There is a non-Connes embeddable Equivalence Relation

Aareyan Manzoor

a2manzoo@uwaterloo.ca

August 5, 2025

What is Connes Embedding I

Definition

A group Γ is **residually finite dimensional (RFD)** if for each $g \neq 1 \in \Gamma$ there exists a *-homomorphism $\phi_g : \Gamma \to U_{n_m}$ with $\phi_g(g) \neq 1$.

- Equivalently, there is an embedding $G \hookrightarrow \prod_n U_n$.
- Let $\Gamma = \langle a, b, c, d | b^a = b^2, c^b = c^2, d^c = d^2, a^d = a^2 \rangle$. All finite dimensional reps of Γ are trivial.

What is Connes Embedding II

- Replace *-homomorphism with approximate *-homomorphisms
- ullet an approximate *-homomorphism is a sequence $\phi_n:\Gamma o U_{k_n}$ with

$$\|\phi_n(gg')-\phi_n(g)\phi_n(g')\|_2\to 0\forall g,g'\in\Gamma.$$

- If approximate representations seperate points of G it is Connes embeddable
- This is a property of group von Neumann algebra L(G), and generalizes to tracial von Neumann algebras.

What is Connes Embedding III

- equivalently $M \hookrightarrow \prod_U M_n(\mathbb{C})$ or $M \hookrightarrow R^U$ trace preservingly.
- Can lift first order universal sentences from finite dimensional algebras.

Theorem (Ji-Natarajan-Vidick-Wright-Yuen'20)

There is a II_1 factor that is not Connes embeddable.

- Goal: Narrow down this II₁ factor.
- Are all $L(\Gamma)$ Connes embeddable?

Theorem (M'25)

There is a Property (T) p.m.p ergodic equivalence relation \mathcal{R} so that $L(\mathcal{R})$ is not Connes embeddable.

Reduction to MIP*=RE I

- Let M be a seperable tracial von Neumann algebra.
- There is a trace τ on $\mathcal{A} = C^*(\mathbb{F}_{\infty})$ with $\tau(\mathcal{A})'' = M$.
- M is connes embeddable precisely when τ is an amenable trace.
- for \mathbb{F}_{∞} this means $\tau = \lim \tau_n$ where τ_n have finite dimensional GNS.
- CEP reduces to if $T(\mathbb{F}_{\infty}) = AT(\mathbb{F}_{\infty})$.

Reduction to MIP*=RE II

- Let $A \subset B$ be convex sets.
- let I be a countable index set.
- $T(\mathfrak{G}): B \to [0,1]$ for $\mathfrak{G} \in I$ be affine maps.
- Let $\omega^{co}(\mathfrak{G}) = \sup_B T(\mathfrak{G}, b)$ and $\omega^*(\mathfrak{G}) = \sup_A T(\mathfrak{G}, a)$.
- There is a computably enumerable sequence $\omega_d^*(\mathfrak{G}) \nearrow \omega^*(\mathfrak{G})$.
- There is a computable enumerable sequence $\omega_d^{co}(\mathfrak{G}) \searrow \omega^{co}(\mathfrak{G})$
- Suppose $\omega^*(\mathfrak{G})$ is uncomputable.
- Then $A \neq B$.

Reduction to MIP*=RE III

Figure: credit: John Wright

Invariant random subgroups

- Let Γ be a discrete countable group.
- Let $sub(\Gamma) \subset \{0,1\}^{\Gamma}$ be the set of subgroups of Γ .
- A **Random Subgroup** is a Borel measure $H \in Prob(sub(\Gamma))$
- An **Invariant Random Subgroup(IRS)** is a random subgroup invariant under conjugation action of Γ on sub(Γ).

Examples of IRS

- **①** Let $N \triangleleft \Gamma$ be normal subgroup, then δ_N is an IRS.
- ② Let α be a p.m.p action of Γ on (X, μ) .
 - Define $\nu_{\alpha} \in \mathsf{IRS}(\Gamma)$ as

$$\nu_{\alpha}(A) = \mu(x \in X : \mathsf{Stab}(x) \in A)$$

for $A \subset \operatorname{sub}(\Gamma)$.

- Pick $x \in X$ randomly and look at Stab(x).
- If we consider Stab : $X \to \operatorname{sub}(\Gamma)$ then this is $\operatorname{Stab}_*(\mu)$.

Examples of IRS II

Theorem

All IRS of countable groups arise as above.

- **③** If $H \in IRS(\Gamma)$ arises from an action on a finite set, then we call it **finitely described**.
- ⓐ If $H \in IRS(\Gamma)$ is the weak* limit of finitely described IRS then we call it **co-sofic**.

proposition

Let $N \lhd \Gamma$ where Γ is a free group. Then δ_N is co-sofic $\iff \Gamma/N$ is sofic.

Aldous-Lyons

• Sofic groups are groups whose approximate homomorphisms into $S_n \subset U_n$ seperate points.

Theorem (Bowen-Chapman-Lubotzky-Vidick '24)

There is a non co-sofic IRS on any free group.

- $IRS(\Gamma) \neq IRS_{sof}(\Gamma)$
- They did this by reducing this first to subgroup tests and then to MIP*=RE, which was cumbersome and took 50 pages.
- Using operator algebraic method, I can directly do this in about 5 pages.

Quotienting by an IRS

- For $H \in IRS(\Gamma)$ define a trace $\tau_H(g) := \mathbb{P}(g \in H)$.
- If H arises from action of Γ on (X, μ) then $\tau_H(g) = \mu(gx = x)$.

proposition

Let $H = \delta_N$, then $\tau_H(\Gamma)'' = L(\Gamma/N)$.

Definition

For $H \in IRS(\Gamma)$, define $L(\Gamma/H) := \tau_H(\Gamma)''$.

proposition

If H comes from $\alpha : \Gamma \curvearrowright (X, \mu)$ then $L(\Gamma/H) \subset L(\mathcal{R}_{\alpha})$.

Non-Local Games

- Finite question set Q and answer set A.
- Verifier samples question pair (x, y) from $Q \times Q$ according to π .
- Alice and bob answer $(a, b) \in A \times A$.
- Verifier accepts if V(a, b|x, y) = 1.

Strategies

- A strategy or corelation is the conditional distribution $(p(a, b|x, y))_{a,b,x,y}$.
- ullet Strategies come from states on $C^*(\mathbb{F}_{Q,A})$ with

$$p(a,b|x,y) = \tau(e_x^a e_y^b).$$

- If the states are traces, these are quantum commuting strategies.
- If the states are f.d. traces these are quantum strategies. If the states are amenable traces then these are quantum approximate.

IRS strategies

Definition

An **IRS** strategy on $\mathfrak G$ is a strategy coming from a trace τ on

$$C^*(\mathbb{F}_{Q,\mathcal{A}})\otimes C^*(\mathbb{Z}/2\mathbb{Z})$$
 with

$$p(a,b|x,y) = \tau((1-J)e_x^a e_y^b)$$

A permutation strategy is an IRS strategy coming from a f.d. IRS.

Theorem (M'25)

There is a game $\mathfrak G$ with $\omega_{\mathsf{IRS}}(\mathfrak G)>\omega^*(\mathfrak G)$

Corollary

There is a non-amenable trace τ on a free group coming from an IRS.

The computability result

Theorem (Bowen, Chapman, Vidick '24)

For each Turing machine M there is computable map $M \mapsto \mathfrak{G}_M$ such that:

- If M halts than \mathfrak{G}_M has a perfect permutation strategy.
- If M does not halt then $\omega^*(\mathfrak{G}_M) < 1/2$.