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Introduction 

This is a purely expository article in which I shall attempt to explain, with a 
minimum of technicalities, the deep underlying connections between the analysis 
of elliptic operators and the topology of the general linear groups. 

The theory of elliptic 
equations begins with the classical Laplace and Cauchy-Riemann equations, 
and it can be generalized in two different directions : 

Let me begin with a few brief historical remarks. 

(A) we can consider more general elliptic systems, 
(B) we can consider the classical operators but on more general manifolds. 

Under (B) we may include all the topological-transcendental study of algebraic 
varieties initiated by Hodge and extensively developed by Kodaira-Spencer, 
Cartan-Serre, Hirzebruch and others. In this program one of the major tasks 
was the investigation of global topological invariants of manifolds. Because a 
manifold is “infinitesimally linear” these investigations are essentially concerned 
with the linear groups GL(n, R) and GL(n, C). In fact a large part of the work in 
algebraic and differential topology of the past 20 years has been concerned 
basically with the topology of the linear groups. 

Most of the earlier work under (A) was concerned with the qualitative side, 
extending basic analytical results to general operators. Recently, however, there 
has been a certain fusion between (A) and (B) arising from the attempt to obtain 
for general elliptic systems some of the quantitative results available for the 
classical systems. The reason why this attempt has been successful lies in the fact 
that the topological properties of the linear groups which were so extensively 
developed in (B) proved to be precisely the right tools for (A). This is what I 
hope to explain. 

1. Topology of the Linear Groups 

Let me now try to explain some of the basic facts about the topology of the 
linear groups GL(n ,  C)-I concentrate mainly on the complex case but shall make 

* This paper is a slightly revised version of the lecture given at the Courant Institute of Math- 
ematical Sciences on the occasion of the Conference to dedicate Warren Weaver Hall in March, 
1966. Reproduction in whole or in part is permitted for any purpose of the United States 
Government. 
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a few remarks at the end about the real case. I shall begin with what is surely the 
one piece of algebraic topology which every mathematician knows. 

Let f : S1 + C* be a continuous map from the circle S1 into the non-zero complex 
numbers C*. In other words, we have a closed path in the plane, missing the 
origin. The following facts are then well-known : 

(i) f has a “winding number” or degree (the number of times the path “goes 

(ii) this degree (written deg f) is invariant under continuous deformation; 

(iii) deg f is the only such invariant, i.e., f can be deformed into g if and only 

(iv) there exists a map f with any given degree. 

There are many ways of defining or computing deg f, depending on the context 
and the techniques one wants to use. Briefly these may be summarized as follows. 

We replace f by g = f / I  f I which maps S1 + Sly then we approx- 
imate g by a differentiable map and count (algebraically) the number of points 
in the inverse image of a general point. 

We approximate by a piece-wise linear path and then use 

DIFFERENTIAL. We approximate by a differentiable f and then put 

We approximate by a finite Fourier series f = 2 a n z n  and then 

round” the origin) ; 

if deg f = degg; 

GEOMETRIC. 

COMBINATORIAL. 
combinatorial methods. 

deg f = (1/27ri)J@/J 

Put 

k 
ALGEBRAIC. 

n-k 

deg f = N(f) - P ( f )  Y 

where N, P are the number of zeros and poles in I zI < 1. 

One may now ask what happens in higher dimensions. Of course many 
generalizations of the problem are possible depending on one’s point of view, but 
there is one very beautiful generalization due to Bott [lo] which I proceed to 
explain. 

We consider continuous maps 

f : Sn-l + GL(N, C) , 2 N Z n ,  

where Sn-l is the unit sphere in Rn. The case discussed above corresponds to 
n = 2, N = 1. The theorem of Bott is then as follows: 

If n is odd, every map f can be deformed to a constant map. I f n  is even, we 
can dejne an integer, called deg f, and f can be deformed into another map g if and only if 
deg f = deg g ;  moreover there exists a map with any given degree. 

THEOREM. 
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Again, as in the case N = 1, several definitions of deg f are possible. First we 
have a geometrical definition. This is simplest to explain when 2N = n. In this 
case the first column of the matrix f defines a map 

f l  = sn-1+ CN - (0) 

so that g =fill fll is a map Sn-l -+ Sn-l. This map has a degree-the number of 
points in h- l (P) ,  where h is a differentiable approximation to g and P is a general 
Doint. We then define 

(- I)N-l deg g 
deg f = 

( N -  l ) !  

The reason for the unexpected factor (N - 1) ! is that deg g turns out always to be 
divisible by ( N  - 1) ! . When suitably normalized in this way deg f takes on all 
integer values. The sign (- l)N-l is put in for minor technical convenience. When 
2N > n one can show that f can always be deformed into a map g so that 

where h(x)  E GL(&n, C ) .  We then define deg f = deg h and it turns out to be 
independent of the choice of g .  

There is also a daferential definition of deg f. We put 

where o is a certain explicitly defined invariant differential form on GL(N, C) 
and f *o is the induced form on Sn-l. 

The algebraic definition by counting zeros and poles which I mentioned for 
the case N = 1 does not generalize in any obvious sense. On the other hand, in a 
very deep sense which I will explain later, it does have a generalization and one 
moreover that goes to the heart of the problem. 

Let us pause here to contemplate the situation. I think it is true to say that 
this theorem of Bott must rank as one of the real achievements of topology and it 
is certainly something of which everybody should be aware. The existence of the 
degree is of course fairly easy-this is homology, but the fact that maps of equal 
degree can be deformed into one another is highly nontrivial-this is homotopy. 
It is definitively non-intuitive, and we need only consider some other cases of 
homotopy to see how fortunate we are. Thus the homotopy classes of maps of 
spheres into spheres are extraordinarily complicated and still, in general, unknown. 
The same is true of maps 

Sn-l + GL(N, C )  
when 2 N  < n. 
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To understand Bott's theorem a little better it is helpful to examine the relation 
between different dimensions. Suppose then that 

f : Sn-l -+ GL(N, C )  , g : Sm-l + GL(M, C) 

are two given maps. We agree to extend f so that it is defined on the whole of R" 
by 

f (W = If (4 Y x E S,--l,A >= 0 , 
and similarly for g. Then f, g are now continuous matrix-valued functions defined 
on R", R", respectively. We then define a matrix-valued function h on Rn+m by 

where 1, denotes the identity transformation of CM and f*(x) is the transposed 
conjugate of the matrix f ( x ) .  Thus h(x,y) is a 2 M N  x 2 M N  matrix. I t  is easy to 
check that for ( x ,  y )  # (0,O) it is nonsingular and so it defines a continuous map 

Srn+,--l -+ GL(2MN, C )  

which we may denote by f * g to indicate that it is a kind' of "product" off and g. 
If m and n are both even, we have the simple multiplicative formula 

Thus if a : S1 -+ GL( 1, C) is the standard map of degree 1 given by 

a(z) = t ,  Z E C ,  1.21 = 1 ,  
then the map 

a, : S2,--1 ---f GL(2,-l, C) 

defined by a, = a * a * . - * * a (n times) has degree 1. It is thus thegenerating map 
in this dimension, i.e., it defines a generator of the (infinite cyclic) group of 
homotopy classes of maps S2,-l + GL(2'+', C ) .  

There are now many different proofs of Bott's theorem. Later I shall comment 
on one of these proofs but for the present let me just say that all the proofs proceed 
by induction on n, or rather by an inductive step from n to n + 2. What one has 
to prove in this step is that f -+ (f * a) gives an isomorphism from the homotopy 
group in dimension 2n - 1 to that in dimension 2n + 1. 

The reader who is puzzled by this peculiar looking product can consult [5] where it arises in 
a natural manner. 
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Remark. If N < n, the degree of a map S2"-l -+ GL(N, C )  should be defined 
as zero, because the degree of the composite map 

S2n-1 -+ GL(N, C )  -+ GL(n, C )  

is easily seen to be zero. 

2. Elliptic Operators 

In  the theory of elliptic differential operators one is led naturally to a larger 
class of integro-differential operators (including the inverse or Green's operator). 
These are now called psuedo-differential operators and are most conveniently 
studied via Fourier transforms. They have local integral representations of the 
following type : 

Pc$(x) = (27r)-"Je*(z96)fi(x, l)$(E) d t  . 

Here p(x ,  6) is a smooth function having suitable asymptotic properties2 as 
t + co (uniformly for bounded x )  and 8 is the Fourier transform of 4. For a 
differential operator p is just a polynomial in 6 whose coefficients are smooth 
functions of x .  If 4 is vector-valued, then p is matrix-valued. 

Let p ,  denote the highest order terms of the asymptotic expansion of p.  Then 
P is said to be elliptic of order r if p,,(x, 6) E GL(N,  C )  for all x and all 6 # 0. Thus 
for fixed x we have a continuous map S"-' -+ GL(N, C) given by 5 + p 7 ( x y  5 ) .  
Hence if n is even this map has a degree. This is independent of x (if our manifold 
is connected) and may be called the local degree of P. For example the local degree 
of the Cauchy-Riemann operator d/dZ is clearly equal to 1, while the Laplace 
operator has local degree 0. 

To get an interesting global problem we have usually to impose suitable 
boundary conditions for P. If we are on a compact manifold without boundary, 
then of course there is no question of boundary condition%. The same is true for 
operators Qf order zero on RN which are "equal to the identity at infinity" in the 
following sense : 

(1) There exists a compact set K c RN so that +Py = +y, whenever or y have 

support in RN - K .  

If P = p ( x ,  D), then condition (1) implies 

(2) p ( x ,  5 )  = 1 for x $ K .  

In fact, (1) is equivalent to (2) and (2)t ,  where (2 ) t  denotes the corresponding 
condition for the transpose (or adjoint) operator Pt of P.  Because Euclidean space 

* See [12] or [13] for precise definitions. 
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is simpler than a general manifold I shall, for the moment, restrict myself to this 
case. 

Suppose then that P is elliptic of order zero and satisfies ( 1). Then, if k is any 
constant so that 

1x1 2 k = > x $ K ,  

the leading termp,(x, 6) ofp(x, 6) will be a non-singular matrix for all ( x ,  6) with 
1x1 + 161 2 k. In fact, for 6 # 0 this is a consequence of ellipticity and for 5 = 0 
we have 1x1 2 k, so that x $ K and therefore, by (2) ,p , (x ,  6) = 1. Thus!, defines 
a continuous map 

p o  : szn--1---+ GL(N, C) , 

where Pn-l is the sphere of radius in Ran (the x,  &space). This degree of po  is 
independent of k and may be called the global degree of the operator P. It is quite 
different from the local degree defined earlier. In the first place, the global degree 
is defined for all values of n, whereas the local degree is only defined for even values. 
In  the second place, if P is an operator of the kind we are now considering and n is 
even, then the local degree is necessarily zero (because it is independent of x and, 
for 1x1 > k, po  = 1). In fact we can say that the global degree is only defined 
because the local degree is zero. 

These simple facts about local and global degrees for Euclidean space turn out 
to be typical of what happens in the case of quite general boundary conditions of 
Shapiro-Lopatinskii (or “coercive”) type3 on general manifolds. In fact, for an 
elliptic operator P to admit any boundary conditions of this type, even locally, the 
local degree of P must be zero. In other words, there are topological conditions 
which must be satisfied for P to admit Shapiro-Lopatinskii boundary conditions. 
This was known and is rather .obvious for n = 2 : for example d/dZ has local degree 
1 and does not admit such boundary conditions. In the literature on the subject, 
n = 2 seemed to be regarded as a rather special case. In fact the contrary is true: 
it is typical. 

If P does admit a Shapiro-Lopatinskii boundary condition B (the local degree 
being therefore zero), then the pair (P, B) together define a global topological 
invariant which generalizes the global degree. 

An interesting point in this connection is that, in attempting to understand the 
topological significance of boundary conditions, Bott and I were inevitably led 
to a new and elementary proof of Rott’s theorem [4]. This new proof is I believe 
the key to a real understanding of the relation between elliptic operators and the 
linear groups. Moreover, its significance for pure algebraic topology is quite 
dramatic. It opens up the possibility of developing large parts of 
topology on the basis of linear algebra rather than on the orthodox 
simplicia1 complexes and homology. 

algebraic 
theory of 

* See [S] for precise definitions and for proofs of the statements which follow. 
4 This program is followed in [l]. 
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But we digress. Let us return to the special case of elliptic operators P in 
Euclidean space satisfying the condition (1). One of the basic results of the classi- 
cal theory of elliptic operators which remains valid here is that the space ofsolutions 
of the equations PcP = 0 is finite-dimensional. The adjoint P* of P being of the 
same type as P, it follows that P*y = 0 has a finite-dimensional space of solutions 
also. The difference between these two dimensions is called the index of P.  Thus 

index P = dim Ker P - dim Ker P* . 
The special interest of the index is that it is unchanged by continuous deformation of P.  
It  is therefore reasonable to ask what relation it has to our topological invariant, 
the global degree. 

Let us denote by Ell(Rn, CN)  the space of all elliptic operators P acting on the 
space of functions Rn + CN and satisfying6 condition (1). Then the process of 
assigning to each such P the function p,(x,  t)  defines a continuous map 

a : E1l(Rn, CN) -+ Map(P”-l, GL(N, C)) , 
where Map(A, B) denotes the function space of all continuous mappings A + B. 
It is elementary to show that a induces a one-one correspondence between the 
connected components of these two spaces. In other words, the homotopy classes of 
operators correspond precisely to elements of the (2n  - 1)-th homotopy group of 
GL( N, C). Since 

index P = index (P 0 I) , 
where I is the identity operator, we can always increase N without altering the 
index (or the global degree). Thus there is no loss of generality in assuming 
N 2 n. We are then in a position to apply Bott’s theorem asserting that deg f is 
essentially the only homotopy invariant of a map 

f : S2”-l + GL(N, C) . 
This implies that index P must be some function of degree a(P), the global degree 
of P. Since “index” and “degree” are both rather trivially additive for direct 
sums, it follows that 

index P = C ,  degree a(P) 

for some integer C ,  independent of P. To compute this constant C, it is sufficient 
to compute index P for an operator P whose symbol o(P)  is equal to the Bott 
generator a , .  This may be done as follows. We first establish a multiplicative 
property of the indexe: if o(R)  = o ( P )  * c(Q), then index R = index P * index Q. 

We consider a fixed compact set K in ( 1 )  and by a change of scale we can assume K contained 

See [14] for the case of a closed manifold. Only minor modifications are needed for the case of 
in the unit ball. 

Euclidean space. 
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Here * is the operation defined in Section 1. Thus if P E Ell (R", C N ) ,  Q E 
Ell (R", C"'), then R E Ell (R", C'-'"). Since degree a(P) is also multiplicative in 
the same sense, and since 

a ,  = a * a * - * * * a (n  times) , 

it follows that C, = (C,)". I t  remains therefore to calculate C, and for this one 
has only to evaluate the index of an operator P on R1 with o(P) = a ,  . This is in 
fact a classical example and one finds' Cl = 1. Thus we have 

THEOREM. For any elliptic pseudo-daferential operator on R", satisfying condition ( 1), 

Using one or the other of the explicit definitions of degree, this theorem gives 
us an explicit formula for the index. Alternatively (in view of the theorem) we 
could regard the index as providing an analytical deJiition of the degree! This is not quite 
so bizarre as it sounds. In  the first place it is the only definition for which the 
degree is apriori an integer: in the geometric definition we divided by (n  - 1) ! and 
in the differential definition the formula is given by an integral (hence is a priori a 
real number). In  the second place, this analytical definition is in some sense the 
appropriate generalization of the algebraic definition of degree (which exists only 
for n = 2). The superficial formal analogies are obvious, both degrees being a 
difference of two positive integers. In  fact the analogy goes much deeper, because 
the number of zeros or poles of a meromorphic function in IzI < 1 can quite 
naturally be interpreted as the dimension of the space of solutions of a suitable 
differential equation. Finally, for certain natural generalizations which we shall 
discuss in Section 3, this analytical definition extends in a way which the other 
definitions do not. 

O n  the debit side one must of course admit that the index of an operator is 
usually a less computable quantity than say an integral. But for many theoretical 
purposes actual computations are not relevant and the analytical definition has 
many theoretical advantages. 

This is perhaps a convenient occasion to comment on the various places in the 
literature where a proof of the above theorem is given. The first proof for general 
n is contained ins [7], the details ofwhich are elaborated in [ 141. Because however 
these papers were concerned with the case of general manifolds more sophisticated 
notation and machinery were employed than is necessary for the case of Euclidean 
space (or a sphere). If specialized down to the case of a sphere the proofs of [7], 
[14] coincide essentially with the one I have outlined here. Only two points of 

the index is equal to the global degree. 

' In fact we have C, = f 1 depending on sign conventions which we shall ignore here. 
There is also a paper by Vol'pert on the subject (Doklady Akad. Nauk SSSR, Vol. 152, 1963, 

pp. 1292-1293 or Soviet Math. Doklady, Vol. 4, 1963, pp. 1540-1542). Unfortunately the paper 
is erroneous. In the first place Bott's theorem is assumed, as if it were obvious (no statement or 
reference being given). Moreover, the formula given is incorrect, the factor (n - 1) ! being omitted. 
Both these are understandable errors if one believes that the general case is identical with n = 2. 
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difference require special comment. First the more difficult part of [7], concerned 
with cobordism invariance, is not needed for spheres. Secondly there is the minor 
difference between Euclidean space and the sphere. The idea of treating operators 
in Euclidean space which are “equal to 1 at infinity” is due to Seeley [ 151. 

Because the proof in [7] appeared to be complicated, various authors, [15], 
[ 111, [9], have attempted to give simpler or more elementary proofs for the case 
of Euclidean space. These different proofs are different only in their use and 
presentation of algebraic topology-the analysis is basically common ground. 
The topology which these authors use is of the more classical variety-homology, 
Hurewicz theorem, Serre’s theorems on the homotopy of spheres, etc.-combined 
sometimes with Bott’s theorem and its homological corollaries. In my view, 
although these parts of topology are older, they are far from being more elementary 
than Bott’s theorem. The reader may compare the length of [4], which is a self- 
contained account of all that I have really used here, with standard advanced 
treatises on algebraic topology. More important still, I firmly believe that Bott’s 
theorem is not only more elementary but also that it is much more relevant to the 
index problem. This has been the whole emphasis of my presentation. 

3. Wider Implications 

I have concentrated so far on operators in Euclidean space because this is 
easier to explain and because I think it goes very much to the heart of the matter. 
The justification for saying this must of course come from showing that much more 
general problems get solved in a similar way. This is in fact true and I would like 
to discuss a number of such problems. 

First the general index problem for arbitrary elliptic operators on closed9 manifolds 
has been solved. In addition to the proof in [7], [ 141 there is now a second proof, 
which will appear in [8] ,  and which is superior in many important respects. The 
basic idea is quite easily explained. Given an elliptic operator P on a closed 
manifold X ,  we imbed X in Euclidean space E and construct an operator Q on E 
“equal to 1 at infinity” and such that index P = index Q. The problem is thus 
reduced to the case studied in Section 2. The construction of Q may very roughly 
be described as follows. We take an operator A ,  defined in a tubular neighbourhood 
N of X in E, which gives the generating symbol in each normal plane N, , x E X .  
We then form Q = P * A,  where * denotes an operation like that described in 
Section 1. A refinement of the multiplicative property of the index gives 

index Q = index P * index A,  = index P . 

The index problem for manifolds with boundary can be reduced to that on 
closed manifolds along the lines indicated in [3]. 

i.e., compact without boundary. 
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The formulae for the index obtained in this way can, like the global degree of 
Section 2, be written as integrals or alternatively they can be given in homological 
form. It is an interesting fact that some of the most important invariants of 
differentiable manifolds discovered by topologists turn out to be indices of elliptic 
operators. This helps to explain some of their properties, but much remains 
to be understood in this direction. 

The solution of the general index problem just described may be regarded as 
an application of algebraic topology to a problem in analysis. Conversely one 
can use the analysis to help the topology as the following example shows. 

Let G be a compact Lie group (for example a finite group) and let V, .W be 
two (finite-dimensional) complex representation spaces of G. Then the unit 
sphere S( V ) ,  in an invariant metric, and GL( W )  are both G-spaces in a natural 
way: the action on GL( W )  is conjugation, i.e., T-+ gTg-l. What can we say 
about continuous G-maps 

f : S ( V )  +GL(W) , 
Le., maps satisfying the condition 

x E V , g E G ?  

What are the G-homotopy’o classes of such maps? This problem is a natural 
generalization of the problem solved by Bott’s theorem, at least if W is “large”. 
Let us therefore define the “stable group” : 

A (  V) = lim [S( V), GL( W ) ]  , 

where W runs over all representation spaces, directed by inclusion, and [ , ] 
denotes G-homotopy classes of mappings. If G = 1, then Bott’s theorem asserts 
that A( V )  Z, the group of integers. The global theorem is thenll : 

(3) f (gx)  = &(‘)g-’ J 

+ 
W 

THEOREM. An element of A (  V )  has one degree, written deg, f o r  each irreducible 
character x of G. T w o  elements 4, y are equal if and only if 

deg, 4 = deg, y f o r  all x . 
Finally a famiLy of integers nx occur as the degrees of some 4 E A(  V) if and only if 

(i) n, = 0 for all but a j n i t e  set of x, 
(ii) (Zn,X(g))  det (1 - p(g)) = 0 for  all g E G, where p(g) E GL(V) deJines the 

action of G on V. 

Remark. Note in particular that, if G has a fixed vector in V, det (1 - p(g)) = 0 
and so condition (ii) is vacuous. Thus the n, are arbitrary, as was the case when 
there was no group. 

lo i.e., homotopies preserving condition (3). 
l1 For the proof the reader may consult [S] .  
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The proof of Bott’s theorem cannot be generalized immediately because it 
proceeds by induction on dim V, and for a general non-commutative group G 
the representation V need not decompose into one-dimensional subspaces. 
However, using the index of elliptic operators one can get around this difficulty. I 
cannot go into details but let me just say that, of the various definitions of degree 
mentioned earlier, the only one which generalizes in a completely satisfactory 
manner is the analytical definition. For simplicity assume V = U ORC is the 
complexification of a real representation space U, and let Ell, (U, W )  denote the 
space of elliptic operators as in Section 2 which are in addition G-invariant (in an 
obvious sense). Then the symbol o(P) of such an operator is a G-map 

S( V )  --t GL( W) . 
The spaces Ker P and Ker P* will be representation spaces of G and so we can 
define 

index, P = d,(Ker P) - d,(Ker P*) , 
where d, denotes the number of times the representation x occurs. We can then 
define 

deg, a(P)  = index, P . 
I am firmly convinced that the relation between the analysis and the topology 

in all these questions is quite fundamental. One of my reasons for believing this is 
that time and time again we have found that the analysis has inexorably led to 
certain topological considerations which have turned out in the end to be just 
the right ones. I have already alluded to the boundary value problems as one 
instance. Let me conclude with another example which is more recent and very 
instructive. 

So far I have used only complex numbers. We can however consider real 
operators (e.g., differential operators with real coefficients) and the real linear 
group GL(N, R). I t  is natural to look for relations between these which refine 
the ones we have been investigating for the complex case. Now Bott [lo] has also 
determined the homotopy groups nn-l of maps 

Sn-l + GL(N, R) , N large . 
These are periodic in n, with period 8, and take the values: 

n = l  2 3 4  5 6 7 8 ,  

7rn-l = 2, 2, 0 z 0 0 0 z ,  
where Z, is the group of order 2. This suggests looking for mod2 analytic 
invariants. It is not difficult to find some. Let P be real elliptic and skew-adjoint. 
Then index P = 0 and so is not interesting. But dim (Ker P) mod 2 is invariant 
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under continuous deformation, because the non-zero eigenvalues of P occur in 
complex conjugate pairs: then if an eigenvalue E. -+ 0 its conjugate 2 + 0 and 
dim Ker Pjumps by 2. 

I t  is now natural to try and relate this mod 2 invariant of P with the groups of 
order 2 in Bott’s theorem. All initial attempts to do this proved unsuccessful. The 
reason emerged later when Singer pointed out to me that, if P is real, p ( x ,  6) is 
not real but satisfies instead 

P(., -6) = &, 6) Y 

because it is defined by Fourier transforms. This suggests that we should interpret 
the symbol of a real operator as a map 

f : P”-1 4 GL( N, C) 
- 

with the condition f (-6) = f (6). This turns out to work magnificently and one 
obtains the desired tie-up between the analytical and topological mod 2 invariants. 
Moreover, as a by-product, I was led to a new and much simpler topological 
approach to the real Bott theorems, [2]. Thus the analysis in this case was of 
great help in suggesting the most fruitful topological viewpoint. 

These mod 2 invariants reinforce my earlier remarks that the analytical 
definition of degree is superior to the geometric or differential definitions. In  fact 
no geometric or differential definition of Bott’s mod 2 invariant is known. More- 
over it is known that this invariant is definitely not of a homological type (even 
with mod 2 coefficients). Since all known integral formulae in this context are 
essentially homological, it would appear unlikely that one could compute Bott’s 
invariant by integral methods. However this remains an interesting open problem. 

T o  conclude let me just say that the analysis and topology are now inextricably 
mixed and one should perhaps refer to this part of mathematics as “elliptic 
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