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What is Connes Embedding I

Definition

A group Γ is residually finite dimensional (RFD) if for each g ̸= 1 ∈ Γ

there exists a ∗-homomorphism ϕg : Γ → Unm with ϕg (g) ̸= 1.

Equivalently, there is an embedding G ↪→
∏

n Un.

Let Γ = ⟨a, b, c , d |ba = b2, cb = c2, dc = d2, ad = a2⟩. All finite

dimensional reps of Γ are trivial.
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What is Connes Embedding II

Replace ∗-homomorphism with approximate ∗-homomorphisms

an approximate ∗-homomorphism is a sequence ϕn : Γ → Ukn with

∥∥ϕn(gg
′)− ϕn(g)ϕn(g

′)
∥∥
2
→ 0∀g , g ′ ∈ Γ.

If approximate representations seperate points of G it is Connes

embeddable

This is a property of group von Neumann algebra L(G ), and

generalizes to tracial von Neumann algebras.
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What is Connes Embedding III

equivalently M ↪→
∏

U Mn(C) or M ↪→ RU trace preservingly.

Can lift first order universal sentences from finite dimensional

algebras.

Theorem (Ji-Natarajan-Vidick-Wright-Yuen’20)

There is a II1 factor that is not Connes embeddable.

Goal: Narrow down this II1 factor.

Are all L(Γ) Connes embeddable?

Theorem (M’25)

There is a Property (T) p.m.p ergodic equivalence relation R so that L(R)

is not Connes embeddable.
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Reduction to MIP*=RE I

Let M be a seperable tracial von Neumann algebra.

There is a trace τ on A = C ∗(F∞) with τ(A)′′ = M.

M is connes embeddable precisely when τ is an amenable trace.

for F∞ this means τ = lim τn where τn have finite dimensional GNS.

CEP reduces to if T (F∞) = AT (F∞).
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Reduction to MIP*=RE II

Let A ⊂ B be convex sets.

let I be a countable index set.

T (G) : B → [0, 1] for G ∈ I be affine maps.

Let ωco(G) = supB T (G, b) and ω∗(G) = supA T (G, a).

There is a computably enumerable sequence ω∗
d(G) ↗ ω∗(G).

There is a computable enumerable sequence ωco
d (G) ↘ ωco(G)

Suppose ω∗(G) is uncomputable.

Then A ̸= B.
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Reduction to MIP*=RE III

Figure: credit: John Wright
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Invariant random subgroups

Let Γ be a discrete countable group.

Let sub(Γ) ⊂ {0, 1}Γ be the set of subgroups of Γ.

A Random Subgroup is a Borel measure H ∈ Prob(sub(Γ))

An Invariant Random Subgroup(IRS) is a random subgroup

invariant under conjugation action of Γ on sub(Γ).
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Examples of IRS

1 Let N ◁ Γ be normal subgroup, then δN is an IRS.

2 Let α be a p.m.p action of Γ on (X , µ).

Define να ∈ IRS(Γ) as

να(A) = µ(x ∈ X : Stab(x) ∈ A)

for A ⊂ sub(Γ).

Pick x ∈ X randomly and look at Stab(x).

If we consider Stab : X → sub(Γ) then this is Stab∗(µ).
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Examples of IRS II

Theorem

All IRS of countable groups arise as above.

3 If H ∈ IRS(Γ) arises from an action on a finite set, then we call it

finitely described.

4 If H ∈ IRS(Γ) is the weak∗ limit of finitely described IRS then we call

it co-sofic.

proposition

Let N ◁ Γ where Γ is a free group. Then δN is co-sofic ⇐⇒ Γ/N is sofic.
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Aldous-Lyons

Sofic groups are groups whose approximate homomorphisms into

Sn ⊂ Un seperate points.

Theorem (Bowen-Chapman-Lubotzky-Vidick ’24)

There is a non co-sofic IRS on any free group.

IRS(Γ) ̸= IRSsof (Γ)

They did this by reducing this first to subgroup tests and then to

MIP∗=RE, which was cumbersome and took 50 pages.

Using operator algebraic method, I can directly do this in about 5

pages.
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Quotienting by an IRS

For H ∈ IRS(Γ) define a trace τH(g) := P(g ∈ H).

If H arises from action of Γ on (X , µ) then τH(g) = µ(gx = x).

proposition

Let H = δN , then τH(Γ)
′′ = L(Γ/N).

Definition

For H ∈ IRS(Γ), define L(Γ/H) := τH(Γ)
′′.

proposition

If H comes from α : Γ ↷ (X , µ) then L(Γ/H) ⊂ L(Rα).
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Non-Local Games

Finite question set Q and answer set A.

Verifier samples question pair (x , y) from Q × Q according to π.

Alice and bob answer (a, b) ∈ A× A.

Verifier accepts if V (a, b|x , y) = 1.
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Strategies

A strategy or corelation is the conditional distribution

(p(a, b|x , y))a,b,x ,y .

Strategies come from states on C ∗(FQ,A) with

p(a, b|x , y) = τ(eax e
b
y ).

If the states are traces, these are quantum commuting strategies.

If the states are f.d. traces these are quantum strategies. If the

states are amenable traces then these are quantum approximate.
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IRS strategies

Definition

An IRS strategy on G is a strategy coming from a trace τ on

C ∗(FQ,A)⊗ C ∗(Z/2Z) with

p(a, b|x , y) = τ((1− J)eax e
b
y )

A permutation strategy is an IRS strategy coming from a f.d. IRS.

Theorem (M’25)

There is a game G with ωIRS(G) > ω∗(G)

Corollary

There is a non-amenable trace τ on a free group coming from an IRS.
Aareyan Manzoor (UWaterloo) There is a non-Connes embeddable Equivalence Relation August 5, 2025 15 / 16



The computability result

Theorem (Bowen, Chapman, Vidick ’24)

For each Turing machine M there is computable map M 7→ GM such that:

If M halts than GM has a perfect permutation strategy.

If M does not halt then ω∗(GM) < 1/2.
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