesics exactly
as in Section 2.1. If σ is a C∞ curve in M with tangent T and Y is a
C∞ field along σ, then Y is parallel along σ if DTY = 0 along σ. The
curve σ is a geodesic if DTT = 0 along σ.

Application of the Gauss equation to the tangent field along a
curve gives two results immediately.
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X

DXY

DXY

N

Y

Figure 2.2: The Decomposition of DXY

Theorem 2.3. Let M be a hypersurface in Rn. A curve in M is a
geodesic in Rn iff it is an asymptotic geodesic in M . A curve in M ,
which is not a geodesic in Rn, is a geodesic in M iff DTT is normal
to M along the curve (whose tangent is T ).

Proof. Let g be a curve in M with tangent T . The Gauss equation
implies DTT = DTT −〈LT, T 〉N . Thus DTT = 0 iff DTT = 0 and 〈LT, T 〉 =
0. And DTT = 0 iff DTT is normal to M .

Corollary 2.4. If M1 and M2 are two hypersurfaces of Rn and g is
a geodesic on both hypersurfaces that is not a geodesic in Rn, on
any parameter interval, then M1 and M2 are tangent along g (i.e.,
their tangent spaces coincide along g).

Proof. Let T be the tangent to g. Since DTT 6= 0 on any parameter
interval, the normals to M1 and M2 determine the same subspace
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on a dense set of the parameter domain. Hence M1 and M2 are
tangent along g.

2.4 The Gauss Curvature and Codazzi-Mainardi Equa-
tions

Let M,N,L,D and D be as is in the previous two sections. Our
current goal is the “theorema egregium” of Gauss. This will show
that the “curvature” is independent of the embedding, and mo-
tivate the definition of Riemannian curvature and curvature of a
general connection. Let X,Y and Z be C∞ fields on an open set
A ∈M . Notice that

DX(DY Z)−DY (DXZ)−D[X,Y ]Z =

(XY z1, . . . , XY zn)− (Y Xz1, . . . , Y Xzn)− ([X,Y ]z1, . . . , [X,Y ]zn)

where Z = (z1, . . . , zn) and zi are C∞ real valued functions on A. This
fact will later verify that the “curvature of Rn is zero.” By applying
the Gauss equation and decomposing the above expression into
tangent and normal parts, one obtains the Gauss curvature 9 and
the Codazzi-Mainardi equations 10, respectively. Thus,

0 = DX(DY Z − 〈LY,Z〉N)−DY (DXZ − 〈LX,Z〉N)−D[X,Y ]Z

= DXDY Z − 〈LX,DY Z〉N −X(〈LY,Z〉)N − 〈LY,Z〉L(X)

−DYDXZ + 〈LY,DXZ〉N + Y (〈LX,Z〉)N + 〈LX,Z〉L(Y )

−D[X,Y ]Z + 〈L([X,Y ]), Z〉N.

Equating tangent and normal parts to zero gives

DXDY Z −DYDXZ −D[X,Y ]Z = 〈LY,Z〉L(X)− 〈LX,Z〉L(Y ) (9)

and
〈DXL(Y )−DY L(X)− L([X,Y ]), Z〉 = 0
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for all Z, so
DXL(Y )−DY L(X)− L([X,Y ]) = 0 (10)

Define
R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z,

and notice 9 implies R(X,Y )Z does not depend on the field nature
of X,Y , and Z. Thus R(X,Y )Z is a vector at p in A which depends
only on Xp, Yp and Zp since these vectors are all that is needed to
compute the left side of 9. Thus R(Xp, Yp) define a linear transfor-
mation on TpM called the curvature of Xp and Yp. The justifica-
tion of this definition is the following theorem, Gauss’ “theorema
egregium.”

Theorem 2.5. Let n = 3 and let X and Y be an orthonormal base of
TpM Then the total curvature K(p) = detLp = 〈R(X,Y )Y,X〉

Proof. Using the Gauss curvature equation 9,

〈R(X,Y )Y,X〉 = 〈LY, Y 〉 〈LX,X〉 − 〈LX, Y 〉 〈LY,X〉 = detL = K(p).

The above theorem is significant because the term 〈R(X,Y )Y,X〉
depends only on the metric 〈−,−〉 and the connexion D, and it is
completely independent of the normal N or the map L. Thus the
total curvature K(p) = 〈R(X,Y )Y,X〉 is an “intrinsic” invariant that
is independent of the “imbedding” (i.e., of N and L ). The theorem
is generalized in Chapter 6.

2.5 Examples

See Figure 2.3 for sketches of (1), (2), (3).

1. Let M be an (n − 1)-dimensional hyperplane in Rn, i.e., let
N = (a1, . . . , an) determine a constant unit normal field on M .
Then L(X) = DXN = (Xa1, . . . , Xan) = 0 for all X at all points
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of M , i.e., L ≡ 0 on all of M . Thus M consists entirely of flat
(umbilic) points , the total curvature K and mean curvature
H (and all others) are identically zero. All the fundamental
forms, except the first, are completely singular. Every vector
is asymptotic and a direction of curvature, and all principal
curvatures are zero.

2. Let M be S, the unit sphere about the origin in Rn, and let
N be the outer normal on S, i.e., if p = (a1, . . . , an) then N(p) =

(a1, . . . , an). Thus the sphere map η is the identity map, η∗ is
also the identity map, and hence L(X) = X for all X. Thus
K ≡ 1, H ≡ (n − 1) on S. All the fundamental forms are equal
to the first fundamental form, all points are umbilic, and all
principal curvatures are unity. Every vector is a direction of
curvature and there are no asymptotic directions.

3. Let M be the cylinder C = {(t1, . . . , tn) ∈ Rn :
∑n−1

1 (ti)
2 = 1} with

N = the “outer” normal. For X = en = (0, 0, . . . , 0, 1) we have
LX = 0, and for X orthogonal to en and tangent to C we have
LX = X. Hence K ≡ 0, H ≡ (n − 1), all principal curvature are
unity except one which is zero, etc.

Figure 2.3: Pieces of Examples (1), (2), (3)

4. Next let M be an open piece of a surface of revolution about
the z = e3-axis in R3 (vaguely: M is obtained by revolving a
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C∞ plane curve about an axis in the plane). Let P be a plane
containing the z-axis and take m in M ∩P (and let us consider
the point m not on the z-axis at first).

Since the normal N lines in P , the vector DXN = L(X) lies in
P and is tangent to M so L(X) = kX and X is a direction of
curvature, where X is the unit tangent to a meridian curve.
From the remarks preceding the examples there is a direction
of curvature orthogonal to X, so the unit vector Y tangent to
the parallel curves is a direction of curvature. The vector field
DXX is zero or orthogonal to X and must lie in the plane P ,
hence DXX = ±k̄1N , so DXX = 0, and we see the meridians are
geodesics. If the parallel curve through m is a geodesic, then
DY Y is normal to M and not zero, since these curves are not
geodesics in R3. But DY Y is orthogonal to e3, the z direction,
hence a parallel curve is a geodesic on M iff the normal N
along the parallel curve is horizontal (i.e., orthogonal to the
z-axis). If m is a point on the z-axis, then every direction X

is tangent to a meridian and hence is a direction of curvature,
so m is umbilic and K(m) ≥ 0.

5. Let us apply the analysis of example 4 to a torus, i.e., let M
be obtained by rotating a circle C in the x, z-plane about the
z-axis here we assume the circle does not intersect the z-axis.

Then the meridians generated by C are geodesic, as is the
minimum length parallel A and maximum length parallel B.
Along B, M has positive curvature, along A the curvature is
negative, and the curvature is zero on the extreme top and
bottom curves E and F where N is constant. Indeed, if r1 is
the radius of A and r2 is the radius of B, then a =

r2 − r1
2

is the
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Figure 2.4: The Torus

radius of C and

K =
1

ar2
=

2

r2(r2 − r1)
on B,

K = − 1

ar1
=

−2

r1(r2 − r1)
on A,

These expressions can be derived as follows. Let X be the
unit tangent field to a circle of radius r about the origin in
R2 (see Figure 2.4) so f(t) = (r cos(t/r), r sin(t/r)) parameterizes
the circle to fit x. Then evaluating a unit outer normal N on
f(t) gives N ◦ f(t) = (cos(t/r),sin(t/r)). Hence,

d
dt (N ◦ f(t)) = 1

r
X,

or if the circle lies on the surface then we see DXN = L(X) =
1

r
X. Now apply this to the circles on the torus.

6. We discuss ruled surfaces and developable surfaces briefly. A
ruled surface is a two-dimensional submanifold M of R3 such
that through each point p in M there passes a segment of a
straight line (the generator through p) which lies in M . When
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the normal field is a parallel field in R3 along the generators,
(thus the tangent plane is constant along generators), then
the ruled surface is a developable surface. Notice we only
consider the C∞ case, although the above definitions can be
generalized.

Let M be a ruled surface, and let X be a C∞ unit vector tangent
to the generator at each point of M . The generators are geodescis
in R3, so DXX = 0, and hence, from the Gauss equation, DXX = 0

and 〈LX,X〉 = 0 (so generators are asymptomatic lines). Let Y

be a unit vector field orthogonal to X in the neighborhood of a
point p, then K = 〈LX,X〉 〈LY, Y 〉 − 〈LX, Y 〉2 = −〈LX, Y 〉2 ≤ 0 in this
neighborhood. Thus a ruled surface has non-positive curvature.
For a developable surface, 0 = DXN = LX so K ≡ 0. A theorem
due to Massey (see Chapter 3) states a closed connected surface
is developable iff K ≡ 0.

We study the neighborhood of a point p in a ruled surface M .
Let f(t) be the C∞ curve through p which is parameterized by arc-
length and is orthogonal to the generators at each point. Let T be
the tangent to f (say T = Y along f ), and let f(0) = p. Then the map
(t, s) 7→ f(t) + sX(t) gives a coordinate system from a neighborhood
of (0, 0) in R2 to a neighborhood of p in M .

Let N be a local unit normal for this coordinate neighborhood.
The unit fields X, T , N give an orthonormal frame along f , and we
next obtain the Frenet formulas for this frame. On f we have

1 = 〈X,X〉 = 〈T, T 〉 = 〈N,N〉 so 0 = T 〈X,X〉 = 2
〈
DTX,X

〉
implies DTX normal to X. Similarly, DTN normal to N and DTT

normal to T . Thus we define functions a(t), b(t), c(t) by

DTT = aX + bN

DTX = −aT + cN

DTN = −bT − cX
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f(t)

Tt

f(t) + sXt

Xt
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Figure 2.5: Ruled Surface

where a =
〈
DTT,X

〉
= T 〈T,X〉 −

〈
T,DTX

〉
= −

〈
T,DTX

〉
, etc. Holding

s constant, we get a curve fs(t) = f(t) + sX(t) on M with tangent

A = T + sDTX = (1− as)T + scN

(note that T (t) and N(t) are vectors at f(t) which are rigidly trans-
lated in R3 to this fs(t) to give A(t)). The tangent space along a
generator is spanned by A and X (and A is orthogonal to X), hence
this tangent space is constant along a generator iff c = 0. The
function c/(c2 + a2) is called the distribution parameter and it is
independent of the particular orthogonal trajectory f (which we
show later). Thus (a) M is developable, (b) K = 0, (c) c = 0, (d)
LX = 0, (note 〈LX, T 〉 = 〈LT,X〉 − c), and (e) DTX is tangent to M ,
are all equivalent for M closed and connected (assuming Massey’s
theorem).

Assuming M is closed (and ruled with c 6= 0), on each genera-
tor there exists a distinguished point called the central point, and
these points determine the curve of striction on the surface. Fix-
ing two generators, say for t1 < t2, we compute the length J(s) of
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an orthogonal trajectory between these two generators by

J(s) =

∫ t2

t1

√
〈A,A〉dt

=

∫ t2

t1

√
1− 2as+ a2s2 + c2s2dt

Let us find the value of s which minimizes J(s), and we get
J ′(s) = 0 if

−2a+ 2(a2 + c2)s = 0

or s = a/(a2 + c2) at t1 as t2 → t1. Hence the curve of stricture is the
curve

f +
a

a2 + c2
X

as a function of t. This is precisely the point on each generator
where the tangent plane is normal to DTX(t) since DTX is orthog-
onal to X we know, and
0 =

〈
DTX,A

〉
= −a + a2s + c2s again gives s =

a

a2 + c2
. As a problem

we leave the formula for the curvature,

K(t, s) =
−c2

(1− 2as+ a2s2 + c2s2)2
,

and hence the central point on each generator is also characterized
as the point where K is a maximum (|K| a minimum). At the central
point,
K = −(a2 + c2)2/c2, which shows the distribution parameter c

a2 + c2
depends only on the generator.

If s = 0 gives the central point on a particular generator, i.e., we
take our orthogonal curve f from this central point, then DTX is
normal to m at s = 0 and a = 0. Thus the distribution parameter
p = 1/c and

K(t, s) = − c2

(1 + c2s2)2
= − p2

(p2 + s2)2

. Along this generator A = T + csN where T and N are vectors
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at the central point, hence the normal N(s) along the generator is
given by

N(s) =
−scT +N√
1 + s2c2

=
−sT + pN√
p2 + s2

Thus if φ is the angle between the normal N(s) and the normal
N at the central point, we have tanφ = s/p, i.e., the tangent of
φ is directly proportional to the distance from the central point.
This is Chasles theorem (1839). This also shows the tangent plane
turns even through 180◦ along a generator (turning 90◦ on either
side of the central point). For references, see [Str61, p. 189] and
[Wil59, p. 107].

We point out we could have viewed the ruled surface discussed
above as being generated by the curve f(t) and the field X(t) along
the curve. To generate surfaces in this way X need not be or-
thogonal to T . Indeed, in case DTT 6= 0, then we generate a sur-
face via (t, s) 7→ f(t) + sT (t), for small s > 0 (or small s < 0), which
we call the tangential developable of the curve f , which si the
edge of regression of these two surfaces. It is a surface, since
A = T + sDTT is independent of X = T (for s 6= 0), and the tangent
space along a generator will be determined by T and DTT for all
s; hence the surface is developable. It is, of course, not a closed
surface in general (see. [Str61, p. 66]).

2.6 Some Applications

Let M be a hypersurface of Rn with unit normal N = (a1, . . . , an)

where each ai − I is a C∞ function on M and
∑n

1 a
2
i = 1. For any

r in R, let
Mr = {p+ rNp : p ∈M}. Thus if p = (p1, . . . , pn) is in M , then

f(p) = p+ rNp = (p1 + ra1(p), . . . , pn + ran(p))
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curve of stricture

Figure 2.6: Hyperboloid of Revolution

is in Mr. The map f is called the natural map of M into Mr, and
if f is univalent, then Mr is a parallel hypersurface of M with unit
normal N , i.e., Nf(p) = Np for all p in M . Let Lr be the Weingarten
map on Nr.

Theorem 2.6. Let f : M →Mr as just described. Then for X ∈ TpM ,
f∗(X) = X + rL(X), Lr(f∗X) = L(X), and f preserves principal direc-
tions of curvature, umbilics, and the third fundamental form. Also

〈f∗X, f∗Y 〉 = I(X,Y ) + 2r !I(X,Y ) + r2 III(X,Y ),

where I, !I, III are the first, second, and third fundamental forms
on M . If k is a principal curvature of M at m in direction X, then
k/(1 + rk) is the corresponding principal curvature of Mr at f(m) in
direction f∗X.

Proof. To compute f∗X, take a curve σ(t) = (b1(t), . . . , bn(t)) with
X = (b′1(0), . . . , b

′
n(0)), and compute the tangent to f ◦ σ at t = 0. Let

N(σ(t)) = (a1(t), . . . , an(t)); then f ◦ σ(t) = (. . . , bi(t) + rai(t), . . . ), and its
tangent at t = 0 is indeed X + rL(X). Also N(σ(t)) = N(f ◦ σ(t)) from
the definition of f and Mr. Thus L(X) = DXN = (a′1(0), . . . , a

′
n(0)) =
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Df∗XN = Lr(f∗X). This shows

IIIr(f∗X, f∗Y ) = 〈Lrf∗X,Lrf∗Y 〉 = 〈LX,LY 〉 = III(X,Y )

Now let X be a unit vector at m ∈M with LX = kX, so
Lr(f∗X) = LX = kX and f∗X = (1 + rk)X. If 1 + rk = 0, then
f∗X = 0 and Lr(f∗X) = kX = 0, so k = 0 and 1 = 0, thus 1 + rk 6= 0 if
Mr is a hypersurface. Hence Lr(f∗X) = (k/(1 + rk))f∗X, which shows
f preserves directions of curvature and umbilics. Finally, one can
verify the expression for 〈f∗X, f∗Y 〉 by direction computation using
f∗X = X + rLX.

Corollary 2.7. In the hypothesis of the above theorem let n = 3,
and let the total curvature and mean curvature of M (and Mr) be
denoted by K (and Kr) and H (and Hr). Then

Kr =
K

1 + rH + r2K
and Hr =

H + 2rK

1 + rH + r2K
.

Theorem 2.8. Let M be a connected hypersurface in Rn consisting
entirely of umbilics. Then M is either an open subset of a hyper-
plane or a sphere. If M is closed, then M is a hyperplane or a
sphere.

Proof. Take p in M and Xp in TpM , Xp 6= 0. Imbed Xp in a C∞ field
X about p and let Y be any other C∞ field about p with Xp and Yp

independent. Let L = fI be the Ewingarten map where f is a C∞

real valued function on M and, I is the identity of each tangent
space. By the Codazzi-Mainardi equation 10,

0 = DX(fY )−DY (fX)− f [X,Y ] = (Xpf)Yp − (Ypf)Xp,

since DXY − DYX = [X,Y ]. The independence of Xp and Xy implies
Xpf = 0. Since M is connected, f must be a constant function on
M (problem 14).

Suppose L = kI, k is constant on M . If k = 0, then L ≡ 0 on M , so
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N is constant on M (DXN = 0 for all X ∈ TpM ) and M must be an
open subset of a hyperplane.

If k 6= 0, then we may assume k > 0 by changing the sign of N
if necessary. Let r = −1/k and let f : M → Rn by f(p) = p + rNp. As
in the preceding theorem, for all X in TpM , f∗(X) = X + rL(X) =

X − (1/k)kX = 0. Thus f∗ = 0, and since M is connected, f is a
constant map. Let c = p − (1/k)Np for any p in M . Then all points
of M are 1/k units from c. Thus M is an open subset of a sphere
about c of radius 1/k.

Problems

23. (i) Let f be in C∞(R2,R). Let M be the graph of f ; thus
M = {(x, y, f(x, y)) : (x, y) ∈ R2}. Let W =

√
(fx)2 + (fy)2 + 1 and

let N =W−1(−fx,−fy, 1). Show X = (1, 0, fx) and Y = (0, 1, fy)

span Mm at all m and N is a unit normal that is C∞ on M .

(ii) Let E = 〈X,X〉, F = 〈X,Y 〉, and G = 〈Y, Y 〉. Show

L(X) = −fxxG− fxyF )X + (fxyE − fxxF )Y

W 3

L(Y ) = − (fxyG− fyyF )X + (fyy − fxyF )Y

W 3

K =
fxxfyy − f2xy

W 4

H = − 1

W 3
(fxxG+ fyyE − 2fxyF ).

(iii) Compute b11 = 〈LX,X〉, b12 = 〈LX, Y 〉, b22 = 〈LY, Y 〉, c11 =

〈LX,LX〉, c12 = 〈LX,LY 〉, and c22 = 〈LY,LY 〉.

(iv) Show

K =
det bij
EG− F 2

=

[
det cij
EG− F 2

]1/2
=

2Fxy − Eyy −Gxx

2W 4
.

Show L2 −HL+KI = 0 where I is the identity map. (Com-
pare with section 3.4).
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24. Compute the invariants for the right helicoid (a ruled surface)
which is the image of the map φ : R2 → R3 defined by φ(u, v) =

(ucos v, usin v, av) for a > 0.

25. Show a curve on a surface is a line of curvature iff the surface
normals along the curve form a developable surface (Result
is due to Monge).
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3. Surfaces in R3

Throughout this chapter, M will denote a surface in R3, i.e., M is
a two-dimensional C∞ submainfold of R3. Let N be a C∞ unit normal
field on M (such an N always exists locally). Let D and D be the
natural connexions on R3 and M , respectively. Let L(X) = DXN

be the Weingarten map for X tangent to M . Let U be the set of
umbilics on M and let V = M − U . Let K and H denote the Gauss
curvature (total curvature) and mean curvature functions on M ,
respectively.

Let h and k be the principal curvature functions on M where
h(p) ≥ k(p) for all p in M . Thus K(p) = detLp = h(p)k(p) and H(p) =

trLp = h(p) + k(p) for p in M .

3.1 Smoothness and the Neighborhood of a non-Umbilic
Point

The first theorem establishes the smoothness of the invariants
of M and the local existence of C∞ orthonormal principal vectors
on V .

Theorem 3.1. The set of umbilics U is closed in M , so its comple-
ment V is open in M . The functions K and H are C∞ on M . The
functions

h =
H +

√
H2 − 4K

2
and k =

H −
√
H2 − 4K

2

are C0 on M and C∞ on V . For any p ∈ V there is a neighborhood
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A of p with A ⊂ V and an orthonormal C∞ base field of principal
vectors on A.

Proof. For any m ∈ M , let B be the domain of a local coordinate
system. By applying the Gram-Schmidt process to the coordinate
vector fields on B, we obtain an orthonormal C∞ base field Z,W

on B. Since L is C∞, the vectors L(Z) = aZ + bW and L(W ) = bZ + cW

are C∞ on B, and hence the functions a, b, and c are C∞ on B. Thus
K = ac− b2 and H = a+ c are C∞ on B, and hence, on M .

The eigenvalues h and k must satisfy the algebraic equation
λ2 − Hλ + K = 0 associated with the characteristic equation of
L. Hence we get explicit global expressions for h and k by the
quadratic formula and they are clearly continuous, since they are
the composite of continuous functions. The set U is precisely the
set where h = k or H2 − 4K = 0, so by continuity, U is closed and V

is open. Since H2 − 4K > 0 on V , the functions h and k are C∞ on V .
For p in V , let B,Z, and W be as in the first paragraph, with

B ⊂ V. We distinguish two cases:

1. If b(p) 6= 0: choose the neighborhood A ⊂ B such that b 6= 0 on A

and let Y ′ = bZ+(h−a)W and X ′ = (a−h)Z+ bW . Then X ′, Y ′ are
C∞ orthogonal non-vanishing fields on A with LY ′ = hY ′ and
LX ′ = k′. Let X and Y be unit fields in directions X ′ and Y ′,
respectively.

2. If b(p) = 0: suppose a(p) > c(p), choose A ⊂ B so a > c on A, and
let Y ′ = (h− c)Z + bW and X ′ = bZ + (c− h)W , etc.

In the next theorem we derive basic expressions for studying
the neighborhood of a non-umbilic point.

Theorem 3.2. Let m be a non-umbilic point on M and let X and
Y be an orthonormal C∞ base field of principal vectors on the
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neighborhood A of m with A ⊂ V and LX = kX,LY = hY on A.
Defining the C∞ functions a and b on A by

a =
Y k

h− k
and b = − Xh

h− k

then DXY = aX,DYX = bY,DXX = −zY,DY Y = −bX

[X,Y ] = aX − bY, and

K = kh =

(
X2h− Y 2k

)
(h− k)− (Xh)(2Xh−Xk) + (Y k)(Y h− 2Y k)

(h− k)2
on A.

Proof. Since 〈X,X〉 = 1, 〈Y, Y 〉 = 1, and 〈X,Y 〉 = 0 on A,
0 = X 〈Y, Y 〉 = 2 〈DXY, Y 〉 so DXY = aX for some C∞ function a, whìch
we compute below. Similarly, DXY = bY for some b. Also
0 = X 〈X,X〉 = 2 〈DXX,X〉 and 0 = X 〈X,Y 〉 = 〈DXX,Y 〉 + 〈X,DXY 〉, so
DXX = −aY , and similarly, DY Y = −bX. Then [X,Y ] = DXY − DYX =

aX − bY .
To compute the expressions for a and b in terms of X,Y, h and

k, we apply the Codazzi-Mainardi equation 10. Thus

DXLY −DY LX = (Xh)Y + haX − (Y k)X − kbY = L([X,Y ]) = akX − bhY.

Equating coefficients of X and Y leads to the expressions for a and
b.

To compute K, first notice

R(X,Y )Y = DX(−bX)−DY (aX)−DaX−bY Y = −(Xb)X−(Y a)X−a2X−b2X.

By the Gauss curvature equations, K = 〈R(X,Y )Y,X〉 = −(Xb)−(Y a)−
a2 − b2, and the final expression for K follows by inserting the
formulas for a and b and computing.
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Corollary 3.3. If m is a non-umbilic critical point of both principal
curvatures, then K(m) =

X2h− Y 2k

h− k
. If H has no umbilics and K

and H are constant (or the principal curvatures are constant) then
K = 0

3.2 Surfaces of Constant Curvature

Let M be a closed connected surface in R3 with constant Gauss
curvature K. Then M is a sphere, a developable surface, or doesn’t
exist, according as K > 0, K = 0, or K < 0, respectively. The cases
when K > 0 (due to Liebmann) and K < 0 (due to Hilbert) were
solved around 1900. It is amazing that the case K = 0 (due to
Massey) was not completely solved until 1962.

Consider the case K > 0. The result of Liebmann follows from
a lemma due to Hilbert.

Lemma 3.4. If K is a positive constant on M , then h cannot have a
relative maximum (and k cannot have a relative minimum) at any
non-umbilic point.

Proof. Suppose m ∈ V and m is a relative maximum for h and a
relative minimum for k (since K = hk = constant). With the notation
Theorem 3.2,
X2h ≤ 0 and Y 2k ≥ 0 at m. Thus by the above corollary, K(m) ≤ 0,
which is a contradiction.

A theorem of Bonnet, proved in Chapter 10, shows the “com-
pact” assumption in the following theorem can be replaced by
“closed”.

Theorem 3.5. A compact connected surface in R3 of constant pos-
itive Gauss curvature is a sphere.

Proof. At all points, the principal curvature h ≥
√
K, since h2 ≥ hk =

K. Since M is compact, h must have an absolute maximum m ∈M ,
and m must be umbilic by Hilbert’s lemma 3.4. Thus h(m) = k(m) =
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√
K, and hence h ≤

√
K on M . Thus h =

√
K, all points are umbilic,

and M must be a sphere.

The preceding theorem can be paraphrased by saying “a sphere
cannot be bent”. For a precise interpretation of this phrase, see
Chapter 8, where a generalization, the rigidty theorem for convex
bodies, is proved.

A proof of Hilbert’s theorem stating that a closed connected
surface with constant K < 0 cannot exist in R3 is in [Wil59]. Here
again, the compact case is easily disposed of by the first corol-
lary of the following theorem; indeed, no compact M exists with
variable K ≤ 0 on M .

Theorem 3.6. On a compact surface in R3 there is a point m with
K(m) > 0.

Proof. Let r(p) = |p| give the distance from a point p ∈ R3 to the
origin. Then r ◦ i is a continuous function on the compact surface
M so it takes on a maximum at a point m ∈ M . By a rotation
(orthogonal transformation) of R3, we may assume m lies on the z-
axis (or u3-axis). Let N be a C∞ unit normal toM on a neighborhood
of m with Nm = (0, 0, 1). Let X be any unit principal vector at m with
L(X) = DXN = kX.

Let σ(t) = (f(t), g(t), h(t)) be a C∞ curve on M with unit tangent
vector X at t = 0; thus X = (f ′(0), g′(0), h′(0)). Since m is an absolute
maximum of u3 ◦ i = z ◦ i on M , h′′(0) < 0. Letting X be the tangent
to σ, we have at m, DXX = (f ′′(0), g′′(0), h′′(0)). Decomposing this
vector into tangent and normal components, we get, by the Gauss
equation,

−〈LX,X〉N = (0, 0,−k) = (0, 0, h′′(0)),

so k = −h′′(0) > 0.
Since all principal curvatures are greater than zero at m, K(m) >

0.
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Notice the theorem is true for any compact hypersurface in Rn

with a trivial modification of the proof.

Corollary 3.7. There is no compact hypersurface in Rn with non-
positive Gauss curvature at all points.

Corollary 3.8. There is no compact minimal (H = 0) surface in R3.

Proof. If H = 0, then k = −h and K = −h2 ≤ 0.

Before considering the case K = 0, recall that a generator on a
surface M is a straight line in R3 that lies on M with the normal to
M constant along the line. A developable surface is a ruled surface
with the normal constant along the ruling lines in the surface. If
a developable surface is closed, then it has a generator through
each point.

Theorem 3.9. Let M be a closed connected surface in R3 with K = 0

on M . Then either M is a plane, or through each point of M passes
a unique generator and all generators are parallel in R3. Moreover,
the mean curvature is constant along generators, and hence the
boundary of the umbilic set is a union of these generators.

Proof. SupposingM is not a plane; then the set V is non-empty. Let
A be a connected neighbourhood in V as described in theorems 3.1
and 3.2. Since H does not vanish on V and A is connected, we
may assume H = h > 0 while k = 0 on A. Theorem 3.1 gives an
orthonormal pair of C∞ fields X and Y on A, with LX = 0 and
LY = HY on A. Since Y k = 0 on M , referring to theorem 3.2 we
have a = 0 on A, so DXY = 0 and DXX = 0 on A. By the Gauss
equation, DXX = DXX−〈LX,X〉N = 0 on A. Thus the integral curves
of X in A are straight line segments in R3. Since M is closed, the
continuation of these line segments must lie in M . Hence for p in
V there is a unique line Gp through p with Gp ⊂ M . We next show
Gp ⊂ V .

On the neighborhood A of p, by theorem 3.2,
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K = 0 =
X2H

H
− 2(XH)2

H2
= −HX2

(
1

H

)
.

Hence if s is the arc length on Gp in the direction X with s = 0 at
p, then

1

H
= cs+ d =⇒ H =

1

cs+ d
for points in Gp ∩A.

If there was an umbilic point at s′ on Gp then H(s′) = 0. At
s′′ = inf{s′ : s′ is umbilic}, H(s′′) = 1/(cs′′ + d) 6= 0, since H is continu-
ous. Hence there are no umbilics on Gp, Gp ⊂ V , and to avoid an
impossible singularity in H at s = −c/d, it follows H is constant on
Gp.

After extending X and Y along Gp by letting X be the unit tan-
gent to Gp, an overlapping neighborhood argument will show X

and Y remain principal vectors; hence L(X) = 0 and L(Y ) = HY on
Gp. Then DXN = L(X) = 0 implies N is constant on Gp, so Gp is a
generator.

In the neighborhood A, since H is constant in the X direction,
by theorem 3.2, DYX = 0, and so DYX = DYX − 〈LX, Y 〉N = 0. Thus
X is parallel in R3 along an integral curve of Y , which implies all
generators through points in A are parallel. This implies all genera-
tors in one connected component of V must be parallel by another
overlapping neighborhood argument. Hence the boundary of one
connected component of V consists of two (or just one) lines paral-
lel to the generators in that component. Consider now a connected
component U1 of the umbilic set. If U1 has a non-empty interior
in M , then this interior is an open surface of umbilics with K = 0,
and hence it is an open subset of a plane in R3. This open plane
subset is bounded by two generator lines in the boundary of V ,
and these generator lines cannot intersect (by the uniqueness of
the generators through points in V and its boundary), and hence
they are parallel. Thus parallel generators are defined through all
points of M .
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Corollary 3.10. A closed connected surface is a developable sur-
face iff its Gauss curvature is identically zero.

Problem 26 provides additional theorems leading to surfaces
with constant K and H, and it is hoped that by now their proofs
would provide little difficulty. Another “classic” type of argument
is provided by the following theorem and some of the theorems in
the next section.

Theorem 3.11. Let M be a closed connected surface whose sphere
map (Gauss map) is strictly conformal. Then M is a sphere or a
minimal surface with negative curvature. If M is compact, it must
be a sphere.

Proof. Let η : M → S be the sphere map. Since η is strictly con-
formal, there is a C∞ positive real valued scale function F on M

with
〈η∗X, η∗Y 〉 = 〈LX,LY 〉 = F (m) 〈X,Y 〉

for all X,Y in TmM for all m in M . Hence
〈
L2(X)− F (m)X,Y

〉
= 0 for

all Y so L2(X) = FX for all X. One always has L2 − HL + KI = 0,
where I is the identity map; hence HL = (K+F )I. If H(m) 6= 0, then m
is an umbilic and K(m) = H2(m)/4 > 0. If m is umbilic and H(m) = 0,
then K(m) = −F (m) < 0, but an umbilic K(m) = k2(m) ≥ 0 always.
Thus the umbilic set U is exactly the set of m where H(m) 6= 0, and
hence U is open and closed. Since M is connected, either M = U

and M is a sphere (F > 0 rules out a plane) or M = V , H = 0, and
K = −F < 0.

The last assertion of the theorem follows from corollary 3.7.

3.3 Parallel Surfaces (Normal Maps)

Let us state a standard hypothesis for some theorems (and
problems on “parallel surfaces’): M is a closed connected surface
in R3 with C∞ unit normal N , r is a non-zero real number, and f is
a map f :M → R3 defined by f(p) = p+Np (see section 2.6).
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Theorem 3.12. With the standard hypothesis, if f is strictly con-
formal, then M is a sphere, plane, or has constant mean curvature
H = −2

r
with no umbilics.

Proof. From section 2.6, if X ∈ TmM , then f∗(X) = X + rL(X). Since
f is strictly conformal, there is a C∞ real-valued function F on M

with

〈f∗X, f∗Y 〉 = F (m) 〈X,Y 〉 =
〈
X + 2rLX + r2L2X,Y

〉
for all X,Y in TmM for all m in M . Hence r2L2 + 2rL+ (1− F )I = 0

and, as always, L2 −HL+KI = 0, so

(
H +

2

r

)
L =

[
K − 1− F

r2

]
I.

If H(m) + 2/r 6= 0, then m is an umbilic, and, indeed,
U = {m ∈ M : H(m) 6= −2/r}. For if m umbilic and H(m) = −2/r = 2k,
then

k = −1

r
,K =

1

r2
,K − 1− F

r2
=
F

r2
= 0

, and so F (m) = 0, which is impossible. Thus M = U or M = V , and
the only possibilities give the conclusion of the theorem.

Theorem 3.13. With the standard hypothesis, if f preserves the
second fundamental form, then M is a plane.

Proof. From section 2.6, for all X and Y in TmM ,

〈LX, Y 〉 = 〈Lrf∗X, f∗Y 〉 = 〈LX, Y + rLY 〉

thus 〈LX, rLY 〉 =
〈
X, rL2Y

〉
= 0 for all X and Y , and hence L2 = 0.

Thus the principal curvatures are zero, L = 0, and M is a plane.

Similar results are given as problems. The following theorem
is due to Bonnet, and the examples in the next section show the
hypothesis is not vacuous.
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Theorem 3.14. Let M be a surface of constant positive Gauss cur-
vature K with no umbilics. Let r1 = 1/

√
K and r2 = −1/

√
K define

parallel sets M1 and M2 respectively. Then M1 and M2 are immer-
sions of M which have constant mean curvature

√
K and −

√
K,

respectively. If M ′ is a surface with constant mean curvature H

(non zero) and non-zero Gauss curvature, letting r = −1/H yields
a parallel set that is an immersion of M ′ with constant positive
Gauss curvature H2.

Proof. The proof is a corollary to the formulas for Hr and Kr in
section 2.6. The special assumptions avoid trivial cases (sphere or
cylinder) and singularities.

For the first part, f∗ is non-singular, since for principal vectors

f∗X = (1 + rk)X and 1 + rk = 1± k√
K

6= 0,

since there are no umbilics. Then

H1 =
H + 2

√
K

2 +H/
√
K

=
√
K,

and similarly, H2 = −
√
K.

For the second part, f∗ is non-singular, since 1 + rk = 1− k/H = 0

would imply k = H, so the other principal curvature is zero and
K = 0 contrary to the hypothesis. Then

Kr =
K

1− 1 +K/H2
= H2

.

3.4 Examples (Surfaces of Revolution)

Some general methods for computations with “parameterized”
surfaces are introduced in this section. Let A be an open set in R2

and let φ : A→ R3 be defined by the three real-valued slot functions
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f , g and h, so
φ(u, v) = (f(u, v), g(u, v), h(u, v)) for (u, v) ∈ A. Write Tu = (fu, gu, hu),
where fu =

∂f

∂u
, Tuv = (fuv, guv, huv), etc. Notice Tu = φ∗

( ∂
∂u

)
is the

tangent to the u-parameter curves on φ(A). Let us assume Tu×Tv 6=
0, where “×” is the cross-product of advanced calculus; thus φ is
an immersion of A into R3. Let N = (Tu×Tv)/W with W = |Tu×Tv| 6= 0

on A.
To compute the Weingarten map L associated with N , notice

L(Tu) = DTu(N) = Nu. Notice

〈L(Tu), Tu〉 = 〈Nu, Tu〉

=W−1 〈(Tuu × Tv) + (Tu × Tuv)−WuN,Tu〉

= −〈Tuu, N〉 .

Similarly, 〈L(Ti), Tj〉 = −〈Tij , N〉 with obvious values of i and j.
In case Tu and Tv are orthogonal,

L(Tu) = −〈Tuu, N〉
〈Tu, Tu〉

Tu − 〈Tuv, N〉
〈Tv, Tv〉

Tv

and similarly for Tv; hence,

H = −〈Tuu, N〉
〈Tu, Tu〉

= −〈Tvv, N〉
〈Tv, Tv〉

and

K =
〈Tuu, N〉 〈Tvv, N〉 − 〈Tuv, N〉2

〈Tu, Tu〉 〈Tv, Tv〉
.

A little more computation is necessary to determine the matrix
for L in terms of Tu and Tv when they are not orthogonal.

Specializing further, let f be a positive (at least C2) function,
and for u > 0 let

φ(u, v) = (ucos v, usin v, f(v))
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define a “surface of revolution”. Applying the above analysis,
one sees directly that Tu and Tv are principal vectors and K =

f ′f ′′

u[1 + (f ′)]2
where f ′(u) = df

du . To find surfaces of constant curvature

one must solve the differential equation f ′f ′′ = uK[1+ (f ′)]2, a task
that is left to reader via several problems. For more details and
pictures, see [Str61].

3.5 Lines of Curvature

In this section we place some results involving lines of curva-
ture, i.e., curves whose tangent vectors are principal directions of
curvature.

Definition. A triply orthogonal system of surfaces in a neighbor-
hood U of R3 is a family of surfaces such that through each point
of U there passes exactly three members of the family whose
normals are mutually perpendicular.

Theorem 3.15 (Dupin). Intersecting surfaces from a triply orthog-
onal system intersect along a line of curvature.

Proof. Let S1, S2 and S3 be mutually orthogonal families of surfaces
with unit normals Ni, respectively. Let LiX = DXNi, as usual. The
field N3 is a tangent to the intersection of S1 and S2, so one must
show N3 is a principal direction on S1 and S2 or Li(N3) = aiN3 for
i = 1, 2. This is equivalent to showing Li(N3) is orthogonal to N1

and N2 for i = 1, 2. To be specific, consider L1(N3). Since L1(N3) is
tangent to S1, 〈L1N3, N1〉 = 0. While

〈L1N3, N2〉 =
〈
DN3

N1, N2

〉
= −

〈
−N1,DN3

N2

〉
= −〈N1, L2N3〉 = −〈L2N1, N3〉 ,

since L2 is self-adjoint. Thus by symmetry, as one cyclically per-
mutes the indices,

〈L1N3, N2〉 = −〈L2N1, N3〉 = + 〈L3N2, N1〉 = −〈L1N3, N2〉

76



Section 3.5: Lines of Curvature

Hence 〈L1N3, N2〉 = 0.

Examples of triply orthogonal coordinate systems are given by
the coordinate surfaces in rectangular coordinates, cylindrical co-
ordinates, and spherical coordinates. Another example is provided
by a system of confocal quadrics, i.e., the surfaces

3∑
i=1

(xi)
2

ai − λ
= 1 with a1 < a2 < a3 fixed,

are orthogonal for unequal values of λ ([Str61, p. 100]). The classic
work in this area is by Darboux.

Theorem 3.16 (Liouville). A conformal diffeomorphism of R3 onto
R3 maps spheres into spheres.

Proof. Let S be a sphere. For p ∈ S, take an orthogonal family
of curves on S and use the normal direction to S to generate an
orthogonal family of surfaces. Adding in the “parallel” surfaces to
S, one obtains a triply orthogonal system about p. Let f be a map
in question, so f maps a neighborhood of p into a triply orthogonal
system of surfaces about f(p) on f(S). By Dupin’s theorem 3.15,
the images of our original family of curves on S must be lines of
curvature on f(S). But we may choose an orthogonal family of
curves on S to pass through any orthonormal pair of vectors X

and Y at p. Hence all vectors tangent to f(S) and f(p) are principal,
and f(p) is an umbillic of f(S). Thus f(S) is completely umbillic, and
since it is compact and connected it must be a sphere.

The differentiability hypothesis in the above theorem is much
too strong. The theorem can be used to show a conformal map of
R3 onto R3 is a combination of similarities and isometries (also due
to Liouville). For more details see [Gug12, p.225].

We next discuss the behaviour of the normal lines (in R3) to
a surface M along a line of curvature C. Let k be the principal
curvature of M along C with respect to the unit normal field N ,
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and let X be a unit tangent to C. If k ≡ 0 on C, then DXN =

LX = kX = 0 implies N is a constant field (in R3) along C, and C

is a plane curve (see section 6.3); thus the normal lines form a
“cylinder”, a developable surface. If k is a constant ( 6= 0) along C,
let C(t) be the parameterization of C by arc length in the direction
X, so X(t) = C ′(t) =

d
dtC. Then kX = kC ′; thus all the normal

lines along the curve pass through a single point (and thus form a
“cone”). If k 6= 0 and k′ 6= 0 along C, then let B(t) = C(t) + f(t)N(t),
so B′ = X + fkX + f ′N , and choosing 1 + fk = 0 or f(t) = −1/k(t),
we obtain a curve B whose tangent developable gives the normal
lines along C.

When both principal curvatures k and h are non-zero and non-
constant in a neighborhood of p, then the points p − (1/k)N and
p − (1/h)N are called the centers of principal curvature of p on M .
The loci of the centres of principal curvature are called center
surfaces (see [Str61, p. 95]).

Problems

All surfaces are in R3.

26. (i) If M is a closed connected surface with K = 0 and H con-
stant, show M is a plane or a right circular cylinder.

(ii) If M has no umbilics and K and H are constant, show M

is a right circular cylinder.

(iii) If I = !I or if I = III, show M is a sphere of radius one, and
vice versa.

(iv) If !I = III, show M is a sphere of radius one, a plane, or a
right circular cylinder of radius one.

27. For u <
∣∣∣1
b

∣∣∣ and b > 0, let

f(u) =

∫ u

0

bt√
1− b2t2

dt
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and let φ : (u, v) 7→ (ucos v, usin v, f(v)). Show that the surface
of revolution determined by φ for 0 < u <

1

b
is an open subset

of a sphere with curvature b2.

28. For 0 < u <
1

b
and b > 0, let

f(u) =

∫ b−1 log bu

0

√
1− e2btdt.

Show that the surface of revolution induced by f has constant
curvature −b2 and draw its graph (tractrix).

29. Find a surface of constant positive curvature that is not an
open subset of a sphere.

30. Show a surface is minimal (H = 0) iff there are orthogonal
asymptotic vectors at each point.

31. Let f(u) = cosh−1
u for u > 1, and show the surface of revolu-

tion induced f (catenoid) is a minimal surface (H = 0).
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4. Tensors and Forms

4.1 Tensors and Forms

The material in the first three chapters was based on a minimum
amount of structure, i.e., manifolds, functions, and vector fields;
moreover, there was a strong bias on hypersurfaces in Euclidian
space. By the time the reader should be at home with these con-
cepts, and before discussion general connexions on manifolds, it is
convenient to define tensors and forms. They are there, and they
are useful. At times in the past, one notices a strong compulsion
to seek out and label tensors ad nauseum, and objects that were
not tensors were eyed with suspicion. In a sense, this chapter is
the “7th” section of Chapter 1; it is just more structure that a C∞

manifold has automatically, and Chapter 7 continues the theme.
It is hoped by breaking the definitions up they become more di-
gestible.

Let M be a C∞ n-manifold throughout this chapter, and let m be
a point in M . Since the tangent space TmM at m is an n-dimensional
vector space, the theory of linear algebra can be applied to define
tensors and forms. A p-covariant tensor at m (for p > 0) or a p-
co tensor at m is a real valued p-linear (i.e., linear in each slot)
function on TmM × TmM × · · · × TmM (p copies). Thus α is a 2-co
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tensor at m if
α(X + Y, Z) = α(X,Z) + α(Y, Z)

α(X,Y + Z) = α(X,Y ) + α(X,Z)

α(rX, Y ) = α(X, rY ) = rα(X,Y )

for all X, Y and Z in TmM and r ∈ R. In a similar way, one defines
a V -valued p-co tensor at m, where V is any vector space over R;
indeed, V could be TmM itself.

Let T∗
mM be the dual space of TmM . Thus T∗

mM is the set of real
valued 1-co tensors at m, or the set of linear functionals from TmM

into R, and T∗
mM is endowed with its natural vector space structure

(i.e., one adds functions by adding their values and multiplies by a
constant in an obvious way). Similarly, the set of p-co tensors at
m, denoted by T0,p

m M1, is a vector space over R. A p-contravariant
or p-contra tensor at m (for p > 0) is a real valued p-linear function
on (T∗

mM)p, the cross product of p copies of T∗
mM , and the natural

vector space formed by p-contra tensors at m is denoted by Tp,0
m M .

Define T0,0
m M = R. (The sets of p-co tensor and p-contra tensors on

any vector space W are denoted by T0,pW and Tp,0W , respectively.)
Again, V -valued p-contra tensors are defined analogously. Finally, a
p-co and q-contra tensor at m is a (p+q)-linear real valued function
on (TmM)p × (T∗

mM)q, and the vector space of these tensors is
denoted by Tq,p

m M . If p and q are greater than zero, elements of
Tp,q are called mixed tensors. Notice that a vector at m is a 1-
contra tensor at m. Similarly, there is a special name for a 1-co
tensor at m, for it is called a 1-form at m.

A tensor is symmetric iff its value remains the same for all pos-
sible permutations of its arguments (thus only Tp,0 or T0,p tensors
can be symmetric). A tensor is skew-symmetric or alternating iff
its value after any permutation of its arguments is the product of

1In the original book, the tangent space was notated Mm, and Tp,qV denoted the
(p, q) tensors over V . So the original book had Tp,q(Mm) to denote this. However
as we decided to change notations for tangent space, and since Tp,q(TmM) does
not look good, we changed the notation here. So whenever we say Tp,q

m M , what is
really meant is (p, q) tensors over TmM .
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its value before the permutation and the sign of the permutation.
For example, let α be a 3-co tensor at m and let π be a permutation
of the set {1, 2, 3}. Then α is symmetric iff

απ(X1, X2, X3) = α(Xπ1, Xπ2, Xπ3) = α(X1, X2, X3)

for all permutations π and all vectors Xi in TmM . When απ is de-
fined by the first equality in the above line, α is alternating iff
απ = (−1)πα, where (−1)π is the sign of the permutation π. Then a
p-form at m (for p > 0) is an alternating p-co tensor at m, and the
set of p-forms at m is denoted by Ωp

m(M). A 0-form at m is a real
number; thus Ω0(W ) = R for any vector space W over R. A p-form
is said to be of degree p.

Tensor fields and C∞ tensor fields are now defined in a way that
is analogous to the definition of a vector field, once a vector was
defined. For example, a p-co tensor field on a set U is a mapping
that assigns to each m in U a p-co tensor at m. A p-co tensor field
α on a set U is C∞ iff U is open and for all sets of C∞ vector fields
X1, . . . , Xp on U , the function

[α(X1, . . . , Xp)](m) = αm(X1(m), . . . , Xp(m))

is a C∞ function on U . A C∞ p-form field on an open set U is called
a differential p-form on U .

The tensor product of covariant tensors is defined as follows:
if α in T0,pW and β in T0,qW , then α ⊗ β is the element in T0,p+qW

defined by

(α⊗ β)(X1, . . . , Xp+q) = α(X1, . . . , Xp)β(Xp+1, . . . , Xp+q)

for all Xi in W . Notice that

• (α1 + α2)⊗ β = (α1 ⊗ β) + (α2 ⊗ β),

• α⊗ (β1 + β2) = (α⊗ β1) + (α⊗ β2),
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• (rα)⊗ β = α⊗ (rβ) = r(α⊗ β) for r in R,

• However, in general, α⊗ β 6= β ⊗ α

• (α⊗ β)⊗ γ = α⊗ (β ⊗ γ).

Thus the tensor product is bilinear and associative but not sym-
metric. The tensor product of contravariant tensors or mixed ten-
sors is defined analogously, but the details are omitted since these
products are rarely used in this study.

If α and β are forms of degree p and q, respectively, then the
exterior, wedge, or Grassman product α ∧ β is defined to be the
(p+ q)-form

α ∧ β =

(
1

p!q!

)∑
(−1)π(α⊗ β)π,

where the sum is taken over all permutations π of the set {1, 2, . . . , p+
q}. In problem 35 there is an expression for α ∧ β that avoids divi-
sion. Notice that

• α ∧ β = (−1)pqβ ∧ α,

• α ∧ (β1 + β2) = α ∧ β1 + α ∧ β2, where βi are forms of the same
degree,

• (α ∧ β) ∧ γ = α ∧ (β ∧ γ) which is proved by using problem 35.

To continue the definitions in terms of the abstract vector space W
over R, the tensor algebra TW over W and the Grassman algebra
(exterior algebra) Ω(W ) over W are defined as the weak direct
sums

TW =
∑
p,q≥0

Tp,qW and Ω(W ) =
∑
p≥0

Ωp(W ).

By a weak direct sum,
∑

I Mi of modules over an index set I, one
means the set of formal finite linear combinations of elements
m1 +m2 + · · ·+mk where each mi in Mi; or more precisely,∑
I

Mi =
{
f ∈

∏
I

Mi : f(i) = 0 for all but a finite number of elements i ∈ I
}
,
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and the one writes f = m1+m2+ · · ·+mk if f(i) = mi for i = 1, . . . , k and
f(j) = 0 for j 6= 1, . . . , k, (see [Che56] and [Jac13] for more details).
The tensor multiplication and the exterior product can be extended
distributively to TW and Ω(W ), respectively, thus making them
algebras over R.

If U is an open set in the manifold M , let Tp,qU be the set of C∞

p-contra and q-co tensor fields on U , and let TU and Ω(U) be defined
analogously. On the other hand, let F be the ring of C∞ real valued
functions on U and let Xu be the Fu-module of C∞ vector fields on
U . Then the above definitions can be extended to define the Fu-
modules Tp,qXu and Ωp(Xu) for p, q ≥ 0, where T0,0Xu = Ω0(Xu) = Fu.
The next theorem and its corollary are designed to illuminate the
relation between TU and TXu. To accomplish this, let us define an
open set V in M to be framed if there exists a C∞ base field on V ,
i.e., a set of n C∞ vector fields e1, . . . , en on V that are independent
at each point of V .

Theorem 4.1 (characterization of C∞ tensors). If U is a framed open
set in M , then Tp,qU is isomorphic to Tp,qXu in a natural way.

Proof. Let e1, . . . , en be a C∞ base field on U , and let w1, . . . , wn be
the dual C∞ 1-forms on U (see problem 32). It is sufficient to
illustrate the proof for T0,pXU where p > 0, since the other cases
are analogous. Consider α in T0,p, and let

α =
∑

1≤ij≤n

α(ei1 , ei2 , . . . , eip)[wi1 ⊗ wi2 ⊗ · · · ⊗ wip ],

be an element in T0,pXU defined by

[α(X1, . . . , Xp)](m)

=
∑

1≤ij≤n

[α(ei1 , . . . , eip)](m)[wi1(X1(m))wi2(X2(m)) · · ·wip(Xp(m))].

where Xi are C∞ fields on U . Then α = α as elements of T0,pXU ,
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for if Xi are in XU , then the function

α(X1, . . . , Xp) = α

( n∑
i1=1

wi1(X1)ei1 ,

n∑
i2=2

wi2(X2)ei2 , . . . ,

n∑
ip=p

wip(Xp)eip

)
=

∑
1≤ij≤n

wi1(X1)wi2(X2) · · ·wip(Xp)α(ei1 , . . . , eip),

since α is multilinear over FU and each wj(Xi) is a function in FU .
But α is only an element of T0,pU , and notice [α(X1, . . . , Xp)] de-

pends only on the vectors X1(m), . . . , Xp(m) and not on the fields
X1, . . . , Xp. Thus the map α 7→ α defines an isomorphism of T0,pXU

onto T0,pU .

One can “roughly” paraphrase the above theorem by saying
that an FU -multilinear function on vector fields on U is actually
a smooth piecing together of R multilinear functions on TmM for
each m in U .

Corollary 4.2. Let U be open in M . Let α be a map that assigns
to each framed open set V ⊂ U an element αV in Tq,pXV with αV =

αW in Tq,p(V ∩W ) for all open framed V and W contained in U . Then
there is a unique tensor α in Tp,qU such that α|V = αV for each
framed open V ⊂ U . Moreover, if m in U and X1, . . . , Xp are in TmM

while z1, . . . , zq are in T∗
mM , then

αm(X1, . . . , Xp, z1, . . . , zq) = [aV (X1, . . . Xp, z1, . . . zq)](m), (*)

Proof. Use (*) to define αm at any m in U . If W is any other framed
open neighborhood of m, then αm = (αV )m = (αW )m, and one need
only know the values of fields and forms at m in order to evaluate
both of the tensors on the right.

If the reader will become familiar with tensors and compui-
tations involving their linearity via some of the problems, then
the above theorem and corollary should become more natural.
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To close this chapter we study the maps on tensors induced
by a C∞ map f : M → M ′, where M is a C∞ n-manifold and M ′ is a
C∞ n′-manifold. Because the Jacobian f∗ maps vectors on M into
vectors on M ′, it induces a map f∗ of covariant tensors(and forms)
on M ′ into covariant tensors (and forms) on M . If g is in T0,0U ′ = FU ,
for open U ′ on M ′, then f∗(g) = g ◦ f is a C∞ real valued function
in FU where U = Ω−1(U ′). If α is a p-co tensor at f(m) in M ′, then
(f∗α)m is the p-co tensor at m defined on X1, . . . , Xp in TmM by

(f∗α)m(X1, . . . , Xp) = αf(m)(f∗X1, . . . , f∗Xp).

If α is C∞ on the open set U ′ ⊂M ′,t then f∗α is C∞ on the open
set f−1(U ′) ⊂ M . In the next paragraph we prove this for a 1-form
α and leave the other cases to the problems.

Let α be a C∞ 1-form on U ′, let X be any C∞ vector field on
U , and we show that (f∗α)(X) is a C∞ function on U . Take m ∈ U ,
let x1, . . . , xn be a coordinate system about m with domain V ⊂ U ,
and let y1, . . . , yn′ be a coordinate system about f(m) with domain
V ′ ⊂ U ′. Define C∞ functions a1 on V and bj on V ′ by

X =

n∑
1

ai

( ∂

∂xi

)
and α =

n′∑
1

bj(dyj), where dyr
( ∂

∂ys

)
= δrs = 0 or 1,

according as r 6= s or r = s, respectively (see problem 32). Then on
V ,

(f∗α)(X) =
∑

ai(bj ◦ f)
∂(yi ◦ f)
∂xi

for i = 1, . . . , n and j = 1, . . . , n′, and since the right side is a C∞

function on V , (f∗α)(X) is C∞ on V , and hence f∗α is C∞ on U .
Finally, one checks that

• f∗(α1 + α2) = f∗α1 + f∗α2,where αi are tensors of the same de-
gree.

• f∗(γ1 ⊗ γ2) = f∗(γ1)⊗ f∗(γ2), where γi are any covariant tensors.
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• f∗(β1 ∧ β2) = (f∗β1) ∧ (f∗β2),where βi are alternating covariant
tensors.

Thus f∗ : Ω(M ′) → Ω(M) is a degree preserving exterior-algebra map
of the C∞ forms on M ′ into the C∞ forms on M .

There are certain natural tensors on every manifold called uni-
versal tensors. These are mixed tensors that let the arguments
“work on each other.” For example, let I be the 1, 1-tensor
I(w,X) = w(X) for X in TmM and w in T∗

mM . Another is the 2, 2-
tensor E(w1, w2, X1, X2) = w1(X1)w2(X2), etc.

The 1,1-tensors, T1,1W , over a vector space W have a natural
interpretation, for there is a natural isomorphism of T1,1W with the
group, HomR(W,W ), of linear transformations of W into itself. If B
is in T1,1W , then let B be the linear map

B(Zi) =

n∑
j=1

B(wj , Zi)Zj ,

where Z1, . . . , Zn is a base of W with the dual base w1, . . . , wn of W ∗

(see problem 36).

Problems

In these problems, W is an n-dim real vector space and M is a
C∞ n-manifold.

32. Let e1, . . . , en be a base of W . For i = 1, . . . , n, let wi(ej) = δij,
where δij = 0 if i 6= j and δii = 1. Show w1, . . . , wn is a base of
W ∗, and

Θ =

n∑
i=1

Θ(ei)wi for Θ ∈W ∗

.

33. (i) Let e1, . . . , en be a base of W , and let w1, . . . , wn be the dual
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base of W , (wi(ej) = δij). If α ∈ T0,2W , show

α =

n∑
i,j=1

α(ei, ej)wi ⊗ wj ;

thus α is determined by its values on a basis.

(ii) If f1, . . . , fn another base, let α(ei, ej) = aij, α(fi, fj) = bij and

fj =
n∑

i=1

cijei. Show

bij =

n∑
r,s=1

cricsjars

.

34. (i) Show T1,0W is isomorphic to W .

(ii) Show Tp,1W has dimension (p+ q)n.

(iii) Show Ωp(W ) has dimension
(
n

p

)
=

n!

p!(n− p)!
.

35. Let α in Ωp(W ) and β in Ωq(W ). If X1, . . . , Xp+q in W , show

α ∧ β(X1, . . . , Xp+q) =
∑

(−1)πα(Xπ1
, . . . , Xπp

)β(Xπp+1
, . . . , Xπp+q

)

where the sum is over all shuffle permutations π for p and q,
i.e., if
1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ p+ q, then πi < πj .

36. (i) Show T1,1W is isomorphic to HomR(W,W ), the set of all
R-linear maps of W into W , via the above map B 7→ B, and
show this map is independent of the base Zi.

(ii) Show the universal tensor I in T1,1W corresponds to the
identity map on W .

37. If e1, . . . , en is a C∞ base field on U in M , and w1, . . . , wn is the
set of dual 1-forms on U , show each wi is C∞ on U .
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38. Let f be in C∞(M,R). For p in M and X in Mp, let (df)pX = Xf .2

(i) Show (df)p is a 1-form at p.
(ii) If x1, . . . , xn is a coordinate system with domain U , show

dx1, . . . ,dxn is the dual base to ∂

∂x1
. . .

∂

∂xn
and

df =

n∑
i=1

∂f

∂xn
dxi on U.

(iii) Show df is C∞ on M .
(iv) Show d(f+g) = df+dg and d(fg) = fdg+gdf for g in C∞(M,R).
(v) If y1, . . . , yn is also a coordinate system on U and

w =

n∑
1

aidxi =
n∑
1

bjdyj ,

show
bj =

n∑
i=1

∂xi
∂yj

.

(vi) If α =
∑
aijdxi ∧dxj =

∑
bijdyi ∧dyj, find expressions for aij

in terms of bij
(vii) If g in C∞(M,M ′), show g∗ ◦ d = d ◦ g∗ on Ω0(M ′).

39. If w1, . . . , wn is a base of T∗
pM , show there is a coordinate system

x1, . . . , xn about p with (dxi)p = wi for all i.

40. Let T∗M be the set of all ordered pairs (m,w) for m ∈ M and
w ∈ T∗

mM . Let π : T∗M → M by π(m,w) = m. Let x1, . . . , xn be a
coordinate system on M with domain U , and define functions
q1, . . . , qn, p1, . . . , pn on π−1(U) by qj = xj ◦ π and w =

∑
pj(m,w)dxj .

With these coordinate functions T∗M becomes a C∞ 2n-manifold
called the cotangent bundle of M . The fundamental 1-form
W on M is defined by W(m,w) = π∗w.

2This defines a map d : Ωp(A) → Ωp+1(A) called the exterior derivative. See
sections 5.2 and 7.1.
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(a) Show W =
∑
pidqi on π−1(U).

(b) Show d is a non-degenerate 2-form; i.e., dW (X,Y ) = 0 for
all Y implies X = 0. The forms W and dW are fundamental
in classical mechanics (see [Mac04]).

41. Let X be tangent to B(M) at b = (m : e1, . . . , en). Let wi(X) be
real numbers such that X =

∑
wi(X)ei. Show wi are C∞ 1-forms

on B(M) (see 22).
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5. Connexions

This chapter is a study of a general connexion on a C∞ manifold,
the concepts belonging to the connexion, and the different ways
of defining the connexion. These connexions are historically called
affine or linear connexions on a manifold. The generalization to
connexions in principal fiber bundles is sketched in section 5.5, but
these generalizations will not be focused upon in these notes.

5.1 Invariant Viewpoint

The approach to connexions that follows is due to Koszul and
is found in [KN63] and the first chapter of [Hel12]. The definition
was motivated in 2.1.

Let M be a C∞ n-manifold. A connexion, infinitesimal connexion
or covariant differentiation on M is an operator D that assigns to
each pair of C∞ fields X and Y , with domain A, a C∞ field DXY with
domain A; and if Z is a C∞ field on A while f is a C∞ real valued
function on A, then D satisfies the following four properties:

(1) DX(Y + Z) = DXY +DXZ

(2) D(X+Y )(Z) = DXZ +DY Z

(3) D(fX)Y = fDXY

(4) DX(fY ) = (Xf)Y + fDXY .
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These properties imply the vector (DXY )m, at a point m ∈ M , de-
pends only on Xm and the values of Y on some curve that fits Xm.

For, let e1, . . . , en be a C∞ base field about m, let Xm =

n∑
1

ai(m)(ei)m

and Y =

n∑
1

bjej on the domain of the base field (intersected with

the domain of Y ). Then

(DXY )m =
[
DX

(∑
j

bjej

)]
m

=
∑
j

[
(Xmbj)(ej)m + bj(m)

∑
i

ai(m)(Deiej)m

]
.

Thus ai(m), bj(m) and Xmbj determine DXY completely if the fields
Deiej are known (see section 5.2)

The existence of many manifolds with connexions has been il-
lustrated by the natural induced connexions on hypersurfaces of
Rn.

Let σ be a curve in M with tangent field T . A C∞ vector field Y

on σ is parallel along σ iff DTY = 0 on σ. The curve σ is a geodesic
iff DTT = 0 on σ. Thus a curve is a geodesic iff its tangent field is
a parallel field along the curve. The following two theorems give
the existence of parallel fields and geodesics. The domain of an
index of summation is always 1, . . . , n unless otherwise specified.

Theorem 5.1. Let σ be a curve on [a, b] with tangent T . For each vec-
tor Y in Tσ(a)M there is a unique C∞ field Y (t) on σ such that Y (a) = Y

and the field Y (t) is parallel along σ. The mapping Pa,t : Tσ(a)M −→
Tσ(t)M by Pa,t(Y ) = Y (t) is a linear isomorphism which is called par-
allel translation along σ from σ(a) to σ(t).

Proof. Let x1, . . . , xn be a coordinate system about σ(a) with domain
U , and let X1, . . . , Xn be the associated vector fields. We define C∞

functions Γi
jk on U by DXk

Xj =
∑

i Γ
i
jkXi. Let σ map the domain [a, b1]

into U . If Y (t) is a field on σ with domain [a, b1] then define functions
ai(t) on this domain by Y (t) =

∑
ai(t)Xi(σ(t)). Let gi(t) = xi ◦ σ(t) on
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[a, b1], so T (t) =
∑
g′j(t)Xj(σ(t)), where g′j(t) =

dgj
dt . If Y (t) is parallel

along σ, then

0 = DTY =
∑
i

[
a′iXi + ai

∑
j

g′jΓ
k
ijXk

]
.

Thus Y (t) parallel along σ iff

dak
dt +

∑
i,j

ai
dgj
dt Γ

k
ij = 0 (5)

for k = 1, . . . , n and for t ∈ [a, b1]. The condition Y (a) = Y defines n

initial values ai(a), and the theory of ordinary differential equations
then gives a unique set of C∞ functions ai(t), satisfying the above
equations on the whole domain [a, b1], since the equations are linear.
This defines the parallel field Y (t).

For t ∈ [a, b1], the map Pa,t is linear because of the linearity of
the equations 5.

If t is any number in [a, b1], we obtain Pa,t by covering the compact
set σ([a, t]) by a finite number of coordinate neighbourhoods and
parallel translating through each neighbourhood via solutions of
the systems 5.

Theorem 5.2. Let m ∈ M , X ∈ TmM . Then for any real number b
there exists a real number r > 0 and a unique curve σ, defined on
[b− r, b+ r] such that σ(b) = m, Tσ(b) = X, and σ a geodesic.

Proof. Using the notation of the above proof, we must find C∞

functions gi(t) that satisfy the second order differential system,

d2gk
dt2 +

∑
i,j

Γk
ij

dgi
dt

dgj
dt = 0 (6)

with initial conditions gi(b) = xi(m) and X =
∑
g′i(b)Xi. The theory of

ordinary differential equations provides us with the r > 0 and the
functions gi(t).
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The existence and uniqueness theory of ordinary differential
equations will actually give us more than the conclusion of the
above theorem. In particular, if we let σ(t;m,X, b) be the curve
provided by the theorem, then the mapping σ is actually C∞ with
respect to all its parameters t, m, X and b.

The torsion tensor of a connexion D is a vector valued tensor
Tor that assigns to each pair of C∞ vectors X and Y , with domain
A, a C∞ vector field Tor(X,Y ), with domain A, by

Tor(X,Y ) = DXY −DYX − [X,Y ]. (7)

One easily checks that for Z ∈ XA and f ∈ FA

• Tor(X,Y ) = −Tor(Y,X),

• Tor(X + Y, Z) = Tor(X,Z) +Tor(Y, Z),

• Tor(fX, Y ) = fTor(X,Y ) .

Thus the value of Tor(X,Y ) at a point m depends only on TmX and
TmY , and not on the fields X and Y , by the theorem at the end of
Chapter 4. If more than one connexion enters the discussion, we
write TorD for the torsion of the connexion D. If TorD ≡ 0, then we
say that D is symmetric, or torsion free.

As far as we know, there is no nice motivation for the word
“torsion” to descibe the above tensor. In particular, it has nothing
to do with the “torsion of a space curve”.

The following definition of curvature has been motivated in sec-
tion 2.4.

The curvature tensor of a connexion D is a linear transformation
valued tensor R that assigns to each pair of vectors X and Y at m a
linear transformation R(X,Y ) of TmM into itself, we define R(X,Y )Z

by imbedding X, Y , and Z in C∞ fields about m and setting

R(X,Y )Z = (DXDY Z −DYDXZ −D[X,Y ]Z)m. (8)
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Again we check linearity over the ring of C∞ functions as coef-
ficients on the right to determine the tensor character if R. Here,
R(X,Y )Z = −R(Y,X)Z, and if f is C∞, then

R(fX, Y )Z = fDXDY Z − (Y f)DXZ − fDYDXZ + (Y f)DXZ − fD[X,Y ]Z

= fR(X,Y )Z.

Also

R(X,Y )(fZ) = DX [(Y f)Z + fDY Z]−DY [(Xf)Z + fDXZ]− ([X,Y ]f)Z − fD[X,Y ]Z

= (XY f)Z + (Y f)DXZ + (Xf)DY Z + fDXDY Z − (Y Xf)Z

− (Xf)DY Z − (Y f)DXZ − fDYDXZ − ([X,Y ]f)Z − fD[X,Y ]Z

= fR(X,Y )Z.

The linearity of R(X,Y )Z with respect to addition (in each of its
variables) is trivial to check.

The tensor nature of the torsion and curvature will again be
verified in section 5.3 with exhibition of the classical coordinate
representations of these tensors.

The concept of a “connexion-preserving” map follows naturally.
Let M and M ′ be C∞ manifolds with connexions D and D′, respec-
tively. A C∞ map
f : M −→ M ′ is connexion preserving if f∗(DXY ) = D′

f∗X
(f∗Y ) for all

vectors X and fields Y . Note the right side is well-defined since
f∗Y is a well-defined field on some curve that fits f∗X. A C∞ map
f : M −→ M ′ is geodesic preserving if f ◦ g is a geodesic in M ′ for
each geodesic g in M . Trivially, a connexion-preserving map is
geodesic preserving.

Theorem 5.3. Let f be a diffeomorphism of M onto M ′, and let D′

be a connexion on M ′. Then there is a unique connexion D on M

for which f is connexion preserving.

Proof. Take X in TmM and let Y be a field around m. Since f is a
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diffeo, f∗Y is a field around f(m). Define DXY = f−1
∗ (D′

f∗X
f∗Y ). The

verification that D is a connexion is left as an exercise.

If every geodesic g(t) can be extended so it is a geodesc for all
t ∈ R, then the connexion D is complete.

5.2 Cartan Viewpoint

For local problems concerning a connexion, one can transform
the properties of D to certain properties of differential forms. By
using fiber bundles associated with a manifold, one can also study
global problems via differential forms. We develop the local view-
point here.

Let D be a connexion on an n-manifold M , and fix D and M

throughout this section. Let U be a fixed open set (perhaps a
coordinate domain) in M , and let e1, . . . , en be a fixed base field of
independent C∞ vectors on U . Let w1, . . . , wn be the C∞ 1-forms on
U which are the dual base to e1, . . . , en at each point of U . Define n2

connexion 1-forms wij on U which are associated with D and the
base field by

DXej =

n∑
i=1

wij(X)ei. (9)

The wij are linear by property (2) of the connexion D, and wij

are C∞, since if X a C∞ field on U , then DXe is a C∞ field, so
wij(X) = wi(DXej) is a C∞ function.

The torsion and curvature tensors may also be expressed via
differential forms associated with the base field. Define 2-forms
Ti and Rij on U by

T (X,Y ) =

n∑
i=1

Ti(X,Y )ei (10)

R(X,Y )ej =

n∑
i=1

Rij(X,Y )ei (11)
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where the properties of an alternating tensor sumare checked for
Ti and Rij via the properties of T and R.

The forms wi, wij,Ti and Rij are related by the Cartan structural
equations which are equivalent to the definition of the torsion and
curvature tensors. We merely express everything in terms of the
base field. Let X and Y be C∞ fields on U . Then,

Ti(X,Y )ei = DXY −DYX − [X,Y ]

= DX

(∑
wj(Y )

)
−DY

(∑
wj(X)ej

)
−
∑

wj([X,Y ])ej

=
∑(

Xwj(Y )− Y wj(X)− wj [X,Y ])ej + (wj(Y )wij(X)− wj(X)wij(Y ))ei
)

Equating components,

Ti(X,Y )−
(∑

wij ∧ wj

)
(X,Y ) = Xwi(Y )− Y wi(X)− wi[X,Y ]

Since the expression on the left is a 2-form, so is the expression on
the right (taken as a whole), and indeed, it is the exterior derivative
dwi of wi evaluated on X and Y . With this motivation we define the
exterior derivative operator d on 1-forms and functions (0-forms)
as follows.

For a C∞ function f with domain A, let df(X) = Xf ; thus df is a
C∞ 1-form on A. Let w be any C∞ 1-form with domain A. Then dw
is a C∞ 2-form with domain A, defined on C∞ fields X,Y on A by

dw(X,Y ) = Xw(Y )− Y w(X)− w[X,Y ] (12)

We leave it to the reader to check that the right side is linear
in each slot over the ring of C∞ functions on A, and hence that
dw(Xm, Ym) is defined for m in A independent of the fields X and Y .

If f is a C∞ function on A, then d2f − d(df) = 0. To see this, let
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X and Y be C∞ fields on A; then,

d2f(X,Y ) = Xdf(Y )− Y df(X)− df [X,Y ]

= XY f − Y Xf − [X,Y ]f = 0

Also note that if x1, . . . , xn a coordinate system on A, then dx1, . . .dxn
is the dual base to ∂

∂x1
, . . . ,

∂

∂xn
, since dxi

( ∂

∂xj

)
=
∂xi
∂xj

= δij(the Kro-

necker delta).

Now we can write the first Cartan structural equationCartan
structural equations

dwi = −
n∑

i=1

wij ∧ wj + Ti (13)

By a comutation involving the definition of R(X,Y ), which is com-
pletely analogous to the above computation, one obtains the sec-
ond Cartan structural equation,

dwij = −
n∑

k=1

wik ∧ wkj +Rij (14)

These equations provide an alternate proof of the tensor char-
acter of T and R, since they show that Ti and Rij are 2-forms.

5.3 Coordinate Viewpoint

Let U be a coordinate neighborhood, and let X1, . . . , Xn be the co-
ordinate base field associated with the system x1, . . . , xn on U. Then
wi = dxi and the associated forms wij , Ti, and Rij define functions
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Γi
jk, Tijk, and Ri

jkh, respectively, by

Γi
jk = wij(Xk) so wij =

∑
k

Γi
jkdxk

Tijk = Ti(Xj , Xk) so Ti =
∑
jk

Tijkdxj ⊗ dxk,

Ri
jkh = Rij(Xk, Xh) so Rij =

∑
kh

Ri
jkhdxk ⊗ dxh∗

From the structural equations, we have

Tijk =
(
d2xi +

∑
r,s

Γi
rsdxs ∧ dxt

)
(Xj , Xk) = Γi

kj − Γi
jk,

since d2xi = 0, and

Ri
jkh =

(
dwij +

∑
r,s,t

(
Γi
rsdxs

)
∧
(
Γr
jtdxt

) )
(Xk, Xh)

= Xkwij(Xh)−Xhwij(Xk) +
∑
r

(
Γi
rkΓ

r
jh − Γi

rhΓ
r
jk

)
=
∂Γi

jh

∂xk
−
∂Γi

jk

∂xh
+
∑
r

(
Γi
rkΓ

r
jh − Γi

rhΓ
r
jk

)
which are the classical coordinate components of these tensors.

5.4 Difference Tensor of Two Connexions

The reference of this section is [WS60]. LetM be a C∞ manifold,
and let D and D be connexions on M . For fields X and Y we define
the difference tensor B(X,Y ) = DXY − DXY . The linearity of B in
the first slot is trivial from properties of the connexions (namely,
(2) and (3)). To check the second slot, let f be C∞ on the domain
of X and Y ; then

B(X, fY ) = (Xf)Y + fDXY − (Xf)Y − fDXY = fB(X,Y )
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Let B(X,Y ) = S(X,Y ) + A(X,Y ) be the stanard decomposition of
a bilinear tensor into symmetric and skew-symmetric pieces; i.e,

S(X,Y ) =
1

2
[B(X,Y ) +B(Y,X)]

and
A(X,Y ) =

1

2
[B(X,Y )−B(Y,X)]

Actually, we can express A in terms of the torsion tensors T and
T of D and D, respectively, for

2A(X,Y ) = DXY −DXY −DYX +DYX

= T (X,Y ) + [X,Y ]− T (X,Y )− [X,Y ]

= T (X,Y )− T (X,Y )

Theorem 5.4. The following statements are equivalent:

(a) The connections D and D have the same geodesics.

(b) B(X,X) = 0 for all vectors X.

(c) S = 0

(d) B = A

Proof.

(a) =⇒ (b): Take X at m ∈M and let g be the geodesic with initial vector
X. Extend X along g by letting X be the tangent to g; then

p = B(X,X) = DXX −DXX = 0− 0,

since g is a geodesic for both connections.

(b) =⇒ (a): Let g be a geodesic for D with tangent field X; then
DXX = B(X,X) +DXX = 0 on g; hence g is a geodesic for D

(b) ⇐⇒ (c): Since S is symmetric, it is determined by its diagonal values
S(X,X), and B(X,X) = 0 ⇐⇒ S(X,X) = 0
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(c)⇐⇒ (d): For B = S +A.

Theorem 5.5. The connexions D and D are equal iff they have the
same geodesics and the same torsion tensors.

Proof. That the first part implies the second is trivial. Conversely
if the geodesics are the same, then S = 0, and if the torsion tensors
are equal, then A = 0; hence B = 0 and D = D

Theorem 5.6. Given a connexion D on M , there is a unique connex-
ion D having the same geodesics as D and zero torsion.

Proof. Let DXY = DXY − 1
2T (X,Y ). It is trivial to check that D satis-

fies the required properties to define a connexion. Here B = 1
2T = A,

since a torsion tensor is skew-symmetric; thus S = 0, so D and D
have the same geodesics. Moreover, T = T − 2A = 0, so D has zero
torsion. The uniqueness follows from the preceding theorem.

Thus if we partition connexions into equivalence classes by plac-
ing two connexions with the same geodesics in the same class, then
in each class there exists a unique torsion-free (zero torsion) con-
nexion. Moreover, given any connexion D and any skew-symmetric
vector-valued 2-covariant tensor T , there exists a connexion with
torsion tensor T and the same geodesics as D. From the above
proof we have T (X,Y ) = 2(DxY −DxY ), which provides a geometric
interpretation of the torsion tensor of a connexion as measuring
the difference between covariant differentiation in the given con-
nexion and covariant differentiation in the torsion-free connexion
with the same geodesics.

5.5 Bundle Viewpoint

In this section we define a connexion on the bundle of bases
over a manifold and sketch a proof of the equivalence of such
a definition with our previous viewpoints. This is the fourth (and
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last) viewpoint we consider. The bundle viewpoint provides a nat-
ural “jumping off” for generalizations to connexions in all kinds of
bundles, and much of the research in differential geometry at this
time uses these concepts. For more details the reader is referred
to the [BC11] or [KN63].

Throughout this section let M be a C∞n-manifold, let B = B(M)

be the bundle of bases over M (see problem 22), and let π : B →M

be the natural projection map. If D is a connexion on M , then by
integrating ordinary differential equations (5 above), we can parallel
translate the tangent space along curves in M . If b = (m; e1, . . . , en) is
in B and σ is a curve in M with σ(0) = m, then by parallel translation
we define a C∞ curve σ(t) = (σ(t); e1(t), . . . , en(t)) in B, where ei(t) is
the parallel translate of ei = ei(0) along σ to σ(t). Since π ◦ σ = σ,
we say σ is a “lift of σ”, or σ “lies over σ” and since σ reads off
a parallel base, we say σ is a “horizontal” curve in B. Thus a
connexion D on M yields unique “horizontal lifts” of C∞ curves
in M . The bundle definition of a connexion gives an independent
method for defining “horizontal lifts” (of curves in M ) with the
correct properties.

Recall at each point b ∈ B we defined the subspace of vertical
vectors
Vb = {X ∈ Bb : π∗(X) = 0}. A connexion on B is a mapping H that
assigns to each b in B,a subspace Hb of Bb such that:

(1) Hb∩Vb = 0 and π∗|Hb
is an isomorphism of Hb onto Tπ(b)M (hence

Hb is n-dimensional).

(2) (Rg)∗(Hb) = Hbg for all g in GL(n,R).

(3) H is C∞; i.e., for each b in B there is a neighborhood U and a
set of n independent C∞ vector fields E1, . . . , En on U that give
a base for Hb′ for every b′ in U.

If X is in Hb, we say X is a horizontal vector. Property (1) implies
for each X in Bb there is a unique decomposition X = XH +XV with
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XH ∈ Hb and XV ∈ Vb, and property (3) implies if X is C∞ then XH

and Xv are C∞ fields. If X is a C∞ field with domain U in M , then
there is a unique C∞ horizontal field X on U = π−1(U) with π∗(X) =

Xπ(b) for all b in U .
Having the existence of “horizontal lifts” for vector fields, one

can “horizontally” lift curves in a natural way. Thus if σ is a curve
in M with tangent T (non-vanishing), extend T to a C∞ field in a
neighborhood U of a univalent part of σ, lift T to a horizontal field
T on U , and take integral curves of T to find horizontal lifts of σ.
The parallel translation so defined will be independent of the base
(the starting point for σ) by property (2); i.e., if σ is horizontal (has
a horizontal tangent), then Rg ◦ σ is also horizontal.

There is a dual viewpoint involving differential forms. To mo-
tivate it, let H be a connexion as described above and notice
at each b = (m; e1, . . . , en) in B we can define a unique horizon-
tal field Ei(b) with π∗ (Ei(b)) = ei by (1). The fields E1 . . . , En are
global independent horizontal C∞ fields on B. Together with the
natural vertical fields E11, . . . , Enn, we get a global base field on
B. Let w1, . . . , wn, w11, . . . , wnn be the dual 1-forms to this base
(where w1, . . . , wn are the natural 1-forms of problem 41). Then
if X ∈ Bb,XV =

n∑
i,j=1

wij(X)(Eij)b. If one knows XV , then, of course,

XH = X −XV . Thus giving XH (or giving H) is equivalent to giving
“vertical projections” at each point in B. Thus a set of connexion
1-forms wij (for i, j = 1, . . . , n) on B is a set of 1-forms such that

(1’) wij |Vb
form a dual base to Eij at all b in B,

(2’) wij((Rg)∗X) =

n∑
ts=1

g−1
ir wrs(X)gsj for all X in Bb,

(3’) wij are C∞ for al1 i and j.

That the definition of a connexion on B in terms of H or in terms
of wij is equivalent is left as a problem.
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Notice that the wij can be used to define a Lie algebra (of
GL(n,R)) valued 1-form w by w(X) =

n∑
i,j=1

wij(X)Xij, where the Xij

are the canonical left invariant fields on GL(n,R) (see problem 21).
Finally, we connect with the Cartan viewpoint. Let e1, . . . , en be

a base field on the open set U in M . Define a C∞ map f : U → B by
f(m) = (m; (e1)m , . . . , (en)m) for m in U . Since π ◦ f is the identity of U,

we call f a section over U . Let wij be the connexion forms defined
in section 5.2, and let wij be the global forms defined above. Then
wij = wij ◦ f∗ on U .

Thus the Cartan structural equations 13 and 14 (and the torsion
and curvature 2-forms) can be carried up to global equations on B.

Problems

Let M and M ′ be C∞ manifolds.

42. Let x1 = x and x2 = y be the usual coordinates on R2. Define a
connexion D on R2 by letting Γi

jk = 0 except for Γ1
12 = Γ1

21 = 1.

(i) Set up and solve the differential equations for the geodesics
thru any point in R2.

(ii) Find the particular geodesic g with g(0) = (2, 1) and Tg(0) =
∂

∂x
+

∂

∂y
.

(iii) Is D complete?

(iv) Do the geodesics emanating from the origin pass thru all
points of the plane?

(v) If σ and γ are geodesics with γ(0) = σ(0), and Tγ(0) = btσ(0)

for b ∈ R, show γ(t) = σ(bt) for all possible t

(vi) Investigate the connexion D′ with all Γi
jk = 0 except Γ1

12 = 1

43. Let D be a connexion on M . Let σ(t) be an integral curve of
the C∞ field X, let e1(t), . . ., e (t) be a parallel base along σ and
let Y (t) =

∑
yi(t)ei(t) be a C∞ field along σ.
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(i) Show (DXY )(t) =
∑ dyi

dt ei(t) along σ.

(ii) Show
(DXY )(0) = lim

t→0

Pt,0Y (σ(t))− Y (0)

t

44. Let f be a connexion preserving C∞ map of M into M ′. Show

f∗(Tor(X,Y )) = Tor′(f∗X, f∗Y ) and f∗(R(X,Y )Z) = R′(f∗X, f∗Y )(f∗Z).

45. A manifold M is parallelizable if there is a connexion D on M in
which parallel translation is independent of curves, and such
a D is called a flat connexion.

(i) Show M is parallelizable iff there is a global C∞ base field
on M .

(ii) If D is a flat connexion, show its curvature tensor is zero
(see problem 85).

46. Let G be a Lie group. Define the left invariant connexion D on
G by asserting all vector fields in the Lie algebra g are parallel
fields.

(i) Show D is flat, G is parallelizable, and if X and Y are in g

then Tor(X,Y ) = −[X,Y ].

(ii) Show that each geodesic g on G is the left translate of a
one-parameter sub group σ; i.e., g(t) = Lg(0)(σ(t)) for all t.

(iii) Show D is complete.

47. Let D be a connexion on M . For m in M , let Hm denote the set
of linear maps ofM into itself, obtained by parallel translation
of Mm around broken C∞ curves starting and ending at m.

(i) Show Hm is a group.

(ii) If M is connected, show Hm is isomorphic to Hm′ , for m′ in
M .
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The group Hm is called the holonomy group at m, and if M is
connected then the holonomy group of M is the group H = Hm

for any m in M . Restricting group of M is the group H = Hm

for any m in M . Restricting the closed curves to be null-
homotopic, one obtains the restricted holonomy group H0

m.

(iii) If D is flat, show Hm = 0.

(iv) If M is the unit sphere in R3 and D is the Riemannian con-
nexion, show that H = SO(2,R), where SO(2,R) is the spe-
cial orthogonal group, or rotation group, consisting of or-
thogonal maps with determinant one.

48. (Continuing problem 13.) Let X =
∂

∂x1
and X =

∂

∂x2
for a coor-

dinate system x1, . . . , xn on M about m, and show

lim
t→0

[(P0,t − I)(∂/∂xj)]
n

t
= R(Y,X)

( ∂

∂xj

)
=
∑
k

Rk
j21

( ∂

∂xk

)
where I is the identity map and P0,t is parallel translation along
γ from γ(0) to γ(t). Because of this, one often says R(X,Y ) is
“infinitesional parallel translation around an infinitesimal par-
allelogram spanned by X and Y .”
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6. Riemannian Manifolds and
Submanifolds

The definition of a Riemannian (and a semi-Riemannian) manifold
was given in section 2.1. A manifold on which one has singled
out a specific symmetric and positive definite (or non-singular) 2-
covariant tensor field, called the metric tensor, is a Riemannian
(or semi-Riemannian) manifold. In this chapter we generalize the
theory of Chapters 2 and 3 in a natural way. Much of the theory
applies to semi-Riemannian manifolds and submanifolds, but, in
general, we phrase things only in Riemannian terms.

6.1 Length and Distance

The metric tensor allows us to define lengths, angles, and dis-
tances. Let M be a Riemannian manifold with metric tensor 〈−,−〉.
Let X,Y ∈ TmM . Define the length of X by |X| =

√
〈X,X〉. Define

the angle θ between X and Y (both non-zero) by letting 〈X,Y 〉 =

|X| |Y |cos θ where 0 ≤ θ ≤ π, and notice the Schwartz inequality
|〈X,Y 〉| ≤ |X| |Y | makes this possible.

The length of a curve is now defined by integrating the length of
its tangent vector field. Let σ be a C∞ curve on [a, b] with tangent
field T (or Tσ if necessary). The length of σ from a to b, denoted
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by |σ|ba, is defined by

|σ|ba =

∫ b

a

√
〈T (t), T (t)〉dt (1)

The integral exists, since the integrand is continuous. The length of
a broken C∞ curve is defined as the (finite) sum of the lengths of its
C∞ pieces. The number |σ|ba is independent of the parameterization
of its image set in the following sense: let g be a C1 map of [c, d]

into [a, b] with end points mapping to end points (assume g(c) = a

and g(d) = b); then∫ b

a

√
〈Tσ(t), Tσ(t)〉dt =

∫ d

c

√
〈Tσ(g(t)), Tσ(g(t))〉g′(t)dt

=

∫ d

c

√
〈Tσ◦g(t), Tσ◦g(t)〉dt

since Tσ◦g(t) = g′(t)Tσ(g(t)) by the chain rule. Thus we can write
|σ|pq = |σ|ba where q = σ(a) and p = σ(b).

Classically, the metric tensor is almost always expressed by the
notation
“ds2 = gijdxidxj”. This means one is giving the inner product on
a coordinate domain U with coordinate functions x1, . . . , xn in terms
of the coordinate bases; i.e., if Xi =

∂

∂xi
, then gij = 〈Xi, Xj〉 is a C∞

function on U . If
Y =

∑
i

yiXi, Z =
∑
k

zkXk

then
〈Y, Z〉 =

n∑
i,k=1

yizkgik

Thus, giving the matrix of functions gij on U determines the inner
product on U . The “ds” only makes sense when one is discussing
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a curve σ which maps into U , for then let s(t) = |σ|ta and(ds
dt
)2

= 〈T, T 〉 =
∑
ij

gij
d(xi ◦ σ)

dt
d(xj ◦ σ)

dt

If M is connected, a pseudo-metric is defined on M by

d(p,m) = inf {|σ| : σ a broken C∞ curve from p to m} (2)

Trivially, d(p,m) ≥ 0, d(p, p) = 0, and d(p,m) = d(m, p). The triangle
inequality is left as a problem.

Theorem 6.1. The pseudo-metric topology on M equals the mani-
fold topology.

Proof. (After [ST51, p. 44]). Let m ∈ M , and let x1, . . . , xn be a
coordinate system about m with domain U . For p ∈ U let dm(p) =

d(m, p) defined above, and let d′(p) =
[∑

xi(p)
2
]1/2 where we assume

xi(m) = 0. Choose a > 0 so A = {p : d′(p) ≤ a} ⊂ U . On the compact
set

B =
{
(p,Xp) : p ∈ A, 1 =

∑
dxi(Xp)

2
}

the norm function

|Xp| =

√√√√[∑
ij

gij(p)dxi(Xp)dxj(Xp)

]

is a continuous function which takes on a maximum R and a mini-
mum r > 0.

Let σ be any broken C∞ curve in A with σ(0) = m, σ(b) = p and
(σ(t), Tσ(t)) ∈ B for all t. Then

|σ| =
∫ b

0

|Tσ(t)|dt ≥ rb ≥ rd′(p)

For a broken curve σ from m to p that leaves A, one has |σ| ≥ ra ≥
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rd′(p). Hence, (1) d(p) ≥ rd′(p). But if σ is a curve with xi ◦ σ(t) = tpi

d′(p) ,
where xi(p) = pi, then

|σ| =
∫ d′(p)

0

|Tσ(t)|dt ≤ Rd′(p)

Hence, (2) d(p) ≤ Rd′(p). The inequalities (1) and (2) prove the theo-
rem.

Corollary 6.2. A connected Riemannian manifold M is Hausdorff iff
the pseudo-metric d is a metric.

In Chapter 10 we show that geodesics are the curves that locally
minimize arc length, i.e., the length of a small piece of a geodesic
in M is precisely the distance between the end points of the piece.

Henceforth we assume all manifolds we mention are Hausdorff.
A Riemannian manifold is complete if it is complete as a metric
space, i.e., every Cauchy sequences must converge.

6.2 Riemannian Connexion and Curvature

A Riemannian connexion D on a Riemannian manifold M is a
connexion D such that

DXY −DYX = [X,Y ] (3)

and
Z 〈X,Y 〉 = 〈DZX,Y 〉+ 〈X,DZY 〉 (4)

for all fields X,Y , and Z with a common domain. The fundamental
theorem of (semi-) Riemannian manifolds is the following:

Theorem 6.3. There exists a unique Riemannian manifold connexion
on a (semi-) Riemannian manifold.

Proof. We show a Riemannian connexion D exists and is unique on
every coordinate domain U . The uniqueness implies D must agree
on overlapping domains; hence D exists and is unique on all of M .

112



Section 6.2: Riemannian Connexion and Curvature

Let X1, . . . , Xn be the coordinate fields on U , let gij = 〈Xi, Xi〉 on
U , and let (g−1)ij be the ijth entry of the inverse matrix of g = (gij)

(which is non-singular). If (3) and (4) hold, then

Xi 〈Xr, Xj〉+Xj 〈Xr, Xi〉 −Xr 〈Xi, Xj〉 = 2 〈DXiXj , Xr〉 (5)

since [Xk, Xs] = 0 for all k, s. By section 5.2, giving D on U is equiv-
alent to giving functions Γi

jk with

DXk
(Xj) =

n∑
i=1

Γi
jkXi

and demanding properties (1) through (4) of section 5.1 are valid.
Thus (5) implies

2
∑
k

Γk
jigkr = Xigrj +Xjgri −Xrgij

hence
Γk
ij =

1

2

∑
r

(g−1)kr

(∂grj
∂xi

+
∂gri
∂xj

− ∂gij
∂xr

)
(6)

This is the classical expression for the Christoffel function Γk
ij in

terms of the metric tensor. Use (6) to define D on U . A direct check
of (3) and (4) shows D is Riemannian, and the explicit representation
(6) shows D is unique.

The above theorem is a special case of a more general theo-
rem (problem 70). For the rest of this section, let M be a (semi-)
Riemannian manifold and let D be the Riemannian connexion on
M . The Riemann-Christoffel curvature tensor (of type 0, 4) is the
4-covariant tensor

K(X,Y, Z,W ) = 〈X,R(Z,W )Y 〉

for X,Y, Z,W ∈ TmM .

113



Chapter 6: Riemannian Manifolds and Submanifolds

Theorem 6.4. The following relations are true:

(a) R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0

(b) K(X,Y, Z,W ) = −K(Y,X,Z,W )

(c) K(X,Y, Z,W ) = −K(X,Y,W,Z)

(d) K(X,Y, Z,W ) = K(Z,W,X, Y )

The relation (a) is called the first Bianchi identity and it holds for
any symmetric connexion. These relations are equivalent to the
“symmetries” of the indices of the classical Rijkh functions.

Proof. For (a), use the Jacobi identity, property (3) above, and com-
pute. For (c), use R(Z,W ) = −R(W,Z). For (b), use property (4) to
shift D from one slot to the other. For (d), notice (a) implies

K(X,Y, Z,W ) +K(X,W, Y, Z) +K(X,Z,W, Y ) = 0 (a’)

By writing (a’) three more times, cyclically permuting the argu-
ments of the first term one step from one line to the next, adding
all four equations, and cancelling via (b) and (c), one obtains (d).

For X,Y ∈ TmM , let

A(X,Y ) = 〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2 (7)

If A(X,Y ) 6= 0, let
K(X,Y ) =

K(X,Y,X, Y )

A(X,Y )
(8)

and by direct computations, using the above properties of K, one
can show

K(X,Y ) = K(Y,X) = K(rX, sY ) = K(X + tY, Y )

for some r, s, t 6= 0. Thus if A(X,Y ) 6= 0 and ad− bc 6= 0, then

K(X,Y ) = K(aX + bY, cX + dY )
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and we define K(P ), the Riemannian curvature of the 2-dimensional
subspace P of TmM spanned by X and Y , by

K(P ) =
〈X,R(X,Y )Y 〉

A(X,Y )

In section 2.4, we showed K(TmM) = K(m) is the Gauss curvature
of a surface M ⊂ R3. In the Riemannian case,

√
A(X,Y ) is the area

of the parallelogram spanned by X and Y .
Let f : M → M ′ be a C∞ map between Riemannian manifolds.

If there is a C∞ real valued positive function F on M such that,
for all m ∈ M and all X,Y ∈ TmM , we have 〈f∗X, f∗Y 〉 = F (m) 〈X,Y 〉,
then f is a conformal (or strictly conformal) map and F is called
the scale function. If F exists but F ≥ 0 only, then f is weakly
conformal. If F = 1, then f is an isometry. If f is an isometry and
a diffeomorphism, then f is isometric and M is isometric to M ′. If
F is constant, then f is homothetic.

At this point, we explicitly call the reader’s attention to problem
52, which is considered an integral part of the theory of Riemannian
manifolds.

6.3 Curves in Riemannian Manifolds

This section parallels the standard treatment of curves in ad-
vanced calculus. Let M be a Riemannian manifold with Rieman-
nian connexion D. Let σ be a C∞ curve in M with tangent field
V = σ∗

( d
dt
)
, which can legitimately be called the “velocity vector”

of σ since “length” is defined. Assuming V does not vanish on the
domain of σ, define the unit tangent vector and the speed function

T (t) =
V (t)

|V (t)|
, s′ =

ds
dt = |V (t)|

respectively, so V (t) = s′(t)T (t) for t in the domain of σ. Define the
geodesic curvature vector field of σ to be the field DTT , and its
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length k1 is the geodesic curvature of σ. Notice that DTT and k1, at
a particular point on the curve, do not depend on the parameteri-
zation of the “point set of the curve” but only on the orientation
(choice of “direction”) and the existence of a C∞ parameterization
with non-vanishing tangent at the point.

The curve σ is a geodesic (DV V = 0) iff V has constant length
and (a) DTT = 0 or (b) k1 = 0. This follows since

DV V = s′DT (s
′T ) = s′s′′T + (s′)2DTT

and s′ > 0 while DTT is orthogonal to T (〈T, T 〉 = 1 so
0 = T 〈T, T 〉 = 2 〈DTT, T 〉).

When k1(t) > 0, define the (first) normal to σ at σ(t) to be the
unit vector N1(t) such that DTT = k1N1 at t. If N1 is defined on an
interval then

0 = T 〈N1, T 〉 = 〈DTN1, T 〉+ 〈N1,DTT 〉 = 〈DTN1, T 〉+ k1

so DTN1 6= 0 on the interval. The vector DTN1 + k1T is orthogonal
to both T and N ; hence, let its length be k2, the second curvature
or torsion. If k2(t) > 0, define the second normal to σ at σ(t) to be
the unit vector N2(t) such that DTN1 + k1T = k2N2. If k2 > 0 on an
interval, then the above process can be continued to define k3, and
where k3 > 0, one gets N3, etc. The vectors T,N1, N2, . . . are called
Frenet vectors, and the equations that express the DTNi in terms
of the Frenet vectors are called the Frenet formulae.

When M is a 2-manifold and k1 > 0, then the Frenet formulae
become
DTT = k1N and DTN1 = −k1T . In this case it is possible to locally
choose N1 along σ independently of DTT (on univalent pieces of
σ), and letting DTT = k1N1 would define k1, which could take on
negative values (see problem 72).
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6.4 Submanifolds

The theory in sections 2.3 and 2.4 is now generalized. Through-
out this section, let the k-manifold M be a (non-singular) submani-
fold of the (semi-)Riemannian manifold M . In the semi-Riemannian
case, the submanifold M is non-singular if the metric tensor is
non-singular when restricted to TmM for all m ∈ M (thus M is a
semi-Riemannian manifold under the induced metric tensor). The
induced metric tensor on M is called the first fundamental form
on M . Let D be the Riemannian connexion on M .

Theorem 6.5. For C∞ fields X and Y with domain A on M (and
tangent to M ), define DXY and V (X,Y ) on A by decomposing DXY

into its unique tangential and normal components, respectively;
thus,

DXY = DXY + V (X,Y ) (9)

Then D is the Riemannian connexion on M and V is a symmetric
vector-valued 2-covariant C∞ tensor called the second fundamen-
tal tensor. The decomposition equation (9) is called the Gauss
equation.

Proof. We will establish the C∞ nature of the decomposition. The
rest of the proof will only be outlined, for it is a simple exercise.
Use the properties of D (since it is a connexion) to establish the
properties of D (making it a connexion) and the tensor character
of V (its multilinearity). Zero torsion for D implies zero torsion for
D, and V is symmetric (use the proposition in section 2.2, which
generalizes trivially). Since D satisfies condition (4) (section 6.2),
D does too. Hence D is Riemannian, and by the uniqueness theorem,
D is the Riemannian connexion on M .

To show D and V are C∞ on A, choose p ∈ A. Let U and U

be special coordinate domains about p in M and M , respectively,
with U ⊂ A, and let Z1, . . . , Zn and Z1 = Z1|U , . . . , Zk = Zk|U be the
coordinate vector fields on U and U , respectively. Apply the Gram-
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Schmidt process to Z1, . . . , Zn on U to obtain C∞ (the Gram-Schmidt
process is algebraic) orthonormal fields W1, . . . ,Wn on U such that
W1|U , . . . ,Wk|U give a C∞ orthonormal base of TmM for m in U , while
Wk+1|U , . . . ,Wn|U give M-vector fields that are C∞ on U and form a
base of the orthogonal complement to TmM , for m in U . Let

X =

k∑
i=1

xiWi, Y =

k∑
i=1

yjWj

define C∞ functions xi and yi on U for 1 ≤ i ≤ k, and let

DWiWj =

n∑
r=1

Br
jiWr

define C∞ functions Br
ij on U . Then

DXY =
∑

(XYj)Wj +
∑

yjB
r
jiWr

where 1 ≤ i, j ≤ k and 1 ≤ r ≤ n; thus

DXY =

k∑
r=1

[
(Xyr) +

k∑
i,j=1

yjxiB
r
ji

]
Wr

and

V (X,Y ) =

n∑
r=k+1

[ k∑
i,j=1

yjxiB
r
ji

]
Wr

are C∞ on U .

By decomposing the curvature R into tangent and normal parts,
we obtain the Gauss curvature equation (10), and the Codazzi-
Mainardi equation (11), respectively. Let X,Y, Z be C∞ fields tan-
gent to M with a common domain. Writing the decomposition of a
vector W as W = tanW + nor W ,

tanR(X,Y )Z = R(X,Y )Z + tan
[
DXV (Y, Z)−DY V (X,Z)

]
(10)
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and

nor R(X,Y )Z = V (X,DY Z)− V (Y,DXZ)− V ([X,Y ], Z)

+ nor
[
DXV (Y, Z)−DY V (X,Z)

] (11)

Since V is a tensor, i.e., V (Xm, Ym) is well-defined and independent
of the fields X and Y used to compute it in the Gauss equation,
we define X and Y to be conjugate vectors at m if V (X,Y ) = 0.
A vector X ∈ TmM is an asymptotic vector if V (X,X) = 0, and in
any case define the asymptotic (or normal) curvature of X, kX , by
kX = |V (X,X)|. If Vm = 0 then m is a flat point on M .

If σ is a curve in M with C∞ unit tangent T , then V (T, T ) is the
normal curvature vector field of σ and kT = |V (T, T )| is the normal
curvature of σ.

Theorem 6.6. (Meusnier). All curves on M with the same unit tan-
gent T at a point have the same normal curvature at that point. If
σ is a curve on M with C∞ unit tangent T , then (k1)

2 = (k1)
2 + (kT )

2

relates the geodesic curvatures k1 and k1 of σ in M and M with its
normal curvature kT . Moreover,
kT = k1 cosφ determines the angle φ between the normal N1 of σ
in M and the normal curvature vector V (T, T ) if φ is defined.

Proof. The first sentence follows since V is a tensor. The second
sentence follows from the Gauss equation DTT = DTT+V (T, T ) since
the vectors on the right are orthogonal. For the third sentence, if
k1 = 0 then k1 = kT = 0 and φ is undefined. If k1 > 0 and kT = 0 then
V (T, T ) = 0, N1 is tangent to M , and φ = π

2 (if anything). If kT 6= 0,
let N be the unit normal in the direction of V (T, T ) and

kT = 〈V (T, T ), N〉 =
〈
DTT,N

〉
= k1 cosφ

The theorem and corollary at the end of section 2.3 can now be
generalized by replacing Rn by M .
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6.5 Hypersurfaces

In this section, let M be a hypersurface in the Riemannian mani-
fold M and let N be a C∞ unit normal on M . Define theWeingarten
map L(X) = DXN for X ∈ TmM (as in section 2.2). The Gauss equa-
tion for M now becomes

DXY = DXY − 〈LX, Y 〉N (12)

since
〈V (X,Y ), N〉 =

〈
DXY,N

〉
= X 〈N,Y 〉 − 〈Y, LX〉

and 〈N,Y 〉 ≡ 0. Thus V (X,Y ) = −〈LX, Y 〉N .

The fundamental forms and the imbedded geometric variants of
M in M are defined in terms of L exactly as in section 2.2. Notice
in this case V being symmetric is equivalent to L being self-adjoint.

The Gauss curvature equation (10) and Codazzi-Mainardi equa-
tion (11) now become

tanR(X,Y )Z = R(X,Y )Z − [〈LY,Z〉LX − 〈LX,Z〉LY ] (13)

and
nor R(X,Y )Z = −〈DXLY −DY LX − L[X,Y ], Z〉N (14)

respectively.

The torsion tensor is generalized by defining for any C∞ linear
transformation valued tensor Wp : TpM → TpM , on a C∞ manifold
M , the torsion of W , TorW , by

TorW (X,Y ) = DXW (Y )−DYW (X)−W [X,Y ] (15)

The Codazzi-Mainardi equation (14) on a hypersurface becomes

nor R(X,Y )Z = −〈TorL(X,Y ), Z〉N
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Thus TorL = 0 on M iff

R(X,Y )Z = R(X,Y )Z − [〈LY,Z〉LX − 〈LX,Z〉LY ] (16)

The following theorem generalizes the “theorema egregium” of
Gauss, and actually, it may be generalized to the case where M is
a k-submanifold of M (see [Hic63b]).

Theorem 6.7. Let M be a hypersurface in the Riemannian manifold
M , let P be a 2-dimensional subspace of TmM , and let K(P ) and
K(P ) be the Riemannian curvature of P in M and M respectively.
Let N be a unit C∞ normal on a neighborhood of m, and let LX =

DXN for X ∈ TmM . If X and Y form an orthonormal base of P , then

K(P ) = K(P )−
(
〈LY, Y 〉 〈LX,X〉 − 〈LX, Y 〉2

)
(17)

Proof. Combine the definition of Riemannian curvature with the
Gauss curvature equation (13).

When M is a 3-manifold, the above theorem shows the deter-
minant of L is independent of the imbedding (i.e., independent of
L) but depends only on the Riemannian structure of M and M .

A related result is a form of the Lemma of Synge.

Theorem 6.8. Let k > 1, and let M be a k-submanifold of the Rie-
mannian n-manifold M . Let g be a geodesic of M that lies in M ,
let T be the unit tangent to g, let X be a unit field tangent to M

which is parallel in M along g and orthogonal to T , and let P be
the subspace spanned by X and T . Then K(P ) ≥ K(P ) along g, and
K(P ) = K(P ) iff X is parallel along g in M .

Proof. We prove the theorem for k = n− 1, leaving the other cases
to problem 55. Let N be a C∞ unit normal on a neighborhood of
a point on g and let L(Z) = DZN . Here DTT = 0, so DTT = 0 and
〈LT, T 〉 = 0. By the previous theorem,

K(P ) = K(P ) + 〈LX, T 〉2 ≥ K(P )
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If equality holds then 〈LX, T 〉 = 0, so DTX = DTX = 0, and con-
versely.

There is a basic “rigidity” theorem for hypersurfaces of Rn which
is our next goal. This theorem is a uniqueness theorem, and there
is a corresponding existence theorem that is proved in Chapter 9.
When n = 3, the theorem was first proved by O. Bonnet (1867).

Intuitively, this theorem states that if two hypersurfaces of Rn

are isometric and their normals are “bending the same”, then by a
“rigid motion” one can superimpose the two manifolds.

Theorem 6.9. Let M and M ′ be connected hypersurfaces in Rn for
n ≥ 3. Let N and N ′ be C∞ unit normal fields on M and M ′, respec-
tively. Let F be a diffeomorphism on M onto M ′ that preserves
the first and second fundamental forms. Then there is an isometry
G of Rn with F = G|M .

Proof. During this proof let us use “primes” to denote concepts
belonging to M ′ which correspond to familiar concepts for M ; i.e.,
let L(X) = DXN for X ∈ TpM and L′(Y ) = DYN

′ for Y ∈ Tp′M ′. The
hypothesis states if X,Z ∈ TpM then

〈F∗X,F∗Z〉 = 〈X,Z〉 , 〈L′(F∗X), F∗Z〉 = 〈LX,Z〉

Combining these statements,

〈L′(F∗X), F∗Z〉 = 〈LX,Z〉 = 〈F∗LX,F∗Z〉

for all Z, which implies L′ ◦F∗ = F∗ ◦L. Thus the hypothesis could be
rephrased as a demand that F be an isometry of M onto M ′ whose
Jacobian commutes with the Weingarten maps. Since an isometry
is connexion-preserving,

F∗(DXZ) = D′
F∗XF∗Z

for vectors X and fields Z tangent to M .
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If p ∈M , we extend the Jacobian of F to be a linear map of TpRn

onto Tp′Rn where p′ = F (p). Let W ∈ TpRn, then W =Wt + aNp where
Wt is tangent to M , so define

F∗(W ) = F∗(Wt) + aN ′
p′

If X ∈ TpM and W is a C∞ field of Rn-vectors on M , then

F∗(DXW ) = DF∗X(F∗W )

where D is a natural covariant differentiation on Rn. This follows
since

DXW = DXWt +DX(aN) = DXWt − 〈LX,Wt〉N + (Xa)N + aLX

and

F∗(DXW ) = D′
F∗XF∗Wt− 〈F∗LX,F∗Wt〉N ′ + F∗X(a ◦ F−1)N ′ + (a ◦ F−1)L′F∗X

= DF∗XF∗Wt +DF∗X((a ◦ F−1)N ′)

= DF∗XF∗W

Now let e1, . . . , en be the usual orthonormal fields on Rn and de-
fine C∞ functions brs on M by

F∗(es)p =
n∑

r=1

brs(p)(er)p′

The functions brs are C∞ since F,M,M ′ are C∞, and the n by n

matrix brs(p) is orthogonal since F is an isometry. If X ∈ TpM then
DXes = 0 since es are parallel fields. Thus

0 = F∗(DXes) = DF∗X(F∗es) =
n∑

r=1

[
(Xbrs)er + brsDF∗Xer

]
=
∑
r

(Xbrs)er

so Xbrs = 0 for all r, s. Since X and p are arbitrary and M is con-
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nected, the functions brs are constant on M and thus the Jacobian
of F is a constant orthogonal transformation relative to the natural
base e1, . . . , en of Rn.

Next define a map G : Rn → Rn which is a translation followed
by an orthogonal map by letting for one p ∈ M and requiring
(G∗)p = (F∗)p. This completely determines G and the Jacobian of
G is constant and hence equal to the Jacobian of F at all points.
Since M is connected, F = G|M .

6.6 Cartan Viewpoint and Coordinate Viewpoint

In this section, let M be a hypersurface of a Riemannian n-
manifold M . Let p ∈M , let U be a special coordinate neighborhood
of p in M and U the corresponding neighborhood of p in M with
U ⊂ U . Apply the Gram-Schmidt process to the coordinate vector
fields on U to obtain an orthonormal base field e1, . . . , en on U with
e1(m), . . . , en−1(m) a base of TmM for m ∈ U and en(m) normal to
TmM (thus en provides a local normal for the neighborhood U ). Let
f : U → U be the inclusion map.

Applying the results of section 5.2, let w1, . . . , wn be the dual
1-forms associated with e1, . . . , en and let wij for 1 ≤ i, j ≤ n be the
connexion 1-forms associated with the Riemannian connexion D on
U , so

DXej =

n∑
i=1

wij(X)ei (18)

for 1 ≤ j ≤ n.
Let wij = wij |U and wi = wi|U for 1 ≤ i, j ≤ n, i.e., wij = f∗wij and

wi = f∗wi. If X is tangent to M at m ∈ U , by the Gauss equation,

DXej =

n−1∑
i=1

wij(X)ei (19)

V (X, ej) = wnj(X)en (20)
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for 1 ≤ j ≤ n − 1. Thus wij for i, j ≤ n are the connexion forms for
the induced Riemannian connexion D on M . Moreover,

L(X) = DXen =

n−1∑
i=1

win(X)ei (21)

since L(X) ∈ TmM , so wnn = 0 on U . Also wn = 0 on U since en is
normal to M . Equation (18) is the Gauss equation and equation (21)
is the Weingarten equation.

Let I, !I, III be the first, second, and third fundamental forms, re-
spectively. Then for X,Y ∈ TmM , m ∈ U ,

I(X,Y ) =

n−1∑
i=1

wi(X)wi(Y )

!I(X,Y ) = 〈LX, Y 〉 =
n−1∑
i=1

win(X)wi(Y )

III(X,Y ) = 〈LX,LY 〉 =
n−1∑
i=1

win(X)win(Y )

Notice

0 = X 〈ei, ej〉 = 〈DXei, ej〉+ 〈ei,DXej〉 = wji(X) + wij(X)

for all X tangent toM , i.e. wji = −wij for connexion forms belonging
to an orthonormal base (and this again shows wnn = 0). Thus we
can write !I and III in terms of wni if we wish.

Certain relations are implied by the Cartan structural equations.
The equation

dwn = −
n∑

j=1

wnj ∧ wj = 0

(on TmM ) implies !I is symmetric. The equation

dwnn = −
n∑

j=1

wnj ∧ wjn = 0
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(on TmM ) implies III is symmetric. For i, j ≤ n,

dwij = −
n∑

s=1

wis ∧ wsj +Rij

when restricted to vectors on TmM , gives

f∗dwij = dwij = −
n−1∑
s=1

wis ∧ wsj +Rij = −
n∑

s=1

wis ∧ wsj +Rij

Thus
Rij = −win ∧ wnj +Rij (22)

which is the Gauss curvature equation from this point of view. For
i ≤ n,

f∗dwin = dwin = −
n−1∑
s=1

wis ∧ wsn +Rin (23)

is the Codazzi-Mainardi equation.
For the coordinate viewpoint, let x1, . . . , xn be the special coor-

dinate system on U such that x1, . . . , xn−1 give coordinates on U .
Let Xi =

∂

∂xi
for 1 ≤ i ≤ n − 1 and let Xn = en be the unit normal

(on U ). Now apply the above analysis to the base field X1, . . . , Xn

(and this time wij 6= −wji necessarily since the base X1, . . . , Xn is not
necessarily orthonormal).

6.7 Canonical Spaces of Constant Curvature

We exhibit the three classical examples of n-dimensional (n ≥
2) simply connected complete spaces with constant Riemannian
curvature K = 0, K > 0, and K < 0; i.e., the Riemannian curvature
K(P ) of all plane sections is a constant.

For K = 0, let M = Rn with the usual Riemannian metric. This is
usually called Euclidean space or flat space.
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For K > 0, let

M =

{
a ∈ Rn+1 :

n+1∑
i=1

a2i =
1

K

}
i.e. M is the n-dim sphere of radius 1√

K
about the origin in Rn+1. It

is a Riemannian manifold via the induced metric from Rn+1. This
is called spherical space or Riemann space. Letting N be the unit
outer normal on M , then L(X) =

√
KX for all vectors tangent to

M , and all points are umbilic. By equation (17) above,

K(P ) = 〈LX,X〉 〈LY, Y 〉 = K

where X and Y are unit orthogonal vectors spanning P . Since M is
compact, it is complete. An alternate proof that M has constant
curvature is provided by the group of orthogonal transformations
on Rn+1, which provides isometries that will map any point m, and
plane section P at m, into any other point m′ and plane section
P ′. Since an isometry preserves the curvature, this would show
M has constant Riemannian curvature but would not evaluate this
constant.

For K < 0, let

M =

{
a ∈ Rn :

n∑
i=1

a2i < − 4

K

}
Let x1, . . . , xn be the usual coordinate functions on Rn, i.e., xi(a) = ai,
let Xi =

∂

∂xi
for 1 ≤ i ≤ n, and define a metric on M by the functions

gij = 〈Xi, Xj〉 =
δij
A2

, where A = 1 +
K

4

n∑
r=1

x2r

Then M with this metric is called hyperbolic space or Poincaré
space. Thus M is obtained by a conformal change of the usual
metric tensor on an open ball in Rn, and M is simply connected
since it is contractible.

One proves M has constant negative Riemannian curvature K
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by a direct computation which we outline. Let Kij be a Riemannian
curvature of the plane section spanned by Xi, Xj at any point in
M . Let

R(Xi, Xj)Xr =
∑
k

Rk
r (Xi, Xj)Xk =

∑
k

Rk
rijXk

define functions Rk
rij . Then Kij = A2Ri

jij, and compute via the clas-
sical formulae for Rk

rij in terms of Γi
jk, and Γi

jk in terms of gij . These
formulae show

Γi
jk = 0, unless two indices are equal

and
Γi
ij = Γj

ji = Γi
ii = −Kxi

2A
, Γj

ii =
Kxj
2A

.

Then
Ri

jij =
K

A
− K2

4A2

∑
r

x2r, Kij = K.

Also by direct computation one shows

Ri
jkr = 0, unless k = i, r = j or k = j, r = i

Then letting ei = AXi gives an orthonormal base e1, . . . , en at each
point of M . Let P be any plane section at m ∈M and let f1, f2 be an
orthonormal base of P which we extend to an orthonormal base of
TmM . Then the base ei is related to the base fj via an orthogonal
matrix, and one uses this fact to show K(f1, f2) = K. Thus M has
constant negative curvature. To show M is complete, let K = −B2,
and one shows the curve

g(t) =

(
2
sinh B

2 t

B cosh B
2 t
, 0, . . . , 0

)

is a geodesic defined for all t and parameterized by arc length. Such
a geodesic is obtained on every ray emanating from the origin 0
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by symmetry. Thus

B̄M (0, t) = B̄Rn

(
0, 2

sinh B
2 t

B cosh B
2 t

)

which is a compact set, so M is complete. (Here,

B̄m(p, r) = {m ∈M : dM (m, p) ≤ r}

where dM is the distance function in M .) Note that the mapping g,
when generalized to all rays in Rn, exhibits explicitly the exponen-
tial map of T0M onto M (see section 9.3).

For K > 0, let M = Rn, and let gij = δij/A
2 define a Rieman-

nian metric on M as above. The above computations show M

has constant Riemannian curvature K and M is trivially simply
connected. But M is not complete since B̄M

(
0, 2π√

K

)
= Rn is not

compact. Thus we have an example of a conformal change of
metric which changes a complete Riemannian manifold into a non-
complete Riemannian manifold.

6.8 Existence

The objective of this section is to show a paracompact con-
nected Hausdorff C∞ manifold admits a Riemannian metric. This
is accomplished by constructing a “partition of the unit function”.
The function e−1/x2 is the principal tool which is used to show there
are “many” C∞ functions on a C∞ manifold.

Lemma 6.10. Given real numbers 0 < b < c, there exists a C∞ func-
tion f : R → R with f(t) = 0 for t ≤ b, 0 ≤ f(t) ≤ 1 for all t, and f(t) = 1

for t ≥ c.

Proof. Consider the C∞ function

g(x) =

0 x ≤ 0

e−1/x2

x > 0
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We outline a sequence of operations which leads to the desired
functions, and we illustrate (and number) the graphs of these in-
termediate functions in Fig. 6.1. Translate g so its graph moves
1
2 (c − b) units to the left (this is no. (1)). Reflect the graph of (1)
about the y-axis to obtain (2). Multiply (1) and (2) to obtain (3).
Integrate (3) to obtain (4). Multiply (4) by a scale factor to obtain
(5). Translate the graph of (5) to the right to obtain the desired
function f .

Lemma 6.11. Given real numbers 0 < b < c, there exists a C∞ func-
tion
F : Rn → R with F (p) = 0 for |p| ≤ b, 0 ≤ F (p) ≤ 1 for all p, and F (p) = 1

for |p| ≥ c.

Proof. Let F (p) = f(|p|) where f is obtained from lemma 6.10.

Lemma 6.12. IfM is a Hausdorff C∞ manifold and m ∈M , then there
is a coordinate neighborhood U of m and a C∞ function f : M → R
such that f(p) > 0 for p ∈ U and f(p) = 0 for p /∈ U .

Proof. Let V be any coordinate neighborhood of m with coordinate
map
φ : V → Rn such that φ(m) = 0. Choose real numbers 0 < b < c such
that B(0, c) ⊂ φ(V ). Apply lemma 6.11 to obtain F and let G = 1−F .
Then let U = φ−1(B(0, c)) and let f = G ◦ φ on U while f(p) = 0 for
p /∈ U .

Lemma 6.13. If M is a paracompact Hausdorff C∞ manifold then
there exists a locally finite covering {Uα}, where Uα are open coor-
dinate neighborhoods, and a collection of non-negative real valued
C∞ functions {gα} such that gα(p) = 0 for p /∈ Uα and

∑
α gα = 1. The

collection {gα} is called a partition of unity for the covering {Uα}.

Proof. Combining lemma 6.12 and the definition of paracompact-
ness, one obtains the desired covering {Uα} with C∞ functions
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Graph of g:
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Figure 6.1: Constructing a C∞ Step Function
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fα : M → R such that fα > 0 on Uα and fα on M − Uα. The func-
tion F =

∑
α fα is a well-defined non-vanishing C∞ function on M

since the covering {Uα} is locally finite. Finally let gα = fα/F .

Theorem 6.14. If M is a connected Hausdorff C∞ manifold then the
following are equivalent:

(a) M is paracompact.

(b) M admits a Riemannian metric.

(c) M is second-countable (completely separable).

Proof. We show (a) implies (b) and give references for the other
implications whose proofs are purely topological.

Assuming (a), apply lemma 6.13 to obtain a locally finite cover
{Uα} with the partition of unity {gα}. On each coordinate neigh-
borhood Uα, define a local Riemannian metric tensor 〈−,−〉α by
demanding the coordinate map be an isometry. Then the tensor
gα 〈−,−〉α is a global C∞ tensor on M that vanishes outside Uα. At
any point m ∈M , for X,Y ∈ TmM , let

〈X,Y 〉 =
∑
α

gα(m) 〈X,Y 〉α

This defines a C∞ Riemannian metric tensor on M which shows (a)
implies (b).

Assuming (b), then from section 2.6 we know M is a metric
space and hence must be paracompact (see [Kel17, p. 160]). Thus
(b) implies (a). That (c) implies (a) follows from [HY12, p .79]. To
show (b) implies (c), we refer the reader to Chapter 6 in [Kel17].
The metric can be used to define a uniform structure on M which
must admit a countable base (see [Kel17, p. 186]).

For theorems concerning the imbedding of manifolds in other
manifolds, see [Ste64], [AM12] or [Sma61].
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Problems

All manifolds will be Riemannian unless otherwise stated.

49. If M is semi-Riemannian and D satisfies (4), then D is metric
preserving. Show that D is metric preserving iff for parallel
fields Y and Z along a curve σ, the function 〈Y, Z〉 is constant
on σ.

50. Let R and R′ be two linear map valued skew-symmetric 2-
covariant tensors whose corresponding K and K ′ satisfy prop-
erties (a) through (d) on p. 103. Show K = K ′ iff R = R′.

51. (i) If f is a C∞ strictly conformal map, show f∗ has no kernel
and preserves angles.

(ii) If f is a complex analytic map, show

〈f∗Xp, f∗Yp〉 = |f ′(p)|2 〈Xp, Xp〉

where f : C → C.

52. Let f :M →M ′ be a strictly conformal map with scale function
F .

(i) Show f is (Riemannian) connexion preserving iff F is con-
stant and f(M) is flat.

(ii) If f is an isometry, show f preserves the curvature tensor
and the Riemannian curvature.

53. With the standard hypothesis of section 3.3, show if f is con-
nexion preserving, then M is a sphere, a plane, or a right
circular cylinder (see [Hic63b]).

54. Let M ⊂ Rn be a hypersurface, let N be a C∞ unit normal, let
g ∈ C∞(M,R), and define ft :M → Rn by

ft(p) = p+ tg(p)Np
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(a) Show that
(ft)∗X = X + t(Xg)N + tgLX

for X tangent to M .
(b) If ft is an isometry for t > 0, show that M is flat.

55. Generalize the first two theorems in section 6.5 to the case
of a k-submanifold that is framed in an n-manifold for 1 < k < n

(see [Hic63a]). In the second theorem, if k = 2 and n = 3, show
K(P ) = K(P ) iff g is a line of curvature on M .

56. If u and v are orthonormal coordinates with domain A on a
2-manifold (thus ∂

∂u
and ∂

∂v
are orthonormal), show the coor-

dinate curves are geodesics and K ≡ 0 on A.

57. (K. Leisenring)

(i) Show that

f(u, v) = (cosucos v,cosusin v,sinucos v,sinusin v)

is an isometric imbedding of the flat torus T into the unit
sphere S3 in R4.

(ii) Show the total imbedded curvature of f(T ) in S3 is a con-
stant negative one.

58. Let M be connected with symmetric connexion D and let
Lp : TmM → TmM be a C∞ linear map valued function on M .
If TorL ≡ 0 and all points are L-umbilic, show L is a constant
multiple of the identity map.

59. (i) Show that every isometry of Rn can be factored uniquely
into an orthogonal map follows by a translation.

(ii) If f : Rn → Rn is orthogonal, show f∗ = f in a natural way.

60. If e1, . . . , en is an orthonormal base field with dual base w1, . . . , wn

and M has constant Riemannian curvature K, show the asso-
ciated curvature forms Rij = Kwi ∧ wj .
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61. If M has constant Riemannian curvature K and one defines a
metric on M ×M by

〈(X1, Y1), (X2, Y2)〉 = 〈X1, X2〉+ 〈Y1, Y2〉

does M ×M have constant curvature?

62. If x1, . . . , xn are coordinates on a hypersurface U ⊂ Rn+1, let

xi =
∂

∂xi
, gij = 〈Xi, Xj〉 , bij = 〈LXi, Xj〉 , LXj =

∑
i

aijXi

Show that

aij =
∑
r

(g−1)irbrj (Weingarten equation)

Ri
jkh =

∑
r

(g−1))ir(bhjbrk − bkjbrh) (Gauss curvature equation)

∂bir
∂xs

− ∂bis
∂xr

=
∑
r

(bkrΓ
k
is − bksΓ

k
ir) (Codazzi-Mainardi equation)

63. If M is a Hausdorff C∞ manifold, A ⊂ M is compact, B ⊂ M is
open, and A ⊂ B, show there exists f ∈ C∞(M,R) with f(A) =

0, f(M −B) = 1, and 0 ≤ f(M) ≤ 1.
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7. Operators on Forms and
Integration

This chapter develops more structure on a manifold. To con-
serve space, the treatment is fairly blunt and many computational
details are omitted. In the first four sections M is a C∞ n-manifold
and A is an open set in M .

7.1 Exterior Derivative

For p ≥ 0 we define the exterior differentiation map d : Ωp(A) →
Ωp+1(A) where Ωp(A) is the set of C∞ p-forms on A. If f ∈ Ω0(A) and
X is a C∞ field on A, then df(X) = Xf . For p > 1, letting w be a
(p− 1) form on A and X1, . . . , Xp be C∞ fields on A, then

dw(X1, . . . , Xp) =

p∑
j=1

(−1)j+1XjW (X1, . . . , X̂j , . . . , Xp)+∑
i<j

(−1)i+jw([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp),

(1)

where X̂ indicates that the field X is omitted as an argument.
Notice that the definition is consistent with the partial defini-

tion in section 5.2. One proves that dw is in Ωp(A) by using the
characterization theorem in Chapter 4. We outline the argument.
That dw is linear with respect to addition is trivial. That dw is al-
ternating can be shown by switching two arguments and examining
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the terms that don’t immediately change signs (this must be done
carefully). That dw is linear over the ring Ω0(A) then need only be
checked in one slot.

Proposition 7.1. The operation d has the following properties:

(1) d(w + v) = dw + dv, where w and v are in Ωp(A).

(2) d(w ∧ v) = ((dw) ∧ v) + (−1)p(w ∧ dv), for w in Ωp(A) and v any
form on A. (Any operator with this property is called an anti-
derivation.)

(3) d2 = d ◦ d = 0.

Proof. Property (1) follows trivially from the definitions of d and
addition of functionals. For the other two properties we first obtain
a local representation of d. Let x1, . . . , xn be a coordinate system
on an open set U , and let Xi =

∂

∂xi
. Then on U , a (p−1)-form w may

be represented by

w =
∑

ai1,...,ip−1
dxi1 ∧ . . . ∧ dxip−1

,

where the sum is over all indices such that 1 ≤ ij ≤ n and i1 < i2 <

. . . < ip−1 and ai1,...,ip−1 = w(Xi1 , . . . , Xip−1).

dw =
∑

dai1,...,ip−1
∧ dxi1 ∧ . . . ∧ dxip−1

,

which is proved by applying both sides to (Xk1
, . . . , Xkp

) for k1 < k2 <

. . . < kp. Since [Xr, Xs] = 0,

dw(Xk1 , . . . , Xkp) =

p∑
j=1

(−1)j+1Xkjak1,...,k̂j ,...,kp
,

while[∑
dai1,...,ip−1

∧ dxi1 ∧ . . . ∧ dxip−1

]
(Xk1

, . . . , Xkp
)

= dak2,...,kp(Xk1)− dak1,k̂2,...,kp
(Xk2) + . . . = dw(Xk1 , . . . , Xkp).
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To prove property (2), first let f and g be functions in Ω0(A) and
note

d(fg) = (df)g + f(dg)

follows from the derivation property of vectors. Next observe
that because of (1) and the local representation above, one need
only verify (2) for forms of the type

w = fdx1 ∧ . . . ∧ dxp and v = gdy1 ∧ . . . ∧ dyr,

where xi and yi are functions chosen from the members of a coor-
dinate system. Then

w ∧ v = fgdx1 ∧ . . . ∧ dxp ∧ dy1 ∧ . . . ∧ dyr,

and

d(w ∧ v) = d(fg) ∧ dx1 ∧ . . . ∧ dyr
= (gdf + fdg) ∧ dx1 ∧ . . . ∧ dyr
= dw ∧ v + (−1)pw ∧ dv.

For property (3) we first show d2f = 0 for a C∞ function f ∈ Ω0(A).
Locally,

df =

n∑
j=1

∂f

∂xj
dxj ,

so

d2f =

n∑
i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj

=
∑
i<j

[
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

]
dxi ∧ dxj

= 0.

For any w we may represent dw locally as a sum of products of
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df ’s for functions f ; hence by (2) each term in d2w has a factor
d2f = 0, so d2w = 0.

Letting Ω(M) =
∑n

k=0 Ω
k(M) be the direct sum of the modules of

forms of homogeneous type, endowed with its exterior multipli-
cation structure and exterior derivative operator d, one obtains a
graded differential algebra which is called the Cartan differential
algebra of M . If f : M → N is C∞, then d ◦ f∗ = f∗ ◦ d on Ω(N), and
it is sufficient to check this only on 0-forms and 1-forms.

There are other ways to define d, indeed one natural way is
to define d via a local representation, get the desired properties,
and then show it is independent of the local representation (see
[Che46, p. 146]). Then the invariant formula we took as definition
must be verified. Our treatment in this and the following sections
is similar to that of [Pal54].

7.2 Contraction

Let X be a C∞ vector field on the open set A. An operator CX ,
called contraction by X, which maps Ωp(A) into Ωp−1(A) is defined
as follows: (a) if f ∈ Ω0(A), let CXf = 0, and (b) if w ∈ Ωp(A) for p > 0,
let

(CXw)(X1, . . . , Xp−1) = w(X,X1, . . . , Xp−1)

.

Proposition 7.2. The operator C has the following properties:

(1) (CX)2 = 0.

(2) CX(w + v) = CXw + CXv,

(3) CX+Y = CX + CY ,

(4) CfX = fCX ,

(5) CX(w ∧ z) = (CXw) ∧ z + (−1)p(w ∧ CXz),
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Section 7.3: Lie Derivative

for f in Ω0(A), X and Y in T1,0A, w and v in Ωp(A), and z in Ωq(A).

Proof. Properties (1) through (4) are trivial. Property (5) follows by
induction on p, and it is sufficient to prove it when w is a product
of p 1-forms by the local representation of forms.

The operator CX can be defined on covariant tensors and mixed
tensors in an obvious way (with only (2), (3), and (4) valid in gen-
eral), and one can let CX be zero on pure contravariant tensors.
Properties (3) and (4) indicate C is a tensor map (an anti-derivation
valued 1-form of degree −1 on Ω(A)).

There is another form of “contraction” induced by the natural
identification of tensors of type (1, 1) and linear maps. Let W be
an n-dimensional vector space over R. For r > 0, s > 0, 1 ≤ i ≤ r,
1 ≤ j ≤ s define
tri,j : Tr,sW → Tr−1,s−1W by taking θ in Tr,sW , w1, . . . , wr−1 in W ∗, and
X1, . . . , Xs−1 in W and letting

(tri,jθ)(w1, . . . , wr−1, X1, . . . , Xs−1) =

n∑
k=1

θ(w1, . . . , wi−1, zk, wi, . . . , wr−1, X1, . . . , Xj−1, Zk, Xj , . . . , Xs−1)
(2)

where Z1, . . . , Zn is a base of W and z1, . . . , zn the dual base of
W ∗. One checks easily that tri,jθ is well-defined independently of
the particular base used. If θ ∈ T1,1W , let tr1,1θ = trθ. The above
operator induces an operator
tri,j : Tr,sA→ Tr−1,s−1A for an open set A in M .

7.3 Lie Derivative

Let X be a C∞ vector field on the open set A. An operator
LX , called the Lie derivative via X, which maps Tr,sA into itself, is
defined as follows:

(a) if f ∈ Ω0(A), LXY = Xf ;
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(b) if Y ∈ T1,0A, LXY = [X,Y ];

(c) if w ∈ T0,1A, (LXw)(Y ) = Xw(Y )− w([X,Y ]);

(d) if θ in Tr,sA,w1, . . . , wt in T0,1A, and Y1, . . . , Ys in T1,0A, then LXθ

is defined by solving for it in the equation

LX [θ(w1, . . . , wr, Y1, . . . , Ys)] = (LXθ)(w1, . . . , Ys)

+ θ(LXw1, w2, . . . , Ys) + . . .+ θ(w1, . . . , Ys−1,LXYs).
(3)

We call LX a complete derivation because of the property (d) and
note all terms in 3 are well-defined by (a), (b), and (c) except the
LXθ term (indeed, (c) is “defined” by (d)). One shows LXθ is a
tensor by checking the linearity over Ω0(A).

Proposition 7.3. The operator LX has the following properties:

(1) LX preserves forms,

(2) LX(w + z) = LXw + LXz,

(3) LX(w ⊗ v) = (LXw)⊗ v + w ⊗ LXv,

(4) LX(α ∧ β) = (LXα) ∧ β + a ∧ LXβ,

where w and z are tensors of the same type, v is any tensor,
and a and β are forms.

Proof. An exercise (for (4) use LX [(α⊗ β)π] = [LX(α⊗ β)]π).

There is a more geometric definition of the Lie derivative LX on
covariant tensors which we now discuss. Suppose the vector field
X is defined and C∞ on all of M . For each m in M let fm(t) be the
integral curve of X (section 1.5) through m with fm(0) = m. we know
fm defined for t in a neighborhood of zero, but suppose each fm is
defined for all t and R. Then for each t in R we could define a map
Ft : M → M by Ft(m) = fm(t), with the properties Ft ◦ Fs = Ft+s and
F : M × R → M by F (m, t) = Ft(m) would be C∞ (from the fact that
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X was C∞ and the C∞ dependence of solutions of ordinary differ-
ential equations upon initial conditions). Each F , would be a diffeo,
since (Ft)

−1
= F−t and F0 is the identity map. A map F with the

above properties is called a 1-parameter group of differentiable
transformations of M , and X is called its infinitesimal generator.

In general fm is not defined for all t, but one does obtain a local
1-parameter group of local transformations in a neighborhood of
each m in M ; i.e., for each m in M there is a neighborhood U of m,
a real number b > 0, and a map F : U × (−b, b) →M such that

(1) F is C∞,

(2) for t in (−b, b), Ft : U → Ft(U) is a diffeo,

(3) for t, s, and t+ s in (−b, b), Ft ◦ Fs = Ft+s, and

(4) for fixed p ∈ U ,fp(t) = Ft(p) is an integral curve of X.

For more details see [Pal54]; [Pal57] and [Nom21, p. 5].

Lemma 7.4. Let Y be a C∞ field in a neighborhood of m in M . We
choose U and b in the preceding paragraph to be sufficiently small
so the image of F is contained in the domain of Y . Then

[X,Y ]m = lim
t→0

(F−t)∗ YF (m,t) − Ym

t
.

Proof. See [Nom21, p. 8].

Assuming lemma 7.4, which gives us another geometric inter-
pretation of the bracket, it is trivial to show the following lemma.

Lemma 7.5. Let w be a C∞ p-form at m. Then

(LXw)m = lim
t→0

(F ∗
t w)m − wm

t

where
(F ∗

t w)m(Y1, . . . , Yp) = wF (m,t)((Ft)∗Y1, . . . , (Ft)∗Yp)
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The following is a useful relation between d, LX , and CX .

Proposition 7.6. If X is a C∞ field on A, then LX = d ◦ CX + CX ◦ d
when applied to C∞ forms on A.

Proof. We verify this equality on functions (0-forms) and 1-forms.
This is sufficient to prove the proposition, since locally a form is a
sum of products of functions and 1-forms, and the operators which
we equate above are both derivations; hence their value on any
form is determined by the values on functions and 1-forms.

For f ∈ Ω0(A),

dCX(f) + CXd(f) = 0 + df(X) = Xf = LXf.

For w ∈ Ω1(A),

(dCX + CXdw)(Y ) = Y w(X) + dw(X,Y )

= Y w(X) +Xw(Y )− Y w(X)− w([X,Y ])

= (LXw)(Y )

7.4 General Covariant Derivative

Let D be a connexion on M , and let X be a C∞ field on the open
set A. An operator DX , called the covariant derivative via X, which
maps Tr,sA into itself, is defined by using the recipe for defining
LX . The definition of DX proceeds exactly as the definition for LX

except for (b), and if Y in T1,0A,DXY is given by the connexion D
(see section 5.1).

When DX is substituted for LX in proposition 7.3 of the previous
section, one obtains valid properties for DX .

An operator ∆, called the general covariant derivative opera-
tor, which maps Tr,sA into Tr,s+1A is induced by D. If θ is in Tr,sA,
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w1, . . . , wr are in T0,1A, and Y1, . . . , Ys+1 are in T1,0A, then

(∆θ)(w1, . . . , wr, Y1, . . . , Ys+1) =
(
DYs+1θ

)
(w1, . . . , wr, Y1, . . . , Ys) (4)

That ∆θ is a tensor is left as a problem. If θ and φ are tensors of
the same type, then ∆(θ+ φ) = ∆θ+∆φ, but ∆ is not a tensor. (see
problem 64)

If 1 ≤ i ≤ p and 1 ≤ j ≤ q, then

∆ ◦ tri,j = tri,j ◦∆ (5)

on Tp,qA.
An operator div, called the divergence, which maps Tr,sA into

Tr−1,sA, for r > 0 and s ≥ 0, is defined by div = trr,s+1 ◦ ∆. We
write div θ = tr(∆θ), where we assume the trace is taken on the
last covariant slot and the last contravariant slot. A tensor θ is
conservative if div θ = 0.

The Riemann-Christoffel curvature tensor of type (1, 3) is the
tensor K ∈ T1,3A defined by

K(w,X, Y, Z) = w(R(Y, Z)X) (6)

for w ∈ T0,1A and X,Y, Z ∈ T1,0A. The second Bianchi identity is the
equation

(∆K)(w,X, Y, Z,W ) + (∆K)(w,X,W, Y, Z) + (∆K)(w,X,Z,W, Y ) = 0 (7)

which is valid if D is symmetric, and it is proved by noting the
expression

DW (R(Y, Z)X)−R(Z, [Y,W ])X −R(Y, Z)(DWX), (8)

when written on three lines, permuting W,X,Z cylically from line
to line, and then adding the three lines, yields zero.

The Ricci tensor is the 2-covariant tensor
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Ric(X,Y ) = (tr1,2K)(X,Y ) = −(tr1,3K)(X,Y ) (7.1)

(and this is the negative of the “classical” Ricci tensor). Notice
(tr1,1K)(X,Y ) = trR(X,Y ). The Ricci curvature of a vector X is
the number Ric(X,X) (and this agrees with the “classical” Ricci
curvature). If D is symmetric, the first Bianchi identity implies

Ric(X,Y ) = Ric(Y,X) + trR(X,Y ). (10)

If D is Riemannian, then R(X,Y ) is skew-symmetric by (c), so
Ric is symmetric. Hence there exists a self-adjoint linear map
R∗, called the Ricci map, defined on each TmM with Ric(X,Y ) =

〈R∗(X), Y 〉; indeed

R∗(X) =

n∑
j=1

R(X,Zj)Zj (11)

for an orthonormal base Z1, Z2, . . . , Zn. By (11), R∗ is C∞. The scalar
curvature S(m) at each m ∈M is defined by S(m) = tr(R∗)m.

A (semi-) Riemannian metric induces many operations called
“raising” and “lowering” of indices which we now explain. The
non-singular metric tensor induces a non-singular linear map G of
TmM onto T∗

mM for each m, i.e., if X in TmM , then G(X)(Y ) = 〈X,Y 〉.
We let G∗ denote the inverse map of T∗

mM onto TmM . If w ∈ T∗
mM ,

then 〈G∗w,X〉 = w(X). If 1 ≤ i ≤ r, 1 ≤ j ≤ s+ 1, and θ is in Tr,s define
Gi,jθ in Tr−1,s+1 by

(Gi,jθ)(w1, . . . , wr−1, X1, . . . , Xs+1)

= θ(w1, . . . , wi−1, G(Xj), wi, . . . , wr−1, X1, . . . , X̂j , . . . , Xs+1).
(12)

Similarly, define Gi,j
∗ : Tr,s → Tr+1,s−1 for 1 ≤ i ≤ r + 1 and 1 ≤ j ≤ s

by taking the form in the ith covariant slot (of the new tensor);
applying G∗, and inserting it into the jth contravariant slot (of the
old tensor). Thus G1,1 = G on T1,0, and the (1, 1)-tensor R associated
with R∗ is given by R = G1,1

∗ Ric (where R(w,X) = w(R∗X)). If f is in
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C∞(M,R), the gradient field of f is the field grad f = G∗(df) and the
Laplacian of f is the function del f = div(grad f); (sometimes the
notation del f = ∆f is used).

The operators Gi,j and Gi,j
∗ commute with ∆ when possible, i.e.,

∆ ◦Gi,j = Gi,j ◦∆ on Tr,s if j ≤ s+ 1 and (13)

∆ ◦Gi,j
∗ = Gi,j

∗ ◦∆ on Tr,s if i ≤ r + 1. (14)

As an example of the use of these operations we prove that

∆S = 2divR (15)

which is used in general relativity. Let Z1, . . . , Zn be an orthonormal
base of TmM and w1, . . . , wn be the dual base. The second Bianchi
identity implies∑

i,j

[∆K(wj , Zi, Zj , X) + ∆K(wi, Zi, X, Zj , Zi) +K(wj , Zi, Zi, X, Zj)] = 0

The first term of the sum gives (∆S)(X), while the other two each
give (−divR)(X). For

147



Chapter 7: Operators on Forms and Integration

(∆S)(X) = (∆tr1,1G1,1
∗ tr1,2K)(X)

= (tr1,1G1,1
∗ tr1,2∆K)(X)

=
∑
i,j

∆K(wj , Zi, Zj , Zi, X),

(divR)(X) = (tr1,2∆G1,1
∗ tr1,2K)(X)

=
∑
i,j

∆K(wj , Zi, X, Zj , Zi), and

(∆K)(wj , Zi, Zi, X, Zj) = (∆G1,1K)(Zj , Zi, Zi, X, Zj)

= (∆G1,1K)(Zi, X, Zj , Zi, Zj)

= −(∆G1,1K)(Zi, Zi, X, Zj , Zj)− (∆G1,1K)(Zi, Zj , Zi, X, Zj)

= −(divR)(X)

by (c) and (a’) in section 6.2.

7.5 Integration of Forms and Stokes’ Theorem

One integrates p-forms over p-chains, or singular p-chains, which
we now define. Let Ip = {a ∈ Rp : 0 ≤ ai ≤ 1} denote the unit p-square
for p > 0, and I0 = {0 ∈ R}. A C∞ p-cube on M is an M−valued C∞

function defined on an open neighbourhood of the unit p-square Ip

in Rp. A real C∞ p-chain c is a finite formal linear combination of C∞

p-cubes with real coefficients, thus c = r1σ1 + r2σ2 + . . .+ rkσk where
rj ∈ R and σj are C∞ p-cubes. The set Cp(M,R) of all real C∞ p-
chains is an abelian group (actually an R-module) where one defines
addition by adding the coefficients of corresponding p-cubes.

There are fancier ways of defining Cp(M,R). Let Qp be the set of
C∞ p-cubes onM . Then Cp(M,R) is isomorphic to set of all functions
mapping Qp into R which are zero except on a finite number of
elements, and the addition and scalar multiplication structure on
this function space is obvious. Similarly, one could define C(M,Z),
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the set of integral C∞ p-chains or C∞ p-chains over the integers.
Then Cp(M,R) = R⊗Z Cp(M,Z). More generally one could define C∞

p-chains over any ring A with an identity element, and then by using
the tensor product obtain the A-module of C∞ p-chains on M over
any A-module. There are corresponding groups obtained from Cr p-
chains for any integer r ≥ 0. These groups are fundamental objects
of the cubical singular homology theory for M and are studied
in algebraic topology, (see Eilenberg and Steenrod). Because of
our differential geometry bias, we restrict ourselves to real C∞

p-chains, and let Cp = Cp(M,R).

The support of a p-cube σ is the set |σ| = σ (Ip), the image of
Ip under σ. The support of a p-chain c is the set |c| = Ui|σi| for σi
in c, where we say σi ∈ c if the coefficient of σi is non-zero, i.e.,
adopting the functional viewpoint c(σi) 6= 0 iff σi ∈ c.

To define the boundary map ∂ : Cp → Cp−1, define maps α1
i and

a0i from Ip−1 into Ip for i = 1, . . . , p by

aεi (t1, . . . , tp−1) ∈ (t1, . . . , ti−1, ε, ti, . . . , tp−1) (16)

where ε = 1 or 0. If σ in Qp, define

∂σ =

p∑
1

(−1)i+1
(
σ ◦ a1i − σ ◦ a0i

)
,

and call the (n− 1)-cubes σ ◦ α1
i and σ ◦ α0

i faces of σ. We extend ∂

to all of Cp by demanding it be linear, i.e.,

∂ (c1 + c2) = ∂c1 + ∂c2 and ∂(rc) = r∂c for r ∈ R

. A straightforward computation shows ∂2 = 0.

For p > 0, let σ be a C∞ p-cube, let w be a p-form, and let u1, . . .,
up be the natural coordinate function on Rp. Since σ∗w is a p-form
on a neighborhood of Ip, we may define a C∞ function f on Ip by
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σ∗w = fdu1 ∧ du2 ∧ . . . ∧ dup. Then∫
σ

w ≡
∫
I

p∗w ≡
∫
I

p (17)

where the integral on the right is the standard Riemann integral of
f over Ip developed in advanced calculus.For a p-chain

c =

ki∑
1

σi =⇒
∫
c

w =

k∑
1

ri

∫
σi

w;

thus for fixed w, the integral over w is an R -homomorphism of Cp

into R. Since σ∗ is linear, it is trivial that
∫
c
(w1 + w2) =

∫
c
w1 +

∫
c
w2

for p-forms Wi and a p-chain c.
For p = 0, let f be a function on M and σm the 0 -cube with

σm(0) = m, then ∫
σ

f = f(m) = σ∗
mf(0),

and we extend the integral of f over any real 0-chain to be linear
(as extended above).

Let Cp = HomR(Cp,R), which is the R-module of all R-linear ho-
momorphisms of Cp into R. The set Cp is called the module of real
C∞ p-cochains of M . The adjoint δ of the boundary operator ∂ is
called the coboundary operator and is defined by δf(c) = f(∂c) for
p-cochain f and a (p+ 1)-chain c. Thus δ : Cp → Cp+1 and δ2 = 0.

We define the Stokes’ map S : Ωp(M) → Cp which maps p-forms
on M into C∞ p-cochains on M by [S(w)](c) =

∫
c
w, for c in Cp The

following theorem shows the Stokes’ map commutes with the dif-
ferential coboundary operator, i.e., S ◦ d = δ ◦ S.

Theorem 7.7 (Stokes’ Theorem). Let w be a C∞ p-form and σ be a
C∞ (p+ 1)-cube, then

∫
σ

dw =

∫
∂σ

w (18)
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Proof. Define C∞ functions a1, . . . , ap+1 on Ip+1 by

σ∗w =

p+1∑
1

aidu1 ∧ du2 ∧ . . . ∧ d̂ui ∧ . . . ∧ dup+1.

Then

d(σ∗w) =

p+1∑
i=1

( p+1∑
i=1

∂ai
∂uj

duj

)
∧ du1 ∧ . . . ∧ d̂ui ∧ . . . ∧ dup+1

=

[ p+1∑
i=1

(−1)i+1 ∂ai
∂ui

]
du1 ∧ · · · ∧ dup+1.

Hence ∫
σ

dw =

∫
Ip+1

σ∗dw =

∫
Ip+1

dσ∗w =

∫
Ip+1

[ p+1∑
1

(−1)i+1 ∂ai
∂ui

]

=

p+1∑
1

(−1)i+1

[ ∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∂ai
∂ui

du1du2 . . .dup+1

]

=

p+1∑
1

(−1)i+1

∫
Ip

(
ai ◦ α1

i − ai ◦ a0i
)

where we use Fubini’s theorem and integrate first with respect to
ith coordinate to obtain the last equality.

For the other side we must compute
∫
σ◦αε

i

w =

∫
Ip

(αε
i )

∗ ◦ σ∗(w) for

ε = 0 or 1. Notice

(αε
i )

∗duj = d((αε
i )

∗uj) = d(uj ◦ aεi ) =


duj j < i

0 j = i

duj−1 j > i

Thus (aεi )
∗
σ∗w = (ai ◦ αε

i )du1 ∧... ∧dup and
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∫
∂σ

w =

p+1∑
i=1

(−1)i+1

[∫
σ◦α1

i

w −
∫
σ◦α0

i

w

]

=

p+1∑
i=1

(−1)i+1

∫
Ip

(
ai ◦ α1

i − ai ◦ α0
i

)
which proves the desired equality.

We remark that Stokes’ theorem is simply a generalized “funda-
mental theorem of calculus.” Let f :M →M ′ be a C∞ map, let w be
a p-form on M ′ and σ a p-cube in M , then it is trivial to show

∫
f◦σ w =∫

σ
f∗, which is essentially the classical substitution rule that deals

with the behavior of integrals with respect to mappings.
The Stokes’ map induces a map at the cohomology level that

yields an algebra-isomorphism of the differential cohomology groups
of a manifold with the real singular cohomology groups. This fact
is called the de Rham theorem (see [Wei52] and problem 71).

7.6 Integration in a Riemannian Manifold

Let M be a Riemannian manifold, let σ be a C∞ curve in M , and
let f be a real valued C∞ function on the image of σ, i.e., let f ◦σ be
C∞. Consider a “piece” of σ, which we assume to be parameterized
by arc length on the interval [a, b], and define

∫
σ|[a,b]

f =

∫ b

a

f ◦ σ(s)ds (19)

where σ|[a, b] denotes the restriction of σ to the interval [a, b]. Call
the integral just defined the integral of f over σ restricted to [a, b]

and when the interval is understood, we write simply
∫
σ
f . If f

is a C∞ real valued function f defined on a broken C∞ curve σ,
we define

∫
σ
f to be the sum of the integrals of f over the finite

number of C∞ sub-curves determining σ. Notice that by assuming
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σ parametrized by arc length we are integrating over oriented or
directed curves.

We wish to integrate real valued C∞ functions over other sub-
sets of M , and in some cases over M itself. This could be accom-
plished by using the Riemannian metric to define a measure on M ,
but for our purposes we need not be so general. First we define
orientable manifolds and then utilize the theory developed above
for integrating forms over chains.

An n-dimensional manifold M is orientable if there is a non-
vanishing C∞ n-form w on M . When M is orientable and we have
selected w, we say M is oriented (by w) and w is an orientation of
M . If M is oriented by w, then an ordered base e1, . . . , en of TmM

is positively oriented if wm = bw1 ∧ . . . ∧ wn where b > 0 and wi are
the 1-forms dual to ej . We say M is non-orientable when M is not
orientable. If M is oriented and e1, . . . , en a positively oriented base
of M , then one verifies easily that a base f1 . . . , fn of M is positively
oriented if and only if det (bij) > 0 where fj =

∑
i bijei.

For example, Rn is orientable, and we orient it by choosing W =

du1 ∧ . . . ∧ dun where ui are the natural coordinate functions. It is
a topological result that any complete (or closed) hypersurface in
Rn is orientable.

Let M and M ′ be oriented n-manifolds. A non-singular C∞ map
f of M into M ′ is orientation preserving if f∗ maps a positively
oriented base onto a positively oriented base.

Let M be an oriented Riemannian n-manifold. For m in M let
e1, . . . , en be a positively oriented orthonormal base of TmM with
dual base w1, . . . , wn. Define the n-form v by vm = w1 ∧ . . . ∧ wn. The
form v is a well-defined (independent of the particular base) C∞

n-form on M called the volume element.
A major problem now confronts us: the problem of “triangulat-

ing” or “cubulating” a manifold. This is a theory for breaking the
manifold into “nice pieces” over which one can integrate functions.
For this purpose we define fundamental n-chains. Let Int(A) denote
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the interior of a set A.
Let M be an oriented C∞ n-manifold. A fundamental n-chain in

M is a chain c = σ1 + . . .+ σk such that:

(1) each σi is an n-cube that is an orientation preserving diffeo
onto its image;

(2) Int(|σi|) ∩ Int(|σj |) is empty for i 6= j.

Figure 7.1 gives a schematic diagram of a fundamental 2-chain (with
the images of the faces of the canonical 2-cube numbered).

R2

1
2

3
4

M

1
3

2
3

4

42 1
23

4 1

Figure 7.1: A Fundamental 2-Chain

If M is an oriented Riemannian n-manifold, c is an n-chain, and f

is a C∞ real valued function whose domain contains |c|, then define∫
c

f =

∫
c

fv (20)

where v is the volume element on M . Let a subset A of M

be fundamental if there exists fundamental n-chain c with |c| = A.
Notice a fundamental set is compact.

Proposition 7.8. If c and τ are two fundamental n-chains with |c| =
|τ | = A, and f is a C∞ function whose domain contains A, then∫
c
fv =

∫
τ
fv. Thus define

∫
A
f =

∫
c
fv.
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Proof (King Lee). Let c = σ1+ . . .+σr and τ = γ1+ . . .+γs, and through-
out this proof let 1 ≤ i ≤ r and 1 ≤ j ≤ s. If Aij = |σi| ∩ |γj |, let
Bij = (σi)

−1(Aij) and Cij = (γj)
−1(Aij). Then γ−1

j ◦ σi is a diffeo of Bij

onto Cij and

∫
Bij

(σi)
∗fv =

∫
Bij

(σi)
∗(γj ◦ γ−1

j )∗fv =

∫
Bij

(γ−1
j ◦ σj)∗fv =

∫
Cij

(γj)
∗fv

Hence∫
c

fv =
∑
i

∫
σi

fv =
∑
i,j

∫
Bij

(σi)
∗fv =

∑
i,j

∫
Cij

(γj)
∗fv =

∫
τ

fv.

If M is a compact oriented n-manifold, then M is a fundamen-
tal set (this is hard; see [Cai]). Thus if M is a compact oriented
Riemanian manifold and f is a C∞ real valued function on M , then∫
M
f is well-defined. To handle the non-compact case, define the

support of a function f to be the set Sf that is the closure of the
set {p ∈ M : f(p) 6= 0}. Since any compact set of M is contained
in a fundamental set (a non-trivial remark), if M is oriented and
Riemannian, f is C∞ with compact support, and Sf ⊂ fundamental
set A, then

∫
M
f =

∫
A
f is well-defined (independent of A).

The area, volume, or measure (depending on the appropriate
dimension) of a fundamental set A is the number

∫
A
f , where f ≡ 1

on M . For a deeper study of integration theory on manifolds see
the book of [Whi16].

Problems

Let M be a C∞ n-manifold and let U be an open subset of M .

64. If X and Y are in T1,0M , f, g ∈ C∞(M,R) and w ∈ T0,1M show

(i) LfXw = w(X)df + f(LXw),
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(ii) LfXY = f(LXY )− df(Y )X,

(iii) LfXg = fLXg,

(iv) and ∆(fw) = f∆w + w ⊗ df .

Thus L and ∆ are not tensors.

65. If X is a C∞ vector field on U, m ∈ U, Z1, . . . , Zn a base of TmM
with dual base w1, . . . , wn

(i) Show (divX)m =

n∑
i=1

wi (DZi
X).

(ii) Show that the divergence of a C∞ field on R3 agrees with
the advanced calculus definition.

66. Let A be in T1,1U , let Z1, Z2, . . . , Zk be a C∞ base field on U and
let w1, w2, . . . , wk be the dual base on U . Show

DXwj = −
∑
k

wj(DXZk)wk and
∑
j

[A(DXwj , Zj) +A(wj ,DXZj)] = 0.

67. Let M be Riemannian, let X1, . . . , Xn−1, T be an orthonormal
base, and let Pi be the plane section spanned by Xi and T .
Show

Ric(T, T ) =
n−1∑
i=1

K (Pi) .

68. Prove formulas (5), (7), (13), and (14).

69. If D has zero torsion, show

dw(X,Y ) = (DXw)(Y )− (DY w)(X).

70. If M is Riemannian and G(X,Y ) = 〈X,Y 〉,

(i) show that a connexion D is metric preserving iff ∆G = 0.
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(ii) Given arbitrary A ∈ T0,3M and B ∈ T1,2M with

A(X,Y, Z) = A(Y,X,Z) and B(w,X, Y ) = −B(w, Y,X)

for all w,X, Y, Z, show there exists a unique connexion D
on M with ∆G = A and B(w,X, Y ) = w(TorD(X,Y )).

71. (Poincaré lemma) Show every closed p-form on Rn is exact for
p > 0 as follows: for b in R let gb : Rn → Rn+1 by gb (t1, . . . , tn) =

(t1, . . . , tn, b), let f : Rn+1 → R by

f (t1, . . . , tn+1) = (tn+1t1, tn+1t2, . . . , tn+1tn) ,

let T =
∂

∂un
, and for p > 0, define the linear map K : Ωp(Rn) →

Ωp−1(Rn) by

K(w) =

∫ 1

0

(gb)
∗ ◦ CT ◦ f∗(w)db,

and show dK +Kd equals the identity map on Ωp(Rn).

72. LetM be an oriented Riemannian 2-manifold. If σ is an oriented
C∞ curve in M with unit tangent T , let T,N be an orthonormal
oriented base along σ and define the signed geodesic curva-
ture of σ to be the C∞ function b with DTT = bN on σ.

(i) If Z, W is an oriented orthonormal parallel base field along
σ and T = (cos θ)Z + (sin θ)W , show b =

dθ
ds = Tθ on σ.

(ii) If x, y is an oriented orthogonal coordinate system on U ∈
M , let E = 〈X,X〉 and G = 〈Y, Y 〉. If b1 and b2 denote the
geodesic curvature along the x-coordinate and y-coordinate
curves, respectively, show

b1 = − 1

2E
√
G

∂E

∂y
, b2 =

1

2E
√
G

∂E

∂y
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and
K =

1√
EG

[
∂b1

√
E

∂y
− ∂b2

√
G

∂x

]
.

(iii) Show the y-curve are geodesics (with y as parameter) iff
G is constant.

73. If M is Riemannian, (φ,U) is a coordinate pair,

xi = ui ◦ φ, gij =
〈

∂

∂xi
,
∂

∂xj

〉
,

g = det(gij), f is in C∞(M,R), and A is a fundamental set with
A ⊂ U , show∫

A

f =

∫
φ(A)

(f ◦ φ−1)
√
g ◦ φ−1du1du2 . . .dun.

74. Let M be a surface in R3 with sphere map η. For m in M let
A(r) be the area of B(m, r), the ball about m of radius r and let
Aη(r) be the area of η(B(m, r)). Show

K(m) = lim
r→0

[Aη(r)

A(r)

]
.
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8. Gauss-Bonnet Theory and Rigidity

In this chapter, M will denote a connected orientated Riemann
n-manifold.

8.1 Gauss-Bonnet Formula

In this section, let n = 2, let A be a fundamental set in M, and let
c be a fundamental 2-chain with |c| = A. The oriented curve γ = ∂c is
called the bounding curve of A. A vertex of c is a point in M that
is the image of a vertex in I2 under a 2-cube in c. A face of c is
the support of a 2-cube in c. An edge of c is the face of a 1-cube in
∂σ for some 2-cube σ in c. A boundary edge of c is an edge that is
in γ. A corner point of γ is a vertex of c belonging to exactly two
boundary edges. At a corner point p of γ, let Ti(p) (the “tangent
in”) and To(p) (the “tangent out”) be the unit tangents at p of the 1-
cubes in γ, defined by the orientation, going “into” and “out from”
p, respectively. The exterior corner angle α(p) is the angle such
that cosα(p) = 〈Ti(p), To(p)〉 and 0 < α < π or −π < α < 0 according
as Ti, To is a positively or negatively ordered base. If To = Ti, then
α = 0, and if To = −Ti then α = −π (see 8.1).

In the proof of the Gauss-Bonnet formula that follows, the dif-
ferential geometry involved is simple. The crux of the theorem
is the Hopf Umlaufsatz (see discussion after proof). As usual, a
simple closed curve is a homeomorphic image of the circle S1 in
R2.
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A

γ1

γ2

Ti

T0
α > 0

p

A

γ1

γ2

Ti

T0

α < 0

p

Figure 8.1: Corner Angles

Theorem 8.1 (Gauss-Bonnet formula). Let A be contained in a co-
ordinate domain U of M, let the bounding curve γ of A be a simple
closed curve, and let α1, . . . , αr be the exterior corner angles of γ.
Then

∫
γ

k = 2π −
r∑

j=1

αj −
∫
A

K (1)

where k is the signed geodesic curvature function on γ and K is
the Riemannian (Gaussian) curvature function on A.

Proof. Let e1, e2 be a C∞ positively oriented base field on U. Let
γ1, . . . , γr be the C∞ pieces of γ with each γj parameterized by arc
length on the interval [sj , sj+1], γj(sj+1) = γj+1(sj+1) for j = 1, . . . , r− 1,

while γr(sr+1) = γ1(s1), and αj the exterior corner angle at γ(sj). Let
T be the unit tangent to γ. By making a constant rotation of e1, e2,
if necessary, we may assume T (s+1 ) = e1. Define ζ(s) on [s1, s2] so ζ is
C∞, ζ(s+1 ) = 0, and T = (cos ζ)e1+(sin ζ)e2. This ζ is well-defined, since
we have given its initial value and it is C∞, since locally it is given
by ζ(s) = cos−1 〈T (s), e1(s)〉 for a proper branch of the inverse cosine.
Thus we obtain ζ(s−2 ). Let ζ(s+2 ) = ζ(s−2 ) + α1 and extend ζ to [s2, s3]

so ζ is C∞ and T = (cos ζ)e1 + (sin ζ)e2, as before. Continuing this
process, we extend ζ to [s1, sr+1] with ζ in C∞ at all interior points
except si where it has a jump precisely equal to αi for i = 2, . . . , r.

Since γ is a simple closed curve, we use the Hopf Umlaufsatz to
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Section 8.1: Gauss-Bonnet Formula

obtain ζ(s−r+1)+α1 = ζ(s+1 )+2π. We include a schematic diagram (8.2):

σ3

σ4

σ1

σ2

α1

α2

α4

α5
α6

α7

U

Figure 8.2: Fundamental Set

On each C∞ piece of γ we have the positively ordered orthonor-
mal base field, T,N, and the signed geodesic curvature k is defined
by DTT = kN. In terms of ζ,

T = (cos ζ)e1 + (sin ζ)e2, while N = (−sin ζ)e1 + (cos ζ)e2.

Let w1, w2 be the dual 1-forms to the base e1, e2 and let w12 = −w21

be the corresponding connection 1-form on U (note w11 = w22 = 0 for
the Riemann connection D). Thus v = w1∧w2 is the volume element
on U. Moreover, by the Cartan structual equations, dw12 = R12, and

K = 〈R(e1, e2)e2, e1〉 =
〈 2∑

i=1

Ri2(e1, e2)ei, e1

〉
= R12(e1, e2)
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thus R12 = Kw1 ∧ w2.

Since k = 〈D, N〉 and

DTT = (Tζ)N + (cos ζ)w21(T )e2 + (sin ζ)w12(T )e1,

then
k = (Tζ)− w12T, (2)

which is a Cartan formula for the geodesic curvature. Then

∫
γ

k =

r∑
j=1

∫ sj+1

sj

dζ

ds
ds−

∫
∂c

w12 =

r∑
j=1

[ζ(s−j+1)− ζ(s+j )]−
∫
c

dw12

= 2π −
r∑

j=1

αj −
∫
A

K,

where we use Stokes’ theorem for the second equality.

The Gauss-Bonnet formula almost proves the Hopf Umlaufsatz
(see [Hop26]), which states if γ is a simple closed smooth (C1) curve
in R2, then

∫
γ
k = ±2π, depending on the orientation of γ. We need

the topological result that γ disconnects the plane into two com-
ponents and the map γ may be extended into a homeomorphism
of the interior of the disc B(0, 1), which then maps onto a set A,
which is fundamental and has γ as bounding curve. Then letting
e1 = i, e2 = j (advanced calculus notation), we have w12 = 0,K = 0,

and all ai = 0, so
∫
γ
k = 2π if γ positively oriented. The reader may

also be interested in the papers of [Whi37], [Gri58], and [Tit].
The Gauss-Bonnet formula was first proved by Bonnet in 1848.

Somewhat earlier Gauss had proved the following result on geodesic
triangles.

Theorem 8.2 (Gauss). Let A be a fundamental set of M bounded
by three (non-closed) geodesics, i.e., A is a geodesic triangle, and
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Section 8.1: Gauss-Bonnet Formula

let β1, β2, β3 be the interior angles at the corners. Then∫
A

K = β1 + β2 + β3 − π,

and this number is called the excess of the triangle.

Proof. The Gauss-Bonnet formula is applicable. Since k = 0 and
αi = π − βi, we have

0 = 2π −
3∑

j=1

(π − βj)−
∫
A

K.

Corollary 8.3. Let B be the sum of the interior angles of a geodesic
triangle A on M. Then B is > π,= π, or < π, according as K > 0,= 0,

or < 0 on A. If K is constant and not zero on A, then the area of A
equals the excess of A divided by K.

We obtain some simple applications of the Gauss-Bonnet for-
mula by applying it to the cases when M is diffeo to the sphere
or the torus. In the former case

∫
M
K = 4π, and in the latter case∫

M
K = 0. These are special cases of the Gauss-Bonnet theorem

which we prove later in this section. We sketch the proofs of
these facts.

When M is diffeo to S2, we let γ be the image of the equator
(under the diffeo), A1 the image of the “northern” hemisphere, and
A2 the image of the “southern” hemisphere (see 8.3). Supposing γ

to be the bounding curve of A1, we have∫
γ

k = 2π −
∫
A1

K and
∫
−γ

k = −
∫
γ

k = 2π −
∫
A2

K.

Hence ∫
M

K =

∫
A1

K +

∫
A2

K = 4π.
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A1

A2

γγ

β −β

A1

A2

Figure 8.3: Sphere and Torus

When M is diffeo to the torus, let A1 be the image of the “top
half” and A2 the image of the “bottom half” of the torus so A1

and A2 are bounded and seperated by the image γ of the “inside”
and “outside” curve on the torus (see 8.3). Again letting γ be the
bounding curve of A1, connecting and closing γ via a cut curve β

(see 8.3), and taking a limit, we obtain∫
γ

k = 2π − 2π −
∫
A1

K and −
∫
γ

k = −
∫
A2

K so
∫
M

K = 0.

Our next task is to free the Gauss-Bonnet formula from the
special neighborhood U. The proof follows from the [Sam55]. De-
fine the Euler characteristic, χc(A), of A with respect to c by χc(A) =

V −E +F, where V is the number of vertices of c, E the number of
edges, and F the number of faces.

Theorem 8.4. Let A be a fundamental set on M, let the bounding
curve γ of A be a finite disjoint union of simple closed curves, and
let α1, . . . , αr be the exterior corner angles of γ. Then

∫
γ

k = 2πχc(A)−
r∑

i=1

αi −
∫
A

K. (3)

This expression proves χc(A) is independent of c, so define χ(A) =

χc(A) to be the Euler characteristic of A and drop the subscript c
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Section 8.1: Gauss-Bonnet Formula

in the above formula.

Proof. Let c = σ1 + . . .+ σF and note from the definition of a funda-
mental 2-chain we may apply the Gauss-Bonnet formula to each set
|σj | (for σj defines a coordinate neighborhood of |σj |). Let αj

1, . . . , α
j
4

denote the four exterior angles for σj . Then

∫
γ

k =

F∑
j=1

∫
∂σj

k =

F∑
j=1

(2π −
4∑

i=1

αj
i )−

F∑
j=1

∫
σj

K

or ∫
γ

k = 2πF −
F∑

j=1

4∑
i=1

αj
i −

∫
A

K.

Thus the problem is one of bookkeeping with the term
∑
aji .

Let βj
i be the interior angle corresponding to each αj

i , thus β
j
i =

π−αj
i , and let βs = π−αs be the interior angles at the corners of γ.

In the following we sum over i = 1, . . . , 4 and j = 1, . . . , F. The sum

∑
ij

βj
i = 2π(V − r) +

r∑
1

βs = 2π(V − r) +

r∑
1

(π − αs)

= 2πV − πr −
r∑
1

αs,

since r is the number of vertices of c on γ (as well as the number of
angles and edges on γ) so (V − r) is the number of vertices interior
to A, each of which contributes 2π t the total sum.

We now show that rF = (2E − r), which is the number of terms
in the sum

∑
ij β

j
i . This is done by assigning to each βj

i an edge,
namely, its “starting” edge, which is well-defined by the orienta-
tion. More precisely, if T and T ′ are the unit vectors at the vertex
of βj

i which are tangent to the edge curves of βj
i , then T and T ′

are independent, since c is a fundamental chain, so (σj)∗ is non-
singular on its domain (which is slightly larger than I2). Thus T is
the “starting” edge of βj

i if and only if T, T ′ is a positively oriented
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bases (see 8.4).

start
ing edge

σj

T

T ′

βj
i β

Figure 8.4: Starting Edges

Then each edge on the boundary γ belongs to exactly one βj
i ,

while each edge not on the boundary belongs to exactly two βj
i .

Thus rF = r+2(E−r), since r is the number of edges on the boundary.
Finally,

∑
ij

αj
i =

∑
ij

(π − βj
i ) = π(2E − r)− 2πV + πr +

r∑
i

αs = 2π(E − V ) +
r∑
1

αs.

Hence, ∫
γ

k = 2π(F − E + V )−
r∑
1

αs −
∫
A

K.

Theorem 8.5 (Gauss-Bonnet Theorem). Let M be a compact con-
nected oriented Riemannian 2-manifold with Riemannian (Gaussian)
curvature function K. Then∫

M

K = 2πχ(M).

Proof. We apply the preceding theorem to a fundamental chain on
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M which will have no boundary and no exterior angles.

The above theorem is an important example of a theorem relat-
ing differential geometry and topology. The Euler characteristic is
a topological invariant which does not depend on either the differ-
entiable structure or the Riemannian structure on M. The theorem
may be used to prove many “negative” statements: for exam-
ple, there does not exist a Riemannian metric on the torus with
K > 0 everywhere (nor does there exist one with K < 0 every-
where) since χ(M) = 0 (which we computed above for the induced
Riemannian metric). The theorem has been generalized for dimen-
sions greater than two and provides one of the first successes of
the global theory of fiber bundles.

8.2 Index Theorem

This section is also based on [Sam55]. Let n = 2 and let W be
a C∞ vector field on M. If Wm = 0, then m is a singularity of W.
Assuming W has only isolated singularities, we define the index of
W at m, J(W,m) as follows.

Let U be a coordinate domain, with coordinate radius b > 0, about
m with W 6= 0 on U −{m}. Assume the coordinate map is orientation
preserving, and let σr be the oriented coordinate circle of radius
r about m with 0 < r < b and σr defined on [0, 1]. Let X be a unit
vector field on U. Since W does not vanish on σr, by using the
proper inverse cosine function one obtains a C∞ function θ on [0, 1]

with 〈W (s), X(s)〉 = |W (s)|cos θ(s) on [0, 1]. Let

2πJX(W,m, r) = θ(1)− θ(0) (4)

For 0 < r < b, JX(W,m, r) is a continuous integer-valued function, and
hence yields a constant JX(W,m). If m is not a singular point, then
for small r > 0, θ is close to the constant cos−1( 〈Wm,Xm〉

|Wm| ) (mod 2π);

hence θ(1) = θ(0), and JX(W,m) = 0. If Y is another unit vector field
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on U, then

JX(W,m) = JY (W,m) + JX(Y,m) = JY (W,m),

since Y has no singularities. Thus JX(W,m) is independent of X. An
analogous argument shows J(W,m) can be computed by using any
simple closed C∞ curve σ about m with σ in U, and thus J(W,m) is
an integer depending only on W and m (see 8.5).

J = 1 J = 1 J = −1 J = 2

Figure 8.5: Examples of J(W,m)

If W has only a finite number of singularities, define the index
of W , J(W ), by J(W ) =

∑
m J(W,m).

Theorem 8.6 (Index Theorem). If M is a compact connected ori-
ented Riemannian 2-manifold and W is a C∞ vector field on M with
a finite number of singularities, then the index of W equals the
Euler characteristic of M.

Proof. Take an oriented fundamental chain c = σ1 + . . . + σr with at
most one singularity mi of W in the interior of each |σi|. Let γi be
the bounding curve of σi, and define functions θi, ζi, ξi on the domain
of γi so that

• θ = ζi + ξi,

• θi is an angle between W and ei,

• ζi is an angle between the tangent Ti of γi

• and ξi will be piece-wise C∞ and θi is continuous.
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By integrating over the pieces of γi we obtain

2πJ(W,mi) =

∫
γi

dθi
ds =

∫
γi

dζi
ds +

∫
γi

dξ
ds

=

∫
γi

k +

∫
σi

K +

∫
γi

dξi
ds

Adding over the 2-cubes in c gives

2πJ(W ) =

∫
M

K (5)

since the integrals over the bounding curves cancel one another.
By the Gauss-Bonnet theorem, J(W ) = χ(M).

Omitting the last line of the proof, we note 2πJ(W ) =
∫
M
K im-

plies J(W ) is independent of W as long as W has only a finite
number of singularities. Then for any oriented fundamental chain
c we can define a particular W which has a singularity for each
face, edge, and vertex with index 1,−1, and 1 respectively. We in-
dicate in 8.6 how W is defined on each 2-cube. Actually W would
be precisely defined by defining a field on a neighborhood of I2 and
carrying this to each |σi| via the map σi.

� ⊗ �

⊗ ⊗ ⊗

� ⊗ �

Figure 8.6: The Canonical Vector Field on a 3-cube

Thus W is defined by “going out from each vertex and in to the
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Chapter 8: Gauss-Bonnet Theory and Rigidity

center of each face.” From 8.6 we see J(W ) = V−E+F = χc(M). Thus
we again prove χc(M) is independent of c, and 2πχ(M) = 2πJ(W ) =∫
M
K reproves the Gauss-Bonnet theorem.

Corollary 8.7. If M is a manifold as described in the theorem and
there exists a non-vanishing C∞ vector field on M, then χ(M) = 0.

Thus any surface that is diffeomorphic to the 2-sphere has no
non-vanishing C∞ vector fields.

Actually, a differentiable manifold (any dimension) admits a nonzero
continuous vector field if and only if its Euler characteristic is zero
(see [Ste51, p. 203], and [AH37, p. 549]).

8.3 Gauss-Bonnet Form

In the proof of the Gauss-Bonnet formula we found that R12 is
a local representation of the global form Kv on an oriented Rie-
mannian 2-manifold M . One might ask if there are other global
forms obtainable in this way, or if there is an analogous form on
an n-manifold. We answer these questions now.

Let e1, …, en and f1, …, fn be two sets of positively oriented
orthonormal C∞ base fields on an open set U in M , and let fj =∑n

i=1 bijei define C∞ functions bij on U . Notice that determinant
(bij) = 1 and (bij)

−1 = (bji) since (bij) is orthogonal. We let Rij and
Rij denote the local curvature forms associated with ei’s and fi’s,
respectively, thus R(X,Y )ej =

∑
Rij(X,Y )ei. Then for m ∈ U , X and

Y in TmM , we have

Rij(X,Y ) = 〈R(X,Y )ej , ei〉 =
〈
R(X,Y )

(∑
r

bjrfr

)
,
∑
s

bisfs

〉
=
∑
r,s

bjrbis 〈R(X,Y )fr, fs〉 =
∑
r,s

bisRsr(X,Y )bjr.
(6)

Thus Rij =
∑
r,s

bisRsrbjr relates the local curvature forms of the two

bases on U .
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Section 8.3: Gauss-Bonnet Form

If n is even, we define an n-form Q on U by

Q =
∑

(−1)πRπ(1)π(2) ∧Rπ(3)π(4) ∧ · · · ∧Rπ(n−1)π(n) (7)

where we sum over all permutations π in Pn, the group of permu-
tations on the set {1, 2, . . . , n}. The representation of Q in terms of
the forms Rij is,

Q =

n∑
ri=1

∑
(−1)πbπ(1)r1Rr1r2bπ(2)r2bπ(3)r3Rr3r4bπ(4)r4 . . .

= (det bij)
∑

(−1)πRπ(1)π(2) ∧Rπ(3)π(4) ∧ · · · ∧Rπ(n−1)π(n)

Since (det bij) = 1, Q is independent of the particular base field used
to define it; thus Q defines a global n-form on M which is called
the Gauss-Bonnet form. Note if n = 2, then locally Q = R12 − R21 =

2R12 = 2Kv.

Theorem 8.8 (Generalized Gauss-Bonnet). If M is an even dimen-
sional (n = 2k) compact connected oriented Riemannian manifold,
then ∫

M

Q = 2nπk(k!)χ(M).

For a proof see [Che51]. Other pertinent references are [Hop26],
[All40], [AW43], [Fen40], [Che45], and [All50].

Let M be as in the theorem and assume further that M is a
hypersurface in Rn+1 with unit normal field N . Using the notation
from section 4,

Rij = −wi,n+1 ∧ wn+1,j = wi,n+1 ∧ wj,n+1

and
L(X) =

n∑
i=1

wi,n+1(X)ei = η∗(X)

where η is the sphere map induced by the normal N (section 2.2).
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Thus η∗Wi =Wi,n+1 and

Q =
∑

(−1)πwπ(1),n+1 ∧ · · · ∧ wπ(n−1),n+1 ∧ wπ(n),n+1

= n!w1,n+1 ∧ w2,n+1 ∧ · · · ∧ wn,n+1 = n! η∗(vS),

where vS is the volume element of the unit sphere Sn oriented by
its outer normal, and we assume Nm is parallel to the outer normal
at η(m). Integrating, ∫

M

Q = (n!)

∫
M

η∗(VS).

If n = 2, then ∫
M

Q = 2

∫
M

Kv = 4πχ(M) = 2

∫
M

η∗(vS),

thus ∫
M

η∗(VS) =
(V2)χ(M)

2

where V2 is the “volume” of the unit 2-sphere. This is the Hopf
index theorem for dimension 2.

In the general case (Mn imbedded in Rn+1 as above), we let X
be any unit vector field of Rn+1 that is C∞ on M , and we define
the index of X on M , I(X), by

I(X) =
1

Vn

∫
M

η∗X(vS), (8)

where Vn is the “volume” of the unit n-sphere in Rn+1, and ηX is
the C∞ map of M into Sn induced by the vector field X.

Theorem 8.9 (Hopf index theorem). If Mn is an even-dimensional
compact connected submanifold of Rn+1, then twice the index of
the normal field N on M is the Euler characteristic of M , or 2I(N) =

χ(M).

Proof. Assuming the Gauss-Bonnet theorem and letting n = 2k, we
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see
2I(N) = 2

∫
M

Q

Vnn!
= 2n+1πkk!

χ(M)

Vnn!
= χ(M),

since Vn =
2n+1πkk!

n!
(see problem 75).

8.4 Characteristic Forms

A general reference for this section is [Che51] with related treat-
ments in [Adl57] and [Car25]. The “wedge” product symbol be-
tween forms will be omitted in this section.

For k > 1, define local forms

Qk =

n∑
ij=1

Ri1i2Ri2i3Ri3i4 · · ·Riki1 ,

where the Rij belong to a local positively oriented orthonormal
base field e1, . . . , en. As above (equation 7), one shows Qk is inde-
pendent of this particular base field and thus Qk is a global 2k-form
on M . Moreover dQk = 0, i.e., each Qk is a closed 2k-form. To prove
this, use

dRij =

n∑
t=1

(Ritwrj −Rjrwri)

which follows from the second structural equation (section 5.2).
Then,

dQk =
∑

[(dRi1i2)Ri2i3 · · ·Riki1 +Ri1i2(dRi2i3)Ri3i4 · · ·Riki1 + · · · ].

Consider one of the sums (all indices are summed from 1 to n),

A =
∑

Ri1rwri2Ri2i3 · · ·Riki1 .

If k is even, the products in A are formed from an odd number of
forms that are skew-symmetric in their indices; hence switching all
the indices changes the sign, and adding, one gets A = −A so A = 0.
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If k is odd, the argument just used shows Qk = 0.

Proposition 8.10. For even k, the forms Qk define global closed
2k-forms on M . For odd k, Qk = 0.

Let WD denote the subalgebra of the Cartan differential algebra
F (or F (M)) which is generated over the real field by the forms Qk

for k = 2, 4, bn/2c, and callWD the algebra of characteristic forms for
the connexion D. Elements in WD are called characteristic forms,
and they are closed forms since the generators are all closed. By
going to the differential cohomology we can free ourselves of the
connexion D which we now do.

Let Ωp denote the module of C∞ p-forms on M . Let Zp denote
the closed forms in Ωp, thus Zp = {α ∈ Ωp : dα = 0}; and let Bp

denote the exact forms in Ωp, so

Bp = {α ∈ Ωp : there is β ∈ F p−1 with dβ = α}.

Since d2 = 0, Bp ⊂ Zp; hence let Hp = Zp/Bp and call Hp the p-
dimensional differential cohomology group of M . If α in Zp, denote
its image in Hp by a; hence a is the coset α + Bp which is called a
(differential) cohomology class on M . Let H∗ =

⊕n
p=0H

p (direct
sum) and notice the multiplication in F carries over to H∗.

Thus WD defines a set of classes called (differential) charac-
teristic cohomology classes, and this set we show is independent
of D (the Riemannian structure) and depends only on the mani-
fold M . It is customary to speak of WD as the image of the Wiel
homomorphism. This we explain.

Let gl(n,R) be the set of n by n matrices over the real field R.
Our notation is the customary one for this set when it is thought of
as the Lie algebra of the general linear group GL(n,R). If A = (aij)

in gl(n,R) we let uij(A) = aij . Then a polynomial function P on
gl(n,R) is a polynomial in the functions u11, u12, . . . , unn; for example,
P (A) = det(A) is a polynomial function. An invariant polynomial P
on gl(n,R) is a polynomial function P such that P (BAB−1) = P (A)
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for all non-singular orthogonal matrices B. Referring to the way
we define the characteristic forms Qk, we see that every invariant
polynomial P can be used to define a global differential form Q on
M by using the curvature forms from a Riemannian connexion D on
M and letting Q = P (R11, R12, . . . , Rnn). Let us use WD for this map,
so Q = WD(P ). Letting J denote the set of invariant polynomials
on gl(n,R), we then claim to have a homomorphism WD : J → F (M)

with WD(J ) =WD(M) =WD. This is the Weil homomorphism.

Theorem 8.11. The Weil homomorphism is well-defined from the
set of invariant polynomials on gl(n,R) onto the set of characteris-
tic differential forms on M ; moreover, the Weil homomorphism
is independent of the connexion at the cohomology level, i.e.,
WD1

=WD2
for two Riemannian connexions D1 and D2.

Proof. Let fA(λ) denote the characteristic polynomial of a matrix
A and define polynomials Er(A) to be the coefficients of fA(λ), thus

fA(λ) = det(λI −A) = λn + En−1(A)λ
n−1 + · · ·+ E0(A).

From linear algebra we know Er(A) are invariant polynomials on
gl(n,R); moreover, they generate a ring of invariant polynomials. In
terms of the characteristic roots of A, Er(A) is the rth elementary
symmetric function of these roots, i.e., E1(A) = a1 + · · ·+ an, E2(A) =∑

i<j aiaj, etc. By Newton’s theorem on symmetric functions, the
functions Er(A) are expressible as polynomials in the functions
Pr(A), where Pr(A) = (a1)

r+(a2)
r+ · · ·+(an)

r. But Pr(A) is the trace of
Ar, and we can write this trace in terms of the elements of A by

Pr(A) =
∑

ai1i2ai2i3 · · · airi1

summing over all ij = 1, . . . , n. Hence WD(J ) is generated by the
forms Qk, WD is well-defined, and WD(J ) =WD.

To show WD is independent of the Riemannian connexion, we
take two such connexions D1 and D0, let Qi

k = WDi
(Pk) for i = 0, 1,

175



Chapter 8: Gauss-Bonnet Theory and Rigidity

and show Q1
k − Q0

k = dG, where G in Ω2k−1(M). Thus Q1
k = Q0

k, which
implies WD1

=WD0
.

Let 〈X,Y 〉1 and 〈X,Y 〉0 be the Riemannian metrics associated
with D1 and D0, respectively, and for 0 ≤ t ≤ 1 define 〈X,Y 〉t =

t 〈X,Y 〉1+(1− t) 〈X,Y 〉0. Then 〈X,Y 〉t is a Riemannian metric for each
t, and its Riemannian connexion Dt is given by Dt = tD1 + (1 − t)D0.
This can be shown easily by verifying that D has zero torsion and
preserves the metric 〈X,Y 〉t. For any base field e1, . . . , en on an open
set U of M let wt

ij and Rt
ij be the connexion and curvature forms

associated with Dt. Then

(Dt)Xej =
∑
i

wt
ij(X)ei = t

∑
i

w1
ij(X)ei + (1− t)

∑
i

w0
ij(X)ei,

so wt
ij = tw1

ij − (1− t)w0
ij . From the second Cartan structural equation

we obtain
Rt

ij = tR1
ij + (1− t)R0

ij + t(t− 1)
∑
k

θikθkj

where θij = w1
ij − w0

ij . The 1-forms θij are the local forms belonging
to the difference tensor B(X,Y ) = (D1)XY − (D0)XY , i.e., B(X, ej) =∑

i θij(X)ei. Since B is a tensor, if f1, . . . , fn is another base field on
U with fj =

∑
i bijei and

B(X, fj) =
∑
i

θij(X)fi, then θij(X) =
∑
r,s

bisθst(X)(b−1)rj .

For each even k and each t, choose e1, . . . , en to be an orthonormal
base field relative to the metric 〈X,Y 〉t, and define a (2k − 1)-form
on U by

Gt
k =

∑
θi1i2R

t
i2i3R

t
i3i4 · · ·R

t
iki1

,

summing over all ij = 1, . . . , n. Since the θij transform exactly like
the Rij when changing to another orthonormal base, the forms Gt

k

are global forms on M by the argument that was used to show Qk

are global forms. Note θij are not skew symmetric.
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In an obvious way, define for each t, a 2k-form
( d
dt
)
Qt

k, i.e.,

d
dtQ

t
k =

d
dt
(∑

Rt
i1i2R

t
i2i3 · · ·R

t
iki1

)
= k

∑( d
dtR

t
i1i2

)
Rt

i2i3 · · ·R
t
iki1

where
d
dtR

t
ij = R1

ij −R0
ij + (2t− 1)

∑
k

θikθkj .

Then Q1
k −Q0

k = dGk where Gk = k

∫ 1

0

Gt
kdt.

To compute dGt
k, use the second Cartan structural equation to

obtain
dθij = R1

ij −R0
ij −

∑
[θikθkj + θijw

0
kj + w0

ikθkj ].

Also,

dRt
ij =

∑
(Rt

ikw
t
kj − wt

ikR
t
kj) =

∑
[tRt

ikθkj − tθikR
t
kj +Rt

ikw
0
kj − w0

ikR
t
kj ],

since wt
ij = tθij + w0

ij . Hence

dGt
k =

∑
(R1

i1i2 −R0
i1i2θi1kθki2 − θi1kw

0
ki2 − wi1kθki2)R

t
i2i3 · · ·R

t
iki1

−
[∑

θi1i2(tR
t
i2kθki3 − tθi2kR

t
ki3 +Rt

i2kw
0
ki3 − w0

i2kR
t
ki3)R

t
i3i4 · · ·R

t
iki1

]
− · · ·

−
[∑

θi1i2R
t
i2i3 · · ·R

t
ik−1ik

(tRt
ikj
θji1 − tθikjR

t
ji1 +Rt

ikj
w0

ji1 − w0
ikj
Rt

ji1)
]

=
∑[

R1
i1i2 −R0

i1i2 + (2t− 1)
∑

θi1kθki2

]
Rt

i2i3 · · ·R
t
iki1

=
1

k

d
dtQ

t
k.

8.5 Rigidity Problems

Two submanifolds of Rn are congruent or symmetric if there is
an isometry of Rn mapping one onto the other that is orientation
preserving or reversing, respectively. Let us say a submanifold M

of Rn is rigid if any submanifoldM ′ that is isometric toM is actually
congruent or symmetric to M . Natural questions arise which are
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called rigidity problems. For example, which submanifolds are rigid,
or when are two isometric submanifolds congruent or symmetric?

Our principal reference for this section is [Che51]. The standard
procedure in the following theorems is to somehow set up the hy-
pothesis of the fundamental rigidity theorem proved in section 6.5.
Given an isometry f between submanifolds, the first fundamental
form is preserved by hypothesis, and our task is to show the sec-
ond fundamental form is preserved, or that f∗ commutes with the
fundamental linear transformations L.

Theorem 8.12. If n ≥ 3 and M is an oriented hypersurface in Rn+1

with positive Riemannian curvature, then M is rigid.

Proof. Let f :M →M ′ be an isometry and let L′ = L◦f∗. Since f is an
isometry, the Gauss curvature equations give R(X,Y )Y = R′(X,Y )Y

or
〈LY, Y 〉L(X)− 〈LY,X〉L(Y ) = 〈L′Y, Y 〉L′(X)− 〈L′Y,X〉L′(Y ),

where X,Y in TmM . Choose an orthonormal base X1, . . . , Xn of vec-
tors at m, and let LXi = kiXi. We show L′ is invariant on each
subspace Pij spanned by Xi and Xj for i 6= j. Let brs = 〈L′Xr, Xs〉,
and the Gauss curvature equations imply

kikjXi = bjjL
′Xi − bijL

′Xj

kikjXj = −bijL′Xi + biiL
′Xj .

Then K(Pij) = kikj = biibjj − b2ij > 0 implies L′Xi and L′Xj lie in
Pij . Since n ≥ 3, there is a third index r with L′Xi in Pir; hence
L′Xi lies in Pir ∧ Pij, and thus Xi is an eigenvector of L′. For all i,
let L′Xi = hiXi. Then kikj = hihj > 0 for all i 6= j; hence k2i = h2i , so
hi = ±ki. The positive curvature condition also implies hi = ki for all
i, or hi = −ki for all i. Thus L = ±L′ and we apply the fundamental
rigidity theorem.

If in the above theorem we assume M is complete (or closed),
then we need not assume it is oriented. For n = 2, the Cohn-Vossen
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theorem provides a similar result with the additional requirement
that M be compact. We now examine some global functions and
forms on an oriented surface M in R3 before proving the Cohn-
Vossen theorem.

Let N be the unit normal on M , let p ∈ M , and let e1, e2 be a
positively oriented orthonormal base field in the neighborhood U

about p. Identifying p with the vector from the origin to p, define
local functions y1, y2 on U , and a global function y3 on M , by p =

y1(p)e1 + y2(p)e2 + y3(p)N . Define global 1-forms α and β on U by

α(X) = 〈p, e1〉 〈X, e2〉 − 〈p, e2〉 〈X, e1〉

and β(X) = α(LX). One checks that α is independent of the partic-
ular positively oriented base e1, e2 used to define it, so α and β are
global 1-forms on M . We now compute dα and dβ. Let wi, wij be
the local forms belonging to the base e1, e2 so wij = −Wji. Then

L(X) = DX(N) = w13(X)e1 + w23(X)e2, wi3 = b1iW1 + b2iw2,

and bij = 〈Lei, ej〉. Thus α = y1w2 − y2w1 and β = y1w23 − y2w13.
Since yi = 〈p, ei〉 we have

dyi(X) = X 〈p, ei〉

=
〈
DXp, ei

〉
+
〈
p,DXei

〉
= 〈X, ei〉+

〈
p,

3∑
1

wri(X)er

〉

= wi(X) +

3∑
r=1

yrwri(X).

Thus, using the Cartan structural equations,

dα =(w1 + y2w21 + y3w31)w2 − y1(w21w1)− (w2 + y1w12 + y3w32)w1

+ y2(w12w2) = 2w1w2 − y3Hw1w2 = (2− y3H)v
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where v is the volume element. Similarly, dβ = (H − 2y3K)v.
If M is compact, then∫

M

(H − 2y3K) =

∫
M

dβ =

∫
∂M

β = 0,

and ∫
M

(2− y3H) =

∫
M

dα =

∫
∂M

α = 0,

by Stokes’ theorem. The equality
∫
M
(H/2) =

∫
M
y3K is called Minkowski’s

formula, and the other integral implies the area of M is
∫
M
y3(H/2).

For other formulae of this type see [BF34].
The above paragraph provides two examples of “Chern’s for-

mula for theorems in differential geometry,” i.e., take a global 1-
form w such that dw = Fv where F is an “interesting” function, then
state

∫
M
F = 0. Another example is that

∫
M
K = 0 is a necessary

condition that w12 be a global 1-form.

Theorem 8.13 (Cohn-Vossen). A compact surface of positive Gaus-
sian curvature is rigid.

Proof. Let f :M →M ′ be an isometry of such surfaces, and assume
the origin to be inside M so y3 > 0. Let L′ = LM ′ ◦ f∗, then L and
L′ are positive definite on M since K = K ′ > 0. Let ∆ = det(L− L′).
We show L = ±L′ by showing ∆ = 0 and apply the following lemma:
if A and B are two positive definite quadratic forms on R2 with
detA = detB, then det(A−B) ≤ 0, and det(A−B) = 0 implies A = ±B.

Let β′ = α ◦L′ and, as above, we compute dβ′ = [H ′ − y3(2K −∆)]v.
Hence ∫

H ′ =

∫
y3(2k −∆) =

∫
H −

∫
y3∆,

all integrals taken over M . Thus
∫
H ′−

∫
H ≥ 0 since y3 ≤ 0, so

∫
H ′ ≥∫

H. By symmetry we can reverse the inequality so
∫
H ′ =

∫
H and∫

y3∆ = 0, which implies ∆ = 0.

Theorem 8.14. If f is an isometry between two oriented surfaces
that preserves the mean curvature and the third fundamental form,
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and the mean curvature is never identically zero on any neighbor-
hood, then the surfaces are congruent.

Proof. Let f : M → M ′ and let L′ = LM ′ ◦ f∗. Equality of the third
fundamental forms implies

〈
L2X,Y

〉
=
〈
(L′)2X,Y

〉
for all X,Y in TmM

so L2 = (L′)2. Using the characteristic equation for L and L′ we have

HL = L2 +KI = (L′)2 +K ′I = H ′L′ = HL′.

Thus if H(m) 6= 0, then L = L′ at m, and since H never vanishes
identically on any neighborhood, we have L = L′ on M by continuity.

There is a theorem, similar to the preceding result, which states
if f is a diffeo between two compact convex hypersurfaces that
preserves the mean curvature and the third fundamental form,
then the hypersurfaces are congruent or symmetric. For the proof
of this result we refer the reader to [Che51], p. 29. Problem 77
shows one can relax the compactness assumption in the Cohn-
Vossen theorem by assuming the third fundamental form is pre-
served.

The above theorems were included chiefly for their accessibility.
Much better theorems have been proved (see [Pog56]) with weaker
differentiability assumptions.

Problems

75. Prove that the volume Vn of the unit sphere in Rn+1 is equal

to 2n+1πkk!

n!
for even n = 2k.

76. If M is a compact surface in R3 with constant mean curvature
and y3 > 0 on M , show M is a sphere (see section 8.5)

77. If f is an isometry between two oriented surface in R3 of pos-
itive Gaussian curvature which preserves the third fundamen-
tal form, show the surfaces are congruent or symmetric.
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78. Use an integral argument to show there exists no compact
minimal surface in R3.
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9. Existence Theory

9.1 Involutive Distributions and the Frobenius Theo-
rem

We prove the standard theorem on the existence of “integral
manifolds” of a distribution following [Che46, p. 88]. The theorem
also appears in [AM12, p. 147] with the terminology altered slightly.

In this section let M be a C∞ n-manifold. A k-dimensional dis-
tribution on a set A in M is a function P that assigns each point
p in the k-dimensional subspace Pp of the tangent space TpM . We
say P is C∞ on A if A is open, and for each p ∈ A there are k in-
dependent C∞ vector fields X1, . . . , Xk which span Pm for all m in
some neighborhood of p. A vector field X with domain B lies in P

or is in P if B ⊂ A and Xp is in Pp for all p ∈ B. A C∞ distribution
P is integrable (involutive or closed) when it is closed under the
bracket operation, i.e, if X and Y are any C∞ fields with common
domain that lie in P , then [X,Y ] lies in P . A submanifold V of M is
an integral submanifold or integral manifold of P if V is contained
in the domain of P , and Vp = Pp for all p ∈ V ; thus the subspace of
the tangent space TpM which belongs to Vp is exactly the subspace
Pp.

The theorem proved below implies a C∞ distribution has inte-
gral manifolds if and only if it is involutive. A slightly stronger
statement is made involving the existence of a special coordinate
system. First some terminology: if x1, . . . , xn is a coordinate system
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on M with domain U , then define a slice of U to be any subset of
U on which r of the functions x1 . . . xn are constant, where 1 ≤ r < n.
Obviously, each slice of U is a submanifold of U (or M ).

Theorem 9.1. Let P be a k-dimesnional involutive C∞ distribtuion
on M . for any m ∈ M there exists a coordinate system x1, . . . , xn

with domain U including m such that the coordinate fields ∂

∂xj
for

j = 1, . . . , k span P at each point of U . Thus the slices of U for which
xk+1, . . . , xn are constant are integral manifolds of P .

The theorem is proved by induction on k. The case k = 1 is coved
by the following lemma, and note in this case any distribution is
automatically involutive.

Lemma 9.2. Let X be a C∞ vector field on M , p ∈ M , and Xp 6= 0,
then there exists a coordinate system y1 . . . yn on a neighborhood U

of p with X =
∂

∂y1
on U .

Proof of Lemma 9.2. Let xi = ui ◦ φ be a coordinate system on the
neighborhood V of p with xi(p) = 0 and ∂

∂x1
(p) = Xp. Let X =

n∑
1

ai

( ∂

∂xi

)
where ai are C∞ real valued functions on V and a1(p) 6= 0,

and restrict V if necessary so a1 6= 0 on V . Setting up the sytem of
differential equations for the integral curves σ of X on V , we have

d(xi ◦ σ)
dt = ai ◦ σ or dfi

dt = ai(f1(t), . . . , fn(t))

where fi(t) = xi ◦ σ(t). Applying an existience theorem from the
theory of differential equations ([CL90, Chapter 1]) we obtain an r >
0 and n functions Fi(t, a1, a2 . . . an) which are C∞ on the neighborhood
W of the origin in Rn+1 where |t| < r and |ai| < r such that for
i = 1, . . . , n:

(1) Fi(0, a1, a2, . . . , an) = ai,

(2) (F1(b), . . . , Fn(b)) ∈ φ(V ) for b ∈W
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(3) Letting

F (t, a2, . . . , an) = φ−1[F1(t, 0, a2, . . . , an), . . . , Fn(t, 0, a2, . . . , an)]

define a map F of B(0, r) in Rn into V ; then for fixed a2, . . . , an

the curves
σ(a2,...,an)(t) = F (t, a2, . . . , an)

are integral curves of X, i.e, F∗

( ∂

∂u1

)
= X

For points (0, a2, . . . , an) in B(0, r) we notice that

F (0, a2, . . . , an) = φ−1(0, a2, . . . , an);

hence F∗

( ∂

∂ui

)
origin

=
∂

∂xi
(p) for i = 2, . . . , n. Since F∗

( ∂

∂u1

)
b
= XF (b)

for all b ∈ B(0, r) we have F∗ =
(
φ−1

)
)∗ at the origin in Rn, Hence F∗ is

non-singular at the origin and by the Inverse Function Theorem F is
a diffeo between a neighborhood of the origin and a neighborhood
U of p with U ⊂ V . Finally, let yi = ui ◦ F−1 on U .

Intuitively, in the above proof we have changed the x1, . . . , xn

coordinates about p by leaving the slice where x1 = 0 fixed, and
replacing the “x1-coordinate curves” by the integral curves of X
emanating from this slice.

Proof of Theorem 9.1. Take the pointm and take C∞ fields X1, . . . , Xk

that span P on a neighborhood U1 on m. Apply the previous lemma
to get a coordinate system y1, . . . , yn about m with domain U2 ⊂ U1

such that ∂

∂y1
= X1 on U2, and assume yi(m) = 0.

If k = 1, then the coordinate system y1, . . . yn satisfies the con-
clusion of the theorem. If k > 1, we assume the theorem is true
for the distributions of dimension less than k, and we define the
(k − 1) dimensional distribution P on U2 by

P p = {X ∈ Pp : Xpy1 = 0} for p ∈ U2.
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This is a (k−1)-dimensional C∞ distribution for it is spanned by the
(k − 1) independent C∞ fields

Yi = Xi − (Xiy1)X1 for i = 2, . . . , k

It is involutive since if Y and Z are in P , then [Y, Z] is in P and

[Y, Z]y1 = Y (Zy1)− Z(Y y1) = 0 on U2,

so [Y, Z] is in P .

Let V0 be the slice of U2 defined by y1 = 0. Then for p ∈ V0,
P p ⊂ (V0)p, so we apply the induction hypothesis to the distribution
P on the manifold V0 to obtain a coordinate system z2, . . . , zn on the
neighborhood U3 about m ∈ v0 such that ∂

∂z2
, . . . ,

∂

∂zk
span P on U3.

We define the map π : U2 → V0 by π(p) = φ−1(0, y2(p), . . . , yn(p)), where
φ is the coordinate map so yi = ui ◦ φ. Let U4 = π−1(U3) and define
functions x1, . . . , xn on U4 by

x1 = y1, x2 = z2 ◦ π, . . . , xn = zn ◦ π

Then the functions x1, . . . , xn define a coordinate system in a neigh-
borhood U ofmwith U ⊂ U4; indeed,

∂

∂x1
(m) =

∂

∂y1
(m), while ∂

∂x2
, . . . ,

∂

∂xn
span (V0)m at m.

We show ∂

∂x1
, . . . ,

∂

∂xk
span P on U by showing they span the

same subspaces as X1, Y2, . . . , Yk. Let Y1 = X − 1, then we show

Yixj = 0 for i = 1, . . . , k and j = k + 1, . . . , n.

SInce Y1 = X1 =
∂

∂x1
, we immediately see Y1xj = 0 for j 6= 1. SInce

P is involutive, there are C∞ functions girs on U such that for i ≤ k
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and r ≤ k we have [Yi, Yr] =
∑k

s=1 girsYs. thus for i = 2, . . . , k and j > k,

Y1(Yixj) = [Y1, Yi]xj =

k∑
s=1

g1is(Ysxj).

This implies the functions Yixj satisfy a linear homogeneous sys-
tem of ordinary differential equations along any x1-curve. But on
V0, xj = zj for j > 1 and Yixj = Yizj = 0 on V0 for j > k because
of the choice of coordinates z2, . . . , zn. Hence, by the uniqueness
of solutions to systems of the above type, Yixj = 0 for i ≤ k and
j > k

We use the theorem on involutive distributions to prove the
classical Frobenius theorem on (total) partial differential equations
(see [Lev77]). This theorem can be stated roughly as follows: there
exist unique solution functions fi(x1, . . . , xk), with prescribed values
at a point, to the system of partial differential equations

∂f1
∂xj

= Aij(x1, . . . , xk, f1, . . . , fd)

if and only if for all j ≤ k, r ≤ k and i ≤ d

∂Aij

∂xr
+

d∑
s=1

∂Aij

∂fs
Ast =

∂Air

∂xj
+

d∑
s=1

∂Air

∂fs
Asj

(which is merely what the chain rule demands if ∂2fi
∂xr∂xj

=
∂2ft
∂xj∂xt

).

Theorem 9.3 (Frobenius). For 1 ≤ i ≤ d and 1 ≤ j ≤ k, let
Aij(x1., . . . . , xk, u1, . . . , ud) be C∞ real valued functions on an open
set Q in Rn Where n = k + d, and we have labelled the coordinate
functions of Rn in order to conveniently express partial derivatives.
Let (a; b) = (a1, . . . , ak, b1, . . . , bd) be in Q. Then there exists a unique
set of C∞ real valued functions f1, . . . , fd defined on a neighborhood
V of a and satisfying the following three conditions:
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(1) fi(a) = bi or f(a) = b, where f is the mapping of V into Rd defined
by f(p) = (f1(p), . . . , fd(p))

(2) if p ∈ V , then (p; f(p)) in Q, and

(3) if p in V , then ∂fi
∂xj

(p) = Aij(p; f(p))

iff at every point of Q,

∂Aij

∂xr
+

d∑
s=1

∂Aij

∂us
Asr =

∂Air

∂xj
+

d∑
s=1

∂Air

∂us
Asj . (4)

Proof. Let e1, . . . , en be the usual global orthonormal vector fields
on Rn. We use the functions Aij to define C∞ vector fields Y1, . . . , Yk
on Q by
Yr = er +

∑d
s=1Asrek+s. These vector fields are independent at each

point of Q and hence they span a k-dimensional C∞ distribution P

on Q. We form brackets

[Yr, Yq] =

[
ez +

d∑
s=1

Asrek+s, eq +

d∑
t=1

Atqek+t

]

=

d∑
t=1

(∂Atq

∂xr
+

d∑
s=1

Ast
∂Atq

∂us

)
ek+t −

d∑
s=1

(∂Asr

∂xq
+

d∑
t=1

Atq
∂Asr

∂ut

)
ek+s,

and thus by condition 4, [Yr, Yq] = 0.
Hence the distribution P is involutive and by the theorem above

there exists an integral manifold U of T through (a; b) with U ⊂ Q.
Let φ : U → Rk by φ(a′; b′) = a′, then φ∗(Yr) = er and φ∗ is nonsingular
on the tangent space of U at (a; b). Thus there is a neighborhood
V of a and a map F which is a diffeo of V onto F (V ) ⊂ U such that
F ◦ φ and φ ◦ F give the identity map on F (V ) and V , respectively.
Define f1, . . . , fd on V by F (p) = (p; f1(p), . . . , fd(p)). Then the functions
f1, . . . , fd are C∞ functions satisfying (1) and (2), and (3) follows
since F∗(et) = Yt for r ≤ k0
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The implication of the theorem in the other direction is trivial.

Actually the Frobenius theorem in turn can be used to prove the
theorem on involutive distributions. A k-dimensional distribution P

about m can be carried to an open set Q in Rn via a coordinate map.
Furthermore one may choose the coordinate map so the induced
dise tribution on Q is spanned by vectors Y1, . . . , Yk of the type
defined above, and this defines functions A The involutive condition
will then imply [Yr, Yq] = 0 since [Yr, Yq] must be a linear combination
of Y1, . . . , Yk at each point. This implies the integrability condition 4
of the Frobenius theorem is satisfied which we then apply to get
local integral manifolds. One actually has to state the Frobenius
theorem to include the C∞ dependence of the solution functions on
the initial conditions (which follows from the Chevalley theorem)
in order to obtain the full equivalence.

A first application of the Frobenius theorem provides a useful
theorem concerning the existence of coordinate systems.

Theorem 9.4. Let M be an n-dimensional C∞ manifold and let
X1, . . . , Xn be a set of independent C∞ vector fields on a neighbor-
hood U of m ∈ M . Then there exists a set of coordinate functions
x1, . . . , xn defined on a neighborhood V of m with V ⊂ U and Xi =

∂

∂xi
on V for all i iff [Xi, Xj ] = 0 for all i and j.

9.2 The Fundamental Existence Theorem for Hyper-
surfaces

let U be an open set in Rn on which is defined the real valued C∞

functions gij and bij for 1 ≤ i, j ≤ n such that the matrices (gij) and
(bij) are symmetric and (gij) is positive definite. Roughly speaking,
we prescribe conditions which imply the existence of a coordinate
system on a hypersurface of Rn+1 such that the matrices (gij) and
(bij) are the coordinate representations of the first and second
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fundamental forms, respectively. We demand that (gij) and (bij)

satisfy the Gauss curvature and Codazzi-Mainardi equations, and
explain this demand. On U define functions Γi

jk, in terms of the gij

by the classical formula (see section 6.2) and define functions

• wij(ek) = Γi
jk,

• wn+1,j(ek) = −bjk,

• wj,n+1 =

n∑
r=1

(g−1)jrbrk,

• wn+1,n+1(ek) = 0,

for all i, j, k ≤ n. Then if there was a coordinate system with coor-
dinate fields e1, . . . en whose image set was U , the Gauss curvature
equations and Codazzi-Mainardi equations imply (see section 6.6)

dwij(er, es) = −
n+1∑
k=1

wik ∧ wks(er, es) (1)

and
dwj,n+1(er, es) = −

n∑
k=1

wjk ∧ wk,n+1(er, es) (2)

respectively. Thus we can say (gij) and (bij) satisfy the Gauss
curvature and Codazzi-mainardi equations if 1 and 2 hold for the
functions defined on U where the left sides are computed by

dwij(er, es) =
∂

∂ur
wij(es)−

∂

∂us
wij(er), etc.

Theorem 9.5. Let (gij) and (bij) be defined on U as described above
and suppose they satisfy the Gauss curvature and Codazzi-Mainardi
equations. Then for any point p ∈ U , there is a neighbourhood V ⊂ U

and a C∞ mapping F : V → Rn+1 such that F (V ) is an n-dimensional
submanifold of Rn+1, F−1 is a coordinate map on F (V ), and (gij) and
(bij) are the coordinate representation matrices of the first and
second forms of F (V ), respectively.
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Proof. let u1, . . . , un be the natural coordinate functions on U . We
seek
(n + 1)Rn+1-valued functions e1, . . . , en+1 defined on U that satisfy
the Gauss equations and Weingarten equations, i.e.,

∂ei
∂uj

=

n+1∑
k=1

wki(ej)ek =
(
Dej (ei)

)
(3)

where j = 1, . . . , n and i = 1, . . . , n+1. Each of the equations in (3) has
n + 1 components, and the differentiation operator ∂

∂uj
is applied

to each component. In order to apply the Frobenius’ theorem we
compute ∂2ei

∂uk∂uj
, using (3) to obtain

∂2ei
∂uk∂uj

=
∑
r

(∂wri(ej)

∂uk
er + wri(ej)

∂er
∂uk

)
=
∑
r

(∂wri(ej)

∂uk
er +

∑
s

wri(ej)wsr(ek)es

)
where we sum r and s from 1 to n+ 1. The integrability conditions
are the equation

∂wri(ej)

∂uk
+
∑
s

wsi(ej)wrs(ek) =
∂wri(ek)

∂uj
+
∑
s

wsi(ek)wrs(ej), (4)

which follows from (1) and (2).
At the origin in Rn+1 we choose initial vectors e1, . . . , en+1, so

• 〈ei, ej〉 = gij(p),

• 〈ei, en+1〉 = gi,n+1(p) = 0,

• en+1 =
∂

∂un+1

for i, j ≤ n and e1, . . . , en+1 positively oriented. Applying the Frobe-
nius theorem we obtain a neighborhood V1 of p and (n + 1)Rn+1-
valued C∞ functions e1, . . . , en+1 that satisfy (3).
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To check that 〈ei, ej〉 = gij and 〈ei, en+1〉 = 0 at all points on V1 for
i, j ≤ n, we must again apply the Frobenius theorem. Let Gij = 〈ei, ej〉
on V1 for i, j ≤ n+ 1. Then by (3) and the product rule we have

∂Gij

∂uk
=

n+1∑
r=1

[wri(ek)Grj + wrj(ek)Gir] (5)

on V1. But from the definition of wri(ek) = Γr
ik in terms of gij we find

the functions gij also satisfy (5) where we define gi,n+1 ≡ δi,n+1. By
using (1) and (2) we verify the system (3) satisfies the necessary
integrability conditions for the Frobenius theorem and since Gij(p) =

gij(p) we have Gij = gij on a neighborhood V2 on p.

Define functions Aij on V2 for i = 1, . . . , n+ 1 and j = 1, . . . , n by
ej = (Aij , . . . , An+1j), and consider the system of equations

∂fi
∂uj

= Aij (6)

Here
∂Aij

∂uk
=
∂Aik

∂uj
since ∂ej

∂uk
=
∂ek
∂uj

(for Γi
jk = Γi

kj).

Thus, letting fi(p) = 0 for i = 1, . . . , n + 1, we apply the Frobenius
theorem again to get C∞ functions f1, . . . , fn+1 on a neighborhood
V3 of p with V3 ⊂ V2.

Finally, we define F : V3 → Rn+1 by F (m) = (f1(m), . . . , fn+1(m)) for
m ∈ V3. Then F is C∞ and F∗

( ∂

∂uj
(m)

)
= ei(m) for j = 1, . . . , n. Thus

F is a diffeo of a neighborhood V of p onto its image F (V ) ⊂ Rn+1

and V ⊂ V3. The map F−1 is a coordinate system on F (V ) with
coordinate vectors e1, . . . , en, so gij = 〈ei, ej〉 and

〈Lei, ej〉 =
〈∑

r

wr,n+1(ei)er, ej

〉
=
∑
r

wr,n+1(ei)grj =
∑
r,s

(g−1)rsbsigrj = bji

as desired.
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9.3 The Exponential Map

Let D be a connexion on Mn. From section 5.1 we know for each
vector X, tangent to M at m, there is a unique geodesic gX(t) of the
connexion D, which is defined on a neighborhood of zero in R with
gX(0) = m and tangent X at t = 0. Furthermore, for appropriate
s ∈ R, gsX(t) = gX(st) by the nature of the differential equations
defining the geodesics. This implies that gaX(1) is defined if gX(a)

is defined, thus gY (1) is a well-defined point of M for Y near zero
in TmM .

Definition. For Y ∈ TmM , we define expm Y = gY (1) when the latter
is defined. The map expm is called the exponential map.

The name “exponential map” is used because in a special case
for the general linear group GL(n,R) it becomes the classical map,

A 7→ eA = I +A+
A2

2!
+ · · · ,

from the set of all n by n real matrices into the set of non-singular
matrices (problem 81).

Our current objective is to obtain some important properties of
the exponential map and to state these precisely we must use the
tangent bundle TM of M .

Proposition 9.6. Let N be the subset of TM such that if (m,Y ) ∈
N then expm(Y ) is defined and define the map exp : N → M by
exp(m,Y ) = expm(Y ). Then N is an open set and exp is C∞ on N .
In particular let

M̂ = {(m, 0) ∈ T(M) : m ∈M},

then there is an open set N̂ ⊂ TM such that M̂ ⊂ N̂ ⊂ N .

Proof. We do not completely prove the above proposition. Apply-
ing the local theory of differential equations, we prove the last
statement of the theorem and we prove exp : N̂ →M is C∞. Then
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we sketch the proof that exp is C∞ on N and refer the reader to
[Lan14].

Using the above notation, if g(t) is a geodesic in the neighborhood
U , then

d2(xk ◦ g)
dt2 +

n∑
i,j=1

Γk
ij

d(xi ◦ g)
dt

d(xj ◦ g)
dt = 0

for t such that g(t) ∈ U . For each point (m, 0) ∈ T(M), take a
coordinate neighborhood Um of m ∈ M and apply the existence
and uniqueness theorem to the above differential equation to ob-
tain a real number b > 0, a neighborhood Vm of (m, 0) ∈ TM with
Vm ⊂ π−1(Um), a C∞ map g : (−b, b) × Vm → M , such that for fixed
(p, Y ) ∈ Vm, the curve gY (t) = g(t; p, Y ) is the unique geodesic defined
on (−b, b) wwhich passes through p with tangent Y at t = 0. More-
over, for (p, Y ) ∈ Vm and a > 0, we have gaY defined on (−b/a, b/a),
since
gaY (t) = gY (at) = g(at; p, Y ). Choose a > 0 so a < b and let

Wm = {(p,X) ∈ Vm : (p,X/a) ∈ Vm}.

Then for (p,X) ∈ Wm, exp(p,X) = g(1; p,X) = g(a; p,X/a) is defined
and exp is C∞ on Wm.

Let N̂ = Um∩Wm, and the last sentence of the theorem is proved.
For each (p, Y ) ∈ TM , choose a > 0 so (p, aY ) ∈ N̂ , and thus gY (t)

is defined in some neighborhood of t = 0. As usual, for any curve
g let Tg be its tangent vector and define the natural lifting of a
curve g ∈ M to a curve g ∈ TM by Z(p, Y ) = TgY

(0). Then Z is a C∞

field on TM by the above analysis, and if σ is an integral curve of
Z, then π ◦ σ is a geodesic in M . The field Z is called the geodesic
flow field associated with the connexion. The fact that exp is C∞

on all of N now follows from Theorem 5 on p. 66 in [Lan14].

Corollary 9.7. For fixed p ∈ M , the map expp is a diffeo. of a
neighborhood of 0 ∈ TpM onto a neighborhood of p. Furthermore,
if η0 : TpM → T0TpM is the natural map of the tangent space at p

194



Section 9.3: The Exponential Map

onto its tangent space at 0, then (expp)∗ ◦ η0 is the identity map on
TpM .

Proof. The map η0 is defined by choosing any base e1, . . . , en of TpM

and letting z1, . . . , zn be its dual base. Then z1, . . . , zn are a global
coordinate system on the vector space viewed as a C∞ mani-
fold. Let η0(ei) =

( ∂

∂zi

)
0
for all i. This map η is independent of

the particular base e1, . . . , en; furthermore, by evaluating the global
fields ∂

∂zi
at any point Y ∈ TmM , we obtain a natural isomorphism

ηY : TpM → TYTpM . In these notes, for any X ∈ TpM we let X be
the natural constant vector field on TpM associated with X, where
XY = ηY (X).

Take X ∈ TpM , then η0(X) = X0. To compute (expp)∗X0 we note
X0 is the tangent vector at t = 0 to the ray γ(t) = tX ∈ TpM . The
curve
expp ◦γ(t) = expp tX is by definition the geodesic through p with
tangent X at t = 0. Thus (expp)∗X0 = X. Thus (expp)∗ is non-
singular and onto at the origin in TpM . The corollary now follows
by applying the Inverse Function theorem.

Corollary 9.8. Let G : N̂ →M ×M by G(p, Y ) = (p,expp Y ). Then G is
C∞ and G∗ is non-singular and onto at all points (p, 0) ∈ Γ(M).

Proof. Let πi : M ×M → M by πi(m1,m2) = mi for i = 1, 2. Each πi is
C∞. Since πi ◦G = π1 and π2 ◦G = exp, the map G is C∞ on N̂ .

The tangent space N̂(p,0) is naturally isomorphic to TpM×T0TpM ,
while the tangent space to M × M at G(p, 0) = (p, p) is naturally
isomorphic to TpM × TpM . In terms of these natural isomorphic
spaces, G∗ is the identity on the first factor and (expp)∗ on the
second factor. Hence, by Corollary 9.7, G∗ is non-singular at (p, 0).

We apply Corollary 9.7 to obtain normal coordinate systems.
For any m ∈ M , let e1, . . . , en be a base of TmM , let z1, . . . zn be
its dual base, and let U and U be neighborhoods of O ∈ TmM and
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m ∈M , respectively, such that expm is a diffeo. of U onto U whose
inverse we denote by exp−1. Then define C∞ functions x1, . . . , xn

on U by xi = zi ◦ exp−1 for all I. These functions x1, . . . , xn define a
normal coordinate system (of the connection D) on U . The curves
σ ∈ U such that x1 ◦ σ(t) = ait for constants a1, . . . , an, are geodesics
emanating from m (at t = 0), and if Γi

jk are the connexion functions
on U for this coordinate system, then Γi

jk(m) = 0, provided the
connexion has zero torsion.

One verifies this last statement by letting Xi =
∂

∂xi
and then

DXi
(Xj) =

n∑
k=1

Γk
jiXk

by definition of Γk
ji. Since the curve σ with

xi ◦ σ(t) = t, xj ◦ σ(t) = t, and xk ◦ σ(t) = 0

for k 6= i or j, is a geodesic, its tangent Xi+Xj satisfies the condition

0 = D(Xi+Xj)(Xi +Xj) = DXi
Xi +DXi

Xj +DXj
Xi +DXj

Xj .

Thus at m, DXi
Xi = 0 for all i, since each coordinate curve emanat-

ing from m is a geodesic, and if D has zero torsion, then

0 = 2(DXiXj)m = 2
∑
k

Γk
ji(m)Xk

so Γk
ji(m) = 0 for all i, j, and k.

We apply Corollary 9.8 to obtain Fermi coordinates along a
curve. Let σ be a C∞ curve in M that is univalent on the open
interval I ⊂ R. Let e1, . . . , en be C∞ fields on σ that are indepen-
dent at each σ(t) and en(t) = Tσ(t) for all t ∈ I. Let z1, . . . , zn be
the dual base to e1, . . . , en for each t. By Corollary 9.8, there is a
neighborhood V of M̂ ⊂ TM such that G is a diffeo. of V onto a
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neighborhood NM of the diagonal in M ×M . Let

U = {(m,Y ) ∈ V : m = σ(t) and zn(Y ) = 0 for some t ∈ I}.

Then F = G|U is a 1 to 1 C∞ map of the submanifold U into M ×M .
Moreover F∗ is non-singular at each point of U , so F is an imbedding
of U into M ×M . The map H = π2 ◦F then gives a 1 to 1 C∞ map of
U onto an open neighborood W of the image set σ(I). Define Fermi
coordinate y1, . . . , yn on p ∈ W by letting H−1(p) = (σ(t), Y ) ∈ W and
yi(p) = zi(Y ) for i = 1, . . . , n− 1 and yn(p) = t.

More special types of Fermi coordinates can be defined by tak-
ing e1, . . . , en to be a parallel base along a geodesic σ, and in the
Riemannian case, one can take an orthonormal parallel base along
a geodesic.

9.4 Convex Neighborhoods

This section is devoted to proving the following theorem, due
to J. H. C. Whitehead [Whi32].

Theorem 9.9. Let M be a C∞ manifold and D be a C∞ connexion on
M . Then for any point m in M there is a neighbourhood U of m that
is convex; i.e., for any two points in U there is a unique geodesic
of D which joins the two points and lies in U .

Proof. We may assume D has zero torsion, since by section 5.4
there is a unique torsion-free connexion with the same geodesics.
The theorem is local, and we work completely in one coordinate
neighbourhood of m. From the previous section, we choose a nor-
mal coordinate system x1, x2, . . . , xn about m with domain A, thus
xi(m) = 0 and Γi

jk(m) = 0 for all i, j and k. Let

• d(p, q) be a local metric on A defined by

d(p, q) =

√∑
i

(xi(p)− xi(q))2,
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• f(p) = d(p,m),

• B(p, c) = {q ∈ A : d(p, q) < c} for p ∈ A.

• |X| =
√∑

i

(dxi(X)2) for p ∈ A and X ∈ TpM .

By Corollary 9.8 in section 9.3, for each p ∈ A there is a real
number rp > 0 so that G is a diffeomorphism on the set (q,X)

where q ∈ B(p, rp) and d(q,exppX) < rp. Take c > 0 so B = B(m, c) ⊂
A. For each p ∈ B we obtain an integer rp > 0. The family of
neighbourhoods B(p, rp) for p ∈ B is a covering of the compact set
B, hence we may select a finite subcovering of neighbourhoods
belonging to p1, p2, . . . , pk. Let s =min{r1, . . . , rk}. Then for any p ∈ B,
expp maps a neighbourhood Up of the origin in TpM diffeomorphism
onto B(p, s). This follows since p ∈ B(pj , rj) for some j and hence G is
a diffeomorphism on the set (q,X) for q ∈ B(pj , rj) and d(q,exppX) <

rj . We fix q = p, and expp is a diffeomorphism of a neighbourhood V p

of 0 in TpM onto B(p, rj) and s ≤ rj . We have proved the following:

Lemma 9.10. For any c > 0 with B(m, c) ⊂ A, there exists an s > 0

such that for p ∈ B(m, c) the map expp is a diffeomorphism from a
neighbourhood Up of 0 in TpM onto B(p, s) ⊂ A.

We now prove two lemmas that complete the proof of the the-
orem.

Lemma 9.11. There exists a real number a, 0 < a < 1 and B(m, a) ⊂ A,
such that if 0 < b < a and g is a geodesic with Tg and f ◦ g(0) = b,
Tg(0)f = 0, then f ◦ g has a strict relative minimum at g(0). Thus if g
is tangent to the “sphere about m of radius b” at g(0), then g lies
outside of B(m, b) near g(0).

Proof. We may assume
∣∣Tg(0)∣∣ = 1. Let T =

∑
j

ajXj where Xj =
∂

∂xj

and
aj ◦ g =

( d
dt
)
(xj ◦ g), and we assume Tg(0) is extended to a C∞ field
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in a neighbourhood of g(0). Since f =

√∑
i

x2i we have

Tf =
∑
j

aj(Xjf) =
1

f

∑
j

ajxj

and
T 2f =

∑
k

ak

[
− xk
f3

(∑
j

ajxj

)
+

1

f

(∑
j

(Xkaj)xjak

)]
.

At t = 0, or at g(0), Tf = 0; hence

T 2f =
1

b

[∑
k

a2k +
∑
k,j

akxj(Xkaj)

]

But at g(0),∑
k

a2k = |T |2 = 1 and
∑
k

ak(Xkaj) +
∑
r,s

Γj
rsaras = 0,

since g is a geodesic. Thus

T 2f =
1

b

[
1−

∑
j,r,s

xjΓ
j
rsaras

]
.

Choose a > 0 and a < 1 so for points p with f(p) ≤ a,
∣∣∣Γi

jk(p)
∣∣∣ < 1/2n3 for

all i, j and k, which is possible since Γi
jk continuous and Γi

jk(m) = 0.
Then, at g(0), ∣∣∣∣∑

j,r,s

xjΓ
j
rsaras

∣∣∣∣ ≤ ( 1

2n3

)(∑
j,r,s

1

)
≤ 1

2
,

hence T 2f(g(0)) > 0, which implies f ◦g has a strict relative minimum
at 0.

Lemma 9.12. Let a be given by Lemme 9.11 and apply Lemma 9.10
with c = a/2 to obtain s > 0 with s < (2/3)a. Then B(m, s/2) is convex.
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Proof. Choose any p and q in B(m, s/2). By Lemma 9.10 there is a
geodesic g defined on some interval [0, u] with g(0) = p, g(u) = q, and
g(t) ∈ B(p, s) for all t ∈ [0, u]. We show f ◦g(t) < s/2 for all t ∈ [0, u]. Let
v be a number in [0, u] where f ◦ g attains its maximum value. Then
f ◦ g(v) < a since

f ◦ g(v) = d(m, g(v)) ≤ d(m, p) + d(p, g(v)) ≤ s/2 + s < a.

Supppose f ◦ g(v) ≥ s/2. Then (f ◦ g)′(v) = 0 and f ◦ g(v) < a which
implies by Lemma 9.11 that f ◦ g has a strict relative minimum at v
which gives a contradiction. Hence B(m, s/2) is convex.

Our theorem follows.

9.5 Special Coordinate Systems

Let M be a Riemannian n-manifold, let φ be a coordinate map on
M with domain U and xi = ui ◦ φ, and let Xi =

∂

∂xi
. The coordinate

system x1, . . . , xn is orthogonal if 〈Xi, Xj〉 = 0 for i 6= j. If the map φ

is a conformal map of U into Rn (with respect to the canonical Rie-
mannian metric on Rn), then the coordinate system is isothermal
or conformal (and hence also orthogonal). When Mn is a hypersur-
face in some Mn+1, the coordinate system is principal if each Xi is
a principal vector, and it is asymptotic if each Xi is an asymptotic
vector.

In this section we study the existence of such special coordinate
systems when n = 2. Orthogonal systems and conformal systems
exist about any point, and the latter may be used to define a Rie-
mann surface structure on M . Principal coordinates exist of neces-
sity about any non-umbilical point on a surface, while they may or
may not exist about an umbilic. We show asymptotic coordinates
exist in some special cases, e.g., about a point of a surface which
has a neighborhood on which the curvature is a negative constant,
and about a non-umbilical point on a negative constant, and about
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a non-umbilical point on a minimal surface (problem 88).

Theorem 9.13 (Gauss 1827). Let γ be an arbitrary univalent curve in
M2 parameterized by arc length on (a, b), let X be the (unit) tangent
to γ, and let Y be a unit C∞ field along γ such that 〈X,Y 〉 = 0. Then
the Fermi coordinate system induced by Y on a neighborhood of
γ is an orthogonal coordinate system about γ which is called a
set of “geodesic parallel coordinates.” This proves the existence
of orthogonal coordinates about any point on a two-dimensional
Riemannian manifold.

U

p
X

Y

geodesic

γ(a)

γ(b)

γ(t)

p = expγ(t) sY
φ

a
(t, 0) b

(t, s)
R2

Figure 9.1: Fermi Coordinates

Proof. Let φ be the Fermi coordinate map from the neighborhood
U of γ onto the set V in R2.

Then for (t, s) in V , φ−1(t, s) = expγ(t) sY . We let X and Y be the
coordinate fields on U which extend X and Y along γ. Since the
γ-curves are geodesics parameterized by arc length, DY Y = 0 and
〈Y, Y 〉 = 1, where D is the Riemannian connexion. We compute

Y 〈X,X〉 = 〈DYX,Y 〉+ 〈X,DY Y 〉 = 〈DYX,Y 〉 = 1

2
X 〈Y, Y 〉 = 0,

since the torsion is zero, so DYX − DXY = [Y,X] = 0. Thus 〈X,Y 〉
is constant along the y-curves and since 〈X,Y 〉 = 0 on γ we have
〈X,Y 〉 = 0 on U .
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One way to paraphrase the above situation is to say “if seg-
ments of equal length (lying in U ) are laid off along geodesics that
are orthogonal to a univalent curve γ, then their endpoints deter-
mine an orthogonal trajectory to the family of geodesics.

Theorem 9.14. If m is a non-umbilical point on a surface M in R3,
then there exists a set of principal coordinates in a neighborhood
U of m.

Proof. Since m is non-umbilic, there is a neighborhood V of m which
contains no umbilics. Assume V is oriented via a unit field N , and
let L(X) = DXN as usual, where D is the Riemannian connexion on
R3. Let X and Y be C∞ orthonormal principal vector fields on V

with L(X) = kX, L(Y ) = hY , and k < h, which corresponds to the
notation of Chapter 3. We seek non-vanishing C∞ functions f and
g defined on a neighborhood of m such that the fields Z = fX and
W = gY satisfy the condition [Z,W ] = 0. Finding f and g, we can
apply theorem 9.1 to obtain the desired principal coordinates.

We compute

[fX, gY ] = f(Xg)Y − g(Y f)X + fg(aX − bY ),

where
a = (Y k)/(h− k) and b = −(Xh)/(h− k)

by theorem 3.2. Hence [Z,W ] = 0 if (Xg) − bg = 0 and (Y f) − af = 0.
Thus we may prescribe g = 1 on the integral curve of Y through m,
and then on each integral curve γ(t) of X we have the differential
equation

dg ◦ γ(t)
dt − (b ◦ γ)(t)(g ◦ γ)(t) = 0.

From the existence theory of ordinary differential equations we
get g defined and C∞ on a neighborhood of m with g > 0. Similarly,
we obtain f .

One can write the differential equations Xg = bg and Y f = af as
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first-order linear partial differential equations in terms of a coor-
dinate system u, v about m. This follows, since

X = b1
∂

∂u
+ b2

∂

∂v
and Y = a1

∂

∂u
+ a2

∂

∂v

defines C∞ functions ai and bi, and then one must solve,

b1
∂g

∂u
+ b2

∂g

∂v
= bg and a1

∂f

∂u
+ a2

∂f

∂v
= af .

Theorem 9.15. If m is contained in the neighborhood U on a sur-
face with constant K = −a2 < 0 on U , then there exists a set of
asymptotic coordinates about m.

Proof. Let X and Y be orthonormal principal fields on U with LX =

kX and LY = hY , k < 0 < h. Let

• b =
√
a2 + k2,

• Z = b(aX − kY ),

• W = (−aX − kY ).

Then 〈LZ,Z〉 = 〈LW,W 〉 = 0, and Z and W are clearly independent.
Using theorem 3.2, one computes [Z,W ] = 0. Hence, the desired
coordinates exist.

9.6 Isothermal Coordinates and Riemannian Surfaces

The principal reference for this section is [Sam55]. Let M be a
Riemannian 2-manifold.

Let x, y be an arbitrary coordinate system on a neighbourhood
U of M . We seek functions f and g so the map p → (f(p), g(p)) will
define a conformal coordinate system about m in U . If f and g exist,
let

• E =
〈 ∂

∂f
,
∂

∂f

〉
,
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• F =
〈 ∂

∂f
,
∂

∂g

〉
,

• and G =
〈 ∂
∂g
,
∂

∂g

〉
.

Then
grad f =

1

W 2

(
G
∂

∂f
− F

∂

∂g

)
where W =

√
EG− F 2. If f and g are orthogonal coordinates, then

F = 0. If they are also conformal coordinates, then E = G and
|grad f |2 = 1/E = |grad g|2. Thus coordinates f and g are conformal
iff 〈grad f,grad g〉 = 0 and |grad f |2 = |grad g|2.

In terms of the x, y coordinate system,

〈grad f,grad g〉 = gx(Gfx − Ffy)− gy(Ffx − Efy)

where gx =
∂g

∂x
, etc., and E, F and G now belong to x and y, i.e.,

E =
〈 ∂

∂x
,
∂

∂x

〉
, etc. Thus 〈grad f,grad g〉 = 0 if there is a function ρ

on U with
gx = ρ(Ffx − Efy) and gy = ρ(Gfx − Ffy). (1)

Then |grad g|2 = ρ2W 2 |grad f |2, so let ρ = 1/W . The equations (1)
become a generalization of the Cauchy-Riemann equations. For a
particular f , one can solve the system (1) for g iff gxy = gyx or

∂

∂x

[
Gfx − Ffy√
EG− F 2

]
+

∂

∂y

[
Efy − Ffx√
EG− F 2

]
= 0 (2)

Equation (2) is the classical Beltrami equation, a generalized form
of the Laplace equation. Indeed, the left side of (2) is W∆f . Clas-
sically, 〈grad f,grad g〉 is called the first Beltrami operator on f and
g and the Laplacian ∆ is called the second Beltrami operator.

The theory of elliptic partial differential equations gives the
existence of non-trivial solutions of (2) about a point in U which
proves the following theorem.
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Theorem 9.16. There exists a system of isothormal (conformal)
coordinates about any point of Riemannian 2-manifold.

On manifolds M as described in this theorem, if we restrict our-
selves to conformal coordinate systems then, when the domains of
these coordinate systems intersect, they induce a conformal map
from one open set of R2 onto another. Since R2 is the underly-
ing set for the space of complex numbers, these conformal maps
must be given by analytic functions from one open set of onto
another. Thus at each point m of M we have diffeomorphisms of
a neighborhood of m onto an open set in C which are related by
analytic functions on the intersection of their domains. When M is
covered by neighborhoods such that the analytic functions induced
by overlapping neighborhoods are orientation preserving, then M

is called a Riemann surface and the study of these objects leads
to a rich theory (see [AL60]).

Problems

79. Let T be a C∞ vector field on the Riemannian manifold M

and define AT : TmM → TmM by AT (X) = DXT , where D is the
Riemannian connexion.

(i) Show that divT = trAT .

(ii) Show AT is self-adjoint iff d ◦G(T ) = 0 (T is closed).

(iii) Let (T⊥)m = {X ∈ TmM : 〈X,Tm〉 = 0}.

(iv) If T is closed, show T⊥ is an integrable (n − 1)-dim distri-
bution on the subset of M where T 6= 0.

80. (Frobenius) Let W1, . . . , wk be a set of independent C∞ 1-forms
on a C∞ n-manifold M with k < n. Define an (n− k)-dim distri-
bution P on M by

Pm = {X ∈ TmM : wi(X) = 0 for i = 1, 2, . . . , k}
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Show that P is integrable iff

dwi =
∑

1≤r≤s≤k

airswr ∧ ws

for all i. (For generalizations of this result, see Kuranishi
[Kur57] or Johnson [Joh60].)

81. If G = GL(n,R), I is the identity in G, A ∈ TIG, and

σ : t→ etA = I + tA+
(tA)2

2!
+ · · ·+ (tA)n

n!
+ . . . ,

show σ(t) is a 1-parameter subgroup of G with tangent A at
t = 0. Thus show etA = expI(tA) for all t (see problem 46).

82. Show the map (m,X) → |X| is C∞ on the set
N = {(m,X) ∈ TM : X 6= 0}.

83. If M is a Riemannian manifold and A is a compact set in M ,
show that there exists a real number r > 0 such that the ball
B(m, r) is convex for all m in A.

84. If G is a Lie group, g ∈ G, X in the Lie algebra, and g = exp(X),
show that h2 = g where h = exp(X/2). If

h ∈ SL(2,R) = {g ∈ GL(2,R) : det(g) = 1},

show the tr(h2) ≥ −2. Use this to prove the exp map is not
always onto even when the connexion is complete.

85. Let D be a connexion on M .

(i) Show the curvature R ≡ 0 iff the horizontal distribution H

on B(M) is integrable (section 5.5).

(ii) Show that R ≡ 0 implies parallel translation is independent
of the path (problem 45).
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86. Show that there exists at least one umbilic on any compact
convex C∞ surface in R3. (It was conjectured by Caratheodory,
and proven by Bol and Hamburger respectively, that a com-
pact convex surface has at least two umbilics.)

87. (i) If M is a surface in R3, U a coordinate domain on M with
coordinate fields X and Y , show the area of U is equal to∫

U

√
〈X,Y 〉 〈Y, Y 〉 − 〈X,Y 〉2.

(ii) Let f be in C∞(U,R), and define a normal deformation
belonging to f by φt(p) = p + tf(p)Np for p ∈ U and N a C∞

unit normal on U . Let J(t) be the area of φt(p). Show that
J ′(0) = 0 for all f iff U is a minimal surface (H ≡ 0).

88. (i) Show that about any non-umbilic point on a minimal sur-
face there exists an isothermal coordinate system x, y

whose coordinate systems are lines of curvature.

(ii) Show the functions z = (x + y)/2 and w = (x − y)/2 de-
fine an isotheermal coordinate system whose coordinate
curves are asymptotic curves which bisect the x, y coor-
dinate curves.

89. Using the notation of section 3.4, let u, v be conformal coordi-
nates on domain B with E = G = 〈Tu, Tu〉.

(i) Show Tuu + Tvv = −HGN . If f is C∞ on B,

(ii) show ∆f =
fuu + fvv

G
.

(iii) Let I :M → R3 be the inclusion map of a surface M into R3,
and let xi = ui ◦I for i = 1, 2, 3. Defining ∆I = (∆x1,∆x2,∆x3),
show that ∆I = −HN on B. Thus, if M is minimal, then
the functions xi are harmonic on B.

90. Let f1, f2, f3 be three analytic functions defined on an open set
B ⊂ C. Let Z : B → C3 by Z(w) = (f1(w), f2(w), f3(w)) and define
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X and Y mapping B into R3 by X = Re(Z) and Y = Im(Z) so
Z = X + iY . If Z ′ ◦ Z ′ = 0 and Xu ◦Xu > 0 on B, show the maps
X and Y each define an immersion of B into R3 whose image
locally is a minimal surface. Conversely, if M is a minimal
surface in R3 and m ∈M , show that there is an open set B ⊂ C
and analytic functions f1, f2, f3 defined on B such that X(B) is
a neighbourhood of m.

91. A Weingarten surface is a surface whose principal curvatures
are functionally independent. Let W : M → R2 by W (m) =

(k(m), h(m)), where k ≤ h, and call the image of W the W -
diagram.

(i) Show there exists no compact Weingarten surface of posi-
tive Gauss curvature whoseW -diagram has negative slope
(see section 3.1).

(ii) Show a compact surface with K > 0 and H constant is a
sphere.

Hopf [Hop50] has shown a compact surface with (a) constant
mean curvature and (b) Euler characteristic zero, is a sphere.
It is an open question whether the assumption (b) can be
dropped.1

92. Let X and Y be the coordinate fields for a set of orthogonal
coordinates on a surface. Show that there exist conformal
coordinate with the same coordinate curves (as images) iff
Y X

[
log

(
E
G

)]
= 0.

1This conjecture was disproven, first by [Hsi82] and next in R3 by [Wen86].
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10. Topics in Riemannian Geometry

10.1 Jacobi Fields and Conjugate Points

In order to study the minimizing properties of geodesics, we
study one and two parameter families of curves and the vector
fields which they induce. Our main tools are developed in the fol-
lowing three propositions.

Let Q and M be C∞ manifolds, and let f be a C∞ map of Q into
M . A TM-valued vector field on Q associated with f , or a TMf

field on Q, is a C∞ function A from Q into TM , the tangent bundle
to M , such that A(p) lies in Tf(p)M for all p in Q. The field A is a
tangent TMf field on Q if A = f∗A

′ for some C∞ field A′ on Q.
For the remainder of this section, let Q, M and f be as just

described, and let D denote a connexion on M .
If A and Z are TMf fields on Q and A = f∗A

′ is tangent, then we
can define DAZ to be a TMf field on Q. This is possible, since for
a particular p in Q the field Z gives a well-defined C∞ field along
a curve through f(p) with tangent Ap. More explicitly, let y1, . . . , yn
be a coordinate system on M about f(p) and let Yi =

∂

∂yi
. Let U be

an open set about p such that f(U) is contained in the domain of

the yi. Then Z =

n∑
1

ziYi defines real valued C∞ functions zi on U

and
DAZ =

n∑
i=1

[(A′zi)Yi + zi(DAYi)] (1)
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on U . Letting equation (1) define DAZ on U , we leave it to the
reader to show this definition is independent of the coordinate sys-
tem. Notice that DAZ is not necessarily a tangent TMf field even
when both A and Z are tangent.

If A and B are tangent TMf fields on Q, then we define the
tangent TMf field [A,B] by [A,B](p) = f∗([A

′, B′]p) where A = f∗A
′,

B = f∗B
′ and p in Q.

Proposition 10.1. Let A, B, X, Z be TMf fields on Q, let A and B

be tangent, and let g be a real-valued C∞ function on Q. Then the
following equations are valid:

D(gA)X = g(DAX), (2)
DA(gX) = (A′g)X + g(DAX), (3)
D(A+B)X = DAX +DBX, (4)
DA(X + Z) = DAX +DAZ. (5)

Proof. All four equations follow in a straightforward way from the
definition (1) and the standard properties for D.

Observe now for TMf fields X and Z we can define the TMf

field Tor(X,Z) by [Tor(X,Z)](p) = Tor(Xp, Zp) since Tor is a tensor;
moreover, the linear transformation-valued tensor [R(X,Z)](p) =

R(Xp, Zp) is defined by p ∈ Q.

Proposition 10.2. With the hypothesis of Proposition (10.1), the fol-
lowing equations are valid:

Tor(A,B) = DAB −DBA− [A,B], (6)
R(A,B)X = DADBX −DBDAX −D[A,B]X. (7)

Proof. Using the notation developed above for equation (1), let
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A =

n∑
1

aiYi and B =

n∑
1

bjYj . Then on U ,

Tor(A,B) =
∑
i,j

aibjTor(Yi, Yj) =
∑
i,j

aibj(DYi
Yj −DYj

Yi),

but
[A,B] =

∑
j

(A′bj)Yj −
∑
i

(B′ai)Yi

and

DAB −DBA =
∑
j

(A′bj)Yj +
∑
i,j

bjaiDYiYj −
∑
i

(B′ai)Yi −
∑
i,j

aibjDYjYi;

hence, equation (6) follows.
A similar computation gives (7).

Proposition 10.3. If M is a Riemannian manifold and D is the Rie-
mannian connexion, then with the hypothesis of Proposition (10.1),
the following equations are valid:

A′ 〈X,Z〉 = 〈DAX,Z〉+ 〈X,DAZ〉 , (8)
Tor(X,Z) = 0. (9)

Proof. Since Tor = 0 in this case, equation (9) is trivial.
To verify (8), let Y1, . . . , Yn be an orthonormal base field with no

loss of generality. Letting X =

n∑
1

xiYi and Z =

n∑
1

zjYj, we have

A′ 〈X,Z〉 = A′

(
n∑
1

xizi

)
=

n∑
1

[(A′xi)zi + xi(A
′zi)],

while

〈DAX,Z〉+〈X,DAZ〉 =
∑
i

(A′xi)zi+
∑
i,j

xizj 〈DAYi, Yj〉+
∑
j

xj(A
′zj)+

∑
i,j

xizj 〈Yi,DAYj〉 .
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But 〈DAYi, Yj〉+ 〈Yi,DAYj〉 = A 〈Yi, Yj〉 = 0; hence (8) follows.

We specialize and let Q be an open set in R2. For convenience, let
t and w be the first and second coordinate functions, respectively,
on R2; then

T = f∗

( ∂
∂t

)
and W = f∗

( ∂
∂t

)
are tangent TMf fields on Q. Moreover, assume the t-varying
curves obtained from f by holding w constant are geodesics with
respect to a connexion D on M ; thus DTT ≡ 0 on Q. When f and
Q satisfy the conditions of the above three sentences, we call f a
one-parameter family of geodesics. When we only assume Q is an
open subset of R2, we call f a one-parameter family of curves.

Theorem 10.4. If f is a one-parameter family of geodesics on Q

and D is torsion free, then D2
TW = R(T,W )T on Q.

Proof. Since [T,W ] = 0 and Tor = 0, we have DTW = DWT . Hence

D2
TW = DT (DTW ) = DT (DWT ) = DW (DTT ) +R(T,W )T = R(T,W )T

by (6) and (7) and the fact that DTT = 0.

Let T be the tangent field along a geodesic for a torsion-free
connexion D on M . Then a C∞ field Z along the geodesic is a
Jacobi field if D2

TZ = R(T,Z)T . Notice the set of Jacobi fields along
a geodesic is a vector space over the real field from the linearity
of the defining condition.

Theorem 10.5. A Jacobi field Z along a geodesic is uniquely de-
termined by its value and the value of DTZ at one point on the
geodesic.

Proof. Let e1, . . . , en = T be a parallel base along the geodesic so

Z(t) =

n∑
i=1

zi(t)ei where t is the parameter on the geodesic and zi are
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C∞ real-valued functions. Then

DTZ =
∑
i

z′iei and D2
TZ =

∑
i

z′′i ei.

Letting R(ei, ej)er =

n∑
k=1

Rijrkek, we have

R(T,Z)T = R(en,
∑

zjej)en =
∑
j,k

zjRnjnkek.

Hence Z is a Jacobi field iff z′′k =

n∑
j=1

zjRnjnk for all k. The conclu-

sion of the theorem now follows from the uniqueness theorem for
solutions of second-order differential equations.

Corollary 10.6. The vector space of Jacobi fields along a geodesic
has finite dimension equal to 2n. The subspace of Jacobi fields
along a geodesic that vanish at a fixed point has dimension n.

The two theorems above indicate two ways of obtaining Jacobi
fields, e.g., use Theorem 10.5 and existence theory from differ-
ential equations or use Theorem 10.4 by finding a one-parameter
family of geodesics. We now illustrate the latter procedure.

We first fix some notation. For any vector A in the tangent
space TmM we let A′ be the naturally associated “constant” vector
field on TmM . We use the notation of section 9.3, for a point X in
TmM , A′

X = ηX(A); or if e1, . . . , en is a base of TmM and w1, . . . , wn

its dual base with A =

n∑
1

aiei, then A′ =

n∑
1

ai

( ∂

∂wi

)
.

Theorem 10.7. Let X and A be any vectors in TmM . Let

Q = {(t, w) ∈ R2 : expm is defined on t(X + wA)},

which is an open set in R2. Let f : Q → M be defined by f(t, w) =

expm t(X+wA). Then f is a one-parameter family of geodesics and
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(expm)∗(tA
′) is a Jacobi field along each geodesic.

Proof. That f is a one-parameter family of geodesics follows from
the definition of the exponential map, i.e., expm maps rays in TmM

into geodesics emanating from m. Then W = (expm)∗(tA
′) is a Jacobi

field by Theorem 10.4 (see Fig. 10.1).

A

XO

tA′

t(X + wA)

Xm

W

expm

In TmM : In M :

Figure 10.1: Jacobi Field

A point X in TmM is a conjugate point if expm is singular at
X. The point (m,X) in TM is called a conjugate point if X is a
conjugate point in TmM . A point m in M is conjugate to a point
p in M along a geodesic g if there is a conjugate point X in TmM

such that expmX = p and g is a reparametrization of the geodesic
gX(t) = expm tX.

Notice there is always a neighborhood of zero in TmM that is free
of conjugate points since (expm)∗ is non-singular at zero (9.7). For
a trivial (and too special) example of conjugate points, letM be the
unit sphere about the origin in R3. Then the south pole is conjugate
to the north pole along any geodesic (great circle); moreover, the
north pole is conjugate to itself along any geodesic. To see this
let p be the north pole, then expp is completely singular on circles
about zero in TmM which have radius kπ for integral k.
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Theorem 10.8. A point X in TmM is a conjugate point iff there is a
non-trivial Jacobi field along gX that vanishes at m and expmX.

Proof. If expm is singular at X let A′ 6= 0 be a vector such that
(expm)∗A

′ = 0. Then, letting A′ denote the associated constant
vector field on TmM , the field (expm)∗tA

′ is a non-trivial Jacobi
field along gX that vanishes at m(t = 0) and expmX(t = 1).

Conversely, let Z be a non-trivial Jacobi field along gX with Z(0) =
Z(1) = 0. Let A = DXZ in TmM and let A′ be the associated constant
field on TmM . Let Z ′ = (expm)∗(tA

′). Then

DXZ
′ = DX [t(expm)∗A

′] = (expm)∗A
′ + tDX [(expm)∗A

′],

and at t = 0, DXZ
′ = A since at zero (expm)∗A

′
0 = A. Thus by

uniqueness (Theorem 10.5) Z = Z ′, and hence Z ′(1) = (expm)∗A
′
X = 0.

Since Z is non-trivial A′ 6= 0 and thus expm is singular at X.

Corollary 10.9. A point m is conjugate to a point p along a geodesic
g iff p is conjugate to m along g.

Theorem 10.10. Let g be a geodesic whose parameter domain in-
cludes [b, c] and suppose g(b) is not conjugate to g(c) along g. Then
there is a unique Jacobi field Z along g with prescribed values at
g(b) and g(c).

Proof. Suppose Z(b) and Z(c) are given. By hypothesis, the map
expg(b) is non-singular at the point X in Tg(b)M where expg(b)X =

g(c), i.e.,
g(t) = expg(b)

(
t− b

c− b

)
X;

hence there is a unique vector A′ such that (expg(b))∗A
′ = Z(c). Let

Z1 = (expg(b))∗(tA
′) along expg(b) tX (which is along g). Similarly, we

get a unique vector B′ tangent to Tg(c)M such that (expg(c))∗B
′ =

Z(b). Let Z2 = (expg(c))∗(tB
′) along expg(c) tY where expg(c) Y = g(b).

Then Z = Z1+Z2 is a Jacobi field along g with the required values at
g(b) and g(c). Furthermore Z is unique, for if W were another such
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field, then Z −W would be a Jacobi field that vanishes at g(b) and
g(c) and hence must be trivial, so Z =W .

10.2 First and Second Variation Formulae

Throughout this section let M be a C∞ Riemannian n-manifold
which is Hausdorff, and let D be the Riemannian connexion. For an
alternate approach to the material of this section see [Amb60].

Theorem 10.11. Let f be a one-parameter family of geodesics in
M which are parameterized by arc length. Then 〈W,T 〉 is constant
along each geodesic.

Proof. The function 〈T, T 〉 = 1 on the domain of f ; hence, 0 =

W ′ 〈T, T 〉 = 2 〈DWT, T 〉 by proposition 10.3. Thus

T 〈W,T 〉 = 〈DTW,T 〉+ 〈W,DTT 〉 = 〈DWT, T 〉 = 0,

since DTT = 0.

Corollary 10.12 (“perpendicular lemma”). Let X be a unit vector in
TmM . Let A be in TmM with 〈A,X〉 = 0 and let A′ be the associated
constant vector field on TmM . Then (expm)∗A

′ is perpendicular to
the geodesic gX at all points where gX is defined.

Proof. We may assume A is a unit vector and then define

f(t, w) = expm t[(cosw)X + (sinw)A]

for t in the domain of gX and w in an interval about zero. Then f

is a one-parameter family of geodesics which are parameterized
by arc length. Applying Theorem 10.11, we have 〈W,T 〉 constant
along each geodesic. In this case

W = (expm)∗t[−(sinw)X + (cosw)A]
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and w = 0 along gX ; hence,

〈(expm)∗tA, T 〉 = t 〈(expm)∗A, T 〉 = constant along gX .

This vanishes at t = 0, so 〈(expm)∗A, T 〉 = 0 along gX .

Let f be a one-parameter family of curves with domain Q and
assume Q contains the set (t, 0) for 0 ≤ t ≤ b. Let fw(t) = f(t, w)

for (t, w) in Q, and let L(w) be the length of the curve fw on [0, b],
i.e., L(w) =

∫ b

0

√
〈T, T 〉dt. We define the first and second variations

of L in the direction f to be the numbers L′(0) and L′′(0), respec-
tively, where L′ = dL/dw. Actually, we should call L′(0) the “first
derivative of L in the direction of the variation f evaluated at f0
on [0, b],” and a similar statement should be made for the “second
variation.” Henceforth we refer to f0 as the base curve.

Theorem 10.13. In terms of the notation just developed,

L′(0) = 〈W,T 〉
∣∣∣(b,0)
(0,0)

−
∫ b

0

〈W,DTT 〉w=0 dt

when f0 is parameterized by arc length. Thus if f0 is a geodesic,
then

L′(0) = 〈W,T 〉
∣∣∣(b,0)
(0,0)

.

Proof. We compute,

L′(w) =

∫ b

0

∂

∂w

√
〈T, T 〉dt =

∫ b

0

〈T, T 〉−1/2 〈DWT, T 〉dt.

When w = 0, 〈T, T 〉 = 1 and

〈DWT, T 〉 = 〈DTW,T 〉 =
d
dt 〈W,T 〉 − 〈W,DTT 〉

which we integrate to obtain the above formula.

Notice that theorem 10.13 shows L′(0) only depends on the vec-
tor field W along the base curve f0 and we may use the general
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formula of theorem 10.13 to define the first variation of L in the
direction of the field W where W is any C∞ field on the base
curve. For each such C∞ field W on a base curve σ we can de-
fine a one-parameter family f such that W = f∗

( ∂

∂w

)
by letting

f(t, w) = expσ(t)(wWσ(t)).
A curve σ between points p and q in M is called an extremal to

the fixed end-point problem if L′(0) = 0 for every one-parameter
family of curves f such that f0 = σ on [0, b] and f(0, w) = p, while
f(b, w) = q for w near 0.

Theorem 10.14. A curve σ between points p and q in M is an ex-
tremal iff it is a geodesic.

Proof. If σ is a geodesic and the end-points are fixed so W = 0 at p
and q, then L′(0) = 0 by theorem 10.13.

Conversely, if L′(0) = 0 and W = 0 at p and q, then
∫ b

0
〈W,DTT 〉dt =

0 for all W belonging to admissible (fixed end-point) one-parameter
variations f of σ. If at some point m on σ between p and q we sup-
pose Tm(DTT ) 6= 0, then let W = hDTT where h is a C∞ “bump”
function such that h(m) = 1, h ≥ 0, and h = 0 outside a neighbor-
hood of m on which DTT doesn’t vanish. By the remarks after
theorem 10.13, there is a one-parameter family f belonging to W .
In this case 〈W,DTT 〉 = h 〈DTT,DTT 〉 ≥ 0 is a non-negative function
which is non-zero on a neighborhood of t′ where σ(t′) = m, hence∫ b

0
〈W,DTT 〉dt > 0, which is a contradiction. Thus DTT = 0, and σ is a

geodesic.

Theorem 10.15. For a point m in M , let r > 0 be chosen so expm

maps the set B̂ = {X ∈ TmM : |X| < r} diffeomorphically onto its
image B. Then B is the metric ball B(m, r) = {p ∈ M : d(m, p) < r}.
Furthermore, if X in B̂ and p = expmX then d(m, p) = |X|, and the
geodesic gX(t) = expm tX, defined on [0, 1], realizes the absolute
minimum possible curve-length from m to p.

Proof. If T is the tangent to gX , then 〈T, T 〉 is constant on gX so
|gX |10 = |X|. We must show any other broken C∞ curve σ from m
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to p has a length which is greater than or equal to |X|, and the
theorem will follow.

First suppose σ is defined on [0, b] and σ(t) is in B for all t in [0, b].
Furthermore, suppose σ never returns to m after t = 0, or we could
obviously obtain a shorter curve from m to p. Let:

• exp = expm,

• exp−1 be the inverse map of exp |B̂,

• f(t) =
∣∣exp−1 σ(t)

∣∣ for t in [0, b], which defines a broken C∞ func-
tion f ,

• σ(t) = exp−1 σ(t),

• γ(t) = f(t)
X

|X|
,

• and γ(t) = exp γ(t).

Thus γ is a reparameterization of gX which has the same “radial
velocity” as σ. Decompose the tangent to σ into a radial component
A and a vector V which is orthogonal to A, thus Tσ = A+ V on [0, b],
(actually, A(t) = f ′(t)σ(t)/f(t) for t > 0). Using the perpendicular
lemma proved above, we know exp∗A is perpendicular to exp∗ V ,
so

|Tσ| = |exp∗A+ exp∗ V | ≥ |exp∗A| = |Tγ | .

Hence, |σ|b0 ≥ |γ|b0. Since γ is a reparameterization of gX , we have
|γ|b0 ≥ |gX |10 = |X|, where the inequality is strict if f is not an increas-
ing function. Thus, |σ|b0 ≥ |X|.

If σ(t) is not in B for all t, then |σ| > r > |X| by the above para-
graph. Hence, |X| = d(m, p) for X in (̂B), and the geodesic gX realizes
this minimum.

Theorem 10.16. Let f be a one-parameter family of curves such
that the base curve is a geodesic g parameterized by arc length
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on the interval [0, b]. Then L′′(0) is equal to

〈DWW,T 〉
∣∣∣(b,0)
(0,0)

+

∫ b

0

[
〈R(W,T )W,T 〉+ 〈DTW,DTW 〉 − (T 〈W,T 〉)2

]
dt.

If 〈W,T 〉 is constant along f , then

L′′(0) = 〈DWW,T 〉
∣∣∣(b,0)
(0,0)

+

∫ b

0

[
〈R(W,T )W,T 〉+ 〈DTW,DTW 〉

]
dt.

If W is a Jacobi field and 〈W,T 〉 is constant along g, then

L′′(0) =W 〈T,W 〉
∣∣∣(b,0)
(0,0)

.

Proof. First compute

∂

∂w

√
〈T, T 〉 = 〈T, T 〉−1/2 〈DWT, T 〉 .

Then

∂2

∂w2

√
〈T, T 〉 = −〈T, T 〉−3/2 〈DWT, T 〉2+〈T, T 〉−1/2

(〈DWDWT, T 〉+〈DWT,DWT 〉).

Evaluating on w = 0, we use 〈T, T 〉 = 1, DTT = 0, and DTW = DWT , to
obtain

∂2

∂w2

√
〈T, T 〉 = 〈DWDT , T 〉+ 〈DTW,DTW 〉 − 〈DTW,T 〉2

= 〈R(W,T )W +DTDWW,T 〉+ 〈DTW,DTW 〉 − (T 〈W,T 〉)2

= T 〈DWW,T 〉+ 〈R(W,T )W,T 〉+ 〈DTW,DTW 〉 − (T 〈W,T 〉)2,

which gives the first formula for L′′(0) by integrating.

If 〈W,T 〉 is constant along g, then T 〈W,T 〉 = 0 which gives the
second formula.
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If W is Jacobi, then

〈R(W,T )W,T 〉 = 〈R(T,W )W,W 〉 =
〈
D2

TW,W
〉

= T 〈DTW,W 〉 − 〈DTW,DTW 〉 .

Hence, L′′(0) =
[
〈DWW,T 〉+ 〈DWT,W 〉

](b,0)
(0,0)

=W 〈W,T 〉
∣∣∣(b,0)
(0,0)

.

Notice that the first term is the only term in the above formulae
that depends on something more than the vector field W along g.

Corollary 10.17. If W vanishes at the end-points of g, then the
second variation of L depends only on the field W along g. For any
vector field W along g, let fW (t, w) = expg(t) wW be the natural one-
parameter family associated with W , and then DWW = 0, since the
w-varying curves are geodesics. Letting L′′

W (0) denote the second
variation of L in the direction fW , then

L′′
W (0) =

∫ b

0

[
〈R(W,T )W,T 〉+ 〈DTW,DTW 〉 − (T 〈W,T 〉2)

]
dt.

We next prove two lemmas which are used to prove that geodesics
are not minimizing-distance curves past a first conjugate point, and
later, to prove conjugate points are isolated along a geodesic in
the Riemannian case.

Lemma 10.18 (Lagrange identity). If X and Y are Jacobi fields along
a geodesic g with tangent field T , then 〈DTX,Y 〉 − 〈X,DTY 〉 is con-
stant along g.

Proof. We compute

T (〈DTX,Y 〉 − 〈X,DTY 〉) =
〈
D2

TX,Y
〉
−
〈
X,D2

TY
〉

= 〈R(T,X)W,Y 〉 − 〈R(T, Y ), X〉 = 0

by the symmetry of the Riemann-Christoffel curvature tensor.
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Lemma 10.19. Let W be a continuous piecewise C∞ field along the
geodesic g which is parameterized on [0, b], and let W (0) = 0. If there
is no point g(t) that is conjugate to g(0) for t in [0, b], then∫ b

0

[
〈R(W,T )W,T 〉+ 〈DTW,DTW 〉

]
dt

is greater than ∫ b

0

[
〈R(Z, T )Z, T 〉+ 〈DTZ,DTZ〉

]
dt,

unless W = Z, where Z is the unique Jacobi field along g such that
Z(0) = 0 and Z(b) =W (b).

Proof. The field Z is well-defined by theorem 10.10. Let Z1, …, Zn

be a base of Tg(b)M , and extend these vectors by theorem 10.10 to
be Jacobi fields along g that vanish at g(0). Since there is no point
g(t) conjugate to g(0), the fields Z1, …, Zn are a base of Tg(t)M for all
t in (0, b]. Using theorem 10.7, write each Zi = tAi where Ai, …An are
C∞ fields that are independent on [0, b]. Setting W =

∑n
i=1 giAi, we

define continuous piecewise C∞ functions gi on [0, b]. Since gi(0) = 0

we may write gi = tfi and thus define continuous piecewise C∞

functions fi on [0, b] such that W =
∑

fiZi. Then Z =
∑

fi(b)Zi.

Let DTW = A + B where A =
∑

(Tfi)Zi and B =
∑
fiDTZi. Then

〈DTW,DTW 〉 = 〈A,A〉+ 2 〈A,B〉+ 〈B,B〉, and

〈R(T,W )T,W 〉 =
∑

fi 〈R(T,Zi)T,W 〉 =
∑

fi
〈
D2

TZi,W
〉

=
∑

fi
[
T 〈DTZi,W 〉 − 〈DTZi,DTW 〉

]
= T 〈B,W 〉 −

∑
((Tfi) 〈DTZi,W 〉)− 〈B,A〉 − 〈B,B〉 .

Hence, 〈R(T,W )T,W 〉+ 〈DTW,DTW 〉 is equal to

T 〈B,W 〉+ 〈A,A〉+ 〈A,B〉 −
∑

((Tfi) 〈DTZi,W 〉).
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But

〈A,B〉 −
∑

(Tfi) 〈DTZi,W 〉 =
∑

(Tfi)fj
[
〈Zi,DTZj〉 − 〈DTZi, Zj〉

]
= 0

by the Lagrange identity, since Zk(0) = 0 for all k. Thus∫ b

0

[
〈R(W,T )W,T 〉+ 〈DTW,DTW 〉

]
dt = 〈Bb,Wb〉+

∫ b

0

〈A,A〉dt

since W is continuous and W0 = 0. Furthermore,

〈Bb,Wb〉 =
〈∑

fi(b)(DTZi)b,Wb

〉
= 〈(DTZ)b, Zb〉

=

∫ b

0

[
〈R(Z, T )Z, T 〉+ 〈DTZ,DTZ〉

]
dt.

Since
∫ b

0
〈A,A〉dt ≥ 0, the inequality in the conclusion follows unless

A = 0, which implies fi are constant so W = Z.

Theorem 10.20. The arc length on a geodesic g does not equal the
distance in M beyond the first conjugate point; i.e., if g(b) is the
first point of g that is conjugate to g(0), and g is parameterized by
arc length, then the distance d(g(0), g(a)) < a for a > b.

Proof. Let Z be a non-trivial Jacobi field along g which vanishes at
0 and b. Then 〈Z, T 〉 = 0 by theorem 10.11 and L′′

Z(0) = 0 by theo-
rem 10.16 where L′ is computed from the natural one-parameter
family of curves associated with Z. By theorem 10.15 we obtain
r > 0, so that the neighborhood B(g(b), r) is the diffeomorphic image
of the r-ball about zero in Tg(b)M . Choose numbers a and c such
that 0 < c < b < a and g(t) is in B(g(b), r) for all t in [c, a]. Thus the
interval [c, a] has no pair of points that are conjugate to each other
on g. Let Y be the unique Jacobi field along g with Y (c) = Z(c) and
Y (a) = 0. Let X be the field on [0, a] such that X(t) = Z(t) for t in [0, c]

and X(t) = Y (t) for t in [c, a]. Let W be the field on [0, a] such that
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W (t) = Z(t) for t in [0, b] and W (t) = 0 for t in [b, a] (see Fig. 10.2).
Then

L′′
W |a0 = L′′

Z |b0 + L′′
W |ab = 0 while L′′

X |a0 = L′′
W |c0 + L′′

Y |ac .

By lemma 10.19, we have L′′
W |ac > L′′

Y |ac , which implies L′′
X |a0 < L′′

W |a0 = 0.
Hence there are broken C∞ curves in the natural one-parameter
family associated with X whose length from g(0) to g(a) is less
than a.

Actually, the arc length on a geodesic may cease to measure
distance in M long before a conjugate point is reached (think of a
right circular cylinder). The conjugate point is where the geodesic
ceases to be a minimum-length curve among nearby curves.

g(0)

g(c) g(b) g(a)Z

Figure 10.2: Fields Along a Geodesic

Theorem 10.21. The conjugate points of a fixed point on a geodesic
occur at isolated values of the parameter.

Proof. Let g(b) be any point conjugate to g(0) along the geodesic g
(notice it is possible that g(b) = g(0)). Let A1, …, Ar be a base for
the kernel of (expg(0))∗ at bT0 in Tg(0)M , where Tt is the tangent to
g at g(t), and we assume 〈T, T 〉 = 1. Choose Ar+1, …, An so A1, …, An

are independent and let Zi(t) = (expg(0))∗tAi. Then the fields Zi, …,
Zn are Jacobi fields along g that vanish at 0 and are independent
for all values of t except 0 and conjugate values. We show there
exists an ε > 0 such that Z1, …, Zn are independent for 0 < |t− b| < ε.
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This is done by showing DTZ1, …, DTZr, Zr+1, …, Zn are independent
at b and then Z1/(t− b), …, Zr/(t− b), Zr+1, …, Zn are independent for
0 < |t− b| < ε.

Since Ar+1, …, An are independent at bT0, we know Zr+1, …, Zn

are independent at b. For i ≤ r, (DTZi)b 6= 0, since (Zi)b = 0 and Zi is
non-trivial. If

r∑
i=1

ci(DTZi)b = 0, let W =
r∑
1

ciZi.

Then W is a Jacobi field with Wb = 0 and (DTW )b = 0; hence W = 0.
For small a > 0, we know Z1, …, Zr are independent, and

∑r
1 ci(Zi)a =

0 implies ci = 0 for all i. Thus DTZ1, …, DTZr are independent at b.
We now show for i ≤ r and j > r, DtZi is orthogonal to Zj at b. By the
Lagrange identity 〈DTZi, Zj〉−〈Zi,DTZj〉 is constant along g. Since Zi

and Zj vanish at 0, and Zi vanishes at b, we have 〈DTZi, Zj〉 = 0 at
b. Thus DTZ1, …, DTZr, Zr+1, …, Zn are independent at b and hence
in some neighborhood of b. Since Zi(t)/(t− b) → (DTZi)b as t→ b, the
conclusion follows.

10.3 Geometric Interpretation of Riemannian Curva-
ture

In this section, let:

• M be a Riemannian manifold.

• g be a geodesic in M with unit tangent T .

• A0 be a unit vector in Tg(0)M which is orthogonal to T0.

• A′ be the constant vector field on Tg(0)M generated by A0.

• exp = expg(0).

• A = exp∗A
′.

• K =
〈R(T,A)A, T 〉

〈A,A〉
as a function of t along g, whenever At 6= 0.
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We study the relationship between the Riemannian curvature K(t)

of the plane section spanned by At and Tt and the length of the
vector At. The field tA is used in the computation since it is a
Jacobi field.

Lemma 10.22. If tAt 6= 0, then

(1) T |tA| = 〈DT tA, tA〉
|tA|

= |A|+ t 〈DTA,A〉
|A|

(2) T 2 |tA| = − |tA|K(t) +H(t) where H(t) ≥ 0.

(3) |At| = 1 −K(0)
t2

6
+ G(t)t3 for t in a neighborhood of zero where

G is C∞.

Proof. We compute

T |tA| = T
√
〈tA, tA〉 = 〈DT tA, tA〉

|tA|
=

〈A+ tDTA, tA〉
|tA|

= |A|+ t 〈DTA,A〉
|A|

Thus

T 2 |tA| = 1

|tA|

[ 〈
D2

T tA, tA
〉
+ 〈DT tA,DT tA〉 −

〈DT tA, tA〉2

〈tA, tA〉

]
=

1

|tA|3
[
〈R(T, tA)T, tA〉 |tA|2 + |DT tA|2 |tA|2 − 〈DT tA, tA〉2

]
= − |tA|K(t) +H(t)

where
H(t) =

1

|tA|3
[
|DT tA|2 |tA|2 − 〈DT tA, tA〉2

]
The Schwartz inequality implies H(t) ≥ 0. A straightforward com-
putation shows, as t → 0, H(t) → 0,H ′(t) → 0 since (DTA)0 = 0 (use
normal coord.), hence as t→ 0,

|tA| → 0, T |tA| → |A0| = 1, T 2 |tA| → 0, T 3 |tA| → −K(0)

Since At does not vanish near t = 0, the function |At| is C∞ at 0,
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and hence F (t) = |tAt| admits a representation

F (t) = F (0) + F ′(0)t+ F ′′(0)
t2

2
+ F ′′′(0)

t3

6
+G(t)t4

for t in a neighborhood of 0 where G is a C∞ function on this
neighborhood. Substituting the values for the derivatives of F and
cancelling a factor of t then gives (3).

The following theorem derives its form essentially from some
class notes of Ambrose.

Theorem 10.23. If K(t) ≤ 0 for t ∈ [0, b], then |At| ≥ |A0| = 1 for t ∈ [0, b].
Thus if K ≤ 0 for all plane sections at all points of M , then M has
no conjugate points. If K(0) < 0, then |At| ≥ 1 for t near zero, and if
K(0) > 0, then |At| ≤ 1 for t near zero.

Proof. Let
F (t) = |tAt| − t |A0| = |tAt| − t

Then

F (0) = 0, F ′(0) = 0, F ′′(t) = T 2 |tAt| ≥ 0 if K(t) ≤ 0

Applying the Mean Value Theorem twice,

F (t) = F ′ (t̄) t = F ′′(¯̄t)t̄t ≥ 0 where 0 ≤ ¯̄t ≤ t̄ ≤ t ≤ b

Hence |At| ≥ 1 for t ∈ [0, b].
The second sentence of the theorem follows from the first, and

the last two sentences follow from ((3)) in the lemma.

We obtain a geometric interpretation of Riemannian curvature
from the following considerations (see Fig. 10.3). The vector A′ at
the point bT0 ∈ Tg(0)M is tangent to the circle σ of radius b about
the origin which lies in the plane of A0 and T0. Hence A = exp∗A

′ is
the tangent at exp(bT0) to the curve exp ◦σ in M . If b is sufficiently
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small, then exp ◦σ passes through points that are exactly b units
distant from g(0). If |Ab| > |A′| then the curve exp ◦σ is “stretching”
the curve σ near bT0 and the geodesics emanating from g(0) that are
determined by σ are “spreading out”. A corresponding statement
applies to the case |Ab| < |A′|.

0 T0 bT0

A′

σ

g(0)

g(b)

T0
A

In Tg(0)M : In M :

Figure 10.3: Comparing Geodesics

10.4 The Morse Index Theorem

Our approach to this section is based on the notes of Bott. For
further material see [JW69], [Amb61] and [Mor34]. Let M be a
C∞ manifold and let f be a real-valued C∞ function defined on a
neighborhood of a point m ∈ M . The point m is a critical point
of f if (f∗)m is the zero linear transformation on TmM . If m is
a critical point of f , we define a symmetric bilinear function H :

TmM ×TmM → R by
H(Xm, Ym) = Xm(Y f)

where Y is any C∞ vector field about m whose value at m is Ym. It
is a simple exercise to show H(Xm, Ym) is independent of the field
Y and is symmetric and bilinear (see problem 95). The function
H is called the Hessian of f at m. The index of H is defined to
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be the dimension of a maximal subspace V of TmM on which H is
negative definite (and V is maximal if it is not properly contained
in a subspace V ′ on which H is negative definite). The null space
of H is the subspace

V = {X ∈ TmM : H(X,Y ) = 0 for all Y ∈ TmM}

The nullity of H is the dimension of its null space. We denote the
index of H and the nullity of H by I(fm) and N(fm), respectively, and
call them the index of f at m and the nullity of f at m, respectively.
The positivity P (fm) is the integer such that P (fm)+I(fm)+N(fm) is
the dimension of TmM . The index of H intuitively gives the number
of dimensions of directions in TmM in which f is decreasing.

Next we need the definition of the conjugate degree of points
along a geodesic. Let g be a geodesic in a manifold with connexion.
The conjugate degree of the point g(t) (with respect to g(0)) is the
dimension of the kernel of (expg(0))∗ at tT0, where T0 is the unit
tangent to g at g(0) and g is parameterized by arc length. Thus
the conjugate degree of the point g(t) is the maximum number of
linearly independent Jacobi fields along g that vanish at 0 and t.

The Morse Index Theorem relates the concepts just defined.
Roughly it says, for a particular geodesic segment in a Riemannian
manifold M , the distance function can be used to define a C∞

function L on a manifold C, and then the index of L at a particular
critical point is equal to the sum of the degrees of conjugate points
along the geodesic segment.

For the rest of the section let M be a C∞ Riemannian Hausdorff
n-manifold. If m ∈ M , then a local geodesic manifold of M at m is
a submanifold C defined as follows. Let B be an open ball about
the origin (zero) in TmM which expm maps diffeomorphically into
M , and let V be any subspace of TmM . Then the submanifold

C = {expmX : X ∈ B ∧ V }
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is a local geodesic submanifold of M . Note C contains geodesic
segments of geodesics emanating from m whose tangent vectors
lie in V (see Fig. 10.4).

Lemma 10.24. Let:

• A be a convex neighborhood of M .

• p1, p2 ∈ A.

• g be the unique geodesic from p1 to p2 which lies in A and is
parameterized by arc length.

• T be the tangent field to g.

• C1 and C2 be disjoint local geodesic hypersurfaces of A through
p1 and p2, respectively, that are orthogonal to T .

• C = C1 × C2 (see Fig. 10.4).

• d(m1,m2) be the distance from m1 to m2 whenever (m1,m2) ∈ C;
thus d ∈ C∞(C,R) (problem 96).

• W = (W1,W2) and U = (U1, U2) be vectors tangent to C at (p1, p2),
where Wi, Ui ∈ Tpi

M for i = 1, 2, and let U also denote the
unique Jacobi field along g determined by U1, U2.

Then p = (p1, p2) is a critical point of d on C and

!Ip(U,W ) = Up(Wd) = [〈W,DTU〉 − !IT (U,W )]
p2

p1

where !IT at pi is the second fundamental form of Ci with respect
to the normal in the direction of T .

Proof. A two-parameter family of geodesics is a C∞ function f

mapping an open set Q ⊂ R3 into M such that the curves

f(u0,w0)(t) = f(t, u0, w0)
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g

T
C1

C2

U1

U2

p1
p2

A

Figure 10.4: Cross Manifolds

obtained from f by fixing the coordinates in the last two slots,
are geodesics. Let f be such a map and suppose (t, 0, 0) ∈ Q for
0 ≤ t ≤ b. Call the geodesic g = f(0,0) the base geodesic and assume
g is parameterized by arc length. Let

T = f∗

( ∂
∂t

)
, U = f∗

( ∂
∂u

)
, W = f∗

( ∂

∂w

)
then T,U,W are Jacobi fields along the geodesics of f , while

DTW = DWT, DTU = DUT, DUW = DWU

by section 10.1. We assume further that 〈T,U〉 and 〈T,W 〉 are con-
stant on g; hence 〈DTU, T 〉 = 0 and 〈DTW,T 〉 = 0 on g. For (u,w) near
(0, 0), let

L(u,w) =

∫ b

0

√
〈T, T 〉dt.

Notice 〈T, T 〉 is a function on Q which depends only on u,w since
the t-curves are geodesics. Differentiating with respect to w,

Lw =
∂L

∂w
=

∫ b

0

〈T, T 〉−1/2 〈DWT, T 〉dt
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and
(Lw)(0,0) =

∫ b

0

〈DTW,T 〉dt = 0

since 〈T, T 〉 = 1 on g. Differentiating with respect to u,

Lwu =

∫ b

0

[
−〈T, T 〉−3/2 〈DUT, T 〉 〈DWT, T 〉+〈T, T 〉−1/2

(〈DUDWT, T 〉+ 〈DWT,DUT 〉)
]
dt

Evaluating on g,

(Lwu)(0,0) =

∫ b

0

[〈DUDTW,T 〉+ 〈DTW,DTU〉]dt

=

∫ b

0

[
〈R(U, T )W +DTDUW,T 〉+ T 〈W,DTU〉 −

〈
W,D2

TU
〉]
dt

But, since U is Jacobi,

〈R(U, T )W,T 〉 −
〈
W,D2

TU
〉
= 〈R(U, T )W,T 〉 − 〈W,R(T,U)T 〉 = 0

hence

(Lwu)(0,0) =

∫ b

0

[〈DTDUW,T 〉+ T 〈W,DTU〉]dt

=

∫ b

0

[T 〈DUW,T 〉+ T 〈W,DTU〉]dt

= 〈DUW,T 〉+ 〈W,DTU〉
∣∣∣∣(b,0,0)
(0,0,0)

We apply the above analysis to prove the lemma. Let

f(u,w)(t) = f(t, u, w)

be the unique geodesic in A from

expp1
(uU1 + wW1) = γ1(u,w)
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to
expp2

(uU2 + wW2) = γ2(u,w)

which is parameterized on [0, b]. Then f is a two-parameter family
of geodesics satisfying the above requirements. Furthermore,

d(γ1(u,w), γ2(u,w)) = L(u,w)

hence
Hp(U,W ) = 〈DUi

Wi, T 〉+ 〈Wi,DTUi〉
∣∣∣∣i=2

i=1

But letting D′ be the induced Riemannian connexion on Ci, by the
Gauss equation we get

DUi
Wi = D′

Ui
Wi − !IT (Ui,Wi)T

hence
!Ip(U,W ) = [〈W,DTU〉 − !IT (U,W )]

p2

p1

Theorem 10.25. (Morse Index Theorem). Let g be a geodesic in M

which is parameterized by arc length on the interval [0, b]. Let r > 0

be chosen such that the balls B(g(t), 2r) are convex neighborhoods
of g(t) for 0 ≤ t ≤ b. Let m = (m1, . . . ,mk) be a sequence of points on
g such that mi = g(ti),
0 < ti < ti+1 < b, and

0 < d(mi,mi+1) < r (10)

for 0 ≤ i ≤ k where m0 = g(0) and mk+1 = g(b). Let Ci be a local
geodesic submanifold which is orthogonal to g at mi and contained
in B(mi, r) for
1 ≤ i ≤ k, and let C = C1 × . . .× Ck. Define L : C → R by

L(p̄) =

k∑
i=0

d(pi, pi+1)
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where p̄ = (p1, . . . , pk) ∈ C, pp = g(0), and pk+1 = g(b) (see Fig. 10.5).
Then L is C∞ on C, m is a critical point of L, the nullity of L at

m equals the conjugate degree of g(b) (with respect to g(0)), and

I(Lm) =
∑

0≤t≤b

deg g(t)

g(0)

g(b)
C1

C2

Ci

Ck

m1

m2
mi mk

Figure 10.5: Cross Manifolds

Before proving the theorem, we make some remarks. The fact
that N(Lm) is the conjugate degree of g(b) is often called the Nullity
Theorem. The Index Theorem shows I(Lm) and N(Lm) are indepen-
dent of the position of the points mi and the number of points k

as long as condition (10) is satisfied.

Proof. Define Li : C → R by

Li(p̄) = d(pi, pi+1)

for 0 ≤ i ≤ k. Then L is C∞ since L =
∑
Li and each Li is C∞. By

the lemma, the point m is a critical point of each Li and hence is a
critical point of L.

To compute the nullity of L at m, let U,W ∈ TmC where

U = (U1, . . . , Uk), W = (W1, . . . ,Wk), Ui,Wi ∈ Tmi
M

Let U0 = W0 and Uk+1 = Wk+1 be the zero vectors at g(0) and g(b),
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respectively. By the lemma,

Um(WL) =

k∑
i=0

Um(WLi)

=

k∑
i=1

[〈
Wi+1,DTU

−
i+1

〉
− !IT (Ui+1,Wi+1)−

〈
Wi,DTU

+
i

〉
+ !IT (Ui,Wi)

]
=

k∑
i=1

〈
Wi,DTU

−
i −DTU

+
i

〉
where U−

i is the Jacobi field on [ti−1, ti] agreeing with U at the end
points, and U+

i = U−
i+1. If U is in the null space of HL at m, then

Um(WL) = 0 for all W ; hence DTU
−
i = DTU

+
i for all i, which implies U

is a Jacobi field along g that vanishes at 0 and b. This proves the
nullity theorem.

We now work on the index of L at m. Let us refer to a point
(m, b) ∈ Mk × R which satisfies the conditions stated in the third
sentence of the theorem as an admissible partition. Let N = k(n−1),
and for each admissible partition (y, t) let Cy be the product of
k local geodesic submanifolds crossing g at the points of y, let
L(y,t) : Cy → R be the function corresponding to L in the theorem,
and let Fy map RN into the tangent space to Cy at y by

Fy(a1, . . . , aN ) =

( n−1∑
i=1

aiei(y1),

n−1∑
j=1

an−1+jej(y2), . . .

)

where e1, . . . , en−1, T is an orthonormal parallel base field along g.
Then let H(y,t), I(y,t), P(y,t), and N(y,t) denote the Hessian, index, pos-
itivity, and nullity, respectively, of HL(y,t)

◦ Fy. Thus H(y,t) is a sym-
metric bilinear form on RN which is continuous in y and t.

For each admissible partition (y0, t0) there is a neighborhood (in
Mk × R) such that

I(y,t) ≥ I(y0,t0), P(y,t) ≥ P(y0,t0) (11)
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for (y, t) in this neighborhood. This follows since I(y0, t0) is the di-
mension of a subspace V ⊂ RN such that H(y0,t0)(W,W ) < 0 for all
non-zero W ∈ V , and by continuity the inequality must hold on a
neighborhood of (y0, t0). A similar argument handles the positivity
case.

Fix y such that (y, b1) and (y, b2) are admissible partitions with
b1 ≤ b2. We show

I(y,b1) ≤ I(y,b2), P(y,b1) ≥ P(y,b2) (12)

For x in the cross manifold Cy, let

A(x) = L(y,b2)(x), B(x) = L(y,b1)(x) + d(g(b1), g(b2))

Then A(x) ≤ B(x) by the triangle inequality and A(y) = B(y). On a
curve γ(w) with tangent W that is tangent to Cy at y = γ(0),

A ◦ γ(w) = A(y) +H(y,b2)(W,W )
w2

2
+ . . .

while
B ◦ γ(w) = B(y) +H(y,b1)(W,W )

w2

2
+ . . .

Thus H(y,b2)(W,W ) ≤ H(y,b1)(W,W ) for all W , and if H(y,b1) is negative
definite on a subspace V then so is H(y,b2), which implies I(y,b1) ≤
I(y,b2), and similarly, P(y,b1) ≥ P(y,b2).

If g(t) is not a conjugate point of g(0), then H(y,t) is non-singular
on a neighborhood of (y, t) since the conjugate points are isolated,
hence

I(y,t) and P(y,t) are constant on a neighborhood of (y, t). (13)

We now use the properties (11), (12), and (13) to compute I(Ly).
Let a1, . . . , as be the points on [0, b) that are conjugate to 0. If 0 <

t < a1 we know
P(y,t) = N, I(y,t) = N(y,t) = 0
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by theorem 10.15 and property (13). At t = a1,

N(y,a1) = deg g(a1), I(y,a1) = 0

by (11) since I(y, t) = 0 for t < a1, hence

P(y,a1) = N − deg g(a1)

If a1 < t < a2 and t is near a1, then P(y,t) ≥ P(y,a1) by (11) and P(y,t) ≤
P(y,a1) by (12), hence

P(y,t) = N − deg g(a1), N(y,t) = 0, I(y,t) = deg g(a1)

The situation then remains unchanged for a1 < t < a2 by (13). For
t = a2, we repeat the above reasoning to compute

N(y,a2) = deg g(a2), I(y,a2) = deg g(a1), P(y,a2) = N −
∑

0≤t≤a2

deg g(t)

Continuing the argument, we obtain

I(Ly) = I(y,b) =
∑

0≤t≤b

deg g(t)

10.5 Completeness

The theorem that follows gives useful criteria for a Riemannian
manifold to be complete. The analytic case was first studied by
Hopf-Rinow. The approach we give essentially follows de Rham
[Rha52].

Theorem 10.26. If M is a connected Hausdorff Riemannian mani-
fold, then statements (a) through (d) below are equivalent, and any
one of them implies (e).
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(a) The exponential map is everywhere defined on TM .

(b) M is complete with respect to its Riemannian metric.

(c) Bounded closed sets in M are compact.

(d) The closed balls B̄(m, r) are compact for one m ∈ M and all
r > 0.

(e) Any two points in M can be joined by a geodesic segment
whose length equals the distance between the two points.

Proof. The implications (d) =⇒ (c) =⇒ (b) =⇒ (a) are all simple.
We show (a) implies (d) and (e). Fix m ∈M and let

Br = B(m, r), Sr = B̄(m, r)

Er = {p ∈ Sr : there is a geodesic segment γ from m to p with |γ| = d(m, p)}

We show Er is compact and Er = Sr for all r, which proves (d) and
(e).

Lemma 10.27. The set Er is compact for all r.

Proof. Fix r and let (mk) be a sequence of points in Er. By (a)
there exist points Xk ∈ TmM such that expmXk = mk for all k. This
follows since a geodesic can always be written as a composite map
which is the exponential of a ray in a tangent space. Then |Xk| < r

for all k, hence (Xk) is a sequence of points in the compact set
B̄(0, r) in the Euclidean space TmM . Thus we obtain a subsequence
(which we reindex if necessary) (Xk) that converges to X ∈ TmM

with |X| ≤ r. The corresponding subsequence (mk) converges to
expmX, which lies in Er since expm is C∞.

Lemma 10.28. If Er = Sr for a fixed r and d(m, p) > r then there is a
point m̄ such that d(m, m̄) = r and d(m, p) = r + d(m̄, p).
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Proof. For each integer k > 0, let γk be a broken C∞ curve from m

to p with |γk| < d(m, p) + 1
k . Let mk be the last point on each γk that

lies in Sr, so d(m,mk) = r. Since Sr is compact, the sequence (mk)

has a limit point m̄ and d(m, m̄) = r. But

d(mk, p) ≤ |γk|pmk
= |γk|pm − |γk|mk

m ≤ |γk| − r < d(m, p) +
1

k
− r

Hence d(m̄, p) ≤ d(m, p) − r, and the triangle inequality proves the
opposite inequality.

Lemma 10.29. For r ≥ 0, Er = Sr.

Proof. The proof uses a continuous induction argument on r. By
definition, Er ⊂ Sr for all r. For r = 0, E0 = S0. If Er = Sr, then
trivially Er′ = Sr′ for all r′ < r. Conversely, if Er′ = Sr′ for all r′ < r,
then Er = Sr. This follows by taking any point p ∈ Sr and then
choosing (pk) → p such that each pk is in some Sr′ for r′ < r. Hence
pk ∈ Er′ ⊂ Er, and Er is compact, which implies the limit p is in Er.

Finally, if Er = Sr, then there exists ε > 0 such that Er+ε = Sr+ε.
Since Sr is compact, we obtain a number 2ε > 0 such that, for
all p ∈ Sr, the map expp is a diffeo from {X ∈ TpM : |X| < 2ε} onto
B(p, 2ε). Take p ∈ Sr+ε. By lemma 10.28, there is a point m̄ with
d(m, m̄) = r and

d(m̄, p) = d(m, p)− d(m, m̄) ≤ r + ε− r ≤ ε

Hence there is a geodesic segment γ1 from m to m̄ with |γ1| = r,
and a geodesic segment γ2 from m̄ to p with |γ2| = d(m̄, p). Joining
γ1 and γ2 gives a broken C∞ curve γ from m to p with |γ| = d(m, p).
Parameterizing γ by arc length, there can be no breaks in γ, so γ is
a geodesic. Thus p ∈ Er+ε.

We can now prove a classical theorem which illustrates how as-
sumptions about the Riemannian curvature can affect the topology
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of a manifold.

Theorem 10.30 (of Bonnet). If M is a complete connected Rieman-
nian manifold with Riemannian curvature greater than or equal to
some K > 0, then M is compact and its diameter is less than or
equal to π√

K
.

Proof. We show on every geodesic g there is a conjugate point of
g(0) on

[
0, π√

K

]
. If m ∈ M , then by completeness, every point p ∈ M

can be joined to m by a geodesic segment whose length is d(p,m).
By Theorem 10.20, this geodesic has no conjugate point of m before
p, hence d(m, p) ≤ π√

K
.

Let g be a geodesic with unit tangent T , g(0) = m, and let e be
a unit parallel field along g which is orthogonal to T . Let Wt =

(sin
√
Kt)et. Then W is orthogonal to T , W vanishes at 0 and π√

K
,

and

DTW = (
√
K cos

√
Kt)et

L′′
W (0) =

∫ π/
√
K

0

[〈R(W,T )W,T 〉+ 〈DTW,DTW 〉]dt

=

∫ π/
√
K

0

[
−K(t)sin2

√
Kt+K cos2

√
Kt
]
dt

≤ K

∫ π/
√
K

0

[
cos2

√
Kt− sin2

√
Kt
]
dt

= 0

where K(t) = 〈R(e, t)T, e〉. If the interval
[
0,

π√
K

]
was free of conju-

gate points, then by lemma 10.19,

L′′
W (0) > L′′

Z(0) = 0

where Z = 0 is the unique Jacobi field along g, which coincides with
W at 0 and π√

K
. This contradiction proves the theorem.
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The following theorem, due to K. Nomizu and H. Ozeki, settles
the question of the existence of complete Riemannian metrics on
a paracompact (or Riemannian) manifold. A Riemannian metric is
bounded if the manifold is bounded with respect to the induced
metric function.

Theorem 10.31. Let M be a connected Hausdorff C∞ manifold. If
G is any Riemannian metric on M , then there exist Riemannian
metrics G1 and G2, both conformal to G, with G1 complete and G2

bounded.

Proof. Since there is more than one Riemannian metric involved,
write Gi(X,Y ) rather than 〈X,Y 〉i for the metric tensor applied to a
pair of vectors, di for the metric, and Bi(m, r) for the corresponding
r-ball neighborhoods.

Using the metric G, for each p ∈M , let

r(p) = sup
{
r : B̄(p, r) is compact

}
If r(p) = ∞ for some p, then G is complete by theorem 10.26. Sup-
pose r(p) <∞ for all p, and we construct G1.

Notice |r(p)− r(m)| ≤ d(p,m) for all p and m, for if r(p) > r(m) +

d(p,m), one could increase r(m); hence r(p) ≤ r(m) + d(p,m) for all p
and m, and the inequality follows. This proves r is continuous.

Since M is paracompact, it is easy to show there exists f ∈
C∞(M,R) with f(p) >

1

r(p)
for all p. Let

G1(X,Y ) = f2(m)G(X,Y )

for X,Y ∈ TmM , which defines a C∞ Riemannian metric G1 on M .
That G1 is complete will follow by showing B(p, 13 ) ⊂ B(p, r(p)2 ) and

hence B̄1(p,
1
6 ) is compact. This implies every Cauchy sequence in

the G1 metric must converge. To show this, take p ∈ M and take
m such that d(p,m) ≥ r(p)

2 . Let γ ba a broken C∞ curve from p to m,
which is parameterized by G-arc length, i.e., if T is the tangent to
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γ, then G(T, T ) = 1 and γ is defined on [0, L] where L is the G-length
of γ, so L ≥ r(p)

2 . Letting L1 be the G1-length of γ,

L1 =

∫ L

0

√
G1(T, T )dt =

∫ L

0

(f ◦ γ)dt = f(p̄)L >
L

r(p̄)

where p̄ is on γ between p and m. But

|r(p̄)− r(p)| ≤ d(p, p̄) ≤ L

hence
r(p̄) ≤ r(p) + L, L′ >

L

r(p+ L)
>

L

3L
=

1

3

Hence d1(p,m) ≥ 1
3 , so B1(p,

1
3 ) ⊂ B(p, r(p)2 ).

For the second part of the theorem we may assume G = G1

is complete. Fix a point m ∈ M and let f ∈ C∞(M,R) such that
f(p) > d(m, p) for all p. Let

G2 = e−2fG

and we show G2 is bounded. Take p ∈ M and let γ be a geodesic
from m to p with tangent T such that G(T, T ) = 1, γ is defined on
[0, L], and L = d(m, p). Then

f ◦ γ(t) > d(m, γ(t)) = t

for all t. Letting L2 be the G2-length of γ,

L2 =

∫ L

0

√
G2(T, T )dt =

∫ L

0

e−fdt <
∫ L

0

e−tdt <
∫ ∞

0

e−tdt = 1

Hene d2(m, p) < 1 for all m and p.

Corollary 10.32. Every Riemannian metric on a manifold is com-
plete iff the manifold is compact.

For further work on completeness, see the papers of J. A. Wolf
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and P. A. Griffiths.

10.6 Manifolds with Constant Riemannian Curvature

Theorem 10.33. Let M and M ′ be connected Riemannian manifolds
with M complete. Let f :M →M ′ be an isometry. Then f is an onto
covering map and M ′ is complete.

Proof. To show f is onto, we show f(M) is open (which is trivial
since f is a local diffeo) and closed. Take m′ ∈ ¯f(M)), let B′ be a
convex neighborhood of m′, let p′ = f(p) be in B′, and let g′ be the
unique geodesic in B′ from p′ to m′ with g′(0) = p′ and g′(1) = m′.
Let g be the unique geodesic in M with g(0) = p and f∗Tg(0) = Tg′(0).
Since f is an isometry, f ◦ g is a geodesic in M ′, and by uniqueness,
f ◦ g = g′. Since M is complete, g(1) = m is defined; hence f(m) = m′

and f is onto. We have also shown M ′ is complete.
It is trivial that f evenly covers, since f preserves locally convex

neighborhoods; thus for m′ we choose a convex neighborhood B′,
and f−1(B′) is a union of disjoint convex neighborhoods, each of
which f maps diffeomorphically onto B′.

Theorem 10.34. Let M be a connected, simply connected, com-
plete Riemannian manifold with constant Riemannian curvature K.
Then M is isometric to Euclidean space, spherical space, or hyper-
bolic space, when K = 0, K > 0, or K < 0, respectively.

Proof. Let g be a geodesic in M parameterized by arc length with
g(0) = m. Let e be a parallel unit field along g, which is orthogonal
to T , the unit tangent to g. Let Z(t) = a(t)e(t) be a C∞ field along g.
Then

DTZ = a′e, D2
TZ = a′′e

Thus Z is a Jacobi field if D2
TZ = R(T,Z)T or

〈
D2

TZ,Z
〉
= 〈R(T,Z)T,Z〉 = −K 〈Z,Z〉 i.e. a′′a = −Ka2
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or a′′ + Ka = 0. This differential equation has solutions uniquely
determined by a(0) and a′(0). If a(0) = 0, then Z(t) = (expm)∗tA

′

where A′ is the constant field on TmM with A′ = a′(0)e. This equality
follows from the fact that the right side is a Jacobi field and a
Jacobi field is determined by Z and DTZ at one point. Hence

〈Z,Z〉 = t2 〈exp∗A
′(t),exp∗A

′(t)〉 = a2(t)

When K = 0, then a′′ = 0 and a = ct where c = a′(0). Thus

〈exp∗A
′(t),exp∗A

′(t)〉 = c2 = 〈A′(t), A′(t)〉

and expm is an isometry from TmM onto M . Apply the previous
theorem to obtain that expm is a covering map. Since M is simply
connected, expm is a diffeo, hence M is isometric to TmM , and
TmM is trivially isometric to Euclidean space.

When K < 0, let M ′ be hyperbolic space for K < 0 (section 6.7).
We know exp0 : T0M

′ →M ′ is a diffeo so let

E = (exp0)
−1

Choose an orthonormal base e1, . . . , en of T0M
′ and an orthonormal

base e1, . . . , en of TmM , where m ∈M is arbitrary. Define F : T0M
′ →

TmM by
F (e′i) = ei

Define f :M ′ →M by
f = expm ◦F ◦ E

Then f∗Z
′(t) = Z(t) along corresponding geodesics in M ′ and M , and

〈f∗Z ′, f∗Z
′〉 = a2(t) = 〈Z ′, Z ′〉

Thus f∗ is an isometry. Now the apply previous to obtain that f is
a diffeo.
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When K > 0, then Z = (sin
√
Kt)e is a Jacobi field along any

geodesic emanating from m (a fixed point in M ). Thus every ray in
TmM has a conjugate point at π√

K
units from the origin and (expm)∗

has an (n− 1)-dimensional kernel at these points. Let

C =
{
X ∈ TmM : |X| = π√

K

}
Then expm |C is completely singular and hence is a constant map
since C is connected. From the nature of the Jacobi equations in
the first paragraph, there are no conjugate points in

B =
{
X ∈ TmM : |X| < π√

K

}
Now let M ′ be spherical space of curvature K and let p ∈ M ′. We
know expp is a diffeo on the set B′ (corresponding to B) in TpM

′.
Define E and F as in the above paragraph (E defined on B(p,

π√
K

),
the open ball), and let

f = expm ◦F ◦ E

on B(p, π√
K
) while f(−p) = expm(C). As in the above paragraph, f

is an isometry on B(p, π√
K
). Note what should be f∗ at −p is well-

defined via the tangent to incoming geodesics. Thus we may define
a map g : B(−p, π/

√
K) →M with

g(−p) = f(−p)

and g∗ at −p determined by f∗. Then f = g on their common domain,
and g is C∞ and metric preserving at −p. Hence f is an isometry
of M ′ onto M , and by the previous theorem, f is a diffeo.

Corollary 10.35. Let M and M ′ be Riemannian manifolds, let b =

{e1, . . . , en} be an orthonormal base at m ∈ M , and similarly, let b′
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be such a base at m′ ∈M ′. Define F : TmM → Tm′M ′ by

F (ei) = e′i

The map F induces a correspondence between geodesics emanat-
ing from m and m′, respectively, and also a correspondence be-
tween plane sections P and P ′ along these geodesics, via parallel
translation of corresponding plane sections at m and m′. Thus
for a geodesic g in M with g(0) = m, let g′ be the geodesic in M ′

with g′(0) = m′ and Tg′(0) = F (Tg(0)); and for a plane section P in
TmM , let P (t) be the parallel translate of P along g to g(t), let
P ′ = F (P ), and P ′(t) be the parallel translate of P ′ along g′. Supose
K ′(P ′(t)) = K(P (t)) for all geodesics and plane sections (emanating
from m and m′). Then there are neighborhoods B and B′ of m and
m′, respectively, and a map f : B → B′ which is an isometry (and a
diffeo). Thus M and M ′ are locally isometric at m and m′.

Proof. Choose an r > 0 such that expm is a diffeo from B(0, r) in
TmM onto B = B(m, r) in M and expm′ is also a diffeo from B′(0, r)

in Tm′M ′ onto B′ = B′(m′, r) in M ′. Let

f = expm ◦F ◦ (expm′)−1

on B′, so f is a diffeo. By the method of proof in the preceding
theorem, f is an isometry.

If, in the above corollary, we add the hypothesis that M and
M ′ are complete, connected, and simply connected, then it is an
open question whether M is isometric to M ′. When the Rieman-
nian curvature is preserved for corresponding plane sections on
once-broken geodesics, then Ambrose [Amb56] has proven M is
isometric to M ′.
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10.7 Manifolds without Conjugate Points

Most of the results of the next two sections are based on a
paper by A. Preissmann and some informal notes by W. B. Housing,
Jr.

Throughout this section, let M be a complete connected Haus-
dorff Riemannian n-manifold. If m ∈M and there exists no point of
M that is conjugate to m, then m is called a pole.

Theorem 10.36. If m ∈ M is a pole, then expm : TmM → M is a
covering map. Thus the simply connected covering of M is diffeo
to Rn, and if M is simply connected, then M is diffeo to Rn.

Proof. Letting E = expm, we know E is onto since M is complete,
and E is a local diffeo since m has no conjugate points. The metric
tensor G of M induces a Euclidean metric on TmM whose distance
function we denote by d. On the other hand, by requiring E to be
an isometry, we define a metric tensor G1 on TmM whose distance
function we denote by d1. The rays in TmM , emanating from the
origin, are G1-geodesics since E is connexion preserving. We now
show these rays are minimizing G1-geodesics from the origin.

Take any X ∈ TmM , and let γ be a C∞ curve from 0 to X with
γ(t) ∈ B(0, |X|) for all t (B is the Euclidean ball). Assume γ is pa-
rameterized so |γ(t)| = t, thus γ is defined on [0, |X|]. Let T be the
tangent to γ, then Tt = Rt + Vt where R is the unit (outward) radial
vector field on TmM (and R0 = T0), and Vt is orthogonal to Rt at
each point. Computing the G1-length of T ,

|T |1 = |E∗(R+ V )| ≥ |E∗(R)| = 1

by the perpendicular lemma. Hence

|γ|1 =

∫ |X|

0

|T |1 dt ≥ |X|

which implies d1(0, X) = |X|, since the ray from 0 to X has G1-length
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equal to |X|. Thus B1(0, b) = B(0, b) for all b ≥ 0, and since the latter is
compact, so is the former. By the complete theorem (10.26), TmM

is complete with respect to the G1-metric. By theorem 10.33, the
map E : TmM →M is a covering map.

Corollary 10.37. If M has non-positive Riemannian curvature, then
all points are poles and Rn is a simply connected covering space
of M .

We now define the universal covering manifold M , based at a
point m ∈ M , in a standard way. Let M be the set of equivalence
classes of C0-homotopic C0-curves f defined on a finite interval
such that f(0) = m (see Hocking-Young, p. 188). Let [f ] denote the
equivalence class of a curve f , and let π :M →M denote the cov-
ering map where π([f ]) is the endpoint of f . Define a C∞ structure
on M by demanding π to be a C∞ map, and if M is Riemannian,
define a Riemannian metric on M such that π is an isometry. We
use repeated the fact that a C0-curve f in M has a unique lifting
f in M such that π ◦ f = f once one has prescribed f(0). Let f ∼ h

denote the fact that f is homotopic to h under a fixed end-point
homotopy, and let m be the constant path at m.

Theorem 10.38. Let f be a finite curve in M and let

b = inf {|h| : h is a broken C∞ curve and h ∼ f}

Then there exists a geodesic g such that g ∼ f and |g| = b. Thus in
every homotopy class of curves (with fixed end-points), there is a
geodesic whose length is the absolute minimum for the lengths of
all broken C∞ curves in the homotopy class.

Proof. Let M be the universal covering manifold based at m = f(0).
Since M is complete, M is complete, and hence there exists a
geodesic g from [m] to [f ] which gives the distance in M between
these two points. Then g = π ◦ g is a geodesic in M since π is an
isometry, and g ∼ f since M is simply connected. If h is a broken C∞
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curve with h ∼ f , then lift h to a curve h starting at [m] and obtain
a broken C∞ curve h from [m] to [f ]. Since g gives the distance,∣∣h∣∣ ≥ |g| = |g|, thus |g| = b.

Theorem 10.39. Let m ∈ M be a pole and let g1, g2 be geodesics
emanating from m that intersect later. If g1 ∼ g2, then g1 = g2 (when
both parameterized by arc length).

Proof. Let M be the universal covering manifold based at m with π

an isometry. Define exp : TmM →M by

exp(X) = {expm tX : 0 ≤ t ≤ 1}

Then π ◦ exp = expm and exp is C∞, since localy exp = π−1 ◦ expm.
Moreover, exp is an isometry, for m is a pole. Since TmM is simply
connected, exp is a diffeo by theorem 10.33. If g1(t) = exp tXi

where g1(1) = g2(1), and g1 ∼ g2, then [g1] = [g2]. Since exp is a diffeo,
this implies X1 = X2, which implies g1 = g2.

We remark that one can always define the C∞ map exp : TmM →
M (base point m) with π ◦ exp = expm. The map exp will be onto if
M is complete, but it will not in general be locally one-to-one.

Corollary 10.40. If m ∈M is a pole and M is simply connected, then
for any point p ∈M there is a unique geodesic through m and p.

Corollary 10.41. IfM is simply connected and has only non-positive
Riemannian curvature, then there is a unique geodesic through any
two points of M .

10.8 Manifolds with Non-Positive Curvature

We add to the standard hypothesis of the last section the as-
sumption that K(P ) ≤ 0 for all plane sections P of M .

Lemma 10.42. Let f be a finite curve in M parameterized by arc
length, and let m ∈ M . Let f̄ be any lifting of f to the covering
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space TmM (see theorem 10.36). Then |f | ≥
∣∣f̄ ∣∣, the Euclidean length

of f̄ in TmM . If K < 0, then |f | >
∣∣f̄ ∣∣ unless f̄ is a segment of a ray

emanating from zero in TmM .

Proof. By theorem 10.23, if T is a vector tangent to TmM , then
|(expm)∗T | ≥ |T |. If K < 0, then |(expm)∗T | > |T | unless T is a radial
vector tangent to a ray through zero.

Theorem 10.43. Let p1, p2, p3 ∈M be distinct points joined by geodesics
g1, g2, g3 where g1 joins p2 and p3, etc., (see Fig. 10.6). Assume the
three points are not on one geodesic and the broken loop formed
by the three curves is homotopic to zero. Let θi be the unique
angle at pi made by the intersecting geodesics with 0 < θi < π.
Then

|g1|2 ≥ |g2|2 + |g3|2 − |g2| |g3|cos θ1, θ1 + θ2 + θ3 ≤ π

If K < 0 on M , these inequalities are strict.

Proof. Let m = p1 and let ḡ2, ḡ3 be the rays through zero in TmM

such that expm ◦ḡi = gi for i = 2, 3. Let X2, X3 be the endpoints of
ḡ3, ḡ2 respectively. Since the loop formed by g2, g1, g3 is homotopic
to zero, we can lift g1 to a curve ḡ1 joining X2, X3. By the preceding
lemma,

|g1| ≥ |ḡ1| ≥ d(X2, X3)

where d is the Euclidean distance in TmM . By the law of cosines in
TmM ,

d(X2, X3)
2 = |g2|2 + |g3|2 − |g2| |g3|cos θ1

which proves the first inequality.
For the second inequality, we construct a triangle in R2 whose

sides have lengths ai = |gi| and label the angles at the appropriate
corners by φi. Then

(a1)
2 = (a2)

2 + (a3)
2 − a2a3 cosφ1
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hence cos θ1 ≥ cosφ1 and θ1 ≤ φ1. Similarly, θi ≤ φi for i = 2, 3, thus

θ1 + θ2 + θ3 ≤ φ1 + φ2 + φ3 = π

If K < 0, then |g1| > |ḡ1| and the strict inequalities then follow.

Corollary 10.44. The sum of the interior angles (0 ≤ θi < π) of a
geodesic quadrilateral which is homotopic to zero is less than or
equal to 2π. If K < 0, then the sum is less than 2π.

g2

g3

g1

0

X3

X2

m = p1

p2

p3

g2

g1

g3

In TmM : In M :

Figure 10.6: Geodesic Triangle

Corollary 10.45. Let m ∈M , and let g be a geodesic that does not
pass through m. Then there cannot be two distinct geodesics g1, g2
from m to g which intersect g orthogonally such that the geodesic
triangle formed is homotopic to zero.

Proof. The sum of the interior angles of the geodesic triangle
would be greater than π.

Corollary 10.46. Let M be simply connected, m ∈ M , and g a
geodesic that does not pass through m. Then there is a unique
geodesic f from m to g which is orthogonal go g and |f | ≤ d(m, g(t))

for all t.
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Proof. Let ft be the unique geodesic from m to g(t), let

L(t) = |ft| = d(m, g(t))

and let gt be g restricted to the interval [0, t] or [t, 0], as the case
may be. Let θ be the angle between f0 and gt for t > 0. We show
that L(t) → ∞ as t→ ±∞. For t > 0,

L2(t) = |ft|2 ≥ |f0|2 + |gt|2 − |f0| |gt|cos θ = |f0|2 + |gt| (|gt| − |f0|cos θ)

As t → ∞, we have |gt| → ∞, hence L(t) → ∞. Similarly, L(t) → ∞ as
t→ −∞.

By theorem 10.13, a point t′ is a critical point of L iff ft′ is
orthogonal fo g. By corollary 10.45 there can be at most one critical
point of L, and that must be an absolute minimum by the first
paragraph.

For further results, see Preissman [Pre43] and Helgason [Hel12].

Problems

93. Using the notation of section 3.4,

(a) show that Tv is a Jacobi field on a surface of revolution.

(b) If G = 〈Tv, Tv〉 and S is arc length along the meridians, show

d2
√
G

ds2 = −K
√
G

94. If M is a complete Riemannian 2-manifold, show the locus of
first (those nearest the origin on each ray) conjugate points
in TmM is a C∞ curve (see [Mye35]).

95. Show the Hessian is well-defined, symmetric, and bilinear.

96. If d is the function defined in lemma 10.24, show d is C∞ on C.
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97. If M = R3, g is the x-axis from (a, 0, 0) to (b, 0, 0) with a < b, and
C1 and C2 are the planes x = a and x = b respectively, check
lemma 10.24.

98. A submanifold V of a manifold M is totally geodesic with re-
spect to a connexion D if any geodesic that is tangent to V

at a point lies wholly in V . If V and W are compact totally
geodesic submanifolds of dimension r and s respectively, lying
in a Riemannian n-manifold M of positive Riemannian curva-
ture and r + s ≥ n, show V ∩W is non-empty (see [Fra61]).

99. Find a condition relating curvature and parallel translation that
will ensure the existence of complete totally geodesic sub-
manifolds in a Riemannian manifold (see [Her60] or [Hel12]).

100. If M is an oriented n-manifold and α is a C∞ (n− 1)-form on M

with compact support, show
∫
M
dα = 0 (see [NJ62]).
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A concise introduction to the topics considered part of a standard
background in differential geometry up until today.

The first three chapters provide a crash course in classical
differential geometry, leading into an intermezzo of tensors and
forms, while the rest of the book introduces the notion of
connexion (connection) and various topics in Riemannian
geometry. The notes are intended for a full year course, covering
the first six chapters in one semester.

Contains a total of 100 problems of varied difficulty, consisting of
computations, additional theorems and examples, results from
the literature and supplementary topics such as Lie groups and
bundle theory.

Noel J. Hicks (1929-1979) was born in San
Antonio, Texas. His undergraduate studies took
place at the University of Wyoming, and his
PhD was awarded in 1957 by the Massachusetts
Institute of Technology. His thesis, supervised
by Warren Ambrose, was titled On the
Curvature and Torsion of Affine
Connexions.

After graduating, Hicks joined the University of
Michigan faculty as instructor; he was
appointed assistant professor in 1961, associate
professor in 1966. Geometry was his field of
research and advanced teaching: his textbook
on differential geometry is known as a classic
treatment of the subject, and he wrote a
number of important research papers in the
area.

(Sources: U. of Michigan, Faculty History
Project; Mathematics Genealogy Project)
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