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Algebraic Topology
1 Math Until We Die

• Stolen straight from Canada/USA Mathcamp.
• We do it better.
• Proof Indiana > Ohio.

2 Revolution

For 70 years, Ross has been anumber theory program. Today, we stage a revolution. For the next 10 hours, this is a topology
program. However, Connor is a fake revolutionary. He is a number theorist and not a topologist. He hates shapes. Here is
a squiggle.

Figure 1: Squiggle

That’s complicated. On the other hand, 2 + (−1) = 1 is easy.

The integers have a finite list of axioms (9 of them), and those are all we need to work with them. But, the squiggle is
a situation with a very infinite amount of information.

No one has any idea what is going on in the squiggle. There’s an infinite number of points, and how the hell are we
supposed to work with that?

There’s a solution to this problem, and that’s called coordinates—analytic geometry. Instead of just drawing a random
blob, let’s draw a square bounded by the coordinates (0, 0) and (2, 2). Going back to finite information is what makes
geometry doable.

Figure 2: Square
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It’s quite difficult to calculate the area of a squiggle, but at least for squares, we have finite information to work with. For
instance, as the side lengths are each 2, then 2 × 2 = 4. The same cannot be done for a squiggle, but that’s not the point.

The idea is that analytic geometry is very good for calculating area and lengths, but we’ll explore how there are other
qualitative things that it is not as good for.

Say we have a circle (just the boundary) as opposed to the filled-in circle (a disk). Well, the first circle has a hole in it. But,
how do we say that mathematically?

Figure 3: Circle

By the way, we write the circle as 𝑆1, which is the sphere (circle) in one dimension.

Sure, we have intuition, but there’s no simple way to say what that hole is. It’s still a very infinite situation, and there’s
no number I can point to and say “that number is proof there is a hole.”

Also, some holes seem to be different than others. Spheres, by default, are not filled in, so let’s start with a sphere, which
is just a big hole.

Figure 4: Sphere (hollow)

Is the circle hole different from the sphere hole? One hole is sort of like a lower dimension than the other. The lat-
ter is like volumetric in the sense that we could consider it a two-dimensional hole because the boundary is a two-
dimensional object, while the former hole has a one-dimensional boundary. That’ll factor in later.

Here’s a cylinder. Like always, we don’t want to consider the interior, or else the shape would just be the same as a ball.
So, we get a sort of band.
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Figure 5: Cylinder band

Well, this is very similar to a circle, since we’ve just stretched it out.

The nature of the hole hasn’t changed at all, but the dimension is the same as the shape. So, the nature of the hole
seems to depend not on the dimension, but on something else.

Hopefully, we get the vibe. So, in honor of this anti-number theory revolution, here’s Set #19with the peak of the number
theory program.

Let’s rip it in half (vertically).

And then, let’s fold it into a cylinder and tape it up.

We now have a straw-like object. No drinking through it, Lucas.

Now, let’s do something weird. Suppose we wrap it in a circle and tape it shut at one end. What do we get?
Aareyan“We get an elliptic curve!

If we inflate it a bit, we have a torus!

How can we visualize this? Well, let’s start with a square and use arrows to represent the gluing.

Figure 6: Starting square

First, we took the two arrows on top and bottom and glued them together. That gave us a cylinder.
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Figure 7: Taped cylinder

And then, we took the circular edges of our cylinder and stuck them together, giving us a torus.

Figure 8: Torus

However, we’ll actually draw that other arrow on the original square.

But, this isn’t actually a torus. It’s all crinkled up.

And also, we started with a square here, instead of a rectangle. The geometry is different. But, somehow in our soul
(Dr. All likes to say heart of hearts), we feel this is more or less the same. We’ve gotten pretty much the same shape at
the end.

And neither of these is a perfect mathematical torus. That isn’t even a geometric object—we’ve just said two edges of the
square are the same. That doesn’t change the dimension or anything.

Well, we stole Dr. All’s coffeemug (he no longer has property after the revolution). Inside, we sort ofmorph it smoothly
by pulling up the interior and squishing the handle to get a torus.
How can we mathematically capture this notion?

2.1 Homeomorphisms

This is called a homeomorphism. It’s sort of like a homomorphism, but different. Let’s define it mathematically.
Homeomorphic

If 𝑋 and𝑌 are subsets ofℝ𝑛 , we call them homeomorphic if there is a function 𝑓 : 𝑋 → 𝑌 if

• 𝑓 is bijective (we should at least correspond their points),
• 𝑓 is continuous (we don’t make any cuts in our shape—if we have this) (we don’t want our torus to be the
same as our cylinder, so we are eliminating cuts)

• 𝑓 −1 is continuous.
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Well, we’re not going to start from the real first principles. We’ll assume notions like continuous and not define them
rigorously.

Removing the continuity would allow us to cut open the torus and say that the torus is the same as a sphere. Now, the
last thing is quite subtle. It might seem that the inverse is automatically continuous if the original function is, but that’s
not true. For instance, if we map a line segment (that is open at one endpoint but closed at the other, like [0, 2𝜋)) to a
circle 𝑆1, then this function can definitely be made bijective. However, the inverse is not continuous where the endpoints
match up.

Besides, we definitely want those two to be different—otherwise, that would violate so much intuition, like one having
a hole and one not.

Figure 9: Two ends of the segment are mapped to adjacent points on the circle

This is super fundamental—it’s our notion of what it means for two topological objects to be the same. In particular, we
might think of a homomorphism, but this homeomorphism is much more like an isomorphism.

With that, let’s go back to some more definitions.

Once again, we start off with paper constructions. Let’s bring back the cylinder, as well as a Möbius band.

Figure 10: Another cylinder band
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Figure 11: Möbius band

There’s something sort of subtle about why these two are not homeomorphic. Can we even prove it? After all, they
seem both to have holes in them.

For instance, we know that circles and lines are different since one has a hole and the other doesn’t, but we can’t even
formalize that.

So, how do we show that a Möbius band and a torus are different? Let’s draw a line segment and go around. In a sense,
the Möbius band just has one side because the line segment starts and ends on “opposite sides” of the strip, while on
a torus we stay on the same side. Just cut the paper and try it out.

So, a torus sort of has two sides, while a Möbius band only has one. Is there another way to describe this one-sidedness,
which is a topological property that we can’t quite describe? That’s our challenge tonight—studying this rigorously.

Connor“This is the first part of my talk. Aareyan, where the hell are you?
Aareyan“Iam here. Lock in. Sǔo Dìng (锁定)!

3 Holes

It’ll take a while before we can formalize what holes are. Before we get to that, let’s take the real number line (ℝ1) and
the Euclidean plane (ℝ2). Can we find a homeomorphism between them?

I mean, we really hope that such is impossible, or else that would destroy all our intuition about dimension. I claim
that a bijection is possible, but when we add in the condition that it must be continuous, it no longer is. The first part
is unrelated to this course, but how do we rigorously show the second one?

Well, here’s an angle of attack.

Let’s delete a point on the line, which also deletes a point on the plane.
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Figure 12: Puncturedℝ1 andℝ2

On the one hand, the line is no longer connected (we can’t get from one side to the other), while on the other hand the
plane is (we can get around it).

Figure 13: Paths in puncturedℝ1 andℝ2

And, a homeomorphism should preserve that, right? So, let’s formalize connectedness since that’ll seem to be helpful. In
our minds, connectedness means we can get from one point to another without going outside the shape.

Path

A path in 𝑋 is a continuous map 𝛾 : [0, 1] → 𝑋 .

Once we know what a path means, connected just means there is a path between any two endpoints.

It turns out, though, that there are really scary spaces where our intuition breaks, and this definition no longer tells us
what we want. In that case, we define different notions of connectedness—that’s why we need to prefix this version.
That being said, we are living in nice spaces where they are the same.

Path-Connected

So, path-connectedmeans that there is some continuous path between any pair of points that goes through the
two. Rigorously, ∀ 𝑥, ∀ 𝑦, ∃ 𝛾 : [0, 1] → 𝑋, 𝛾(0) = 𝑥 ∧ 𝛾(1) = 𝑦, 𝛾 is continuous.

Well, that allows us to show thatℝ andℝ2 are the same, but that doesn’t help forℝ2 andℝ3. Here’s another idea.
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Suppose we had a path that goes around the hole. Well, we can’t just move it around nicely and shrink that path to a
point (because of the hole in the middle), while we can easily do that onℝ3. Just shift it up a little!

So, what does it mean to deform a loop? We’ll have a very similar description to the one we did for the subsets themselves.
Homotopy

Two paths 𝛾0 , 𝛾1 : [0, 1] → 𝑋 are said to be homotopic if there is some continuous map 𝐻 : [0, 1] × [0, 1] → 𝑋
so that 𝐻(𝑡 , 0) = 𝛾0(𝑡) and 𝐻(𝑡 , 1) = 𝛾1(𝑠).

By the way, we write 𝐻(𝑡 , 𝑠) with two variables because we are mapping two things.

Basically, we are continuously deforming the path by letting the second parameter change.

Let’s draw some paths to understand that. It’s easier to understand topologywhenwe draw some squiggles. Well, suppose
we have two paths from 𝑎 to 𝑏.

Figure 14: Visualization of a homotopy

The idea is that we can fill in paths in between (sort of like a sequence, but the paths are really close together) so that
we can morph from one path to another. Each𝐻(𝑡 , 𝑠) for some fixed 𝑠 is a new path that also varies for 𝑡 ∈ [0, 1], and
those represent the intermediate paths that we use to get from 𝛾0 to 𝛾1.
All that 𝑠 is doing is choosing the in-between path (while 𝑡 represents where on the path we are). The homotopy, by
the way, isn’t changing the endpoints of the paths, so 𝐻(0, 𝑠) = 𝑎 and 𝐻(1, 𝑠) = 𝑏 for any 𝑠 ∈ [0, 1].

These don’t relate to anything about shortest paths. Remember, topology is structured very loosely, and very crazy func-
tions 𝐻 could always exist. For instance, it could do something really weird and first go outside, but then go back inside.

Let’s draw another example before we get on to rigorously defining holes and stuff.

Let’s go toℝ2 for an idea. For instance, consider the trivial path 𝛾0 : [0, 1] → ℝ2.

The trivial path is just going to be 𝑡 ↦→ 0, so everything stays at the origin, always. By the way, since it starts and ends
at the origin, let’s actually call this the trivial loop.

And then, take some random arbitrary path 𝛾1 : [0, 1] → ℝ2 that also starts and ends at the origin.
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Aareyan“Pay attention to the things I write. I will “intentionally” miswrite things to make sure you guys are following.
Everything I say is a podasip.

We claim that these two are homotopic, and it isn’t too hard to write a rigorous proof. Let’s define 𝐻(𝑡 , 𝑠) := 𝑠𝛾1(𝑡), so
basically all the intermediate paths are scalar multiples of 𝛾1. Well, this is definitely continuous, but we get back to the
trivial loop when 𝑠 = 0.

Figure 15: Every loop is homotopy equivalent to and can be shrunken down to the trivial loop

Note the important nuance in the definition of a homotopy. By convention, we will assume that for two paths to be
homotopic, they must have the same endpoints (so 𝛾0(0) = 𝛾1(0) and 𝛾0(1) = 𝛾1(1)) but also that every intermediate
function also shares those two endpoints. In fact, there are differences—some paths with the same endpoints are
homotopic if we allow the intermediate endpoints to vary, but not otherwise (confirmed by Mustafa, who is scared by
those). On the other hand, if we did consider paths with different endpoints, then every path would be homotopic to
the trivial one using a similar procedure.

But anyway, every path is homotopic to the trivial path. And, since this path has the same start and end, we call it the
trivial loop. And, you can use a similar argument to show that if we have any two points, any two paths between the two
are homotopic.

Aareyan“Iexpect a full, rigorous write-up of this from you by tomorrow. What is your name again?
What“What?
Aareyan“What? That is an interesting name.

3.1 Fundamental Group

So now, we can talk about holes.
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Fundamental Group

𝜋1(𝑋, 𝑥0) is defined as {𝛾 : [0, 1] → 𝑋 up to homotopy, 𝛾(0) = 𝛾(1) = 𝑥0}. Basically, it’s all the loops going
around 𝑥0 up to homotopy.

Hopefully, this fundamental group is going to capture this notion of holes. If there’s a hole, thenwewon’t be able to “pull”
our loop through the hole—it’ll get stuck.

Figure 16: 𝛾0 and 𝛾1 represent the same loop up to homotopy

We pretty much calculated 𝜋1(ℝ2 , 0), and that’s just the trivial group because every loop is homotopic.

That’s a nice set, but he doesn’t like sets that much. He claims that 𝜋1 has more structure—it’s the fundamental group, so
surely it must be a group as well!

Well, what is a group? It’s not part of the Ross curriculum, so we should write it down.
Group

A group is a set 𝐺 with a binary operation ∗ (so we write it (𝐺, ∗)) where

• (associativity) ∀ 𝑎 ∀ 𝑏 ∀ 𝑐, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐),
• (identity) ∃ 𝑒 , ∀ 𝑎, 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎,
• (invertibility) ∀ 𝑎, ∃ 𝑎′, 𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒 .

Jenny“[Wrote on iPad.] Is Aareyan’s shirt backwards?
Well, what operation can we do to two loops?
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Figure 17: Two loops

We can certainly do one of them and then the other one. How do we write this down?

Well, we need to define that piecewise, where we traverse the first one and then the second one. So,

𝛾0 ★ 𝛾1(𝑡) =
{
𝛾0(2𝑡) 0 ≤ 𝑡 ≤ 1

2 ,

𝛾1(2𝑡 − 1) 1
2 ≤ 𝑡 ≤ 1.

Note that the speed doesn’t matter since we can just continuously slow it down or speed it up, and that will be a
homotopy. Also, at 𝑡 = 1/2 itself, even though it looks like we’ve given multiple definitions for (𝛾0 ★ 𝛾1)(1/2), they
are actually the same because of our assumption that both are loops, so 𝛾0(1) = 𝛾1(0).

Aareyan“Thanks for the answer. Is your name Ziyao?
What“What? (Someone said “it’s Lucas.”)
Aareyan“Oh, so you are the other Lucas.

Well, associativity starts to get scary. For instance, 𝑎 ∗ (𝑏 ∗ 𝑐) does the first loop 𝑎 in half the time, while (𝑎 ∗ 𝑏) ∗ 𝑐 does the
first one in a fourth of the time. However, since we’ve defined this up to homotopy, we can convince ourselves that they
are basically the same because speed doesn’t matter.

Also, what is the inverse of a loop?

Just go backwards! That gets us back to the trivial loop under homotopy because we can just unravel the loop.

Let’s work out an example. Well, let’s just consider 𝜋1(ℝ2).

That’s weird notation because we’re used to considering 𝜋(ℝ2 , 𝑥0) with a point of reference, but this really does not
matter. Nomatter what base point we choose, the resulting groups will be isomorphic because of path-connectedness.
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But, if we really wanted to be formal, we would consider 𝜋(ℝ2 , 0). But, anyways, that is just {𝑒} where 𝑒 is the trivial
loop—every loop is homotopic to the trivial loop as we showed earlier.

3.2 Circle

What about 𝜋1(𝑆1)? That’s not going to be the trivial group.
Andrew“So, we are going backwards, right? Just like your shirt?
Aareyan“Let’s blame someone who made me get no sleep yesterday by crashing out for three hours in my room.

Well, what about the path that goes around the circle exactly once? That’s not the same as the trivial loop since we have
a hole in the middle. So, this is not the trivial group.

Instead, we claim this is ℤ under addition, where the number of times we go around (say, clockwise or
counterclockwise—it doesn’t matter).

Let’s sort of lift up the diagram to understand the loop better. That gives us a helix that goes above the circle in a sense.

Figure 18: [0, 1]mapped onto a “spiral staircase”

Specifically, we are just mapping [0, 1] → ℝ so as to stretch out the path and make it easier to work with. That map
gives the 𝑧-coordinate, while we stay at the same 𝑥- and 𝑦-coordinates. Basically, we have the points on this helix are
(cos(2𝜋𝑠), sin(2𝜋𝑠), 𝑠).

The idea is that the staircase will represent the total progression along the circle. Sure, wemight backtrack repeatedly
on the actual path, but that will just be represented by retracing part of the spiral staircase. As a result, if we look at
just the shape that’s traced out, it’ll sort of erase all the backtracking.

And, this will be unrigorous, but Aareyan claims that finding such a map is not too hard. If 𝛾 : [0, 1] → 𝑆1 is our original
map, let’s call that �̃� : [0, 1] → ℝ, and we want it to satisfy the property that 𝛾 = 𝑝 ◦ �̃� in the sense that 𝑝 projects the
height into the actual 𝑥- and 𝑦-coordinates on 𝑆1.
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That is, 𝑝(𝑠) = (cos(2𝜋𝑖𝑠), sin(2𝜋𝑖𝑠)), and that’s what gives the staircase its helix shape.

There are some other properties about this explosion upward into a helix, but those are left to the reader.

Well, the homotopy up there is quite nice. Earlier, we said that this erases the backtracking, and that’s because any two
paths are homotopic in this new space. We can do convex combinations because there’s no hole.

Specifically, a convex combination is just a weighted average where we change the weights. For instance, when we
earlier talked about how every loop ofℝ2 is homotopic to the trivial loop, we just took a varying weighted average of
the original loop and the trivial loop, which gave us a continuous function and proved homotopy.
In particular, convex combinations only works when the space in between the two loops has no holes in it, i.e., convex
spaces. That is, the set between them is convex. As a result, so long as nothing odd is going on, any two loops will
be homotopic (e.g., by taking 𝑠𝛾1 + (1 − 𝑠)𝛾0). This, by the way, came up in Prof. Holder’s class, in which convex
combinations are how we define simplices. In fact, simplices will appear again.

In particular, we claim that the homotopy class depends only on the integers, i.e., howmany integer points appear. Recall-
ing that we earlier noted that backtracking is essentially erased in this new representation, we only need to think about
the integer points because that describes how many times we go around in total.

Figure 19: Path in [0, 1] vs. path in lifted staircase

But, since we only consider the integer points, then that’s how we get the group being isomorphic to (ℤ,+).

Here’s a recap of the proof.

• First, we lift up the path so that we get a much nicer path. The helix is purely for visualization purposes, and we
could just consider taking the loop to a line segment that erases the data in the 𝑥- and 𝑦-coordinates. This function
is �̃�.

• Then, we only consider the integer points. All we care about is the number of integer points since that’s precisely
the number of times we wind around the circle.

Random comment I found interesting—how do we know that �̃� doesn’t go on infinitely? That’s just because, if it did,
then it would oscillate super super fast and not be continuous.

By the way, if we go the other way (i.e., we choose a direction at the start and we go in the opposite direction), then that
would be interpreted as going down instead of up.
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Well, we don’t need to be too rigorous, and our intuition should carry us throughout.

3.3 Functoriality

Let’s talk more about the fundamental group. One thing is its functoriality, which just means that the fundamental group
(a group-theoretic concept) plays nicely with homeomorphisms (a topological concept). If you search up this term online,
you’ll hear about functors, which are just like meta-functions that take different categories (e.g., groups and topological
spaces) to each other. That’s the formal way to encode that the different objects are related to each other.

In particular, functorality would show that the fundamental group is invariant, so it will stay the same under homeo-
morphism.

Well, we claim that if 𝑓 is a continuous function (𝑋, 𝑥0) → (𝑌, 𝑦0) such that 𝑓 (𝑥0) = 𝑦0, then it induces a homomorphism
𝑓∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0).

Figure 20: Homomorphism 𝑓∗

Aareyan“What is a homomorphism?
BT“Family 13! I taught you this!
Family 13“We only learned automorphisms!
JCs“Audible laughs.

Well, the general idea is that it preserves the algebraic structures. So, one thing is that 𝑓∗(𝑎𝑏) = 𝑓∗(𝑎) 𝑓∗(𝑏).

By the way, that automatically shows that 𝑓∗(𝑒) = 𝑒∗ (the identity element of the second group) because 𝑓∗(𝑒) =
𝑓∗(𝑒) 𝑓∗(𝑒), so multiplying by the inverse 𝑓∗(𝑒)−1 gives 𝑓∗(𝑒) = 𝑒∗. That also shows that inverses are preserved.
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Anyhow, how canwe prove that here? The idea is just to set ( 𝑓∗(𝛾))(𝑡) to be 𝑓 (𝛾(𝑡)). This seems like a perfectly reasonable
definition—just apply the homomorphism to each point on the loop at each time step, we do need to prove this weird thing
called being well-defined.

If we have had experience with equivalence classes, then we will know that just defining an operation can be difficult.
For instance, we can’t define exponents in modular arithmetic because, in general, the results will differ even if they
map to the same thing.
As a result, we need to show that homotopic loops give homotopic loops.

And then, it’s not too hard to show that it preserves the operation by showing the homotopy explicitly using the defini-
tions. Well, anyway, let’s go further.

Claim.

Let 𝑓 : 𝑋 → 𝑌 be a homeomorphism. Then, 𝑓∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0) is a group isomorphism (where we define
𝑥0 and 𝑦0 as before).

Well, we showed part of that because an isomorphism is just a bijective homomorphism. Further, we know that the first
function is a bijection (since it’s a homeomorphism), which implies we can sort of describe the inverse of the second one
using that of the first. This is the idea of functoriality showing up again.

So, that’s why the fundamental group is super hard in general. What about higher-dimensional spheres?
Aareyan“In fact, Connor will describe that right now.
Connor“Wait, right now? Let’s take a 5-minute break, actually.
Connor“[9 minutes later.] It’s lock-in o’clock!

4 Scarier Holes

What Aareyan showed us for the past hour was finding a fundamental group and some examples—both the circle andℝ2.

Doing it for the circle was very hard. What if we have a really scary object? The spiral staircase method won’t work
then.
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Figure 21: Really scary object

We can try another direction.

4.1 Way #1 (Products)

Instead, let’s see how we can build the fundamental group if we understand smaller topological spaces.

A topological space is just a nice-enough subset ofℝ𝑛 .

Specifically, let’s say that 𝑋 and𝑌 are both topological spaces. We can take their product, which is just

𝑋 × 𝑌 = {(𝑥, 𝑦) | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.

For instance, the square is just [0, 1] × [0, 1].

What about 𝑆1 × 𝑆1?

Connor claims this is a torus, but here’s how we see that.

Figure 22: 𝑆1 × 𝑆1

Here’s another way to see that. First, the plain [0, 1] × [0, 1] is a boring square.
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Figure 23: [0, 1] × [0, 1]

But, 𝑆1 is basically the same as [0, 1], except 0 = 1. Basically, we identify the two endpoints (i.e., treat them the same).
But, when we multiply by the other set, then this identification stretches out the endpoints in a sense, so the the two
edges are the same.
In particular, we fold the two together. The technical term for that is identifying them together, which means we treat
the two edges as the same in classic Pac-Man style.

Topologists do something weird where the exponent is the dimension. So, 𝑇2 is the torus in two dimensions (in general,
a torus is just something with one hole), and we write 𝑆1 × 𝑆1 � 𝑇2. A torus is two-dimensional because we just consider
the surface.

So, 𝑆2 is not 𝑆1 × 𝑆1 but rather the two-dimensional sphere. In fact, 𝑆1 × 𝑆1 � 𝑆2 because the former has too many
holes.

Well, is it true that if we know the fundamental group of each factor, then we also know the fundamental group of the
product? Yes! (But, this will be a bit more complicated for unions, which is later.)

First, any path 𝛾 : [0, 1] → 𝑋 × 𝑌 is sort of like 𝛾(𝑡) = (𝛾𝑥(𝑡), 𝛾𝑦(𝑡)). Basically, we’ve decomposed things, and paths in
𝑋 × 𝑌 are just pairs of paths where one is on 𝑋 and one is in 𝑌. We could consider this a sort of parameterization of the
path, but it is distinct from a regular parameterization because 𝑋 and𝑌 don’t need to be one-dimensional.

Moreover, a homotopy in this case is just a pair of homotopies in each component. That is, 𝐻(𝑡 , 𝑠) =

(𝐻𝑥(𝑡 , 𝑠), 𝐻𝑦(𝑡 , 𝑠)) where we have a separate homotopy in 𝑋 and in𝑌.

So, that’s a nice correspondence.
Connor“That’s a terrible brace, but still better than Aareyan’s.
Connor“There’s a fly that just flew (yes, flies fly). Oh! Now it’s on my glasses!
Thor“That’s the same fly that’s been on me!

That’s the start of a correspondence, but let’s show that the algebraic structures are the same, as well.
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As a set, 𝜋1(𝑋 × 𝑌, (𝑥0 , 𝑦0)) is just {(𝛾𝑥 , 𝛾𝑦) | 𝛾𝑥 ∈ 𝜋1(𝑋), 𝛾2 ∈ 𝜋2(𝑌)}.
Sarah“Max, can I have some popcorn?

So, at least as a set, the fundamental group of the product is the product of the fundamental groups. We just get the same
coordinate-by-coordinate. Specifically, (𝛾0

𝑥 , 𝛾
0
𝑦 ) ∗ (𝛾1

𝑥 , 𝛾
1
𝑦 ) = (𝛾0

𝑥 ∗ 𝛾1
𝑥 , 𝛾

0
𝑦 ∗ 𝛾1

𝑦 ).

Yes, we are using superscripts for indexing, which really annoys people in Operations Research for some reason.

But anyway, we see that the isomorphism is not just as sets, but actually as a group isomorphism. Cool!

So, the idea is just to work in 𝑋 individually and separately in𝑌. This is a really powerful theorem, and that immediately
allows us to compute the fundamental group of a torus.

Well, we have 𝑇2 ≃ 𝑆1 × 𝑆1, so that means that 𝜋1(𝑇2) = {(𝜋𝑥 ,𝜋𝑦) | 𝜋𝑥 ∈ 𝜋1(𝑆1),𝜋𝑦 ∈ 𝜋1(𝑆1)}.
We’re just breaking them down using our theorem from before. (Also, we didn’t write 𝜋𝑥 ,𝜋𝑦 ∈ 𝜋1(𝑆1) since techni-
cally the 𝑆1 are the same space but different in the sense that they do not interact).
Anyways, let’s now apply Aareyan’s work that the fundamental group of 𝑆1 is ℤ. So, we take the product of ℤ with
itself, andwe getℤ2. That’s just an integer lattice, andwe can think of the two options as the twoways of going around
the torus, as follows.

Figure 24: Two loops generators on a torus

Hence, we can think of this as points in the integer plane where addition is just adding the components separately.

By the way, 𝑋 × 𝑌 is just the same as 𝑌 × 𝑋 , not necessarily as the same set, but at least homeomorphic where the
homeomorphism is interchanging the two.

4.2 Way #2 (Unions)

This is just the union. While products were a bit notationally heavy, unions are not so simple. The fundamental group is
definitely not just going to be the union of the original two.

By the way, union is a bit scary to think about. For instance, it wouldmake no sense to take the union of things in different
dimensions, so we’ll consider taking the union only in a fixed one. For instance, if two things are subsets ofℝ2, then their
union is, as well.
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Well, the scary part is that the union depends on how exactly we take their union. For instance, if the holes overlap,
then the result might have a different number of holes than otherwise.
So, things depend on the intersection, and that itself depends on orientation and position in space.

For instance, here are two subsets 𝑋 and 𝑌 where some of their holes just happen to perfectly match up. While it’s true
that there are other cases where the holes could disappear, we illustrate another interesting possibility.

Figure 25: 𝑋 and𝑌 with overlapping hole

Meanwhile, there are some cases where the two holes do not overlap. The above and below shapes are quite literally the
same (homeomorphic), but one has four holes and the other has three holes.

Figure 26: 𝑋 and𝑌 with no shared hole

Everyone“Applauds as Max kills a bug with Expo spray.
Sarah“Can I have some more popcorn?
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Max“Guys, the June bug is crunchy, but the moth was not.
Connor“It’s lock-in o’clock. Sǔo Dìng (锁定)!

Connor wants to reiterate why the intersection matters. In the first case, the union could have three holes because one
holewas counted twice. But, in the second case, therewas no double-counting, and the two holeswere counted separately.

That makes things a lot more complicated. So, we’ll start off simple and build up to a general result.

Well, let’s consider the union of two circles at a single point. Well,𝜋1(two circles joined at a point) isn’t even that hard.

Figure 27: Kissing circles

Specifically, we can just switch back and forth to get loops in this union.

In that sense, they are quite independent of each other. In fact, if we go around the first circle, then the second, then
backwards for the second circle, then that is not the same as just going around the second circle.

Figure 28: A first loop going around the left circle
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Figure 29: A second loop going around the right circle

Figure 30: A third loop going backward around the left circle

If we only did the first and third loops, they would cancel out to give us the trivial loop. But, since we insert the second
loop going around the right circle, then there’s no longer any interaction. That is, the identities do not extend across
elements from the other group, and this makes the group free. It is also a lot more complicated than a regular product.

Algebraically, suppose we have two copies of the integersℤ
1
andℤ

2
, so 𝜋1(𝑆1

1) = ℤ
1
and 𝜋1(𝑆1

2) = ℤ
2
.

And then, those are generated by 1
1
and 1

2
. This is very strange notation.

Well, the general concept of a free group is that it is not commutative to the fullest extent. Specifically, it satisfies the
fewest algebraic relations possible. So, if we have something like 1

1
∗ 1

2
∗ (−1

1
), this is not the same as 1

1
∗ (−1

1
) ∗ 1

2
(that latter

one simplifies to 1
2
). Even though 1

1
and −1

1
are inverses and satisfy an algebraic relation, that relation is interrupted by 1

2

and can’t pass through what is in the other group.

But, here’s what a free group is rigorously.
Free Group

If 𝐺 and 𝐻 are groups, the free group is 𝐺 ★𝐻 = {“words” made with elements of 𝐺 and 𝐻}.

In other words, the two groups are independent and don’t interact at all, so they are basically free from relations.

That is, the only time we can simplify is if they are directly consecutive—there is nothing on the other side interfering
with it.

So, this is sort of whatwe dowith unions. Here’s a theorem. Below, whenwe say connected, we just talk about the intuitive
notion with nice topological spaces (where path-connectedness and connectedness and everything else are actually the
same).
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Weak Seifert-van Kampen

If 𝑋 and 𝑌 are spaces and 𝑋 ∩ 𝑌 is connected and 𝜋1(𝑋 ∩ 𝑌) is trivial (is the trivial group, so ℤ1 with only one
element), then 𝜋1(𝑋 ∪ 𝑌) = 𝜋1(𝑋)★𝜋1(𝑌) aside from some technicalities.

For instance, we do need other conditions, like the intersection being open. But, it works inmost cases that we care about.

For instance, in this case with two kissing circles, the intersection is just a point, so its fundamental group is trivial.
That means that the fundamental group of the pair of kissing circles is 𝜋1(kissing circles) = ℤ★ℤ.

Well, here’s an application of that to 𝜋1(ℝ2 \ {𝑥1 , 𝑥2}). Those 𝑥1 and 𝑥2 are just arbitrary distinct points. We also call
this guy the twice-punctured plane.

Well, let’s split this up, so 𝑋,𝑌 ⊂ ℝ2 both contain one hole. We also want their intersection to contain neither hole.

Figure 31: 𝜋1(ℝ2 \ {𝑥1 , 𝑥2})

It’s important that this intersection is open (we don’t contain the boundary), and that’s why it’s homeomorphic toℝ2 by
just expanding it (we could use the tangent function if wewanted). Further, this intersection is quite obviously connected.

This means that our condition is satisfied. But, what is the fundamental group of either?
We can do the staircase/spiral argument on each component. That’s a hand-wavy explanation, but it’s basically the
circle (since the hole is the same in both cases).

By the way, a deformation retract is another method we might perform. It’s a map that still preserves the fundamental
group (andmany other properties) but isn’t as restrictive as a homeomorphism. Then, the once-punctured plane actually
turns this into a circle, and we would be done.
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Figure 32: The plane contracts to a circle surrounding the hole

Either way, we have 𝜋1(𝑋 ∪ 𝑌) � 𝜋1(𝑆1)★𝜋1(𝑆1) � ℤ★ℤ.

Scary Unions

Well, what if 𝜋1(𝑋 ∩ 𝑌) is not trivial? Let’s say there’s a hole in the intersection.

Figure 33: Hole in 𝜋1(𝑋 ∩ 𝑌)

In the free product, we assumed that we can do a little bit of 𝑋 and do a little bit of 𝑌, and they don’t interact. But
here, it’s possible to have both a (non-trivial) loop in 𝑋 and a loop in𝑌.

So, our free product would fail because we would think of them as different when they are really the same. Instead, we
need to define an amalgamated product (a very fun word) that is sort of a free group except we specify that the common
loops really are the same in some formal way. The normal way to do this is modding out by an equivalence relation, and
that’s precisely what we’ll do.

Don’t worry if you haven’t seen quotient groups. It’s just likeℤ17, where we identify some things using an equivalence
relation. That is, two things are equivalent if they differ by a multiple of 17. This is a very hand-wavy notion, but as
long as you understand the idea of smushing a whole class of things into one variable, then you get what a quotient
group is.
Here, two things are equivalent if the only difference is that we use different versions of the loops in the intersection.
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Amalgamated Product

Let 𝐺1, 𝐺2, and 𝐻 be groups. Then, given the homomorphisms 𝜑1 : 𝐻 → 𝐺1 and 𝜑2 : 𝐻 → 𝐺2, we define the
amalgamated product as

𝐺1 ★𝐻 𝐺2 = 𝐺1 ★𝐺2
/
{𝜑1(𝛾0) = 𝜑2(𝛾0) | 𝛾0 ∈ 𝐻} .

So, in the sense that ℤ17 can be thought of as a bunch of equivalence classes rather than actual numbers, the same goes
here—we take the free product and then say that some things are the same.

For now, 𝜑1 and 𝜑2 are just given, but the real statement of Seifert-van Kampen will tell us what homomorphisms to use.

It’s a quirk that we use★𝐻 to denote the “intersection,” but, even though there are many options for 𝜑1 and 𝜑2 that
could give wildly different results, they are left implicit and are not captured by the notation.

In particular,𝐻 would represent the fundamental group of the intersection 𝑋 ∩𝑌, while 𝐺1 and 𝐺2 are the fundamental
groups of either 𝑋 or𝑌. Then, since the intersection is basically containedwithin both 𝑋 and𝑌, then 𝜑1 and 𝜑2 will send
loops in the intersection to the equivalent loop in 𝑋 and𝑌, respectively.

That is, no matter if we consider the thing as part of 𝜋1(𝑋) or 𝜋1(𝑌), it’s the same element/loop.

For instance, let’s say we have 𝑔1 ∈ 𝐺1, 𝑘1 ∈ 𝐺1, 𝑔2 ∈ 𝐺2, 𝑘2 ∈ 𝐺2, and where 𝑘1 = 𝜑1(ℎ) and 𝑘2 = 𝜑2(ℎ).

Figure 34: 𝜋1(𝑋 ∪ 𝑌) where

Then, consider 𝑔1 ∗ 𝑘2 ∗ 𝑘−1
1 ∗ 𝑔2. In the free product, this would not simplify. But, this should intuitively simplify

because 𝑘1 and 𝑘2 aren’t actually different loops, and they should cancel out.

Algebraically, the reason this actually does simplify is because of our homomorphism. Since 𝜑1(ℎ) = 𝜑2(ℎ), then

𝑔1 ∗ 𝜑2(ℎ) ∗ 𝜑2(ℎ)−1 ∗ 𝑔2 = 𝑔1 ∗ 𝑔2.

In other words, we’ve just identified them to be the same. That’s the general amalgamated product, but the following
theorem tells us exactly how to choose our homomorphisms.
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Seifert-Van Kampen

If 𝑋 and 𝑌 are spaces with 𝑋 ∩ 𝑌 connected, then there exist 𝜑𝑥 : 𝜋1(𝑋 ∩ 𝑌) → 𝜋1(𝑋) and 𝜑𝑦 : 𝜋1(𝑋 ∩ 𝑌) →
𝜋1(𝑌) that is induced by functoriality.

Functoriality is just a fancy term encoding the idea of groups and topological spaces playing nicely with each other. In a
sense, we are thinking of ℎ as already being in our topological space, and the fundamental group should reflect that. So,
these homomorphisms aren’t really doing anything that interesting.

The only reasonwe use them is that wewant to be rigorous. For instance, it would bewrong to sayℤ ⊂ ℝ because each
real number is probably defined with Dedekind cuts (sets) or something. Instead, we need to say thatℤ is isomorphic
to a subring of ℝ (there is a homomorphism from ℤ to ℝ), and that’s sort of what we’re doing here. We’re choosing
the canonical one here.

So, the amalgamated product isn’t too easy to work with because it just formalizes something we already knew. It doesn’t
give us something explicit— there are still things to check, and even if we know everything about the groups we had from
before, then there’s still some work to do for the amalgamated product.

Is the weak Siefert-Van Kampen theorem an immediate consequence of this version? Yeah! That’s because we are just
quotienting by something trivial (like,ℤ0 is justℤ).

5 Interlude — Applications

It’s lock-in o’clock. Nope, here’s a joke.
Dr. K (Neil Kolekar)“Why did the plane crash in a zigzag?

Figure 35: Dr. K’s plane crash

Answer

Because the plane had one puncture, and the fundamental group of a once-punctured plane isℤ.

Connor“Why are the counselors yapping so loudly?
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5.1 Fundamental Group of the Sphere

We’ll do one more fundamental group, and that one will be of the sphere. This is 𝑆2 because it’s two-dimensional, so we
want 𝜋1(𝑆2).

We will use Seifert-van Kampen and compute the amalgamated product.

Maybe we do two hemispheres. Then, 𝑋 would be the upper half and a bit, while 𝑌 would be the lower half and a bit.

Figure 36: 𝜋1(𝑆2) as “hemispheres”

There’s a bit of overlap in the middle. For instance, if Connor’s head is a sphere, then we can make 𝑋 be everything
strictly above his mouth and𝑌 be everything strictly below his nose.
Importantly, his mouth is below his nose, so there’s an overlap.

Well, if we take the top half of a sphere and uncurl it, then both 𝑋 and 𝑌 will be homeomorphic toℝ2 (because they are
open spaces).

Figure 37: Unfolding the upper hemisphere

Well, the intersection of 𝑋 ∩ 𝑌 is just a cylinder, so its fundamental group is ℤ because cylinders are just circles. In
particular, cylinders are 𝑆1×[0, 1], and the latter has a trivial fundamental group, so we just use our theorem on products.

In particular, 𝜋1(𝑆2) � 𝜋1(𝑋)★𝜋1(𝑋∩𝑌) 𝜋1(𝑌). But, 𝜋1(𝑋) = 𝜋1(𝑌) = 𝜋1(ℝ2), and all are just the trivial group!
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So, we get {𝑒}★𝜋1(cylinder) {𝑒}. Well, the free product is trivial, but the amalgamated group is even simpler than the free
product (since we identify even more things).

Mustafa“Hey, “what is” is trademarked! [After Connor asked “what is {𝑒}★ {𝑒}?”]
So, 𝜋1(𝑆2) = {𝑒}. That’s because 𝜋1(𝑋) and 𝜋1(𝑌) are both useless, so we don’t even care about what their intersection
is.

Well, we think we got off lightly because we computed this quite easily. But, this is actually bad news. So far, the
fundamental group has helped us understand holes.

But, 𝜋1(𝑆2) is trivial even though it does have a hole! In a sense, this is a sign that higher-dimensional holes aren’t being
captured by 𝜋1. It only sees lower-dimensional holes.

5.2 Distinguishing Spaces

But, before we move on from 𝜋1, let’s find an application to show thatℝ2 andℝ3 are not the same (sort of as promised
by Matthias).

The idea is to distinguishℝ2 \ {0} andℝ3 \ {0}? Well, 𝜋1(ℝ2 \ {0}) � ℤ.
But, 𝜋1(ℝ3 \ {0}) is trivial, and we can see that in many different ways. We could do the same Seifert-van Kampen
method, but we could also project any loop onto the sphere (with some special cases for going through 0) and show
the homotopy because 𝜋1(𝑆3) is trivial.
It’s sort of like a deformation retract like we talked about before, though we still need to consider the special case of
the origin.

It seems super trivial to show that ℝ2 and ℝ3 are different, but this is really the only method for understanding such
spaces, and we can’t do any better. Yes, it’s obvious, but this really is the only way to show it rigorously. Fundamental
groups are the only way we can work with things since we haven’t really defined topological invariants.

Aareyan“Let’s work out... Let’s work out... Let’s work out!
Kaka“Do your 11 push-ups right now.
Timothy“There’s a Planet Fitness near the movie theatre, by the way.

Well, it was not quite satisfying because this seems obvious. Why arewe doing somuchwork to prove something intuitive?
Here’s a nice theorem that is not at all obvious.
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5.3 Fixed Points

By the way,𝔻2 is the disk in two-dimensions, which includes its boundary and interior (whereas,𝔻1 is a line segment). It
is two-dimensional because we need two coordinates—even though 𝑆1 and𝔻2 don’t seem too different and are embedded
in the same dimension, they are considered to have different dimensions as shapes.

Brouwer’s Fixed Point Theorem

Let 𝑓 : 𝔻2 → 𝔻2 be continuous and bijective. Then, it has a fixed point, so there exists some 𝑥 such that 𝑓 (𝑥) = 𝑥.

This is a nice and elegant proof.
Proof.

Well, suppose 𝑓 : 𝔻2 → 𝔻2 is a map without a fixed point. Let’s start by considering some function 𝑔 that maps𝔻2

to 𝑆1 by taking the ray from 𝑓 (𝑥) to 𝑥 and intersecting with the boundary. This requires the assumption that 𝑓 (𝑥) ≠ 𝑥
(if they are the same, then there’s no well-defined ray). We can also convince ourselves that this is a continuous map.

Figure 38: Points 𝑥, 𝑓 (𝑥), and the projection onto 𝑆1

One thing we might notice is that 𝑔|𝑆1 = id𝑆1 . That is, if we only consider the boundary points (so, we restrict to 𝑆1),
then 𝑔 does nothing—if we are already on the circle, then projecting to the circle does nothing! (The formal term for
this is a retraction mapping.)
Well, this is absurd, and we claim this produces a contradiction. (It seems crazy that we could tear apart a disk and
retract it onto the circle while being continuous. For instance, we definitely couldn’t do this for𝔻1, the line segment,
because there’s clearly no continuous map that sends everything to the endpoints.)
But, the way we think about this is again through the topological invariants. It turns out that the fundamental group
can only get smaller under retractions (which is a general property). Let’s start by defining 𝑔∗ : 𝜋1(𝔻2) → 𝜋1(𝑆1) as
follows. For any loop 𝛾, then 𝑔(𝛾) is also a loop—where we just apply 𝑔 on each point. This makes sense as a function
because 𝑔 gives something in 𝑆1.
So then, when we mean that the retraction can only shrink the fundamental group, we mean that 𝑔∗ is a surjection.
In particular, is it true that given any loop on the surface, we can find a loop in the disk that maps to it? Yeah, and it’s
easy! The loop on the circle is still a loop in the disk. But, that is really funny though, because we’ve found a surjection
from the trivial group 𝜋1(𝔻2) to 𝜋1(𝑆1) � ℤ—even thoughℤ is a whole lot bigger.
Alternatively, we’ve shown that 𝜋1(𝑆1) is actually just the trivial group itself. That’s because any loop in𝔻2 is homo-
topic to the trivial loop.
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Figure 39: Homotopy of loops in𝔻2

But anyway, that contradicts our assumption at the beginning that 𝑓 (𝑥) ≠ 𝑥 for all 𝑥, which was used to justify the
retraction. In particular, it implies that 𝑓 (𝑥) = 𝑥 for some 𝑥, which intuitively solves our problem because we can still
rip apart our disk into a circle under the retraction map as long as some points get killed.

We used the Brouwer Fixed-Point Theorem a lot in applied math. We often need to do math to show that our method
makes sense. In fact, we discussed it in operations research, but we won’t be using it later today—it’s just an application.
In fact, there are tons of fixed-point theorems, like the recursion theorem about a computer reading its own code.

Hopefully, this shows that algebraic topology is not just obvious stuff.

5.4 Fundamental Theorem of Algebra

Let’s do another one, which is a bit more involved and pretty weird (why is algebra showing up?).

Fundamental Theorem of Algebra

Every nonconstant polynomial in ℂ has at least one root in ℂ.

Oliver Lippard“JCs, did you get your Fundamental Theorem of Algebra wrong? [Timothy — “Every polynomial inℂ has no roots inℂ.”]
Kaka“Lock in! One moment I am not reading the document, and this happens.
Proof.

Well, suppose byway of contradiction that 𝑝 is a polynomial inℂ[𝑥]with no complex roots inℂ. Well, for each 𝑟 ∈ ℝ+,
define 𝑓𝑟 : [0, 1] → ℂ via

𝑠 ↦→ 𝑝(𝑟𝑒2𝜋𝑖𝑠)/𝑝(𝑟)
|𝑝(𝑟𝑒2𝜋𝑖𝑠)/𝑝(𝑟)| ,

which is going to be something on the unit circle since we are just dividing by the norm (the divisions are legal since,
by hypothesis, 𝑝 has no roots in ℂ). Further, just by smoothly varying 𝑟, we get a homotopy between 𝑓𝑟 and 𝑓0, which
we can think of as paths that takes 𝑠 as an input. By the way, we write “are homotopic to each other” as ∼, so 𝑓𝑟 ∼ 𝑓0
for each 𝑟.
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But, anyways, how do we bring in topology? Well, we’ll notice that 𝑓0 is just the trivial loop that sticks everything at 1
because

𝑝(0 · 𝑒2𝜋𝑖𝑠)
𝑝(0) =

����𝑝(0 · 𝑒2𝜋𝑖𝑠)
𝑝(0)

���� = 1

for all 𝑠. In fact, 𝑓𝑟 is always a loop because 𝑒2𝜋𝑖·1 = 1, so we get back to where we started.
So, if we could show that 𝑓𝑟 is not homeomorphic to the trivial loop, then we would be done! In fact, this seems doable.
All of these are paths on 𝑆1, and we know what the fundamental group is on that surface. In particular, the nontrivial
loops are just the ones that wind around the circle in some direction, so it makes sense that we should get something
like that.

We want to find some value of 𝑟 so that 𝑓𝑟 just loops around the unit circle. How might we make that?

Well, this would be easy if 𝑝(𝑧)were literally just 𝑧𝑛 or something. Then, a ton of things cancel and all that falls out is
𝑒2𝜋𝑖𝑛𝑠 (the algebraic details are left to you). And, that definitely loops around the circle—𝑛 times, in fact.
That being said, we don’t need 𝑝(𝑧) to be precisely 𝑧𝑛 . It could have other terms, but as long as those other terms are
tiny, then we would still get the same winding behavior. In particular, under certain conditions, we might be able to
say that 𝑓𝑟(𝑠) is homotopic to the loop traced out by 𝑧𝑛 .
So, let’s start by defining 𝑝(𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧

𝑛−1 + · · · + 𝑎0. We’re assuming that our function is monic (has a leading
coefficient of 1)—otherwise, we could just divide. Well, 𝑝(𝑧)might be a bit messy, but perhaps we could show that it’s
homotopic to another loop where, excluding the leading term, everything in the polynomial vanishes. Specifically,
define 𝑝𝑡(𝑧) to be 𝑧𝑛 + 𝑡(𝑎𝑛−1𝑧

𝑛−1 + · · · + 𝑎0) where 𝑡 ∈ [0, 1].

We’re done, right? We see that 𝑝0(𝑧) is homotopic to 𝑝1(𝑧) (it gives a continuous deformation to a plain winding),
and that means they also define homotopic loops. But, not quite. All we know is that 𝑝(𝑧) = 𝑝1(𝑧) has no complex
roots. But, what if 𝑝0(𝑧) does have complex roots (it definitely does)? So, let’s be rigorous—that is salvageable.

In a similar vein as before, define 𝑓𝑟,𝑡 : [0, 1] → ℂ via

𝑠 ↦→ 𝑝𝑡(𝑟𝑒2𝜋𝑖𝑠)/𝑝𝑡(𝑟)
|𝑝𝑡(𝑟𝑒2𝜋𝑖𝑠)/𝑝𝑡(𝑟)|

.

Sure, we it might not follow that 𝑝𝑡 has no roots, but since we can play with 𝑟, we are going to show that there is some
𝑟 for which 𝑝𝑡 has no roots with magnitude 𝑟. Then, even if 𝑝𝑡 does have roots, that’ll be fine because they’ll all be
small.
Well, we could use the fact that there are always going to be finitely many roots and go from there. But, that presup-
poses toomuch knowledge. Instead, let’s construct one. In particular, pick some huge 𝑟 that is both greater than 1 and
greater than the sum of all the coefficients in absolute value, i.e., 𝑟 > max{|𝑎𝑛+1| + · · · + |𝑎0|, 1}. Then, we claim that
𝑝𝑡 cannot possibly have a root whose magnitude is exactly 𝑟.
Well, the original proof was by contradiction, but that’s ugly. Let’s consider what it means for 𝑝𝑡(𝑧) = 0 when |𝑧| = 𝑟.
Well, it means that 𝑧𝑛 = −𝑡(𝑎𝑛−1𝑧

𝑛−1+𝑎𝑛−2𝑧
𝑛−2+· · ·+𝑎0). Taking norms tells us that |𝑧|𝑛 = 𝑡|𝑎𝑛−1𝑧

𝑛−1+𝑎𝑛−2𝑧
𝑛−2+

· · · + 𝑎0|. The magnitudes are nice because we can swap |𝑧|with 𝑟 to get 𝑟𝑛 = 𝑡|𝑎𝑛−1𝑟
𝑛−1+ 𝑎𝑛−2𝑧

𝑛−2+ · · · + 𝑎0|. Next,
the exponent of 𝑟 is at most 𝑛 − 1, but since 𝑟 > 1, we get 𝑟𝑛 ≤ 𝑡|𝑎𝑛−1𝑟

𝑛−1 + 𝑎𝑛−2𝑟
𝑛−1 + · · · + 𝑎0𝑟

𝑛−1|.
We now perform two steps at once: taking out 𝑟𝑛−1 and using the triangle inequality equality to break apart the
absolute values (which states that |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| sort of because of a triangle). That gives

𝑟 ≤ 𝑡(|𝑎𝑛−1| + |𝑎𝑛−2| + · · · + |𝑎0|).

But, 𝑡 ≤ 1, so this actually gives 𝑟 ≤ |𝑎𝑛−1| + |𝑎𝑛−2| + · · · + |𝑎0|. That’s absurd by definition.
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That is, if we are big enough and choose a big enough 𝑟, then the leading term will be much bigger than everything
else—there cannot be arbitrarily large roots, in a sense. As a result, 𝑓𝑟,𝑡 is a homotopy from the winding that we get
from 𝑧𝑛 to 𝑓𝑟 . Moreover, since 𝑓𝑟 is homotopic to the trivial loop 𝑓0, and because homotopy is transitive, then looping
𝑛 times is homotopic to not looping. That’s absurd by what we just proved.

Yay! Let’s do one last application.

5.5 Topological Groups

Let’s consider the notion of topological groups. Hopefully, we should know about groups by now.
Topological Surface

A topological group is a group with a topological structure where both the group operation and group inverse
are continuous.

What are some examples?

Well, the real number line under addition is a topological space with a group structure. Clearly, addition and subtraction
are continuous. The circle (the unit circle in complex numbers under multiplication, i.e., rotation) is also a group.

More generally, (ℂ× , ·) is another topological group, where we remove zero.

What about the torus? It’s a topological group!

Well, remember that 𝑇2 � 𝑆1 × 𝑆1, and we can just add in 𝑆1. It’s just pointwise addition (if we are thinking of 𝑆1 as
ℝ/ℤ ) or pointwise multiplication (if we are thinking of 𝑆1 as the complex numbers).

Here’s a scarier example!

Consider a two-holed torus (like what we did in Lam’s class).

Figure 40: Two-holed torus

Well, the two-holed torus comes from the octagon. (In general, you canmake an 𝑛-holed torus with a 4𝑛-gonwherewe
connect 𝑎𝑏𝑎−1𝑏−1𝑐𝑑𝑐−1𝑑−1 · · · . The inverse just means that we flip it whenwe read it out, sort of like how in a square,
we flip the second edge of 𝑎 to point in the same direction as before. That’s called a commutator, or something.)
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Figure 41: Gluing an octagon into a two-holed torus

But, that doesn’t tessellate the plane, so just adding doesn’t help.

Fake! There is actually no group structure, and we’ll prove this.
Connor“[Draws the two-holed torus𝑇2.] This is called gettingmogged.

Roughly, our proof will begin with the result that if a group has two operations that are compatible with each other in a
sense, then the group must be abelian (everything commutes). This is known as the Eckmann-Hilton argument (in fact,
for any set with two operations that both have an identity and satisfy some other condition, then those two operations
are the same and are both commutative and associative).

We’ll demonstrate that argument in general, but we’ll keep the notation of fundamental groups just so that we can
easily apply things later. This argument will assume that 𝐺 is itself a group and, then, use that to show that 𝜋1(𝐺) has
two binary operations that play nicely with each other.

Proof.

First, there is the regular operation on 𝜋1(𝐺) just by concatenating loops, but there’s another one 𝑚∗ : 𝜋1(𝐺) ×
𝜋1(𝐺) → 𝜋1(𝐺) using the group operation on 𝐺 itself. Specifically, 𝑚∗(𝛾, 𝛾′)(𝑥) = 𝛾(𝑥)𝛾′(𝑥) where we use the
natural multiplication on 𝐺 to multiply 𝛾(𝑥)𝛾′(𝑥). (This new operation might not have anything to do with the usual
operation of concatenation, but actually this argument is sufficient to show they are.)

It’s interesting that 𝜋1(𝐺) × 𝜋1(𝐺) � 𝜋1(𝐺 × 𝐺) by what Connor proved earlier about fundamental groups of
products, but that won’t be significant.

Then, the identities of eachmap are going to be the same (where identities are just if we treat thesemaps as operations,
really). In fact, they must be the trivial loop in either cases, and that’s not too hard to show. However, we want a more
general proof because we will later use this argument in a different context. In order to extend this argument to other
cases, let’s just assume that these maps satisfy the interchange property that 𝑚∗(𝑎, 𝑏) ◦ 𝑚∗(𝑐, 𝑑) = 𝑚∗(𝑎 ◦ 𝑐, 𝑏 ◦ 𝑑).

By the way, Aareyan says unit instead of identity, which doesn’t make sense because everything is a unit (and has
an inverse).

In this case, showing the interchange property is pretty easy by our piecwise definition. But now, in order to show that
this operation is commutative, let’s switch to an alternative notation instead of writing out so many ◦’s and 𝑚∗’s.
Well, we can represent the property from above, 𝑚∗(𝑎, 𝑏) ◦𝑚∗(𝑐, 𝑑) = 𝑚∗(𝑎 ◦ 𝑐, 𝑏 ◦ 𝑑), with numbers in a matrix. For
instance,

𝑎 𝑏
𝑐 𝑑
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could be thought of as four numbers that could be combined in twooptions. Here, ifwe think of the horizontal direction
as 𝑚∗ and the vertical direction as ◦ (the usual operation in 𝜋1(𝐺)), then we can think of grouping the four numbers
in two ways as (

𝑎 𝑏
)(

𝑐 𝑑
) and

(
𝑎
𝑐

) (
𝑏
𝑑

)
.

By the identity, the grouping doesn’t matter since we get the same result either way, meaning that we can just ignore
the brackets and work like that.

Figure 42: Two multiplications on 𝑎, 𝑏, 𝑐, and 𝑑

So now, this manipulation becomes pretty simple. For instance, to see that the identities are the same in general, let’s
plug in 𝑎 = 𝑑 = 𝑒 and 𝑐 = 𝑏 = 𝑒∗. Here, 𝑒 is the identity of 𝑚 and 𝑒∗ is the identity of 𝑚∗. Then, we get(

𝑒 𝑒∗
𝑒∗ 𝑒

)
=

{
𝑒 ◦ 𝑒 = 𝑒 ,

𝑚∗(𝑒∗ , 𝑒∗) = 𝑒∗.

That verifies that the identity is the same, so let’s just call it 𝑒 . Consider substituting 𝑏 = 𝑐 = 𝑒 . Doing the multiplica-
tion shows that

𝑚∗(𝑎, 𝑏) =
𝑎 𝑒
𝑒 𝑏

=
𝑒 𝑎
𝑏 𝑒

= 𝑚∗(𝑏, 𝑎).

A similar argument shows that 𝑎 ◦ 𝑏 = 𝑏 ◦ 𝑎, and that’s really what we want. (In fact, this demonstrates that ◦ and
𝑚∗ must be the same because that matrix simplifies to both.) But anyway, this shows that in every topological group,
multiplication must be commutative.

So, the upshot of topological groups is that they’re abelian, which agrees with our experience. But, what is the
fundamental group of the two-holed torus?

However, another exercise for the reader shows that multiplication is not commutative in the two-holed torus, which
means it cannot be a topological group. In particular, we (Aareyan) really want(s) to show that it is non-commutative
in order to show that it is not a topological group. Briefly, as we saw in Figure 41, this group is generated by the edge
identifications 𝑎, 𝑏, 𝑐, and 𝑑 subject to the relation that 𝑎𝑏𝑎−1𝑏−1𝑐𝑑𝑐−1𝑑−1 = 𝑒 . In particular, this comes because if
we go across each edge in order, then we’ll get back to where we start. This completely characterizes our group.

If you are familiar, we would write this in the abbreviated notation ⟨𝑎, 𝑏, 𝑐, 𝑑 | 𝑎𝑏𝑎−1𝑏−1𝑐𝑑𝑐−1𝑑−1 = 𝑒⟩ or just
⟨𝑎, 𝑏, 𝑐, 𝑑 | 𝑎𝑏𝑎−1𝑏−1𝑐𝑑𝑐−1𝑑−1⟩ if we get lazy and imply that it’s equal to the identity. This is called the group
presentation, with the generators on one side and the relations on the other.
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Crucially, it seems intuitive that this is not commutative because it’s way too complicated. (The way you would prove
that is to find a surjective homomorphism to a group that you definitely know is not commutative.) Hence, by applying
the argument above, it can’t be a topological group.

We have now explored the fundamental group quite thoroughly. Time for homology.

6 Homology

What is homology? That’s a shockingly difficult question to answer. We’ll discuss many things in homology and then
build up to singular homology, which is the most important.

But, for now, we’ll talk about simplicial homology.

6.1 Simplicial Homology

The idea is going back to talking about notions of holes. Remember that 𝜋1(𝑆2) is trivial even though 𝑆2 has a hole. So,
homology is sort of another idea in capturing holes. Here are some shapes. For instance, the triangle below is a planar
graph that lives on some sort of surface, and we could formalize that notion through properties of the surface. But, even
just thinking about the triangle as its own entity, we can sort of talk about it as having a hole.

Figure 43: A 1-dimensional triangle, not filled in the middle

Some of these have holes and some don’t. Also, the holes are different dimensions. But, the idea is that these shapes
are simple enough to work with rigorously. That being said, we will work with more complicated and possibly higher-
dimensional structures.

Simplex

An 𝑛-dimensional simplex has 𝑛 + 1 vertices in general position.

These are the generalizations of a triangle.

• A 0-dimensional simplex is a point (with 0 + 1 = 1 vertex).
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Figure 44: The 0-dimensional simplex, △0

• A 1-dimensional simplex is a line segment (with 1 + 1 = 2 vertices).

Figure 45: The 1-dimensional simplex, △1

• A 2-dimensional simplex is a triangle (with 2 + 1 = 3 vertices).

Figure 46: The 2-dimensional simplex, △2

• A 3-dimensional simplex is a tetrahedron (with 3 + 1 = 4 vertices).

Figure 47: The 3-dimensional simplex, △3

General position just means that they aren’t degenerate. For instance, the three vertices of a triangle are not allowed
to lie on the same line. As a result, the simplices are the simplest possible polytope in a given dimension.

But, simplices are pretty boring. We can easily figure out what holes they have. So, let’s instead discuss some more
complicated, higher-dimensional structures.
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Simplicial Complex

Let’s start with simplices, where an 𝑛-dimensional simplex has 𝑛 + 1 vertices. But then, a simplicial complex is
a bunch of simplices connected.

There are more restrictions, of course. For instance, simplices are not allowed to intersect except at their boundary
(what is a boundary?). But, just think of the most natural triangulations, in a sense.

Simplices and simplicial complices are very simple ideas. These are finite and only have finite information, and they are
sort of an approximation that is easier to work with.

Well, let’s consider if we fill in the simplices. So, we have triangles surrounding a pentagon, for instance. Then, we can’t
fill in the pentagon because it’s not a simplex.

Figure 48: Pentagon surrounded by triangles (two-simplices)

And here is the same structure with the boundaries shown.

Figure 49: Boundaries on the above shape

The hole is cool.

Well, we can study boundaries in order to get a grasp on holes. The idea is that the boundary of a boundary is empty.
That’s a general principle in geometry—the boundary of a ball is the sphere, and the sphere has no boundary. (The
boundary actually has an intricate definition, but that will be later.)

But, is it true that everythingwith no boundary is itself a boundary? This seems like the start of a new detection technique
for higher-dimensional holes. Basically, surrounding the hole is a path, but it’s not the boundary of anything in the sense
that it will never be the complete boundary. It is part of the boundary, but you cannot get it on its own as a boundary of
something.
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So, here’s that more rigorously.
Chain

An 𝑛-chain is a collection of 𝑛-simplices (𝑛-simplices, i.e., the definition, not 𝑛 simplices).

Figure 50: The surface of a tetrahedron is a 2-chain (collection of triangles)

Boundary Map

We love functions. An 𝑛-boundarymap takes 𝑛-chains to (𝑛− 1)-chains. So, its domain is the set of 𝑛-chains and
its codomain is the (𝑛 − 1)-chain.

In our case, it basically takes two-dimensional simplices to their boundaries, which are one-dimensional simplices. It’s a
one-chain.

Cycle

A 𝑛-cycle is an 𝑛-chain with no boundary.

Figure 51: Edges cancel in the surface of tetrahedron, giving a boundary of 0

For instance, 0-cycles are vertices.
Boundary

An 𝑛-boundary map is any 𝑛-chain that is in the image (under the boundary map) of an (𝑛 + 1)-chain.

These four definitions are very important. Our definition of a hole is basically an 𝑛-cycle that is not an 𝑛-boundary. In a
sense, it has no boundary, but it isn’t the boundary of anything. And, that doesn’t seem to depend on dimension.
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Aareyan“It’s co bad! [In reference to cohomology, which would be a general version of simplicial homology but with co- in front of
everything.]

Here, we sort of see two holes—the inside one-chain and the outside one-chain. But, in the formal definition, these two
will correspond to the same hole as we shall see.

Can we get back to topology and think about groups and stuff and not just sets?

Can we add chains? That’s a weird idea, but this would turn chains into a group. Specifically, it’s just addition modulo 2,
so it’s just all the points that are included an odd number of times.

Figure 52: The edge in both 𝐶1 and 𝐶2 is canceled

The reason for that definition is to make it a group (if we make it the union, that wouldn’t work).

The identity is the empty chain, while inverses are just themselves (a pre-Coxeter group).

Also, we’ll denote the 𝑛-dimensional boundary with 𝜕𝑛 (which is the same symbol as for partial derivatives, weirdly).

For instance, let’s draw one edge of a 1-simplex (a normal triangle) and call it 𝑒1, but it’s also a 1-chain. So then, if we
call the vertices 𝑣1, 𝑣2, and 𝑣3, with 𝑣3 opposite 𝑒1, we have

𝜕1(𝑒1) = 𝑣1 + 𝑣2 ,

𝜕1(𝑒2) = 𝑣1 + 𝑣3 ,

𝜕1(𝑒3) = 𝑣2 + 𝑣3.

Figure 53: Vertices and edges of a normal triangle

Page 39 of Algebraic Topology



Ross/Indiana 2025 Jenny, Timothy, Kaka, Akhil

What is 𝜕1(𝑒1 + 𝑒2)? Well, the boundary is just 𝑣2 + 𝑣3 geometrically, but it turns out that we can formalize this by
treating them as symbols. Well, that would give us 𝜕1(𝑒1 + 𝑒2) = 2𝑣1 + 𝑣2 + 𝑣3, but the idea is that we modulo by two.
That’s because including a boundary twice sort of cancels it out.
As another example, if we have a triangle, then the vertices are not boundaries because each vertex is included twice.
You can also think about this as the XOR operation.

We’re starting to see that the boundary map is a group homomorphism. Indeed, we have a bunch of groups and a bunch
of group homomorphisms between them. We’ll arrange this into what we call a chain complex (that’s the same word
complex, but they sadly mean different things). That might seem similar to vector stuff, at least for Thor.

0 𝐶0(𝑋) 𝐶1(𝑋) 𝐶2(𝑋) 𝐶3(𝑋) · · ·𝜕1 𝜕2 𝜕3

Here, 𝐶𝑛(𝑋) is the group of chains under the operation from above.

Well, we can visualize this with a chain of boundary maps where we reduce the dimension each time. When we arrange
the chains in that way, it encodes all the relevant information in a neat way. Further, there’s implicit information. If we
take the boundary and then the boundary of that, we get 0 (where we denote the trivial group as 0). So, 𝜕𝑖 ◦ 𝜕𝑖+1(𝑥) = 0
for all 𝑥 and 𝑖.

By the way, that is the algebraic meaning of the boundary of the boundary being the empty set. Later on, we’ll define
things called images and kernels, so we can say that the image of 𝜕𝑖 is contained within the kernel of 𝜕𝑖+1 for each 𝑖.
This is basically the definition. In fact, this idea shows up repeatedly and is not limited to algebraic topology, but it
does get its name from that.

Well, let’s go further. The group of 𝑛-cycles is the set 𝑍𝑛(𝑋) ⊆ 𝐶𝑛(𝑋) defined by {𝑧 ∈ 𝐶𝑛(𝑋) | 𝜕𝑛(𝑧) = 0}.

That is, 𝑍𝑛 contains the chains that get sent to zero under the boundary map. We use 𝑍 because 𝐶 has already been
taken by “chain.” Anyways, 𝑍𝑛(𝑋) remains a group because the boundary map is a homomorphism—it preserves
structure.

Meanwhile, the group of 𝑛-boundaries is the set 𝐵𝑛(𝑋) ⊆ 𝐶𝑛(𝑋) defined as

{𝑏 ∈ 𝐶𝑛(𝑋) | ∃ 𝑐 ∈ 𝐶𝑛+1(𝑋), 𝜕𝑛+1(𝑐) = 𝑏}.

Finally, we can state our definition of a homology. Remember, the homology will try to describe holes.

Recall that we wanted our notion of holes to be 𝑛-cycles that were not 𝑛-boundaries. We can achieve this with group
quotients.

Homology

The 𝑛th homology group 𝐻𝑛(𝑋), i.e., the group of 𝑛-dimensional holes, is defined as 𝑍𝑛(𝑋)
/
𝐵𝑛(𝑋) .

This is a quotient group where we work with things in 𝑍𝑛(𝑋) but where they are the same up to adding things in 𝐵𝑛(𝑋).

Let’s do an example. We can start with the 1-simplices surrounding a hole. This hole is considered a one-dimensional
hole since it can be found in 𝐻1(𝑋). So, 𝑋 is the interior of the hole. In particular, 𝑍1(𝑋) = {0, 𝑒1 + 𝑒2 + 𝑒3}. What is
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𝐵1(𝑋)? Well, there’s literally nothing to take the boundary of, so it has to be {0}. As a result, we have

𝐻1(𝑋) = {0, 𝑒1 + 𝑒2 , 𝑒3}
/
{0} .

Well, quotienting out by the trivial group is stupid because we’re saying two things are equal if we can add a multiple
of 0 to get one from the other. Hence, we still have 𝐻1(𝑋) � {0, 𝑒1 + 𝑒2 + 𝑒3} � ℤ2.
We’ve detected a hole because we have a homology group that is non-trivial! In particular, becauseℤ2 is raised to
the first power, then there is one hole.

Let’s compute more homology groups for this triangle.
Max“Timothy has transformed into Darth Vader. [After he put on his hood. Totally not preparing for the cartel.]

Well, that’s 𝐻1(𝑋), while 𝐻2(𝑋) = 0.

What about 𝐻0(𝑋)? Well, 𝑍0(𝑋) is the set of things sent to 0, but everything is sent to 0. So, 𝑍0(𝑋) is just 𝐶0(𝑋).
That gives

{0, 𝑣1 , 𝑣2 , 𝑣3 , 𝑣1 + 𝑣2 , 𝑣1 + 𝑣3 , 𝑣2 + 𝑣3 , 𝑣1 + 𝑣2 + 𝑣3}
/
{0, 𝑣1 + 𝑣2 , 𝑣2 + 𝑣3 , 𝑣1 + 𝑣3} .

Meanwhile, the only boundaries in 𝐵0(𝑋) can be vertices. Specifically, we have two vertices at a time, so we have
𝐵0(𝑋) = {0, 𝑣1 + 𝑣2 , 𝑣1 + 𝑣3 , 𝑣2 + 𝑣3}.

Then, modding out gives 𝐻0(𝑋) � ℤ2.

Does this mean that we have a 0-dimensional hole?

Nah. It turns out that 𝐻0(𝑋) represents the number of connected components, and it turns out you can prove it.

By the way, the idea is that we’ll always haveℤsomething
2 (even for𝐻0(𝑋)) because adding anything to itself always gives 0.

More generally,ℤ𝑛
2 means the number of holes. That is, the structure of𝐻0(𝑋) determines the number of holes, but if

we wanted to actually find where the holes are (e.g., what simplices bound them), then we can look at the generators
in some sense.

Let’s now consider what happens when we instead consider 𝑌, which is the filled-in triangle (a two-simplex surrounded
by one-simplices).
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Figure 54: Simplex𝑌

Well,

𝐻0(𝑌) � ℤ1
2 ,

𝐻1(𝑌) � ℤ0
2 ,

𝐻1(𝑌) � 0 = ℤ0
2.

This idea is typically referred to as simplicial homology withℤ2 coefficients, while Aareyan will discuss simplicial coho-
mology withℤ coefficients. Matthias lied. We will never get to cohomology.

And, we’ll later get to real homology for topological spaces instead of just these weird combinatorial things.

Let’swork out some examples. But also, let’s considerwhatwould happen ifweused different shapes (none of this involved
the topology of a triangle). And, would they give the same homology?

Those are all homeomorphic to a circle, like a square, for instance.

Figure 55: Square homeomorphic to a circle

That gives us this chain complex.

0 𝐶0(𝑋) 𝐶1(𝑋) 0

⟨𝑣0 , 𝑣1 , 𝑣2 , 𝑣3⟩ ⟨𝑒0 , 𝑒1 , 𝑒2 , 𝑒3⟩

𝜕1

Note that the ⟨⟩ notation is just saying “generated by.” It’s taking all the sums of the generators instead of just listing out
everything. That’s much more efficient. Another note on notation—we usually write 𝜕1, but Aareyan got lazy and just
wrote 𝜕 because there’s only one non-trivial boundary map in this case.
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By the way, we can write explicitly

𝜕𝑒0 = 𝑣0 + 𝑣1 ,

𝜕𝑒1 = 𝑣1 + 𝑣2 ,

𝜕𝑒2 = 𝑣2 + 𝑣3 ,

𝜕𝑒3 = 𝑣3 + 𝑣0.

So, we get 𝐻0(𝑋) = ⟨𝑣0 , 𝑣1 , 𝑣2 , 𝑣3⟩
/
⟨𝑣1 = 𝑣2 = 𝑣3 = 𝑣0⟩ = ℤ1

2.

What is 𝐻1(𝑋)?

Figure 56: Since each vertex is included twice, the sum is 0mod 2

Well, what boundaries go to zero? You can convince yourself that the only combination is 𝑒0 + 𝑒1 + 𝑒2 + 𝑒3.

By the way, this should give you a hint that the simplicial complex doesn’t matter.
Aareyan“At the end of the day, all that matters are the topological spaces and the friends we made along the way.

Let’s now work out a higher-dimensional example (the other ones for this guy are boring—either 0 or just 𝐻0(𝑋), which
is ℤ1

2). In particular, let’s just look at the torus. There’s only one vertex because we glue them all together, so we get 𝑣.
And, there are two natural edges, 𝑎 and 𝑏, and a diagonal edge 𝑐 just for creating simplices.

Figure 57: A torus unfolded as a square
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But, we only really need to look at one of the triangles, an upper and a lower one.

Figure 58: Half of the above square

Well, here’s the exact sequence that we need to work with.

0 𝐶0(𝑋) 𝐶1(𝑋) 𝐶2(𝑋) 0

⟨𝑣⟩ ⟨𝑎, 𝑏, 𝑐⟩ ⟨𝑈, 𝐿⟩

𝜕1 𝜕2

Let’s start with computing some things.
𝜕1(𝑎) = 0,
𝜕1(𝑏) = 0,
𝜕1(𝑐) = 0,

𝑍1(𝑋) = ⟨𝑎, 𝑏, 𝑐⟩,
𝐵0(𝑋) = 0.

Everything is a cycle. Nice! And, nothing is a boundary. What about 𝜕2?
𝜕2(𝑈) = 𝑎 + 𝑏 + 𝑐,
𝜕2(𝐿) = 𝑎 + 𝑏 + 𝑐,
𝑍2(𝑋) = ⟨𝑈 + 𝐿⟩,
𝐵1(𝑋) = ⟨𝑎 + 𝐵 + 𝑐⟩.

Let’s now compute some homologies. We just have 𝐻0(𝑋) = ⟨𝑣⟩ (since we are modding out by nothing), so we get ℤ1
2.Meanwhile,

𝐻1(𝑋) = ⟨𝑎, 𝑏, 𝑐⟩
/
⟨𝑎 + 𝑏 + 𝑐⟩ = ⟨𝑎, 𝑏⟩ = ℤ2

2.

So, a torus has two one-dimensional holes (the cross-section and going around the donut hole) and one two-dimensional
hole (the inside). That’s cool!

Aareyan“Why does this seem sus?
Meanwhile, 𝐻2(𝑋) = ⟨𝑈 + 𝐿⟩ = ℤ1

2.
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In general, the 𝑝-dimensional homology is the same as the (𝑛 − 𝑝)-dimensional homology (for compact spaces).

Meanwhile, the homology of a cylinder is the same as the homology of aMöbius band. It doesn’t recognize that difference,
and that’s really heartbreaking.

Now, though, we’ll start caring about orientation.

By the way, we aren’t doing proofs at this time of day. For instance, we will not prove that 𝜕2 gives 0.

David“Neil is playing Tetris. He is not even good.
Neil“Shut up. Lock in.

6.2 Scarier Simplicial Homology

So, simplicial homology isn’t perfect. One of the uses of topology is formally distinguishing shapes; for instance, wemight
want to tellℝ𝑛 andℝ𝑚 apart when 𝑛 ≠ 𝑚 by showing they have different topological properties.

In particular, how can we distinguish a Möbius band from a cylinder? After all, the former is non-orientable (there’s no
sense of clockwise and counterclockwise), while the latter allows for a consistent definition. The problem here is that the
negative signs disappear since we are working modulo two. But, that allows coefficients in ℤ2 to sometimes determine
non-orientability because it would make sense that Möbius bands introduce negative signs while cylinders do not. (In
particular, the simplicity ofℤ2 means that twists no longer interfere with forming valid cycles over, whereas it would inℤ.)

So, Connor and Aareyan were going to introduce a version of simplicial homology that uses coefficients inℤ instead of
coefficients inℤ2, and they thought that the new version would help us distinguish the cylinder and Möbius band in
terms of their simplicial homology.

But, it turns out that the homology group isn’t even different. Instead, you would use the second compactly supported de
Rham coefficients in order to distinguish the two.

Also, it’s not that hard to show that the cylinder and theMöbius bandhave the samehomology group. We can show that
they are both homotopic to 𝑆1, which is sort of a homeomorphism except that there’s no requirement for a bijection
(and, hence, a continuous inverse). It turns out that homotopy preserves the homology group for each dimension.
Besides, from the perspective of holes, they look the same anyways. We would probably say they both have a one-
dimensional hole.

But, let’s just gowith this in order to explore how coefficients inℤmight give us something different. [It won’t be as interest-
ing as was originally planned, but it’s still going to be a fun exercise.] First, the cycles might be different. For instance, we might
have 𝐶𝑖(𝑋) = ⟨𝑒1 , . . . , 𝑒𝑛⟩, i.e., the chains generated by the edges. Then, we can have arbitrary integer combinations, so
like 7𝑒1 − 17𝑒2.

However, one thing that does change is that we alternate signs when computing the boundary of a chain. Remember, we
want the boundary of a boundary (𝜕𝜕 in Aareyan’s lingo) to vanish, and that only works if we have alternating signs.

We didn’t have to define that when our coefficients were inℤ2 for obvious reasons.
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Connor“4:30 is not the time to define signs and stuff, so we will just say it works. Yay!
Audience“(Applauds.)
Connor“Also, we are going to Google the homology of a Möbius band instead of computing it.

Well, the Möbius band is not very interesting, but let’s instead find the homology group for the Klein bottle. So, let 𝐾 be
the Klein bottle. It’s also a non-orientable surface.

Figure 59: Klein bottle

Specifically, we have

𝐻(𝐾,ℤ2) =

𝐻0 = ℤ2 ,

𝐻1 = 0,
𝐻2 = ℤ2 ,

while

𝐻(𝐾,ℤ) =

𝐻0 = ℤ,

𝐻1 = ℤ2 ,

𝐻2 = 0.

The two choices from the two options for coefficients.

These are things that you should not try at home, but you probably shouldn’t because it is impossible. Klein bottles do
not embed in three-space, but it’s not too hard to show. The first fold alongℤmakes it a cylinder. Normally, we fold it
up to get a torus, but in a Klein bottle, we twist it first and put it inside-out. Normally, that requires self-intersection,
but if we put it into four dimensions, we can avoid that self-intersection.

Aareyan“Twist it in, and then put it in.
Also, if we glue two Möbius strips, it also gives us a Klein bottle. That’s another way to get it.

For non-orientable shapes, holes sort of break down. If we get things that are no longer justℤ𝑛 , it more represents this is
the homology group and there’s not that much else we can do.
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The worst thing is that the homologies are very different. But anyway, the idea is that 𝐻1 being ℤ2 is more about non-
orientability.

Kaka“You are high on tissues! [To Mustafa.]
Mustafa“But it smells good! Also, obviously GRH is true, but RH is false.

Recall that we’ve spent a long time on simplicial homology. No longer—we will be doing singular homology instead.

6.3 Singular Homology

In particular, singular homology avoids having to choose a triangulation. For singular homology, we are no longer con-
sidering just a single choice. Instead, we might as well do all of them.

Why singular if the definition is literally not choosing a single triangulation? Well, singular really means weird, like a
singular matrix that is not an invertible or a singularity in a black hole.
Well, these are singular precisely because there is so much variety allowed with our triangulation. Literally crazy
choices are allowed, like intersections in the simplex. That’s crazy!

So, here’s the set-up. Define an abstract simplex as the set {(𝑥0 , . . . , 𝑥𝑛) ∈ ℝ𝑛+1
≥0 | 𝑥0 + 𝑥1 + · · · + 𝑥𝑛 = 1} (with

nonnegative numbers). That forms an 𝑛-dimensional simplex and is denoted Δ𝑛 . This is called Δ𝑛 and is called an 𝑛-
dimensional simplex (like an 𝑛-dimensional equilateral triangle, regular tetrahedron, etc.).

Figure 60: Δ2 and Δ3

There’s no formal name for this construct, and “abstract simplex” is just a name we made up. Well, these are not singular
or weird yet, but that’s what comes next.

Well, abstract simplices are just combinatorial objects, but we build up “singular simplices” in genuine topology spaces
through a map. In particular, if 𝑋 is a genuine topological space and not just a stupid graph, then an 𝑛-simplex is a
map 𝑓 : Δ𝑛 → 𝑋 . All we need is that the 𝑛-simplex is continuous. A ton of other things can be broken—there can be
self-intersections and other crazy properties. But, these universal definitions make things much easier to prove.
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There are very few restrictions, and we could have curved sides, for instance. There’s like a really, really big number
of these guys.

Figure 61: Maps to topological spaces of Δ2 and Δ3

Well, something cool is if we set 𝑥0 = 0. That gives us a face that is an (𝑛 − 1)-simplex, so we get Δ𝑛−1 ⊆ Δ𝑛 on the 𝑖th
face. These faces would be like the generalized edges of the simplex. Once we know the boundaries of a simplex, then we
can compute the boundaries of arbitrary chains.

But, remember that simplices are functions. So, even if we have a rigorous definition of faces in terms of sets, we need
to turn those into functions. However, that’s pretty easy. If we denote by 𝐹𝑖 the 𝑖th face of some simplex 𝑓 , which is
a set, then the boundaries of a simplex are denoted 𝑓 |𝐹𝑖 . The subscript restricts the domain to the 𝑖th face, so it’s the
function that it is only defined on 𝐹𝑖 .
In other words, boundaries of simplicesmake sense in the combinatorial abstract sense, but thenwe need to port them
to 𝑋 . Anyways, once we have this notation, we define 𝜕 𝑓 = 𝑓 |𝐹0 − 𝑓 |𝐹1 + · · · + (−1)𝑛 𝑓 |𝐹𝑛 . That’s an (𝑛 − 1)-chain.

This is not function addition. We just have a bunch of formal symbols that don’t simplify or anything—there’s no inter-
action between them. That’s sort of like how we thought of individual simplices from before as adding them.

In fact, this is sort of like the notion of a free abelian group where each simplex sort of represents a generator.

Also, no summation notation or anything at 5 AM, please.

We want to discourage the set notation, which works quite well with ℤ2, but how can you include something in a set
six times? Or, negative five times? That doesn’t add to our understanding.
The only reason we used set notation was because ℤ2 = {0, 1}, and maybe 0 represents being in the set and 1 not
being in the set. At least that’s sensible.

Recall the alternating sums, sort of like the sums fromwhen we looked at coefficients inℤ for simplicial homology (these
will also be coefficients inℤ). It’s not too different, except we just generalize our idea of a simplex. So, let’s actually define
our homology now. But, since singular homology is supposed to be the rigorous and universal counterpart to simplicial
homology, let’s be really formal and start talking about groups.

Well first, we have the chains. This is the group generated by all the simplices 𝑓 , so we would write
𝐶𝑛(𝑋) := ⟨ 𝑓 | 𝑓 : Δ𝑛 → 𝑋 is an 𝑛-simplex in 𝑋⟩.

Chains can be super weird with a bunch of crazy self-intersections. But, they aren’t that different from just regular chains.
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Again, we’re just using the plus sign without truly adding them as functions. Anyways, those are our chains in 𝑛-
dimensions. Remember, the chains don’t need to be connected or anything.

And then, our boundary map is of the form 𝜕𝑛 : 𝐶𝑛(𝑋) → 𝐶𝑛−1(𝑋). We won’t bother to define it explicitly, but just
implicitly as the unique homomorphism that has the property that 𝜕𝑛( 𝑓 ) = 𝑓 |𝐹0 − 𝑓 |𝐹1 + · · · + (−1)𝑛 𝑓 |𝐹𝑛 .

That means we can define our 𝑍𝑛 (cycles) and 𝐵𝑛 (boundaries) in the same way. We have literally just

𝑍𝑛 := {𝑧 ∈ 𝐶𝑛(𝑋) | 𝜕𝑛(𝑧) = 0},
𝐵𝑛 := {𝑏 ∈ 𝐶𝑛(𝑋) | ∃ 𝑐 ∈ 𝐶𝑛+1(𝑋), 𝜕𝑛(𝑐) = 𝑏}.

Those definitions aren’t really different from their counterparts in simplicial homology. Anyway, just like before, we’ll
define the most important of these four groups, 𝐻𝑛 , as

𝐻𝑛(𝑋) := 𝑍𝑛(𝑋)
/
𝐵𝑛(𝑋) .

Remember that we have uncountably many simplices, and we can even add them. So, 𝐶𝑛 is massive, and so are 𝑍𝑛 and
𝐵𝑛 . But, what about 𝐻𝑛?

Theorem 6.1

It turns out that it isn’t that big. Somehow, if 𝑋 is a space (subject to some technical conditions), then for any
triangulation 𝒯 of 𝑋 , the simplicial homology𝐻𝑛(𝒯 ) is isomorphic to the underlying singular homology𝐻𝑛(𝑋).

The general name for these types of theorems is a comparison theorem, so we could call this the singular-simplicial
comparison theorem. There are tons of comparison theroems.

Basically, the two are the same and interchangeable. The triangulation is just like breaking our shape into a bunch of
triangles.

Connor“Do any of you plan on doing probability? Put your hand down. [In reference to the technical conditions because,
statistically speaking, almost all spaces don’t satisfy those nice spaces.]

This is a little surprising at first. Both𝑍𝑛 and𝐵𝑛 aremassive. But, they are so close in size that quotienting gives something
manageable (that can even be described by some combinatorial triangulation).

So, if these versions of homology are the same, then why do we even care about the two homologies?

Well, simplicial homology is better for finding the homology, but singular homology is much better for theory. No one
is going to calculate a singular homology directly. On the other hand, because singular homologies are much nicer, we
can use them in our proofs much more nicely.

So, here’s another theorem.

Theorem 6.2

Let 𝑋 and𝑌 be topological spaces with 𝑓 : 𝑋 → 𝑌 being a continuous function. Then, there are homomorphisms
𝐻𝑛( 𝑓 ) : 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌). That’s in the same vein of functoriality as before.
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(This has definitely happened before, but if we don’t specify the nature of a function yet it goes from group to group, then
it is a group homomorphism.)

It’s not like we’re taking the homology of a function 𝐻𝑛( 𝑓 ). It’s just like a notation. Other people sometimes do 𝑓 ∗𝑛 . We
have to keep the 𝑛 there because the dimension is important, I guess.

Well, we used an analogous fact for 𝜋1 to show that it is invariant under homeomorphism.

So, as a corollary, if 𝑋 � 𝑌, then 𝐻𝑛(𝑋) � 𝐻𝑛(𝑌).

𝐻𝑛(𝑋) is for cohomology and 𝐻𝑛(𝑋) is for regular homology. Connor’s muscle memory.

Here’s a proof sketch, by the way, for that theorem.

Remember that for loops, we took ( 𝑓∗(𝛾))(𝑡) = 𝑓 (𝛾(𝑡)). Here, we’re going to take 𝑔 to be an 𝑛-simplex in 𝑋 , but we
can do something similar. We have 𝑓 ◦ 𝑔 : Δ𝑛 → 𝑌. Basically, 𝑔 takes things to 𝑋 and 𝑓 takes things to 𝑌. Call this
composition 𝑓𝑛 .
So, now, let’s do a huge diagram.

0 𝐶0(𝑋) 𝐶1(𝑋) 𝐶2(𝑋) · · ·

0 𝐶0(𝑌) 𝐶1(𝑌) 𝐶2(𝑌) · · ·

𝑓0

𝜕1

𝑓1

𝜕2

𝑓2

𝜕1 𝜕2

Proof by I said so.

7 Sequencesssssss

Too many s’s.

Aareyan is extremely locked out, but let’s see what we can do. So, let’s talk about long exact sequences (so far, those were
short exact sequences). Well, instead of looking at the whole group, maybe we just look at the holes, except for things
coming from a certain part of the space. That’s like looking at ℤ𝑝 instead of ℤ as a whole. This will be some relative
information.

Given some space 𝑋 and some subspace 𝐴, we might be curious about the holes in 𝑋 that are not in 𝐴. It is a bit more
subtle, but we’ll see.

0 𝐶0(𝑋;𝐴) 𝐶1(𝑋;𝐴) 𝐶2(𝑋;𝐴) · · ·𝜕1 𝜕2

This isn’t that hard to define. It’s just
𝐶𝑛(𝑋, 𝐴) := 𝐶𝑛(𝑋)

/
𝐶𝑛(𝐴) .

It turns out that the boundary maps still work, so we have a chain complex. But, we can formalize this sort of using a
generalized chain complex.
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Exact Sequence

It’s a sequence of groups that goes as follows.

· · · 𝐴𝑛−1 𝐴𝑛 𝐴𝑛+1 · · ·𝑓𝑛−1 𝑓𝑛

Further,Ker( 𝑓𝑛) = Im( 𝑓𝑛−1) for each 𝑛.

Well, we have not defined the kernel and image.
Kernel and Image

The kernel of a homomorphism is the things that get sent to 0, soKer( 𝑓 ) := {𝑎 ∈ 𝐴 | 𝑓 (𝑎) = 𝑒}. The image of a
homomorphism is the set of things that get mapped to. We have Im( 𝑓 ) := {𝑏 ∈ 𝐵 | ∃ 𝑎 ∈ 𝐴, 𝑓 (𝑎) = 𝑏}.

Well, we’ve already seen this before. For instance, here’s a chain complex.

· · · 𝐶𝑛−1(𝑋) 𝐶𝑛(𝑋) 𝐶𝑛+1(𝑋) · · ·𝜕𝑛 𝜕𝑛+1

And, it does indeed happen that everything in the image of 𝜕𝑛+1 is also in the kernel of 𝜕𝑛 (which is the idea that the
boundary of the boundary vanishes). Alternatively, since 𝐵𝑛 = Im(𝜕𝑛+1) and 𝑍𝑛 = Ker(𝜕𝑛), we could view this as stating
that 𝑍𝑛 ⊇ 𝐵𝑛 or else the quotient won’t make sense.

Chain complexes are not in general the same because if 𝐵𝑛 = 𝑍𝑛 , then our homology is trivial.

Perhaps we should now discuss exact sequences. This is why this lecture is not five minutes long.

So then, 𝐴 𝑖
↩−→ 𝑋 . Moreover, 𝐻𝑛(𝐴)

𝐻𝑛 (𝑖)−−−−→→ 𝐻𝑛(𝑋). Note that ↩→ is for injections, and↠ is for surjections.

Anyways, this map between chain complexes (with a complicated connecting map) is called the zig-zag lemma. It’s in-
duced by homology because taking the homologies make this an exact sequence and not just chain complexes.

𝐻𝑛(𝐴) 𝐻𝑛(𝑋) 𝐻𝑛(𝑋;𝐴) 𝐻𝑛−1(𝐴)

𝐻𝑛−1(𝑋) · · ·

𝐻𝑛 (𝑖) 𝑖 𝜕

This is sort of how we describe the information of 𝑋 . Scary!

Well, how does this help? Remember all that amalgamated product business for fundamental groups? Here, we won’t
have that sort of thing, but instead exact sequences.

This entire thing is probably graduate-level stuff, but here’s where it gets even scarier.

Here’s a theorem.
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Mayer-Vietoris

Let𝑋 = 𝐴∪𝐵 (with extremelymild assumptions on𝐴 and 𝐵). Then, there is an exact sequence (where the kernel
of one map was the image of the next) as follows.

0 𝐻0(𝑋) 𝐻0(𝐴) × 𝐻0(𝐵) 𝐻0(𝐴 ∩ 𝐵)

𝐻1(𝑋) 𝐻1(𝐴) × 𝐻1(𝐵) 𝐻1(𝐴 ∩ 𝐵)

𝐻2(𝑋) · · ·

(These arrows should be zig-zaggy, but I got too lazy to make them look nice.)

Basically, we’re decomposing things, and that’s pretty nice. Let’s do the sphere 𝑆2 again.
Homology Group of 𝑆2

This is the same decomposition as𝜋1(𝑆2). Their intersection is homeomorphic to a cylinder, which is itself essentially
a circle, so it has the same homology group as 𝑆1.

Well, we start off with 𝐻𝑛(ℝ2) =
{
ℤ 𝑛 = 0,
0 else. Also, from the circle, we know 𝐻𝑛(cylinder) =

{
ℤ 𝑛 = 0, 1,
0 else.

That’s not too hard to see—there are no holes inℝ2, and it’s one connected component. We can do something similar
for a cylinder. Well, we can redraw our diagram as follows.

0 𝐻0(𝑋) ℤ2 ℤ

𝐻1(𝑋) 0 ℤ

𝐻2(𝑋) 0 0

𝐻3(𝑋) 0 · · ·

(These should really be zig-zagged, but that looked a bit ugly when I tried doing so, and I got a bit lazy.)

Well, if something is sandwiched between two zeroes, then it must also be zero. Specifically, if we have the map 0
𝑓
←−

𝑋
𝑔
←− 0, then we know that Im( 𝑓 ) = Ker(𝑔) since we have a short exact sequence. However, Ker(𝑔) = 𝑋 because

everything maps to 0 in 𝑋 (being a homomorphism). So, 𝑓 is surjective, meaning that 𝑋 has only one element—and
so 𝑋 = 0. As a result, 𝐻3(𝑋) = 𝐻4(𝑋) = · · · = 0.

However, we need to do some more work for the other ones. Let’s start with 𝐻2(𝑋). Well, clearly, the image of 0 is
going to be 0, so by exactness, the kernel of the map toℤ is trivial, which means it must be injective. Further, because
the kernel of the map fromℤ to 0 is everything inℤ (nothing can be sent to something nonzero), so that must also be
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the image of the map from 𝐻2(𝑋) → ℤ. An injective surjection is a bijection, so 𝐻2(𝑋) isℤ itself. Wooh!

What about𝐻1(𝑋)? Well, based on some higher knowledge, we know thatℤ→ ℤ×ℤ is actually themap 1 ↦→ (1,−1).
That’s scary. But either way, the kernel is trivial, but since that’s also the image of a map from 0, then that means that
𝐻1(𝑋)must be 0. Wooh again!
Kaka has a future in homological algebra, which means no future.

And, what about 𝐻0(𝑋)? We can just use the First Isomorphism Theorem to show that it must be 0. The key here is
using the exactness atℤ2. Since we know that𝐻1(𝑋) = 0, we have 0← 𝐻0(𝑋) ← ℤ2 ← ℤ→ 0. Well, the map from
ℤ to ℤ2 is given by 1 ↦→ (1,−1), so its image is the subgroup {(𝑥,−𝑥) | 𝑥 ∈ ℤ}. Therefore, by exactness at ℤ2, then
the kernel of the map ℤ2 → 𝐻0(𝑋) is also that subgroup. As a result, there is a surjection ℤ2 → 𝐻0(𝑋). Further,
since from above we know the kernel to be {(𝑥,−𝑥) | 𝑥 ∈ ℤ}, then we can apply the First Isomorphism Theorem. In
this case, it tells us that for a surjective map, then the codomain is isomorphic to the domain modulo the kernel. So,

𝐻0(𝑋) � ℤ2
/
{(𝑥,−𝑥) | 𝑥 ∈ ℤ} .

Computing the quotient group just gives 𝐻0(𝑋) � ℤ.
This is what a homological calculation looks like. It is hell, but at least it comes naturally once you see them enough.
We have found out! We have that

𝐻𝑛(𝑆2) =
{
ℤ 𝑛 = 0, 2,
0 else.

It has one two-dimensional hole, no one-dimensional hole, and one connected component.

The basic idea of algebraic cohomology calculations is to play two games, one with the hole and one with the image. You
do them back and forth really cleverly (most of the time, the explanation isn’t even done).

The math that Connor does is Galois cohomology, in which all intuition is lost—there is no connection to holes, and all
they do is group theory.

Can we use this to show thatℝ𝑛 andℝ𝑚 are different? Well, there’s a generalization that shows that

𝐻𝑛(𝑆𝑚) =
{
ℤ 𝑛 = 0, 𝑚
0 else.

Homology is our definition of a hole. Any intuitive idea about holes can be made rigorous with homology.

Let’s now get to the actual proof.

It only took like ten hours to prove this.

Well, now that we have all of that, let’s go.

We did define homotopy for paths, but doing it for spaces in general is not too hard. (Homotopy is different from
homeomorphism—e.g., Möbius bands and cylinders are homotopic but not homeomorphic.) The second compactly
supported de Rham coefficients are different between the two, and that’s how we would distinguish them.
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Aareyan“Suicide is not allowed at Ross.
So, we haveℝ𝑛 \ {0}, and we want to show it is not congruent toℝ𝑚 \ {0} for 𝑛 ≠ 𝑚.

When we remove a point, it’s basically a sphere 𝑆𝑛−1. We can kind of like expand the hole to get a ball of a hole (like,
a big hole). We are fattening the circle.
But then, the homology groups are not the same by what we just proved, and so the two spaces cannot possibly be the
same. Remember that homeomorphisms are preserved under homology groups (in the sense of functoriality).

8 Cool Beans

Connor“Cool-down topics.
8.1 SUS

Well, let’s say we have a circle. It’s a process called SUS (short for SUSpension) that increases the dimension of some
object. For instance, it can take a circle and give us a rigorou definition of a sphere, but in any dimension. That is, it will
be a map 𝑆1 ↦→ 𝑆2 ↦→ 𝑆3 ↦→ · · · .

Remember how we computed the homology of the sphere, 𝑆2, with an overlapping intersection of two disks? That
intersection was cylindrical. Well, we can think of this instead as taking a cylinder and extending it upward in either
direction, but then pinching the top and bottom to make the shape a real sphere. That’s what makes this sort of a
SUSpension.

Figure 62: SUSpension of a circle
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Figure 63: SUSpension of an annulus (two-dimensional ring)

But, the cylinder is basically just a circle. SUS is just a generalization of this concept.

The way we do it is by thinking of two cones over a circle (a double cone). Formally, a cone over 𝑋 is just something like

𝑋 ×
(
[0, 1]

/
{(𝑥, 1) ∼ (𝑥′, 1), ∀ 𝑥, 𝑥′}

)
.

Basically, this is a general cone where we don’t need to have 𝑆1. We could also think of this as a generalized cylinder
where the top and bottom collapse into a single point.

By the way, to define a double cone, we have [−1, 1] instead of [0, 1], and then we do some more equivalence relations to
pinch the bottom of the cone down there.

Well, the idea is that the cone over 𝑆𝑛 gives us 𝑆𝑛+1. So, the cone is like a hemisphere, and combining the two gives us
something homeomorphic.

That is, 𝐻𝑛+1(SUS(𝑋)) = 𝐻𝑛(𝑋) assuming 𝑋 ≠ 0.

8.2 Homotopy Groups

We’re going to explore something called higher homotopy groups and then find a relation to SUSpensions! Well, the
fundamental group 𝜋1(𝑋) led us to a rather interesting discussion, but how can we generalize this group? After all, what
is the 1 doing?

If we are going to find a related definition, it’s probably going to be by changing the domain. Specifically, instead of
mapping from [0, 1], let’s try going from [0, 1]2.

But, wait. Even though we have some 𝛾 : [0, 1] → 𝑋 , we need to say that 𝛾(0) = 𝛾(1). What things might we need to
identify in this other case?

You might say to identify the whole left edge with the whole right edge, and the whole bottom edge with the whole
top edge, but that would give us a torus. Instead, we’ll notice that [0, 1] but where 𝛾(0) = 𝛾(1) sort of sounds like the
definition of a circle—we’re wrapping up the two ends.
So, instead of discussing tori, let’s consider 𝑆2.
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Specifically, that gives us 𝜋2(𝑋, 𝑥0) := {𝛾 : 𝑆2 → 𝑋 up to homotopy}. Instead of circles, we now have two-dimensional
loops, sort of like balloons (though, again, they can intersect and do all sorts of weird stuff). More generally, we can think
of 𝜋𝑛(𝑋) as having 𝑛-dimensional loops.

Higher Homotopy Groups

The 𝑛th higher homotopy group is defined 𝜋𝑛(𝑋) := {𝑆𝑛 → 𝑋 up to homotopy}.

As before, we need to fix a base point, but any base point will give us isomorphic groups.

By the way, what is 𝜋0(𝑋)?

Well, 𝑆0 is just the boundary of𝔻1, so it has two points. One of those points is required to be at the basepoint, while
the other point can be anywhere else. Further, two paths here are homotopic if those other points are path-connected.
So, 𝜋0 is just a set of the path-connected components. For instance, if 𝑋 has 𝑛 distinct path-connected components,
then 𝜋0(𝑋) would be a set of 𝑛 points.

Wait, 𝜋0 is not a group? It’s a set?

Yes—there’s no obvious way to concatenate two paths—there’s too few points. But, we’re safe because we can concate-
nate loops in 𝜋𝑛 for positive 𝑛, right? How?

I mean, there’s still no obvious way to concatenate balloons. In fact, there are infinitely many ways—we could stack them
horizontally, vertically, or any way we might wish. But, what did we prove earlier about a group with two operations?

The Eckmann-Hilton argument from above showed that if a group has two operations that play nicely with each other,
then those are abelian. Is it possible that 𝜋2 and higher are all abelian?

In fact, that would tell us that higher homotopy groups are almost always abelian except for 𝜋1 when defined on topo-
logical spaces that are not topological groups. So, let’s prove that 𝜋𝑛 is an abelian group when 𝑛 ≥ 2.

Well, we can start by considering what it means to concatenate for homotopy spaces. With just 𝑆1, there weren’t too
many options, but here there are actually infinitelymany. The general ideawhendefining a concatenation is piecewise,
and we could either squish vertically or horizontally.

Figure 64: Different options for concatenating 𝑓 and 𝑔

Well, these two options are different, but they do have the nice interchange property.
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Figure 65: Interchange property

As a result, the exact argument shows that 𝜋𝑛 is abelian when 𝑛 > 1. In particular, the higher dimensions allow us to
define multiple operations, whereas 𝜋1 does not have that sort of flexibility. In particular, we might notice how there
are two natural ways to concatenate things with 𝑆1—e.g., 𝛾 ◦ 𝛾′might be doing 𝛾 first and then 𝛾′ second, or it might
be doing 𝛾 second and 𝛾′ first, but this doesn’t actually satisfy the interchange operation.
Well, the same argument frombefore about a topological grouphaving twooperations implying it is abelian still applies
here! So, 𝜋2 and higher are abelian groups. People saw this group and thought that this was crazy—how can they all
be abelian? But, no, this is a correct and useful definition.

I mean, an alternative explanation is just to see that we can shift the domains around. That’s a property of higher dimen-
sions, which give us more flexibility. However, that idea isn’t as rigorous, I guess.

So, we gain a group structure when going from 𝜋0 to 𝜋1. And, from 𝜋2 onward, we gain commutativity! It seems that
in higher dimensions, there is a ton more structure and that is really interesting.

As some random examples, it turns out 𝜋2(𝑆2) � ℤ by the same helix argument as before. Indeed, 𝜋𝑛(𝑆𝑛) � ℤ for any
positive 𝑛. Meanwhile, 𝜋1(𝑆2) � 0 as we saw earlier. So, the next most interesting question is 𝜋3(𝑆2)?

This is ℤ, but that is super hard to motivate it. In fact, 𝜋3(𝑆2) being nontrivial was an influential early example that
made the homotopy groups of spheres something interesting to study. Further, it is an example of what’s called a fiber
bundle. Well, how can we get some intuition for why 𝜋3(𝑆2) � ℤ as well?

Well, what does it mean for 𝜋3(𝑆2) to be non-trivial? It means that we can map 𝑆3 (a three-dimensional hypersphere
embedded in four-dimensional space) to 𝑆2 (a regular sphere) in a non-trivial way, i.e., something so complicated that it
is not homotopic to the trivial map.

Before we begin to understand that map, let’s talk about what properties it has. First, for every point on 𝑆2, a whole
great circle of 𝑆3 maps to it. That’s pretty cool, but it also gives us the term “fiber bundle.”
Basically, our idea is as follows. The space 𝑆3 looks like a bunch of circles (𝑆1), one for each point on a sphere (𝑆2).
These circles are called fibers, and this idea of associating one space to every point on another space is called a fiber
bundle. This is analogous to how the Möbius strip looks like a line segment attached to each point of a circle (the
circle is called a base), except there are global properties like a twist that are not captured locally. In both cases, the
topological space is locally a product of some base and fiber, but there are subtle global properties. Fiber bundles help
us study such constructions systematically.

That is super cool, but we can try going back to understanding the Hopf fibration.

Well, we start with a pair of complex numbers 𝑧0 and 𝑧1 where |𝑧0|2 + |𝑧1|2 = 1. That’s the same as 𝑆3 if we expand it
out, because we get 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1. Specifically, this creates a three-dimensional surface because we have four
variables and one equation.

In other words,ℝ4 can be thought of as ℂ2, while 𝑆3 is a subset of ℂ2. Similarly, we can writeℝ3 as ℂ ×ℝ.
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So, how might we sort of map ℂ2 downward onto ℂ × ℝ so that the result still has unit norm? It turns out that
(𝑧0 , 𝑧1) ↦→ (2𝑧0𝑧1 , |𝑧0|2 − |𝑧1|2) will give us what we want, and it may easily be seen that this preserves norm. Next,
it’s clear that this map is continuous. In order to verify that this map is not homotopic to the trivial loop, we need to
use some scary invariants, but that’s fine.
We also have the nice fibration property that the preimage of every point on 𝑆2—the set of things that map to any
given point on the sphere—is a circle on 𝑆3. In fact, it’s a great circle, and the algebra shows that.

The Hopf fibration turns out to be a generator for𝜋3(𝑆2). Moreover, it has order∞, so that’s howwe show that the group
is both infinite and cyclic—ℤ.

Figure 66: Niles Johnson Hopf Fibration CC BY 4.0

And, the Hopf fibration showed something deeper about the distinction homology and homotopy groups. Early topol-
ogists were interested in studying holes just like us, and their first major tool was the fundamental group. However,
the Hopf fibration suggests that homotopy captures topological features more subtle than just holes, which prompted
further study of homology theory.

What about the general case? This was just for 𝜋3(𝑆2).

Let’s look at a table called the homotopy group of spheres. It’s really scary.

Well, computing those homotopy groups is actually really hard. Perhaps it will help to find some intuition between 𝜋𝑛
and 𝜋𝑚 . In fact, let’s just start with 𝜋𝑛 and 𝜋𝑛+1.

But, to motivate that, we can go as simple as 𝜋1 and 𝜋2. How do we visualize maps from 𝜋2 to some space 𝑋?

In particular, is there maybe some way to construct loops in 𝜋2 in terms of 𝜋1? Maybe if we build up the dimensions, we
can understand higher homotopy groups in terms of lower ones. Can maps from 𝑆2 be understood in terms of maps in
𝑆1?

Perhaps we’ll notice that 𝑆2 is sort of like a loop of loops.
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Figure 67: 𝑆2 is a loop of loops

In particular,𝜋2(𝑋) � 𝜋1(all the loops on 𝑋). That really does give us a loop of loops because the loops loop back on each
other—if we start at the trivial loop and move around the sphere, we’ll get back to the trivial loop at the end.

Let’s explore this further. What really is the space of all loops on 𝑋?

Hang on, isn’t that just 𝜋1(𝑋)? Well, not quite because 𝜋1 considers the loops up to homotopy. So, 𝜋1 would not be
the right space. Instead, we need to define some new notation.

Loop Space

The loop spaceΩ(𝑋) is the set of all loops.

Now, it does have a bit more structure than that. Specifically, it is a topological space under what’s called the compact-
open topology. Loosely, two functions are close if they don’t vary very much (a sketch of the rigorous definition is that
the open sets are generated by the functions who, at least on some compact set, belong to the same open neighborhood),
but we won’t get any deeper into that.

Well, how can we relateΩ to 𝜋1? They do seem to be not too far apart. (By the way, you will sometimes seeΩ𝑋 instead
ofΩ(𝑋) since mathematicians get lazy.)

Timothy“As bad as Aareyan is at drawing curly braces, topologists are worse at drawing parentheses.
Well, we could say that𝜋1(𝑋) is justΩ(𝑋)modulo the equivalence relation of homotopy. Even fancier, wemight write
𝜋1(𝑋) = 𝜋0(𝑋), where two loops are connected if there is a homotopy between them.

Well anyways, it turns out that looping, i.e., constructing the loop space, sort of lowers the dimension. Even though it
seems a lot more complicated, the act of looping lowers each homotopy group by a slot, so it is almost as if the dimension
as a whole is lowered.

Wait, if SUS raises the dimension and looping does the opposite, then is it possible that they combine to do something
special? It turns out that that looping and suspending are roughly complementary, but we’ll see a more formal statement
of that later.

By the way, another perspective for this is de-looping. Basically, it’s the real inverse of looping, so if𝑌 is homotopic to
Ω(𝑋), then we can say that𝑋 = 𝐵𝑌. Then, 𝑋 would be the de-looping of𝑌. This essentially lowers homotopy groups,
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and we’ll see that more later.

So now, we know how to describe 𝜋2 in terms of something that is sort of like 𝜋1. What about 𝜋𝑛+1 in terms of 𝜋𝑛?

It’s the same! We can think of 𝑆𝑛+1 as a loop of 𝑆𝑛 ’s, which tells us that 𝜋𝑛+1(𝑋) � 𝜋𝑛(Ω(𝑋)).

These relations are super cool! And, we use the fact that 𝑆𝑛+1 and 𝑆𝑛 are related. Specifically, that relation is SUSpension,
but we can define SUS for any topological space.

So, we can start by generalizing the homotopy groups. In particular, we can have any map to 𝑋 and use a shape different
from 𝑆𝑛 .

Homotopy Classes of Maps

For two topological spaces 𝑍 and 𝑋 , the homotopy class [𝑍, 𝑋] is the set of maps from 𝑍→ 𝑋 up to homotopy.

Is this a group? Remember that a group has an operation 𝑚 : 𝐺 × 𝐺 → 𝐺, an inverse −1 : 𝐺 → 𝐺, and an identity
𝑒 : ∗ → 𝐺, which may be unfamiliar notation and not everything, but we like to define things in terms of these maps.

Well, this is not a group in general, but 𝑆1 is both a group and a cogroup. Whenever you see co-, that just means to
reverse all the arrows. In particular, the inverse map is the same, and 𝑒 is also easy, but𝑚 has comultiplication (where
we go from 𝐺 to something called 𝐺 ∨ 𝐺). You need to check coassociativity, coinverses, and counits. That’s scary.

But anyways, this is where it goes back to theSUSpension. We know thatSUS(𝑆𝑛) is justSUS(𝑆𝑛+1), but themore general
case is that [SUS(𝑍), 𝑋] � [𝑍,Ω(𝑋)].

This relation is called adjunction, specifically the loop-SUSpension adjunction. This is sort of a fundamental relation,
and relates to something called the Eckmann-Hilton duality, but it is not even that hard to prove in analogy with what
we had before!

In fact, exploiting this result, we can show a very nice series of results. First, 𝜋𝑛(𝑆𝑚) � 𝜋𝑛+1(𝑆𝑛+1) when 𝑚 > 𝑛/2,
which is super cool (and that’s a consequence of the Freudenthal suspension theorem). Another way to state this is that
𝜋𝑛+𝑘(𝑆𝑛) is independent of 𝑛 when 𝑛 ≥ 𝑘 + 2, and that is called stabilization, which is a general principle in algebraic
topology.

Stable homotopy groups are crucial in understanding the general case and suggest that the structure of all homotopy
groups are very intricate.

This gets into things like spectra, which are sequences of spaces that satisfy some really cool properties. Things are wild
in lower dimensions, but we tend to find shelter in higher dimensions. Somehow, if we keep applying SUS, we get rid of
a lot of noise information and are just left with some fundamental infrogmation.

Here’s something scary that topologists talk about. A spectrum 𝕊 is an infinite collection of topological spaces that
only has stable behavior and no unstable behavior. That is, 𝕊 satisfies

𝜋𝑛(𝕊) = lim
𝑘→∞

(∏
𝑛+𝑘

𝑆𝑘

)
.

This is a limit not in terms of analysis, but just like a formal definition. But anyway, that’s the sphere spectrum. The
topologists say that the integers are a mistake, and we should work with the sphere spectrum instead.

But, at least it is somewhat helpful. For instance, we earlier said that SUSpension and looping are inverses in some sense.
Well, if we work in spectra, then they really are inverses. In particular, let’s look at the Eilenberg-MacLane spectrum. We
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can define 𝐾(𝐺, 𝑛) as some sort of class of topological spaces, and these play really nicely with SUSpension and looping.
Specifically, they sort of increment and decrement 1, respectively (under certain conditions). Further, this leads to the
Brown representation theorem.

Anonymous“That sounds scary.
Aareyan“So, you hear “brown” and “representation” in the same sentence and you feel scared?

Brown Representation Theorem

It turns out that the cohomology group 𝐻𝑛(𝑋, 𝐺) is isomorphic to [𝑋, 𝐾(𝐺, 𝑛)].

Remember, the superscript is for cohomologies. This is just one of the many places that cohomology pops up. Intuitively,
we have 𝐻𝑛(𝑆𝑚 , 𝐺), which is 𝐺 if 𝑛 = 𝑚 and 0 everywhere else. That leads to

[𝑆𝑚 , 𝐾(𝐺, 𝑛)] = 𝜋𝑚(𝐾(𝐺, 𝑛)) =
{
𝐺 𝑚 = 𝑛,

0 else.

Connor“This talk has been very successful in convincing people not to do topology.
The idea is that cohomology and homology aremuchmore general than topology, but topology is just where it first comes
up. Anyways, that’s so cool! We’ve seen how SUSpension and looping pop up in very many places and relate to more
abstract classes.

Anyways, that concludesMath Until We Die. Stick around for the photo!
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