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1 Preliminaries

1.1 notation

We will use braket notation. So |ξ⟩ will denote a vector in some hilbert space H. ⟨ξ| will denote

its dual in H∗. I.e it is a functional:

⟨ξ| : H → C ⟨ξ|(|η⟩) := ⟨ξ | η⟩.

Here ⟨ξ | η⟩ denotes the inner product. We require the inner product be conjugate linear in the

first coordinate. We will write rank one operators like |η⟩⟨ξ|. This sends |ψ⟩ 7→ |η⟩⟨ξ |ψ⟩ as

notation suggest.

∥−∥op will denote the operator norm on B(H). ∥−∥1 will denote the trace norm, i.e ∥A∥1 =

Tr(|A|) on B(H) for finite dimensional Hilbert space H.

1.2 Quantum Information

Since I am writing this for mathemeticians, I will quickly write down the quantum information

framework.

A state is an element of B((C2)⊗n) that is positive and has trace 1. A pure state is a

state of rank one (these are also precisely the extreme points of the set). These are all of the

form |ψ⟩⟨ψ| for some unit vector |ψ⟩ ∈ (C2)⊗n. In this paper, when we say state we will mainly

mean pure states, and instead of writing the corresponding matrix we will usually write just

|ψ⟩ ∈ (C2)⊗n to denote it. A general state then can be written as a convex combination of pure

states, and will be thought of as a probabilistic mixture of the pure states.

We will label the standard basis of C2 as |0⟩ and |1⟩. For x ∈ Zn
2 , we will also define

|x⟩ := |x1⟩ ⊗ . . . |xn⟩ ∈ (C2)⊗n.

This is also an orthonormal basis of (C2)⊗n, and will be called the standard basis.

A quantum operation is a quantum channel Φ : B((C2)⊗n) → B((C2)⊗m). These are

completely positive trace preserving maps. Completely positive means that for each k,

Φk :Mk(B((C2)⊗n)) →Mk(B((C2)⊗m))

is positive, i.e sends positive elements to positive elements. Here Φk is defined as applying Φ to
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each entry of the matrix. An equivalent way to say this would be for each hilbert space H,

Φ⊗ IH : B((C2)⊗n)⊗B(H) → B((C2)⊗m)⊗B(H)

is positive. This makes sense, as we asked for states to be positive matrices, and adding extra

qubits should not suddenly make a quantum operation not give a state.

A quantum operation on a state can be estimated arbritarily well by quantum circuits[Wat08,

section III]. A quantum circuit consists of two parts, the first is a unitary U : (C2)⊗n → (C2)⊗n,

that will send a state ρ 7→ UρU∗. The second part is measurement. we can write an arbritary

state as:

|ψ⟩ =
∑
x∈Zn

2

αx|x⟩.

A measurement of |ψ⟩ in the standard basis will give x with probability |αx|2. We say that

the state has collapsed to |x⟩. One way to think about this is if Πx is the projection onto the

subspace generated by |x⟩, then the probability of measuring x is:

⟨ψ|Πx|ψ⟩ = Tr(Πx|ψ⟩⟨ψ|).

We can also do measurements on only a part of the state. I.e lets say we have a pure state

|ψ⟩ ∈ HA ⊗HB and let {|x⟩} be a orthonormal basis of HA. We can then write

|ψ⟩ =
∑
x

αx|x⟩ ⊗ |ψx⟩

for some states |ψx⟩ ∈ HB . Measuring register A will yield x with probability |αx|2, and the

state will collapse to |ψx⟩. Note that this is a probabilistic mixture of pure states, i.e a mixed

state. So the post measurement state is∑
x

|αx|2|ψx⟩⟨ψx|.

There is a nice way to write this using partial trace:

Definition 1.2.1. For finite dimensional Hilbert spaces HA,HB we define the partial trace

TrA : B(HA ⊗HB) → B(HB) TrA := Tr⊗ id .

Note that under this notion,

TrA(|ψ⟩⟨ψ|) =
∑
x

|αx|2|ψx⟩⟨ψx|.
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We can extend this to mixed states too. So for a state ρ ∈ B(HA ⊗HB), measuring register A

gives post measurement state TrA(ρ).

We will make use of the following lemma in the main body of this paper:

Lemma 1.2.2. Take a state ρ ∈ B(HA ⊗HB). Let MB ∈ B(HB). Then

Tr(ρIA ⊗MB) = Tr(TrA(ρ)MB).

One way to think about this is as follows, if MB is some projection, then Tr(ρIA ⊗MB) is

basically measuring the probability of some result on a measurment. The lemma is saying that

measuring ρ on only register B is the same is first measuring it in register A and then in register

B. I.e order of measurements do not matter.

Proof. Let {|a⟩} be a orthonormal basis of HA and {|b⟩} of HB . Things of the form |ab⟩⟨a′b′|

form a basis of B(HA ⊗HB). Now note

Tr(|ab⟩⟨a′b′|IA ⊗MB) = ⟨a′b′|IA ⊗MB |ab⟩ = ⟨a′ | a⟩⟨b′|MB |b⟩ = Tr(TrA(|ab⟩⟨a′b′|)MB).

By linearity this identity holds for everything.

We can restrict the quantum circuit above to only using 2-qubit unitaries[Bar+95]. I.e U =

UT . . . U1 where each Ui acts on only 2 qubits. By grouping together these 2 qubit unitaries that

do not interact, we can write U = U ′
d . . . U

′
1 where each U ′

j consists of non-interacting 2 qubit

unitaries. We say d is the depth of this circuit.

U1 U4

|ψ⟩
U3

U2

The figure above is a circuit acting on 4 qubit, of depth 3. U1 and U4 are acting on qubits 1, 2,

U2 on qubits 3, 4 and U3 on qubits 2, 3. The meters at the end indicate that we are measuring

out.

There is a nice characterization of quantum channels:
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Theorem 1.2.3 (Krauss representation). Let Φ : B(HA) → B(HB) be a a quantum channel.

Then there are maps Ki : HA → HB so that

Φ(X) =
∑
i

KiXK
∗
i

and
∑

iK
∗
iKi = 1A.

Based on the description of how to measure in the computational basis, its easy to see how

to do a projective measurement. I.e take projections on (C2)⊗n, say {Πi} with
∑

Πi = 1.

|ψ⟩ is defined measures to i with respect to the projective valued measurement (PVM) {Πi}

with probability ⟨ψ|Πi|ψ⟩. Basically, pick an appropriate orthonormal basis corresponding to

subspaces of Πi, then we can use unitaries that turn the standard |x⟩ basis into them. So

measuring |ψ⟩ modified with this unitary will replicate this.

By a theorem of Naimark, we can extend this. We define a PVM as a collection of positive

operators {Ai} with
∑
Ai = 1. |ψ⟩ is defined measures to i with respect to the positive operator

valued measurement (POVM) {Ai} with probability ⟨ψ|Ai|ψ⟩. This can be replicated efficiently

with circuits too due to Naimarks theorem, which says that these are unitary dilations of PVMs

on a larger hilbert space[Wat18].

We will use the following lemma’s in the main body:

Lemma 1.2.4 (Gentle measurement lemma). [Wat18] Let ρ ∈ B(H) be a state and let Π be a

projection on H. If ρ has high measure with Π, i.e

Tr(ρΠ) ≥ 1− ε,

then the post-measurement state of ρ if we measure Π:

ρ′ :=
ΠρΠ

Tr(ρΠ)

is close to ρ:

∥ρ− ρ′∥1 ≤ 2
√
ε.
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2 Introduction

2.1 Complexity classes

We will use the promise problem formulation of complexity classes. Let {0, 1}∗ denote the set of

all binary strings and |x| denote the length of a string x ∈ {0, 1}∗.

Definition 2.1.1. Take A = (Ayes, Ano) with disjoint Ayes, Ano ⊂ {0, 1}∗. We say this is a

promise problem. We call all strings in Ayes a yes instance, and everything in Ano a no

instance. We say A is a language if Ayes ∪Ano = {0, 1}∗.

Basically the idea is we are promising an input is in Ayes∪Ano, so our algorithm doesnt need

to worry about anything not in these. In the local Hamiltonian problem in the next section, we

are promising that the lowest eigenvalue is not in a given range of (a, b). A promise problem is

called a language if Ayes ∪Ano = {0, 1}∗.

We will be using the standard definition of a turing machine, given in [AB09]. Recall the

definition of the class NP:

Definition 2.1.2. A promise problem A = (Ayes, Ano) is said to be in NP if there is a polynomial

q and a polynomial time turing machine V so that:

1. If x ∈ Ayes, then there exists c ∈ {0, 1}p(|x|) so that V (x, c) = 1.

2. If x ∈ An0, for all c we have V (x, c) = 0.

These are problems whose solutions are easy to verify (but not-necessarily easy to solve). We

should think of it as a prover sends a proof c, and the verifier uses c to verify that x ∈ Ayes. NP

stands for non-deterministic polynomial time, as these can be modeled also by non-deterministic

Turing machines [AB09].

One should think of the prover as adversarial: the prover will always try to make the verifier

accept the proof. In a yes instance this is fine, but in a no instance, one has to take care to make

sure the prover isn’t lying.

Example 2.1.3. 3SAT is the language whose yes instance consists of 3CNF formulas with

satisfying assignments. A formula ϕ : {0, 1}n → {0, 1} is said to be 3CNF if it can be written

as:

ϕ(x1 . . . xn) =
∧
i≤m

(
x
ei1
i1

∨ xei2i2
∨ xei3i3

)
.
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where ej = ±1, and x+j = xj , x
−
j = ¬xj .

This problem is in NP. Indeed, if such a formula was satisfiable, then let (x1 . . . xn) be the

certificate, then the verifier can simply calculate ϕ on this input and verify that ϕ has a satisfying

assignment. If there was no satisfying assignment, then all certificates would evaluate to 0.

Actually this is in a sense the hardest NP problem. This is the Cook-Levin theorem 2.2.5.

To make a quantum version of this first we would want a notion of Quantum polynomial

time algorithm. One might be tempted to say a quantum polynomial algorithm is that which

can be done with polynomial size circuits. However, the issue is the circuit at n doesnt need to

be related to that of n− 1, and so this is a huge class. In particular even classically, the class of

problems solvable with polynomial size circuits has undecidable problems [AB09, sec 6.1]. The

trick to fix this is to force some uniformity on the circuit:

Definition 2.1.4. A promise problem A = (Ayes, Ano) is said to be in BQP (Bounded-error

quantum polynomial time) if there is a polynomial time algorithim C that on input x outputs a

description of a quantum circuit Cx and:

1. If x ∈ Ayes, then running Cx with all qubits initialized to |0⟩ and measuring the first qubit

gives 1 with probability ≥ 2/3.

2. If x ∈ Ano, then running Cx with all qubits initialized to |0⟩ and measuring the first qubit

gives 1 with probability ≤ 1/3.

Note this is actually a quantum version of BPP, the class of problems that can be solved

with high probability by a polynomial time random turing machine. This is because there is an

inherent probabilistic measure to quantum: measuring a qubit will give for example 0 with some

probability rather than always give 0 or 1.

We can define the quantum version of NP, or really of MA(Merlin-Arthur, Merlin sends proofs

and Arthur verifies them), the probabilistic version of NP:

Definition 2.1.5. A promise problem A = (Ayes, Ano) is said to be in QMA(c, s)(Quantum

Merlin Arthur) if there is a polynomial q and a polynomial time turing machine that on input x

gives a description of the quantum circuit Cx so that:

1. If x ∈ Ayes, then there exists |ξ⟩ ∈ (C2)⊗q(|x|) so that Cx(|0⟩⊗n ⊗ |ξ⟩) measures to 1 in the

first qubit with probability ≥ c(|x|)

2. If x ∈ Ano, then for each state |ξ⟩, Cx(|0⟩⊗n ⊗ |ξ⟩) measures to 1 in the first qubit with

probability ≤ s(|x|).
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We will denote QMA = QMA(2/3, 1/3).

Remark 2.1.6. Note in the definitions of QMA we asked for a pure state as proof. We could

have equally well asked for a mixed state ρ ∈ B((C2)⊗q(|x|)), and then the acceptence probability

would be Tr(Π1Cx(|0⟩⟨0| ⊗ ρ)C∗
x) where Π1 is the projection onto the subspace generated by

computational basis having 1 in the first qubit.

Note that we can write ρ as a convex combination of pure states:

ρ =
∑
i

pi|ϕi⟩⟨ϕi|.

Then note that

Tr(Π1Cx(|0⟩⟨0| ⊗ ρ)C∗
x) =

∑
i

pi Tr(Π1Cx(|0⟩⟨0| ⊗ |ϕi⟩⟨ϕi|)C∗
x).

I.e the probability of accepting on ρ is a convex combination of accepting on some pure states.

So for each ρ, there is a pure state that the prover can send that makes the prover accept with

higher or the same probability as ρ. Since the goal of the prover is to maximize this acceptance

probability, pure states are enough.

We will need the following later:

Proposition 2.1.7.

QMA(c, s) = QMA(2− poly, 1− 2− poly)

for any c− s ≥ 1/ poly, 0 < s < c < 1.

Proof. Clearly QMA(c, s) ⊃ QMA(2− poly, 1− 2− poly). We will show the other inclusion.

Let A = (Ayes, Ano) be a promise problem in QMA(c, s) with c − s ≥ 1/ poly. r will be a

polynomial to be fixed later. Suppose an instance x ∈ {0, 1}n of A is verified with the circuit

Cx and with proofs of size p(n) for some polynomial p. We will look at r(n) copies of the circuit

Cx, i.e C⊗r(n)
x .

The prover will send over a state |Ξ⟩ ∈ (C2)⊗r(n)p(n) and the circuit C⊗r(n)
x will have |Ξ⟩

distributed among the proof parts of each block. Measure the first qubit of each block, if the

number of ones is greater than S than accept, otherwise reject. S will be chosen later.

For x ∈ Ayes, if |ξ⟩ was the proof of the QMA(c, s) protocol, then let |Ξ⟩ = |ξ⟩⊗r(n). Note that

each block measures to 1 with probability ≥ s(n). So the number of 1s is a binomial distribution,
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and by a tail estimate[BLB04], the probability of getting less than S 1s is:

≤ exp

(
−2r(n)

(
c(n)− S

r(n)

)2
)
.

For a x ∈ Ano, first suppose the prover sends a state with no entanglement between the

different blocks. That is:

|Ξ⟩ = |ξ1⟩ ⊗ · · · ⊗ |ξr(n)⟩.

Note that each block measures to 1 with probability at most c, so the probability of getting more

than S 1s is

≤ exp

(
−2r(n)

(
s(n)− S

r(n)

)2
)
.

The issue is the prover can lie and send an entangled state instead. The idea here is to do

the circuit sequentially:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx

Cx

|Ξ⟩ Cx

Cx

The idea is that we measure on block 1 first, get that this returns 1 with probability atmost

s(n). Then we do block 2 but now the input is the post measurement state of |Ξ⟩, and get a

probability of s(n) again and so on. Formally:

Let Π be the projection onto the subspace generated by computational basis having 1 in the

first qubit. We will be compressing any ancilla qubits and the r(n) copies |0⟩n for notations

sake. Block i will be register i for 1 ≤ i ≤ r(n). The result of the first measurement is 1 with

probability:

Tr(C∗
xΠCx ⊗ I2,3...r(n)|Ξ⟩⟨Ξ|) = Tr(C∗

xΠCx Tr2,3...r(n)(|Ξ⟩⟨Ξ|)) ≤ s(n).

Here we used lemma 1.2.2, that if we are measuring only on the first block we can ignore the rest

of the block. Ofc Note the second trace is the probability of measuring to 1 if Tr2,3...r(n)(|Ξ⟩⟨Ξ|)

was the proof state plugged into the circuit, so by soundness it has to be ≤ s(n).
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Now the post measurement state is simply ρ2 = Tr1(|Ξ⟩⟨Ξ|), i.e tracing out the first block.

We now do the same thing and get the probability of measuring 1 on the second block is

Tr(C∗
xΠCx ⊗ I3...r(n)ρ2) = Tr(C∗

xΠCx Tr3...r(n)(ρ2) ≤ s(n).

Inductively, we get each block measures to 1 on their first qubit with probability ≤ s(n). The

Binomial tail bound gives that the probability of getting more than S 1s is

≤ exp

(
−2r(n)

(
s(n)− S

r(n)

)2
)
.

Finally, if we choose 2S = r(n)(c(n) + s(n)) and r(n)(c(n) − s(n))2 ≥ 2k(n), then we get a

new completeness and soundness of:

c′(n) = 1− e−k(n), s′(n) = e−k(n).

This gives the result

Note that the completeness-soundness gap being inverse polynomial is important, as that is

what allows the number of trails to be polynomial. If the gap was exponentially small, then this

class would just be PSPACE[FL16]. Also note that we required 0 < s < c < 1. Indeed, it is open

wether QMA(1), QMA with perfect completeness, is QMA[Aar08].

Basically, the prover can send quantum proves and the verifier can do quantum computations

on it. However, we could also easily limit this and ask the prover only send classical proofs:

Definition 2.1.8. A promise problem A = (Ayes, Ano) is said to be in QCMA if there is a

polynomial q and a polynomial time turing machine that on input x gives a description of the

quantum circuit Cx so that:

1. If x ∈ Ayes, then there exists c ∈ {0, 1}q(x) so that Cx(|0⟩⊗n ⊗ |c⟩) measures to 1 in the

first qubit with probability ≥ 2/3

2. If x ∈ Ano, then for each string c, Cx(|0⟩⊗n ⊗ |c⟩) measures to 1 in the first qubit with

probability ≤ 1/3.

It is widely believed that the inclusions are strict: NP ⊊ QCMA ⊊ QMA. There is an oracle

seperation between the latter two as some evidence [NN24].
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2.2 The PCP Theorem

The PCP (probabilistically checkable proof) theorem says that for any problem in NP, the proofs

can be encoded in such a way that the verifier only needs to look at constantly many positions

to decide with high probability if the proof is correct or not.

We will need a notion of a probabilistic turing machine, which is given in [AB09] once again.

It will be a machine with two tapes, one to work one and one with a random string. It uses

r(n) bits of randomness if on input of size n it reads atmost r(n) of the random tape. If on

input x, R(n) of the 2r(n) random strings made it accept, then we say it accepts with probability

R(n)/2r(n).

Definition 2.2.1. We say a problem A = (Ayes, Ano) is in PCP[r(n), q(n)] if it has a randomized

polynomial time verifier and a polynomial p so that:

1. If x ∈ Ayes, then there is a c ∈ {0, 1}p(|x|) so that V uses r(|x|) bits of randomness and

reads q(|x|) bits of the proof c and has P (V (x, c) = 1) ≥ 2/3.

2. If x ∈ Ayes, then for all strings c, V uses r(|x|) bits of randomness and reads q(|x|) bits of

the proof c and has P (V (x, c) = 1) ≤ 1/3.

Note that V can do whatever it wants to x, but only make q(|x|) queries to the proof. The

celebrated PCP theorem asserts:

Theorem 2.2.2 (PCP theorem, Proof checking variant). NP = PCP[log(n), 1].

It turns out that a more useful way to formulate this into a quantum statement is by looking

at constraint satisfiability problems:

Definition 2.2.3. A (m(n), q(n))−CSP is a family C = (Cn)n∈N. Each Cn consists of m con-

straints, i.e functions {0, 1}n −→ {0, 1}, that only acts on q bits. We define the value of the CSP

as:

ω(C) = max
x∈{0,1}n

#{C ∈ Cn : C(x) = 1}
m

.

An important way to rank problems in a complexity class is by asking if one reduces to the

other. We will use the following notion:

Definition 2.2.4. Let A = (Ayes, Ano) and B = (Byes, Bno) be promise problems. We say A

polynomial-time reduces to B if:

1. There is a function f : {0, 1}∗ → {0, 1}∗ so that f(Ayes) ⊂ Byes and f(Ano) ⊂ Ano,

12
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2. There is a polynomial time turing machine that on input x ∈ {0, 1}∗ computes f(x).

We say a problem A is (polynomial-time) complete for a complexity class C if every other

problem in C polynomial-time reduces to A.

It is well known that 3-SAT is NP-complete [AB09]. Note being satisfiable or not satisfiabile

correspoonds to ω = 1 or ω ≤ 1− 1/m. This means:

Theorem 2.2.5 (Cook-Levin). For a (m = poly(n), 3)-CSP C, the problem of determining if

ω(C) = 1 or ω(C) ≤ 1− 1

m

is NP-hard.

Turns out we can weaken this. The a priori problem of deciding between ω = 1 or ω < 1/2

should be just as hard!

Theorem 2.2.6 (PCP theorem, CSP variant). [Aro+98] The problem of deciding for a (poly(n), O(1))-

CSP C weather

ω(C) = 1 or ω(C) ≤ 1

2

is NP-hard.

It is simple enough to see the connection between the two versions of PCP:

Proposition 2.2.7. The CSP Variant and the Proof checking variant of the PCP theorem are

equivalent.

Proof. ( ⇐= ). Let A = (Ayes, Ano) be a problem in NP.Let x be an instance. Let V be a PCP

verifier of it that has r(|x|) = O(log(n)) bits of randomness and a proof of size p(|x|) = poly(n)

from which it reads q(|x|) = O(1) bits. So the randomized turing machine takes as input a

random string R ∈ {0, 1}r(|x|), x, and a proof c. It selects q(|x|) bits of c depending on x and

R. So define a constraint CR : {0, 1}2|c| −→ {0, 1} that just does CR(y) = V (R, x, y). Note this

acts only on q(|x|) bits of y. Note also that there are 2|r(x)| = poly(n) constraints. Now:

If x ∈ Ayes, then by the conditions of the PCP class, there is some proof that satisfies all the

constraints. I.e ω = 1.

If x ∈ Ano, then since atmost half the random strings will have the verifier return 1, atmost

half the constraints are satisfied for all proofs. So ω ≤ 1/2.

So for (poly(n), O(1))-CSPs, it is NP hard tecide between ω = 1 and ω ≤ 1/2.

( =⇒ ) Just do the previous construction in reverse.
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Note the CSP variant of the PCP is ripe for generalizing to quantum, as there are quantum

CSPs. These are the Local Hamiltonian problems of the next section. We shall see this in the

next section.

2.3 Quantum Cook Levin

Definition 2.3.1. Let H : (C2)⊗n −→ (C2)⊗n be a linear map, with H =
∑

i≤m Hi. If each

Hi is self adjoint and acts as identity on all but k of the qubits, then we say H is a k-local

Hamiltonian.

We will always assume each 0 ≤ Hi ≤ 1.

The idea is that it is easy to encode H, only m 2k×2k matrices and the position of the qubits

describe H. This is opposed to a general matrix which would be a 2n × 2n matrix. If we take

k = O(1) and let m = poly(n), then we can encode H in polynomially many bits as opposed to

exponentially many.

Note we could choose to describe this on qudits instead, i.e on local Hamoltonians on C⊗n.

For the purposes of this paper, this will not make a difference so we will just use qubits.

Definition 2.3.2. The k − LHa,b is a promise problem with:

• INPUT: a k-local Hamiltonian H on n qubits.

• YES INSTANCE: There is a unit vector |ξ⟩ ∈ (C2)⊗n with ⟨ξ|H|ξ⟩ ≤ a(n).

• NO INSTANCE: For all unit vectors |ξ⟩ ∈ (C2)⊗n we have ⟨ξ|H|ξ⟩ > b(n).

Basically the question is: given a Hamiltonian, how hard is it to find its ground state energy

(smallest eigenvalue)? From a physical perspective, this is a very sensible question. From a

complexity perspective, this is the quantum version of Satisfiability:

Example 2.3.3. Take an instance of 3SAT:

ϕ(x1 . . . xn) =
∧
i≤m

(
x
ei1
i1

∨ xei2i2
∨ xei3i3

)
.

We will construct a Hamiltonian problem equivalent to this. I.e we will construct a 3-local

Hamiltonian on (C2)⊗n who has a small eigenvalue iff ϕ is satisfiable. For each clause of ϕ,

define Hi to act on qubit i1, i2, i3. If the clause contains a xj , then it will act on qubit j by

|0⟩⟨0|. If it has ¬xj , then it will act on qubit j by |1⟩⟨1|. Note that the eigenstates of each Hi

are precisely the computational basis |x⟩, x ∈ {0, 1}n. Moreover, by construction, Hi will have

14
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eigenvalue 0 on |x⟩ precisely when x satisfies the clause; otherwise the eigenvalue is 1. So the

sum H =
∑

Hi has a 0 eigenvalue precisely if a single x satisfies all the clauses, i.e ϕ. Basically,

3SAT polynomial time reduces to 3− LH0,1.

Maybe the most classical result of complexity theory is the cook-levin theorem, which says

3SAT is complete for NP . There is a quantum version of this:

Theorem 2.3.4. [KKR05] 2− LH2−n,2−n+1/ poly(n) is QMA complete.

We will prove a weaker version of this.The Quantum PCP conjecture states that O(1) −

LHa,b+γm complete for QMA, which is a priori an easier problem. Basically the question is: is

it as hard to estimate the ground state energy of a Hamiltonian to constant precision as it is to

do it to a inverse polynomial precision?

We will formulate The Quantum PCP conjecture first as a CSP variant. Along the lines

of what we previously did we will show the quantum CSPs, i.e local Hamiltonian problem, are

QMA-complete. Then by changing the parameters we can state the Quantum PCP conjecture.

First we will show:

Theorem 2.3.5. O(1)− LHa,b with b− a = 1/ poly(n) is in QMA.

Proof. Let H =
∑

i≤m Hi be an instance of the problem acting on n-qubits, i.e a k = O(1)

local Hamiltonian and we want to find its ground state to inverse polynomial precision. We can

normalize so 0 ≤ Hi ≤ 1.

If the prover sends over state |ξ⟩, then the verifier will first uniformly randomly pick some

Hi and then do a POVM measurement of |ξ⟩ with {Hi, 1−Hi}. If it measures to 1−Hi, then

the verifier will accept. Otherwise, the verifier will reject.

If Hi was chosen, the probability of measuring 1−Hi is 1−⟨ξ|Hi|ξ⟩. So the total probability

will be
1

m

m∑
i=1

(1− ⟨ξ|Hi|ξ⟩) = 1− 1

m
⟨ξ|H|ξ⟩.

If x ∈ Ayes, then there is a state |ξ⟩ that the prover can send with ⟨ξ|H|ξ⟩ ≤ a. So the

probability of accepting is ≥ 1− a/m.

If x ∈ Ano, then all states |ξ⟩ have ⟨ξ|H|ξ⟩ ≥ b. So the probability of accepting is always

≤ 1− b/m.

The completeness soundness gap is (b− a)/m ≥ 1/poly, and by 2.1.7 it is in QMA.

Note that the gap being inverse polynomial was important here: it is what allowed the

completeness-soundness gap of the QMA protocol to be big enough.

15
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We will convert the verifier of any QMA problem into a Hamiltonian. This idea is originally

due to Feynmen[KSV03], and we will essentially use that except with a more efficient proof due

to [KKR05]. First, we will need a technical lemma:

Lemma 2.3.6. Let H = H1+H2 act on a Finite dimensional hilbert space H = S⊕S⊥. Suppose

H2 has null space S and on S⊥ its eigenvalues are atleast J > 2∥H1∥op. Then:

λ(H1|S)−
∥H1∥2op

J − 2∥H1∥op
≤ λ(H) ≤ λ(H1|S).

Here λ(A) denotes the lowest eigenvalue of A. In particular, choosing J ≥ 8∥H1∥2op + 2∥H1∥

gives

λ(H) ≥ λ(H1|S)−
1

8
.

Proof. Let |η⟩ ∈ S be a ground state of H1|S . Note H2|η⟩ = 0. So

⟨η|H|η⟩ = λ(H1|S).

Now let |v⟩ be an arbitrary unit vector of H, and decompose it as α1|v1⟩+ α2|v2⟩ according

to S ⊕ S⊥, and suppose α1, α2 are positive reals. Now a simple computation gives

⟨v|H|v⟩ = ⟨v|H1|v⟩+ α2
2⟨v2|H2|v2⟩

≥ ⟨v|H1|v⟩+ Jα2
2

= (1− α2
2)⟨v1|H1|v1⟩+ 2α1α2ℜ(⟨V2|H1|v1⟩) + α2

2⟨V2|H1|v2⟩+ Jα2
2

≥ ⟨v1|H1|v1⟩ −Kα2
2 − 2Kα2 −Kα2

2 + Jα2
2

≥ λ(H1|S) + (J − 2K)α2
2 − 2Kα2.

Plugging in α2 = K/(J − 2k) gives the desired lower bound.

This will allow us to combine different hamiltonians and still have a good estimate for the

ground-state energy. We now prove:

Theorem 2.3.7 (quantum Cook-Levin). The problem 5 − LHa,b with a(n) = 2− poly(n) and

b(n) = 1/ poly(n) is QMA-complete under polynomial time reductions.

Setup: Let A = (Ayes, Ano) be a QMA problem. For each instance of the problem x, we

want to create a local Hamiltonian Hx whose ground state energy is low precisely when x ∈ Ayes.

By the definition of QMA, there is a uniform family of quantum circuits Cx and a polynomial

p so that:
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• If x ∈ Ayes, then there is a state |ξ⟩ ∈ (C2)⊗p(n) so that Cx(|ξ⟩) outputs 1 with probability

≥ 1− ε.

• If x ∈ Ano, then for each state |ξ⟩, Cx(|ξ⟩) outputs 1 with probability ≤ ε.

Lets say Cx = UT . . . U1 with Ui 2-local, and it takes as input N = p(n) + n+m qubits. I.e, the

input is the p(n) qubits corresponding to |ξ⟩, the n qubits corresponding to x (all initialized to

|0⟩), and m qubits for ancilla (also initialized to 0. The output of Cx is the result of measuring

the first qubit after applying all the Ui.

. . .

. . .

. . .

. . .

U1 Ud

|ξ⟩
U2

|0⟩⊗m

U3

|0⟩⊗n

Constructing the Hamiltonian: We will define Hx ∈ B((C2)⊗n)⊗ CT+1 to be:

Hx := Hout + JinHin + JpropHprop

Hout := (T + 1)|0⟩⟨0|1 ⊗ |T ⟩⟨T |

Hin :=

( N∑
i=p(n)+1

|1⟩⟨1|i
)
⊗ |0⟩⟨0|

Hprop :=

T∑
j=1

(I ⊗ (|j⟩⟨j|+ |j − 1⟩⟨j − 1|)− Uj ⊗ |j⟩⟨j − 1| − U∗
j ⊗ |j − 1⟩⟨j|)

The CT+1 is a counter. So |ψ⟩ ⊗ |i⟩ should be thought of as “the circuit is at state |ψ⟩ after

applying i of the unitaries”.

Essentially, think about each of these terms penalizing unwanted behaviour. For example,

⟨ϕ|Hout|ϕ⟩ is basically measuring the probability of getting 0 on qubit 1 on the time T component

of |ψ⟩. We want to punish if we don’t get 1 with high probability as the output of the final

measurement, and this is exactly what the Hout term does.

The Hin term penalizes if any of the x qubits or the ancilla qubits are not initialized to |0⟩

at step 0.

The individual terms of Hprop is essentially selecting out the step j and j−1 terms. It forces

17
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that the state at j be the same as Uj applied to the one at j − 1. Everytime this is not the case,

the energy increases. I.e if

|ψ⟩ =
T∑

t=o

|ψt⟩ ⊗ |t⟩,

then Hprop|Ψ⟩ = 0 ⇐⇒ Ut+1|ψt⟩ = |ψt+1⟩ for each 0 ≤ t < T . This is easily seen by induction.

Completeness: Suppose x ∈ Ayes, and let |ξ⟩ be a certificate for it. Let

|η⟩ = 1√
T + 1

T∑
j=0

Uj . . . U1|ξ, 0⟩ ⊗ |j⟩,

where |ξ, 0⟩ has |ξ⟩ on the first p(n) qubits and 0 for the x qubits and the ancilla qubits. By

what was discussed in the setup, it is clear that

⟨η|Hin|η⟩ = ⟨η|Hprop|η⟩ = 0

and

⟨η|Hout|η⟩ =
Pr(Cx(|ξ⟩) = 0)

T + 1
≤ ε

T + 1
.

So the energy of this state is ≤ ε

T + 1
.

Soundness: We will assume x is a no instance.

We will write A1 = JinHin +Hout and A2 = JpropHprop. Let

Sprop := ker(Hprop).

This consists of states for which the circuit propogateed properly as discussed earlier. The idea

is now to write (C2)⊗N = Sprop ⊕ S⊥
prop, and then apply lemma 2.3.6. Note that A2 disappears

on Sprop by definition, so we just want a bound for its smallest eigenvalue on S⊥
prop.

Let W =
∑T

j=0 Uj . . . U1⊗|j⟩⟨j|, this is easily seen to be unitary. A simple computation gives

W ∗HpropW = I ⊗ E, E =


1/2 −1/2 0 0 . . .

−1/2 1 −1/2 0 . . .

0 −1/2 1 −1/2 . . .

. . . . . . . . . . . . . . .

 .

The eigenvectors/values of E are precisely:

|ψk⟩ =
T∑

j=0

cos
( πk

T + 1

(
j +

1

2

))
|j⟩, λk = 1− cos

( πk

T + 1

)

18
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so

λ1(Hprop) = λ1(E) = 1− cos
( πk

T + 1

)
≥ c

(T + 1)2
.

Here λ1 is the second smallest eigenvalue, so smallest eigenvalue of Hprop|S⊥
prop

also.

Note that

∥A1∥op ≤ ∥Hout∥op + Jin∥Hin∥op ≤ T + 1 + JinN.

So by picking cJprop/T 2 ≥ 8(T + 1 + JinN)2 + 2(T + 1 + JinN), lemma 2.3.6 gives that

λ(H) ≥ λ(A1|Sprop
)− 1

8
.

Now we will apply the lemma again, but this time on A1|Sprop
. Let

Sin = Sprop ∩ ker(Hin).

I.e states in which the circuit propogates correctly and the qubits are initialized properly. This

is spanned by elements of the form

T∑
t=0

Ut . . . U0|ξ, 0⟩ ⊗ |j⟩,

where the non-proof qubits are initialized to 0. Now by breaking up Sprop = Sin ⊕ S⊥
in, we can

use the lemma.

Note that Hin restricted to S⊥
in will pick up atleast one penalty term because atleast one of the

qubits is initialized to 1. So JinHin has eigenvalue atleast Jin/(T +1). Note also ∥Hout|Sprop∥ ≤

T + 1. So once again choosing

Jin/(T + 1) ≥ 8(T + 1)2 + 2(T + 1)

gives

λ(A1|Sprop
) ≥ λ(Hout|Sin

)− 1/8.

Finally note that for

|Ψ⟩ = 1

T + 1

T∑
t=0

Ut . . . U0|ξ, 0⟩ ⊗ |j⟩ ∈ Sin,

we get that

⟨Ψ|Hout|Ψ⟩ = ⟨ξ, 0|C∗
x⟨1|1|1⟩1CX |ξ, 0⟩ = Pr(CX measures to 1 on qubit 1) ≥ 1− ε.
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And now by combining the two bounds, we get

λ(H) ≥ 3

4
− ε.

Locality: Note that the Hamiltonian constructed is not acting on just qubits, its also acting

on this clock space that is a counter. But this is fixed easily, we define an embedding:

ι : (C2)⊗N ⊗ CT+1 ↪→ (C2)⊗N ⊗ (C2)⊗T

where we embedd |t⟩ 7→ |1 . . . 1︸ ︷︷ ︸
t times

00 . . . 0⟩.

We can then extend Hx on this space by setting it to 0 whenever something has a component

in the last T qubit not arising from a |t⟩. On a yes instance, we can still find a state with low

energy, i.e image of the completeness state we found before under this embedding. The issue is

the soundness, indeed by how we defined it, anything orthogonal to the images of the |t⟩ will

give 0 energy.

The fix to this is really easy, define:

Hclock :=

T−1∑
t=0

|01⟩⟨01|t,t+1.

This checks if anything in the last T qubits isnt coming from a |t⟩ (those terms’ 0s comes after

the 1s). So define

H′
x = Hx +Hclock,

and note the same state gives this the same low energy in the yes instance. In the no instance,

the lemma 2.3.6 gives that

λ(H′
x) ≥ λ(Hx|(C2)⊗N⊗CT+1)− 1

8
≥ 5

8
− ε.

Note the locality is atmost 5 now. Also note that we picked Jin = Θ(T 2) and so Jprop =

Θ(T 4). So after normalizing, the promise gap is

Θ(1/T 4)

(
5

8
− ε− ε

T + 1

)
and since we can choose ε to be exponentially small, this is Θ(1/T 4).

2.4 Quantum PCP

We can now state the conjecture:
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Conjecture 2.4.1. O(1) − LHa,b with b − a = γm where m is the number of constraints and

γ = O(1) is QMA-complete.

All known proofs of Hamiltonian families being complete are built upon in one way or the

other the 5-local Hamiltonian being complete as in the previous theorem. That theorem can only

ever give inverse polynomial gaps. Furtheremore, the proofs of classical PCP (like considering

constraints on expanders) are known not to continue to the Quantum case. We will show the

best known partial result in this survey, the NLTS theorem.
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3 Quantum Error Correcting Codes

3.1 Classical error correcting codes

We will start with a simple question. Lets say Alice wants to send a message to Bob, and that

there is a chance for one of the bits of this message to flip due to error. Can they recover the

original data if such an error occurs? The answer is yes, simply take the map

Z2 −→ Z3
2 x 7→ (x, x, x)

and now if only one bit flips, we can easily just look at the majority and decide what x was.

This introduces the idea of an Error correcting code. We will in particular be looking at

linear codes, which are as follows. We will encode k bits of data into n bits by a linear inclusion

G : Zk
2 ↪→ Zn

2 .

We will think of G as a k × n matrix acting on a row 1 × k vector of Zk
2 on the right. We call

the subspace C := G(Zk
2) the codespace. We say H is a parity check matrix for C if GHT = 0.

I.e, a word x is in the codespace C iff Hx = 0. The previous example of the repetition code was

a linear code, with

H =

1 1 0

0 1 1

 .
Indeed, a vector (x, y, z) in Z3

2 has H(x, , y, z) = (x + y, y + z). This is zero precisely when

x = y = z.

For c ∈ Zn
2 , define |c| the hamming weight to be the number of 1s in c. We say the linear

code C has distance

d := min
c∈C−{0}

|c|.

Basically, the code can detect upto d − 1 errors. Imagine if d − 1 bits were flipped from code

word c to make c′. Then c′ − c has weight d − 1, and so is not in the codespace. So one could

check against the parity matrix hence, that c′ ̸∈ C and conclude an error must have occurred.

If only ≤ (d− 1)/2 errors occurred, then the error is correctable. Indeed, to correct such an

error on c′, one just needs to find c ∈ C such that |c− c′| ≤ (d− 1)/2. Basically the idea is, since

the distance between any two codewords is atleast d, balls of radius (d− 1)/2 around codewords

are all disjoint. So we can find a unique codeword which is within (d − 1)/2 hamming distance

of c′.
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If e is an error on some codeword c ∈ C, then we can detect it by applying H:

H(c+ e) = He.

Since for any two distinct errors e, e′ of weight less than (d − 1)/2, e + e′ has weight less than

d, we have e+ e′ ̸∈ C = ker(H). In particular, He ̸= He′. So applying H uniquely identifies the

error, and we call He the Syndrome of the error e.

So gathering all of these:

Definition 3.1.1. A classical linear code is a subspace C ⊂ Zn
2 . We say H is a parity check for

C if C = ker(H). If it has distance d and dimension k, we say this is a [n, k, d] code.

Example 3.1.2. The Hamming Code: Take the parity check matrix:

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 0 1 1 0

 .
The code is ker(H) ⊂ Z7

2. It’s clear a codeword must have atleast 3 1s, and 1110000 is a codeword.

So this code can correct any 1 bit-flip error. So this is a [7, 4, 3] code. An easy computation

shows that if ei is the bit flip error on bit i, then Hei is i in binary.

3.2 The Shor Code

Correcting Quantum errors is much harder than classical ones. For one, the replication code will

not work. Indeed, there is no unitary from (C2)⊗n −→ (C2)⊗3n that sends all states |ψ⟩ 7→ |ψ⟩⊗3

by the no cloning theorem. And even if this were the case, another hard thing would be measuring.

Measuring a qubit will destroy its state, so even if an error is detected it cannot be fixed as the

state has collapsed.

Just like linear codes embedded k bits linearly into n bits, a quantum code will do the same

for qubits. I.e a quantum code is an isometry

U : (C2)⊗k ↪→ (C2)⊗n.

To fix the issue of measurement collapsing states, we will add ancillary qubits, say |0⟩⊗ Syn. The

idea is that we will modify these depending on the original state |ψ⟩, and errors on that will

modify what we expect upon measuring these ancillary qubits. The measurement we will call

the syndrome of the error. This will uniquely identify the error and hence we can correct the
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error.

To see this in action, let our map be:

α|0⟩+ β|1⟩ 7→ (α|000⟩+ β|111⟩)|00⟩.

Indeed this is a isometry from (C2)⊗1 −→ (C2)⊗3⊗ (C2)⊗2 and it will be able to correct bit flips.

To see this, apply the map |abc⟩|00⟩ 7→ |abc⟩|a+ b⟩|b+ c⟩, and measure the last 2 qubits.

|ψ⟩

|0⟩

|0⟩

The last two qubits are the ancillary qubits, and their measurement will be the syndrome. It is

00 unless a bit was flipped, 10 if first bit was flipped, 01 if 3rd bit was flipped and 11 if second

bit was flipped. We can fix this easily hence.

The issue? we are in quantum world, so a lot more than bitflips can happen. A phase flip

(α|000⟩ + β|111⟩)|00⟩ 7→ (α|000⟩ − β|111⟩)|00⟩ is undetectable. Infact, any one qubit operator

can be considered as a possible error. An idea to fix a phase flip would be to write:

α|0⟩+ β|1⟩ 7→ α
( |0⟩+ |1⟩√

2

)⊗3

+ β
( |0⟩ − |1⟩√

2

)⊗3

.

Essentially a phase flip flips around |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

, and so the same idea as before

applies. That is, say the error occurs on qubit 1, then the resulting state is α|−++⟩−β|+−−⟩.

Note H|+⟩ = |0⟩, H|−⟩ = |1⟩, where H is the Hadamard matrix 1√
2

1 1

1 −1

. So we can apply

H⊗3 to make the state just α|100⟩−β|011⟩ and then add two ancillary qubits as before to figure

out where the error happened. But a bit flip is no longer protected.

Peter Shor came up with the first quantum error correcting[Sho95] code by combining these

ideas to:

α|0⟩+ β|1⟩ 7→ α
( |000⟩+ |111⟩√

2

)⊗3

+ β
( |000⟩ − |111⟩√

2

)⊗3

.

One can check this protects against both phase and bit flips, or both. A bit flip can be corrected

directly by looking at each group of 3 qubit, and doing the trick mentioned in the first instance
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above. The phase flip will flip around a |000⟩+|111⟩√
2

and |000⟩−|111⟩√
2

and we can correct this by

applying a unitary that sends |000⟩+|111⟩√
2

7→ |000⟩ and |000⟩+|111⟩√
2

7→ |111⟩ and then adding the

ancilla to measure a change in these. Turns out this is enough to guarantee every 1-qubit error

is fixable, as we will see below.

Note that to fix arbritary t-qubit errors, it suffices to fix Pauli errors. The Pauli matrices are:

X =

0 1

1 0

 , Z =

1 0

0 −1

 , Y =

0 −i

i 0

 .
The idea is X is a bit flip, Z a phase flip and Y a combination of both. These form a basis for

B(C2), and tensors of I,X, Y, Z form a basis of B((C2)⊗n). We call tensors of Pauli matrices

also Paulis. Suppose we could fix Pauli errors, i.e

P |ψ⟩|0⟩Syn 7→ P |ψ⟩|P ⟩

under some error correcting operation (like in the Shor code above) and all the different |P ⟩ are

orthogonal. In this case we can measure the ancilla qubits and decide what error P happened.

Since these are a basis, we have a general t-qubit error will be off the form∑
aPP |ψ⟩|0⟩Syn 7→

∑
apP |ψ⟩|P ⟩.

Now if measuring the ancillary qubit gives syndrome P , then the collapsed state is P |ψ⟩ and

now just apply P to get back |ψ⟩.

3.3 General Quantum Code

Definition 3.3.1. A quantum code is an isometry

U : (C2)⊗k ↪→ (C2)⊗n.

The image of U we will denote as Q, the code space. An error is some matrix E ∈ B((C2)⊗n).

We say a set of errors E is correctable if there exists a quantum channel R : B((C2)⊗n) −→

B((C2)⊗n) so that for each codeword |ψ⟩ ∈ Q and E ∈ E:

R(E|ψ⟩⟨ψ|E∗) ∝ |ψ⟩⟨ψ|.

Recall that a quantum channel is a trace Preserving completely positive map, and are precisely

the things one can approximate by quantum circuits. This is saying R is a quantum operation
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that can recover |ψ⟩ from E|ψ⟩.

Before characterizing correctable errors, we need a technical lemma:

Lemma 3.3.2. Let Q ⊂ H be finite dimensional Hilbert spaces, Φ : B(H) −→ B(H) a completely

positive map with Kraus representation Φ(ρ) =
∑

j KjρK
∗
j . Suppose Φ(|ψ⟩⟨ψ|) ∝ |ψ⟩⟨ψ| for each

|ψ⟩ ∈ Q, then Kj |Q ∝ IdQ.

Proof. Let |ψ⟩ ∈ Q and |η⟩ be orthogonal to it. Then

0 = ⟨η |ψ⟩⟨ψ | η⟩ ∝
∑
j

⟨η|Kj |ψ⟩⟨ψ|K∗
j |η⟩ =

∑
j

|⟨η|Kj |ψ⟩|2.

In particular, ⟨η|Kj |ψ⟩ = 0.

Note this means for any |η⟩ ∈ Q⊥, |ψ⟩ ∈ Q, we have ⟨η|Kj |ψ⟩ = 0. So Kj |ψ⟩ ∈ Q⊥⊥ = Q.

So now Kj |Q ∈ B(Q).

Note for any basis of Q, Kj |Q is diagonal by the inner product relation. The only operator

that does this are scalar multiples of the identity.

From this we easily get:

Lemma 3.3.3. Let E = {Ea}a∈A ⊂ B((C2)⊗n) be a set of errors and Q ⊂ (C2)⊗n the codespace

of some QECC. Let R : ρ 7→
∑

j RjρR
∗
j be a channel that corrects the errors. Then

RjEa = λjaI

for some λja ∈ C. Conversely if such a channel exists, then that channel corrects E.

Proof. Note that for EA ∈ E , ρ −→ R(EaρE
∗
a) is a completely positive map satisfying the

hypothesis of lemma 3.3.2. Its Kraus representation is

R(EaρE
∗
a) =

∑
j

RjEaρ(RjEa)
∗

so we get RjEa ∝ I as desired. The converse is obvious by just computing R(Ea|ψ⟩⟨ψ|E∗
a).

Note that this means in particular if Q can correct E , then it can correct Span(E). Now we

can classify correctable errors:

Theorem 3.3.4. Let E = {Ea}a∈A ⊂ B((C2)⊗n) be a set of errors and Q ⊂ (C2)⊗n the

codespace of some QECC. Suppose {|ψi⟩}0≤i<2k is an orthonormal basis for Q. Then Q can

correct all errors in Span(E) iff

⟨ψj |E∗
bEa|ψi⟩ = Cabδij .
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Quantum PCP Section : 3.3 General Quantum Code

The content of this theorem is that Cab should not depend on i, j. Note that this characteri-

zation is basis independent. While cab itself will generally depend on the basis, the inner product

will have to take this form.

Think about it like this: first if i ̸= j then one can run error correction of Eb|ψj⟩ and Ea|ψi⟩

and then perfectly distinguish them. This means these states have to be orthogonal. All the data

about telling these states apart are in the inner product, and they should not reveal anything

about the |ψi⟩ if we want to recover |ψi⟩, as otherwise our measurement would have destroyed

something about it. Turns out this is enough.

Proof. ( =⇒ ) Let R : ρ 7→
∑

j RjρR
∗
j be a correcting channel for E . Then

∑
j R

∗
jRj = I due to

the trace preserving condition. Hence we can write:

⟨ψj |E∗
bEa|ψi⟩ =

∑
j

⟨ψj |E∗
bR

∗
jRjEa|ψi⟩ =

∑
j

⟨ψj |λ∗bjλaj |ψi⟩ =
(∑

j

λ∗bjλaj

)
δij .

( ⇐= ) Note that C = [Cab]a,b∈A is a self adjoint matrix, and hence can be diagonalized

unitarily. Say C = V ∗DV for unitary V and diagonal D. Now Fa =
∑

a′∈A Vaa′Ea′ has

⟨ψi|F ∗
b Fa|ψi⟩ =

∑
a′,b′∈A

⟨ψi| ¯Vbb′E
∗
b′Ea′Vaa′ |ψi⟩ =

∑
a′,b′∈A

Vaa′Ca′b′Vbb′ = (V CV ∗)ab.

So the different Fa|ψi⟩ are orthogonal.

It is easy to see now if |ψ⟩ =
∑

i αi|ψi⟩ ∈ Q, then

⟨ψ|F ∗
b Fa|ψ⟩ =

∑
i,j

αiαj⟨ψi|F ∗
b Fa|ψj⟩ =

∑
ij

αiαjDabδij = Dab.

So the Fa|ψ⟩ for any codeword |ψ⟩ are orthogonal, so we should be able to perfectly distinguish

which error has occured. Note: orthogonal states are distinguishable as one can simply take a

unitary that map them to the computational basis and then measure.

The explicit recovery channel is

R(ρ) =
∑
a∈A

F ∗
a ρFa.

Indeed,

R(Fb|ψi⟩⟨ψj |F ∗
b ) =

∑
a

F ∗
aFb|ψi⟩⟨ψj |F ∗

b Fa.

By our previous component, inner producting it against ⟨ψk|−|ψl⟩ only has a non-zero component

when k = i and j = l. I.e it is ∝ |ψi⟩⟨ψj |. Since these form a basis for B(Q), we are done.
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Quantum PCP Section : 3.4 Stabilizer Codes

Example 3.3.5. We can check this for the Shor code, which has |ψ0⟩ =
( |000⟩+|111⟩√

2

)⊗3 and

|ψ1⟩ =
( |000⟩−|111⟩√

2

)⊗3. We want to verify any weight 1 error is correctable, so we can take E to

be the set of 1-qubit Pauli errors. Note then that E∗
bEa is two qubit, and |ψj⟩ = Pab|ψi⟩ where

P is a 3-qubit Pauli consisting only of Zs. The Zs act on only one of each group of 3 qubits, so

we can choose these to never interact with E∗
bEa. In other words,

⟨ψj |E∗
bEa|ψj⟩ = ⟨ψi|PabE

∗
bEaPab|ψi⟩ = ⟨ψi|PabPabE

∗
bEa|ψi⟩ = ⟨ψi|E∗

bEa|ψi⟩.

The case i ̸= j is easily checked.

Now that we can talk about error correction without specifying a recovery channel, we can

define distance:

Definition 3.3.6. Let Q ⊂ (C2)⊗n be a k-qubit codespace. Let |ψi⟩ be an orthonormal basis of

Q. We say it has distance

d := min{Wt(A) : A ∈ B((C2)⊗n) and ⟨ψj |A|ψi⟩ ≠ CAδij for any constant CA}.

We say this code is a [[n, k, d]] code. Here Wt(A) is the weight of A, i.e the number of qubits its

acting on.

Note we can just check against Pauli’s as they form a basis for B((C2)⊗n). Its clear from

Theorem 3.3.4 that if a code has distance d, then it can correct ⌊(d− 1)/2⌋-qubit errors.

3.4 Stabilizer Codes

Let Pn denote the subgroup of U((C2)⊗n) generated by the Paulis. Elements of this group are

simply tensors of Pauli matrices with a sign from ±1,±i. Note that for P, P ′ ∈ Pn, PP ′ = ±P ′P ,

i.e every 2 element either commute or anti-commute. Define P̂n to be Pn/{±1,±i} the projective

Pauli group. Note that clearly |Pn| = 4n+1, and |P̂n| = 4n.

When writing a tensor of Pauli matrices, we will omit the tensors. So for example, XI denotes

X ⊗ I on B((C2)⊗2). We will also use subscripts to label which qubit an operator works on. So

X2 is the Pauli that does X to the 2nd qubit.

Definition 3.4.1. Let S ⊂ Pn be an abelian subgroup, and Q = {|ψ⟩ ∈ (C2)⊗n : S|ψ⟩ = |ψ⟩}.

We say Q is a stabilizer code, generated by S.

Note we can restrict to a commuting subset S ⊂ Pn and define Q interms of S, as the

subgroup generated by S would still fix Q. To have non-triviality in this result, we will hence
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forth assume the subgroup generated by S should not contain −1 or ±i, as clearly those only fix

the 0 vector.

We will use this technical lemma:

Lemma 3.4.2. Let S ⊂ Pn be an abelian subgroup of cardinality 2k that contains neither −1 or

i. Then the Codespace it generates, Q(S) has dimension 2n−k.

One way to think of this is like this: S is generated by k Paulis. Each Pauli M splits the space

equally into its +1 eigenspace and −1 eigenspace. This lemma is saying if we do this recursively,

then after adding each Pauli and restricting to the +1 eigenspace of that, it is also split in half.

Proof. Define Π :=
1

2k
∑

M∈S M . First note that since S is closed under multiplication, for any

M ∈ S, MΠ|ξ⟩ = Π|ξ⟩. So the image of Π is contained in Q(S). For any |ψ⟩ ∈ Q(S), clearly Π

fixes it, so the image of Π is precisely Q(S). Also in particular, Π2 = Π.

Note for a Pauli M , if M ̸= M∗, then M2 = −I. Since we excluded this in our hypothesis,

Π is self adjoint. Hence Π is the projection onto Q(S). Now

dim(Q(S)) = Tr(Π) =
1

2k
Tr(I) +

∑
M∈S−{I}

Tr(M) = 2n−k

as desired.

In particular this means that if S < S′, then Q(S) > Q(S′).

Example 3.4.3. The Shor Code. Note that the Shor code is precisely the subspace of (C2)⊗n

fixed by

S = {Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X1X2X3X7X8X9}.

Clearly these are independent so it generates a subgroup of size 28. So the fixed subspace has

dimension 2, and both
( |000⟩+|111⟩√

2

)⊗3 and
( |000⟩−|111⟩√

2

)⊗3 are fixed by S. This gives the result.

This code is [[9, 1, 3]].

Example 3.4.4. The Five Qubit Code. Consider S ⊂ P5 with

S = {XZZXI, IXZZX,XIXZZ,ZXIXZ}.

Then this gives a codespace of dimension 2, which one can work out to see the basis looks like:

|0L⟩ =
1

4
( + |00000⟩ − |00011⟩+ |00101⟩ − |00110⟩+ |01001⟩+ |01010⟩ − |01100⟩ − |01111⟩

− |10001⟩+ |10010⟩+ |10100⟩ − |10111⟩ − |11000⟩ − |11011⟩ − |11101⟩ − |11110⟩)
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|1L⟩ =
1

4
( + |11111⟩ − |11100⟩+ |11010⟩ − |11001⟩+ |10110⟩+ |10101⟩ − |10011⟩ − |10000⟩

− |01110⟩+ |01011⟩+ |01101⟩ − |01000⟩ − |00001⟩ − |00010⟩ − |00100⟩ − |00111⟩).

We will show now that this code has distance 3, so this is a [[5, 1, 3]] code. I.e this can correct

any one qubit error.

Theorem 3.4.5. Let Q be a stabilizer code generated by abelian group S ⊂ Pn. Let N(S) be the

subgroup of Pn of elements that commute with everything in S. Then the distance of Q is

d = min{Wt(A) : A ∈ N(S)− S}.

Proof. Take an orthonormal basis |ψi⟩ of Q. Then remember from 3.3.6 that

d := min{Wt(A) : A ∈ Pn and ⟨ψj |A|ψi⟩ ≠ CAδij for some constant CA}.

(≤) Note if A ∈ S, then ⟨ψj |A|ψi⟩ = ⟨ψj |ψi⟩ = δij . If A ̸∈ N(S), then there is some M ∈ S

so that MS = −SM (as everything in Pn either commutes or anti-commutes). So

⟨ψj |A|ψi⟩ = ⟨ψj |AM |ψi⟩ = −⟨ψj |MA|ψi⟩ = −⟨ψj |A|ψi⟩,

i.e the inner product is 0. So N(S)− S contains the set defining d.

(≥) Let A ∈ N(S)− S, and look at the subgroup generated by S ∪ {A}. This fixes precisely

a 2k−1 subspace of Q by Lemma 3.4.2, and by doing an eigenbasis decomposition, we can select

|ψ1⟩ . . . |ψ2k−1⟩ to be fixed by A and the rest to be a −1 eigenvector of A. Now note

1 = ⟨ψi|A|ψi⟩ ≠ ⟨ψj |A|ψj⟩ = −1, i ≤ 2k−1, j > 2k−1.

This shows the set defining d is just N(S)− S and gives the result.

Example 3.4.6. For the five qubit code, note every one and two-qubit Pauli will anti commute

with atleast one of {XZZXI, IXZZX,XIXZZ,ZXIXZ}. Note IXXIZ commutes with ev-

erything, and is not in the group generated by these (since such elements have an even number

of Zs). So the distance is 3.

One can construct stabilizer codes from Classical codes. For a vector v ∈ Zn
2 , we will denote

Xv =

n∏
i=1

Xvi
i , Z

v =

n∏
i=1

Zvi
i .

I.e Xv changes 0s to Is and 1s to Xs. E.g (0, 1, 0, 0, 1) 7→ IXIIX. Same for Zv.
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Definition 3.4.7. Let HX ∈ M(n−kX)×n(Z2) and HZ ∈ M(n−kZ)×n(Z2) act as parity check

matrices for classical codes CX , C′
Z , and lets say HXHT

Z = 0. Define:

S := {Xv : v row of HX} ∪ {Zv : v row of HZ}

Then the stabilizer code generated by ⟨S⟩ is called a CSS code(named after Calderbank-Shor-

Steane) denoted as CSS(HX ,HZ).

Note that HXH
T
Z = 0 means every row r in HX and r′ in HZ has r · r′ = 0. So

XrZr′ =
∏
i

Xri
i Z

r′i
i =

∏
i

(−1)rir
′
iZ

r′i
i X

ri
i = (−1)r·r

′
Zr′Xr = Zr′Xr.

Where we note that Xa
i , Z

b
i commute in every instance except when a = b = 1, so Xa

i Z
b
i =

(−1)abZb
iX

a
i . Basically the rows having even overlap means the corresponding stabilizer will

anticommute only on an even number of registers, i.e commute. So this is indeed a stabilizer

code.

Definition 3.4.8. For a classical code C ⊂ Zn
2 , define the dual code as the code

C⊥ := {v ∈ Zn
2 : v · c = 0∀c ∈ C}.

We will call its distance d⊥. Note this is a [n, n− k, d⊥] code. Also note that if H is a parity

check for C, then C = ker(H) and C⊥ = image(HT ).

We can characterize CSS codes:

Theorem 3.4.9. Let HX define a [n, kX , dX ] code and HZ a [n, kZ , dZ ] code. Then CSS(HX ,HZ)

is a [[n, kx + kz − n, d]] code with

d = min
w∈CZ−C⊥

X ,CX−C⊥
Z

|w|.

Furthermore, elements of CSS(HX ,HZ) are spanned by |z + C⊥
X⟩ for z ∈ CZ where

|z + C⊥
X⟩ = 1√

|C⊥
X |

∑
x∈C⊥

X

|z + x⟩.

Proof. (i) First we will compute the number of encoded qubits.

Let S be the stabilizer group of the code. Then clearly S is a Z2-vector space. AX stabilizer

and a Z stabilizer can never multiply to the identity, i.e S = SX ⊕ SZ where SX are the

X stabilizers and SZ the Z stabilizers. Note that v 7→ Xv sends the rowspace of H to SX
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isomorphically, and same for v 7→ Zv. The rowspace has dimension n − dim(ker(HX)) =

n− kx, so S = SX ⊕ SZ has size 22n−kx−ky . Hence by lemma 3.4.2. the code stabilized by

it encodes

n− (2n− kx − ky) = kx + ky − n

qubits.

(ii) We will now prove that the |z+ C⊥
X⟩ span CSS(HX ,HZ). Since C⊥

X is the rowspace of HX ,

and since HZH
T
X = 0, we have C⊥

X ⊂ kerHZ = CZ . Since |z + C⊥
X⟩ = |z′ + C⊥

X⟩ precisely

when z − z′ ∈ C⊥
X , we get that

dim(Span{|z + C⊥
X⟩ : z ∈ CZ}) = kZ − (n−Kx).

We claim that |z + C⊥
X⟩ are indeed in the codespace. We test against the X generators, i.e

for row r of HX :

Xr|z + C⊥
X⟩ = 1√

|C⊥
X |

∑
x∈C⊥

X

Xr|z + x⟩ = 1√
|C⊥

X |

∑
x∈C⊥

X

|r + z + x⟩ = |z + C⊥
X⟩.

Here we used that Xs perform bitflips, and that r is a row of HX , so in particular is a

member of the rowspace = C⊥
X . We test the Z-stabilizer for a row r′ of HZ :

Zr′ |z + C⊥
X⟩ = 1√

|C⊥
X |

∑
x∈C⊥

X

Zr′ |z + x⟩ = 1√
|C⊥

X |

∑
x∈C⊥

X

(−1)r
′·(z+x)|z + x⟩ = |z + C⊥

X⟩.

Here we used that Z are phase flips and that z+ x ∈ CZ , so that dot product against rows

of HZ annihalate them. So now dimension counting gives us what we want.

(iii) Take a pauli of N(S)− S of weight

t < min
w∈CZ−C⊥

X ,CX−C⊥
Z

|w|,

then it is (upto a sign) equal to P = XaZb for some a, b ∈ Zn
2 with |a|, |b| < t. P commuting

with all the X generators means Zb commutes with all the X generators. The X generators

are Xr for rows of HX , so this means

XrZb = (−1)r·bZbXr = ZbXr.

So r · b = 0 for each row of HX , i.e HXb = 0, so b ∈ CX . Since |b| < t, this forces b ∈ C⊥
Z .

Similarly, a ∈ C⊥
X . But note that C⊥

Z is precisely the rowspace of HZ and same for C⊥
X .
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This means XaZb is a product of the generators, i.e P ∈ S. This is a contradiction.

Let W be what minimizes

min
w∈CZ−C⊥

X ,CX−C⊥
Z

|w|.

Without loss of generality take w ∈ CZ −C⊥
X , then Zw ∈ N(S)−S. So this is precisely the

distance.

In particular, note that CSS(HX ,HZ) doesn’t depend on the choice of parity check matrix,

so we might as well say CSS(CX , CZ). Note also the distance calculated is atleast min(dX , dZ).

Example 3.4.10. Steane Code. Take both CX and CZ to be the Hamming code from example

3.1.2. That is:

HX = HZ =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 0 1 1 0

 .
Note that indeed HXH

T
Z = 0. So by Theorem 3.4.9, we have this is a [[7, 1, 3]] code. One can

check by using codewords of the Hamming code that the codewords of the Steane code is:

|0⟩L =
1√
8

(
|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩

+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩
)

|1⟩L =
1√
8

(
|1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩

+ |1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩
)
.

3.5 qLDPC codes

For a stabilizer code, we have an analog of the parity check matrix from classical coding theory.

Indeed, let Q be a quantum code and S a generating set for its stabilizers. Then define the code

Hamiltonian:

HQ :=
∑
P∈S

1− P

2
.

Note (1 − P )/2 is the projection onto the −1 eigenspace of P . So a state |ψ⟩ is in the ground

space precisely when it is in the shared +1 space of all the P s, i.e is in Q. So Q = ker(HQ). If

we want to apply this to local hamiltonian problems, we would want each parity check (1−P )/2

to have low locality. This would require a qLDPC (quantum low density parity check) code.
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Definition 3.5.1. Let (Cn)n∈N be a family of classical codes with parity check matrix Hn ∈

Mkn×n(C). If each row and column of Hn has weight O(1), then we say this family is LDPC

(low density parity check).

Definition 3.5.2. Take a family of stabilizer codes (Qn)n∈N, and a distguished set of generators

Sn ⊂ Pn. We say this family is qLDPC if each of the generators have weight O(1), and there

are constantly many generators acting on a given qubit.

The goal is to find good codes, which have recently been discovered in the quantum realm

too:

Theorem 3.5.3. There exist good LDPC codes, i.e [n,Θ(n),Θ(n)] codes.

Theorem 3.5.4. [PK22] There exist good qLDPC CSS codes, i.e [[n,Θ(n),Θ(n)]] codes.

We will not detail these constructions as they take us too far off field, one thing we will say is

that we will be using the Quantum tanner codes of [LZ22] instead of the codes of [PK22]. These

codes have the clustering property, which is:

Definition 3.5.5. Let Q = CSS(CX , CZ) where CX is a [n, kx, dx] code and CZ a [n, kZ , dZ ] code,

then we say it has clustering for approximate codewords if there is a δ0, c1, c2 > 0 so that

for each 0 < δ < δ0:

1. If |HZy| ≤ δ(n− kZ) then either dhamm(y, C⊥
X) ≤ c1δn or ≥ c2n.

2. If |HXy| ≤ δ(n− kX) then either dhamm(y, C⊥
Z ) ≤ c1δn or ≥ c2n.

We are saying approximate codewords of e.g CZ are either close to its subspace C⊥
X or very

far from it. Note by considering e.g y ∈ CZ − C⊥
X , we see that the distance is atleast c2n.

3.6 Locally testable codes

Classical locally testable codes has rich connections to classical PCP.

Definition 3.6.1. A linear code C = ker(H) defined by parity check matrix H ∈ F(n−m)×n
2 is

locally testable with soundness ρ if for each x ∈ Zn
2 :

1

m
|Hx| ≥ ρ

dhamm(x, C)
n
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Basically, the distance of a word from the codespace is proportional to how many parity

checks it failed. So for none-code words, if it is not correctable, the syndrome will atleast inform

us how far the word is from a codeword.

There are good classical LDPC with constant soundness, as proven in [PK22]. It turns out

good enough qLDPC codes with constant soundness will give good results towards QPCP, so

our goal is now to define these.

Let Q ⊂ (C2)⊗n be a quantum code correcting some errors E . We want a notion of states

being t-weight errors away from Q, so we define:

Qt := {E|ϕ⟩ | |ϕ⟩ ∈ Q ,Wt(E) ≤ t , E ∈ E}.

We then define the distance operator:

DQ :=
∑
t≥1

t(ΠQt
−ΠQt−1

).

Essentially, this is breaking up every state into portions that have a wieght t error from a

codeword, and then doing a weighted sum. So ⟨ψ|DQ|ψ⟩ measures how many errors, on average,

the state differs from a codeword.

Definition 3.6.2. Let Q ⊂ (C2)⊗n be a quantum code defined as the ground space of H =∑
i≤m Πi, where Πi are projections. Then we say Q is locally testable with soundness ρ if

1

m
H ≥ ρ

n
DQ

For stabilizer codes, note that if S = {S1 . . . Sm} is a generating set, then Πi = (I − S1)/2

will define the code Hamiltonian. We can characterize local testibility here nicely interms of

stabilizers, but first we need a lemma:

Lemma 3.6.3. Let Q be a stabilizer code, then for each Paulis E,E′, either EQ = E′Q or

they are orthogonal. The EQ also span the entirety of (C2)⊗n. In particular, for each state

|ψ⟩ ∈ (C2)⊗n, we can decompose it as

|ψ⟩ =
∑
i

Ei|ψi⟩

with Ei being a Pauli, |ψi⟩ ∈ Q and Ei|ψi⟩ are all orthogonal to each other.

Proof. Let S = {S1 . . . Sm} be a generating set for Q. Then for any Pauli E we have SiE = ωESi

for ω ∈ {±}. So EQ is some simultanious eigenspace of S. So for two Paulis E,E′, either
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EQ = E′Q or they are orthogonal.

Note that the same arguement as lemma 3.4.2, we get that each simultanous eigenspace is

dimension 2n−m. I.e if we care about the eigenspace that has eigenvalue (−1)λ(i) for Si, then

the projector onto this is∏
i≤m

(1 + (−1)λ(i)Si

2

)
=

I

2m
+

1

2m

∑
M∈⟨S⟩−{I}

±M.

This has trace 2n−m. So there is some unitary that sends Q to the eigenspace. Since the unitary

can be written as a linear combination of Paulis, we get the eigenspace is
∑

iEiQ. since these

are all equal or orthogonal, and by counting dimensions, we get the eigenspace is some EQ for

Pauli E.

Since (C2)⊗n decomposes orthogonally into simultaneous eigenspaces of S, we can choose

Paulis E1 . . . E2m so that

(C2)⊗n =
⊕
i≤2m

EiQ

is an orthogonal decomposition. This shows the result.

Theorem 3.6.4 ([AE13]). A stabilizer code Q generated by stabilizers S = {g1 . . . gm} is ρ-locally

testable iff for every possible error E ∈ Pn:

#{g ∈ S | gE = −Eg}
m

≥ ρ
WtN(S)(E)

n
.

Here

WtN(S)(E) := min
P∈N(S)

Wt(EP ).

Proof. First we will show for Pauli E and non-zero codeword |ψ⟩:

#{g ∈ S | gE = −Eg}
m

≥ ρ
WtN(S)(E)

n
⇐⇒ 1

m
⟨ψ|E∗HE|ψ⟩ ≥ ρ

n
⟨ψ|E∗DQE|ψ⟩.

And then we will use lemma 3.6.3 to patch together these to a general state.

Let |ψ⟩ ∈ Q be a codeword, and E a Pauli. Then

E∗HE =
1

2

∑
i≤m

E∗(I − Si)E =
1

2

∑
i≤m

(I − E∗SiE) = #{g ∈ S | gE = −Eg}.

I.e, if E and Si commute, the I − E∗SiE cancels out, and otherwise it gives 2I. So

⟨ψ|E∗HE|ψ⟩ = #{g ∈ S | gE = −Eg}∥ψ∥2.
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Suppose E|ψ⟩ has non-zero projection onto ΠQt , i.e there is a A|η⟩ with Wt(A) ≤ t and

|η⟩ ∈ Q with

⟨ψ|E∗A|η⟩ ≠ 0.

Note that we can split up A as Paulis of weight less than t, and hence there is some Pauli P of

weight ≤ t with

⟨ψ|E∗P |η⟩ ≠ 0.

Now if E∗P ̸∈ N(S), then there is some stabilizer Si that anti-commutes with it. I.e

⟨ψ|E∗P |η⟩ = ⟨ψ|S∗
i E

∗PSi|η⟩ = −⟨ψ|E∗P |η⟩.

So E∗P ∈ N(S) and so the smallest Qt that contains E has t = WtN(S)(E). Now note that

since PQ = Q for any P ∈ N(S), we have

E|ψ⟩ ∈ EPQ =⇒ E|ψ⟩ ∈ QWtN(S)(E).

So we have

⟨ψ|E∗DQE|ψ⟩ = WtN(S)(E)∥ψ∥2,

showing the result.

Note we have already shown the forward implication. For the backwards implication, take

an arbritary state |ψ⟩ ∈ (C2)⊗n and decompose as in lemma 3.6.3:

|ψ⟩ =
∑
i

Ei|ψi⟩

with Ei Pauli, |ψi⟩ ∈ Q and the Ei|ψi⟩ are orthogonal. Note that if two states are orthogonal,

then this remains true even if a projection is applied to both. So:

⟨ψ|H|ψ⟩ =
∑
i,j

⟨ψj |E∗
jHEi|ψi⟩ =

∑
i

⟨ψi|E∗
iHEi|ψi⟩ =

∑
i

∥|ψi⟩∥2#{g ∈ S | gEi = −Eig}

Similarly we get

⟨ψ|DQ|ψ⟩ =
∑
i

∥|ψi⟩∥2 WtN(S)(Ei).

So by the assumptions if the theorem,

1

m
⟨ψ|H|ψ⟩ ≥ ρ

n
⟨ψ|DQ|ψ⟩

and since |ψ⟩ was arbritary, we are done.
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Finally, we will see how this works for CSS codes.

Theorem 3.6.5. Let Q = CSS(CX , CZ) be a CSS code. If both CX and CZ has soundness ρ, then

Q has soundness

min

(
mX

mX +mZ
,

mZ

mX +mZ

)
ρ,

where mX are the number of parity checks for CX and same for mZ .

Conversely, if Q has soundness ρ, then both CX and CZ have soundness ρ.

Proof. ( =⇒ ) Let P be an arbritary Pauli, and write it as P = XaZb for a, b ∈ Zn
2 (ignoring

signs). Note P fails to commute with a X generator precisely when the corresponding row doesnt

annihalate b. I.e P doesnt commute with |HXb| generators.

Note that for c ∈ CX , we have dhamm(b, c) = |b+c| and Xb = Xb+cXc, with Xc ∈ S ⊂ N(S).

So dhamm(b, c) ≥ WtN(S)(X
b). So from the local testibility of CX we get:

#{g ∈ SX | gP = −Pg}
mX

≥ ρ
WtN(S)(Z

b)

n
.

where SX is the x generators, and mX is the number of X generators. We get the same result

for the Z generators, and hence:

#{g ∈ S | gP = −Pg}
mX +mZ

≥ ρ

n

(
mX

mX +mZ
WtN(S)(Z

b) +
mZ

mX +mZ
WtN(S)(X

a)

)
≥ ρ

n
min

(
mX

mX +mZ
,

mZ

mX +mZ

)
(WtN(S)(X

a) +WtN(S)(Z
b))

≥ 1

n
ρmin

(
mX

mX +mZ
,

mZ

mX +mZ

)
WtN(S)(P )

( ⇐= ) Just test against Xa for CX and Zb for CZ .

In the literature, this lemma is stated wrong. It is stated that if both CX , CZ have soundness

ρ then so does ρ. Here is a simple counterexample: take the Steane code 3.4.10. Note that since

the Hadamard code is a [[7, 4, 3]] code, every string is distance 1 from a codeword. Also note

that x = (0, 0, 0, 0, 1, 1, 1) fails exactly 1 parity check. So

|Hx|
3

≥ ρ

7
d(x, C) =⇒ ρ ≤ 7

3
,

and by what was discussed, ρ = 7/3 works as soundness.

For the Steane code, simply take P = IIIIXXX. The generators of the Steane code are

{IIIXXXX, IXXIIXX,XXIIXXI, IIIZZZZ, IZZIIZZ,ZZIIZZI}.
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P only anticommutes with IIIZZZZ, so if the code had soundness 7/3, we would have

1

6
≥ 7

3

1

7
WtN(S)(P ) ≥

1

3

which isnt the case. Note the main issue is that the number of parity checks are different between

the classical and quantum case. However, in most cases this is a non-issue, as both mX and mZ

are typically linear in n, so we only gain a constant factor.
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4 The NLTS Thoerem

4.1 Introduction

The goal of QPCP is to show estimating the ground state of local hamiltonians to constant

precision is QMA-hard. This means low energy states of the Hamiltonian should be hard. Take

an instances of O(1) − LHa,a+ε, and let |ψ⟩ be a low energy state ⟨ψ|H|ψ⟩ < a + ε. If |ψ⟩ can

be prepared by a polynomial depth quantum circuit, then the description of that circuit is a

classical witness for a quantum verifier. I.e this instance would be in QCMA. Hence assuming

QCMA ̸= QMA, QPCP implies:

Conjecture 4.1.1. There is a family of O(1)-local Hamiltonian (Hn)n∈N and a γ > 0 such

that for any polynomial p, there is a some N so that for each n > N any quantum circuit that

prepares a |ψ⟩ with

⟨ψ|Hn|ψ⟩ ≤ γ,

has depth atleast p(n).

This is probably not a very fruitful avenue to prove QPCP, as finding circuit lower bounds

is ridiculously hard. Even classically the best know circuit depth lower bound for any family of

formulas is linear. Actually the best we have been able to do so far is find Hamiltonians whose

low energy states require more than constant depth:

Definition 4.1.2. We say a family of Hamiltonians (Hn)n∈N with 0 ≤ Hn ≤ 1 is ε-NLTS if for

every constant c > 0, there is some N so that for each n > N any quantum circuit that prepares

a state |ψ⟩ with

⟨ψ|Hn|ψ⟩ ≤ ε

has depth atleast c.

If a family of Hamitlonians is ε-NLTS for some ε > 0, then we say it is NLTS.

Theorem 4.1.3. [ABN23] There exist an ε and a family of O(1)-local normalized hamiltonians

that is ε-NLTS. In particular, the code hamiltonians of any qLDPC code family satisfying the

clustering property 3.5.5 will be NLTS.

The way to show this would be first to note that measurements of states coming from constant

depth circuits are well spread out, wheres the ones that are low energy for a qLDPC code will

be supported in clusters. Actually a similar method will also show:
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Corollary 4.1.4. [EH17] Let (Qn)n∈N be a sequence of CSS codes with Qn being [[n, k ≥ 1, d =

Θ(n)]] with soundness ρ = Θ(1). Then the code Hamiltonian will be NLTS.

Proof. We will show this code satisfies the clustering property. First take w ∈ CZ − C⊥
X . Then

by theorem 3.4.9, we have

d(w, C⊥
X) = min

x∈C⊥
X

|w + x| ≥ d.

We will suppose d ≥ Cn.

Let δ0 = min{Cρ/2, C/4}. By theorem 3.6.5, we know CZ has soundness ρ. So if |HZy| ≤ δmZ

for δ < δ0, then

d(y, CZ) ≤
1

ρ
nδ.

Now there are two option, if the z ∈ CZ that minimizes this distance is in C⊥
X , then

d(y, C⊥
X) ≤ 1

ρ
nδ.

Or else, we would have

d(y, C⊥
X) ≥ d(z, C⊥

X)− d(y, z) ≥
(
C − δ0

ρ

)
n.

So with parameters δ0, c1 = 1/ρ, c2 = C − δ0/ρ we get this has the clustering property.

4.2 Circuit Lower Bounds

As mentioned above, circuits with low depth produce distributions that are well spread out:

Theorem 4.2.1. Let D be the probability distribution on Zn
2 that corresponds to measuring the

output of a quantum circuit in the standard basis. If two sets S1, S2 ⊂ Zn
2 satisfy D(S1), D(S2) ≥

µ, then the depth of the curcuit is atleast

1

3
log2

(
d(S1, S2)

2

n log(2/µ)

)
To prove this, we will need some tools. Namely we will construct an approximate groundstate

projector for self adjoint matrices bounded by 0 and I.

Lemma 4.2.2. For every s ∈ R≥0 and η ∈ (0, 1), there is a polynomial Tη,s of degree ⌈s⌉ such

that Tη,s(0) = 1 and

|Tη,s(x)| ≤ 2e−2s
√
η η ≤ x ≤ 1

Proof. Let Tk : R −→ R be a Chebyshev polynomial of degree k, i.e Tk(cos(x)) = cos(kx). Then
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define for s ∈ N and η ∈ (0, 1) a new polynomial Tη,s : [0, 1] −→ R as

Tη,s(x) :=

T⌈s⌉

(
2(1− x)

1− η
− 1

)
T⌈s⌉

(
2

1− η
− 1

) .

Note in the range η ≤ x ≤ 1, −1 ≤ 2(1− x)

1− η
− 1 ≤ 1. So it is the cosine of a real number, and so

the chebyshev polynomial is also the cosine of a real number, i.e absolute value bounded by 1.

Note in the range of η ∈ (0, 1),
2

1− η
− 1 is > 1. So it is equal to some cos(it) = cosh(t) with

t > 0. I.e

cosh(t) =
et + e−t

2
=

1 + η

1− η
=⇒ et =

1 + η + 2
√
η

1− η
.

Note
1 + η + 2

√
η

1− η
= 1 + 2

∞∑
k=1

ηk/2 ≥
∞∑
k=0

2kηk/2

k!
= e2

√
η.

We used that 2 ≥ 2k/k!. Also note that cosh(t) ≥ et/2. This means

T⌈s⌉

(
2

1− η
− 1

)
= cosh(⌈s⌉t) ≥ 1

2
est ≥ 1

2
e2s

√
η.

Combining these two, we get that

|Tη,s(x)| ≤ 2e−2s
√
η η ≤ x ≤ 1.

Now we can prove the theorem:

Proof of theorem 4.2.1. Let |ξ⟩ = U |0⟩⊗m be prepared by a depth t circuit U : (C2)⊗m −→

(C2)⊗m where m ≥ n. We will look at the distribution that comes from measuring the first n

qubits. Note by the light cone argument [AN22, fact 6], only 2tn qubits of the input effect the

resulting distribution. Hence we may assume m = 2tn.

Take the local Hamiltonian

G =

m∑
i=1

U |1⟩i⟨1|iU∗.

Note that U |1⟩i⟨1|iU∗ is a projection, and since by the light cone, U acting on qubit i only changes

2t qubits, the locality is 2t. Also note that U |x⟩ for x ∈ Zn
2 are eigenvectors with eigenvalue

|x|/m. So |ξ⟩ is the unique ground state, and the eigenvectors are of the form j/m, 0 ≤ j ≤ m.

Pick disjoint sets S1, S2 ⊂ Zn
2 . with distance u = d(S1, S2) and measure D(S1), D(S2) ≥ µ.
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Let P (x) = Ts,η(x) as in lemma 4.2.2 with η = 1/m and s = u/2t+1. Then P has degree ⌈s⌉

with

P (0) = 1, |P (j/m)| ≤ 2 exp

(
− u√

23tn

)
1 ≤ j ≤ m.

Note if s ≤ 1, then 2t ≥ u/2 and we are already done. So we can assume s > 1, so ⌈s⌉ < 2s =

u/2t. So if we look at P (G) now, it has locality ⌈s⌉2t < u. The reason to do all this is that P (G)

is an approximate ground space projector:

∥|ξ⟩⟨ξ| − P (G)∥op ≤ 2 exp

(
− u√

23tn

)
.

I.e if we spectral decompose G = 0|ξ⟩⟨ξ|+
∑m

j=1 j/mΠj , then

P (G) = |ξ⟩⟨ξ|+
m∑
j=1

P (j/m)Πj

and the contributions of the non-zero eigenspaces are small.

Let ΠSi
be the projection on to the subspace spanned by |x⟩, x ∈ Zn

2 with the first n bits of

x belonging to Si. Then note first that ΠS1
and ΠS2

are orthogonal as u > 0. Note that if |si⟩

are standard basis elements in the image of ΠSi as described above, then

⟨s2|P (G)|s1⟩ = 0.

This is because P (G) will change less than u qubits of |s1⟩. I.e P (G)|s1⟩ =
∑

|x⟩ with each |x⟩

being a distance < u from s1. Since S2 has distance u from S1, these are all orthogonal to |s2⟩.

So now
D(S1)D(S2) ≤ ⟨ξ|ΠS2

|ξ⟩⟨ξ|ΠS1
|ξ⟩

≤ ∥ΠS2 |ξ⟩⟨ξ|ΠS1∥2op

≤ ∥ΠS1
∥2op∥|ξ⟩⟨ξ| − P (G)∥2op∥ΠS1

∥2op

≤ 4 exp

(
−2

u√
23tn

)
This gives the bound, as D(S1)D(S2) ≥ µ.

This was originally proved in [EH17], but their proof was a lot more complicated than this

simplified proof in [ABN23].
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4.3 The NLTS theorem

We will now prove the theorem. Suppose we have a CSS code Q = CSS(HX ,HZ) satisfying the

hypothesis of theorem 4.1.3. That is, there are δ0, c1, c2 > 0 so that for each 0 < δ < δ0:

1. If |HZy| ≤ δ(n− kZ) then either d(y, C⊥
X) ≤ c1δn or ≥ c2n.

2. If |HXy| ≤ δ(n− kX) then either d(y, C⊥
Z ) ≤ c1δn or ≥ c2n.

Let H be its code Hamiltonian.

Note our Hamiltonian will be unnormalized. Let |ψ⟩ denote a low energy state

⟨ψ|H|ψ⟩ ≤ εn.

Let DZ be the measure on Zn
2 corresponding to measuring the state in the standard basis, and

DX the measure corresponding to measuring it in the X-basis (apply n Hadamards and then

measure). we will show for each low energy state, either Dx or Dz are clustered as in Theorem

4.2.1, and hence the circuit must be Θ(log(n)).

We will need an uncertainty lemma to show that either DZ or DX are highly concentrated,

so we can use the circuit lower bound of theorem 4.2.1.

Lemma 4.3.1. Let S, T ⊂ Zn
2 and let DX , DZ be the distributions coming from measuring a

pure state |ψ⟩. Then

DX(T ) ≤ 2
√
1−DZ(S) +

√
|S| · |T |/2n.

Proof. Let |ψ⟩ =
∑

y∈Zn
2
αy|y⟩. Then DZ(S) =

∑
y∈S |αy|2. Let

|ψ′⟩ := 1√
DZ(S)

∑
y∈S

αy|y⟩ =
∑
y∈Zn

2

βy|y⟩.

Then note that by the gentle measurement lemma:

∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|∥1 ≤ 2
√
1−DZ(S).

Note that if we want to measure |ψ′⟩ in the X basis, we will be measuring

H⊗n|ψ′⟩ = 1√
2n

∑
a∈Zn

2

∑
y∈Zn

2

(−1)a·yβy|a⟩

in the standard basis. That is, the probability of measuring string x is

p(x) =
1

2n

∣∣∣∣∣∑
y∈Zn

2

(−1)x·yβy

∣∣∣∣∣
2

=
1

2n

∑
z,w∈Zn

2

(−1)x·(z+w)βzβw
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Now we will compute:∑
x∈Zn

2

p(x)2 =
1

22n

∑
x∈Zn

2

∑
x∈Zn

2

∑
s,t,z,w∈Zn

2

(−1)x·(z+w+s+t)β∗
zβwβ

∗
t βs

=
1

2n

∑
s+t+w+z=0
s,t,z,w∈Zn

2

β∗
zβwβ

∗
t βs

=
1

2n

∑
z,w∈Zn

2

β∗
zβw

∑
t∈Zn

2

β∗
t βz+w+t

≤ 1

2n

∑
z,w∈Zn

2

|βz||βw|
(√ ∑

w∈Zn
2

|βt|2
√ ∑

w∈Zn
2

|βs+t+w|2
)

=
1

2n

∑
z,w∈Zn

2

|βz||βw|

=
1

2n

(∑
z∈Zn

2

|βz|
)2

≤ 1

2n
|S|

∑
z∈Zn

2

|βz|2 =
|S|
2n
.

Last line used Cauchy-Schwartz and the fact that only |S| of the β are non-zero. So now,∑
x∈T

p(x) ≤
√
|T |

∑
x∈Zn

2

p(x)2 ≤
√

|T | · |S|/2n.

And hence, we can finally compute:

DX(T ) =
∑
y∈T

|⟨y|H⊗n|ψ⟩|2

=
∑
y∈T

⟨y|H⊗n(|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|)H⊗n|y⟩+
∑
y∈T

⟨y|H⊗n|ψ′⟩⟨ψ′|H⊗n|y⟩

≤ ∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|∥1 +
∑
y∈T

|⟨y|H⊗n|ψ′⟩|2

= ∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|∥1 +
∑
y∈T

p(y)2

≤ 2
√
1−DZ(S) +

√
|S| · |T |/2n

Let

Gδ
X := {y ∈ Zn

2 : |HXy| ≤ δmx}, Gδ
Z := {y ∈ Zn

2 : |HZy| ≤ δmZ}.

I.e strings with low X and Z errors respectively. Then DX is almost entirely supported on GO(ε)
X
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and same for DZ .

Lemma 4.3.2. Let ε1 = 200n
min{mX ,mZ}ε. Then

DZ(G
ε1
Z ), DX(Gε1

X ) ≥ 199

200
.

Proof. Split up H = HZ +HX , where HZ is the part of the Hamiltonian corresponding to the

Z stabilizers and HX the part from the X stabilizers. Note that

εn ≥ ⟨ψ|H|ψ⟩ ≥ ⟨ψ|HZ |ψ⟩ = E
y∼DZ

|HZy|.

This is because if |ψ⟩ =
∑
αy|y⟩, then

⟨ψ|HZ |ψ⟩ =
∑

a∈Row(HZ)

∑
y,y′∈Zn

2

αyα
∗
y′⟨y′|

1− Za

2
|y⟩

=
∑

a∈Row(HZ)

∑
y∈Zn

2

|αy|2(a · y)

=
∑
y∈Zn

2

|αy|2|HZy|.

Now let q = DZ(G
ε1
Z ). Outside of Gε1

Z , |HZy| is ≥ ε1mZ . So

εn ≥ E
y∼DZ

|HZy| ≥ 0(q) + ε1mZ(1− q),

and hence q ≥ 1− εn
ε1mX

≥ 199

200
.

The same arguement works verbatim for the X measurements, giving the result.

Now we will prove the theorem by showing

Lemma 4.3.3. Take a [[n, k ≥ 4, d]] CSS code CSS(HX ,HY ) satisfying the cluster property

3.5.5 with parameters δ, c1, c2. Then there are sets S1, S2 ∈ Zn
2 with d(S1, S2) ≥ c2n such that

either

DX(S1), DX(S2) ≥
1

400
or DZ(S1), DZ(S2) ≥

1

400
.

Proof. Let

ε2 := min

{
(k − 4)2

32n2c1
,

1

2c1n
, ε1,

c2
2c1

,
δ0
2

}
.

Here ε1 is from lemma 4.3.1.

Note that for x, y ∈ Gε2
Z , x+ y ∈ G2ε2

Z . By the clustering property of Definition 3.5.5 we have
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d(x+ y, C⊥
X) ≤ 2c1ε2n or ≥ c2n. Define an equivalence relation

x, y ∈ Gε2
Z , x ∼ y ⇐⇒ d(x+ y, C⊥

X) ≤ 2c1ε2n.

This is indeed an equivalence relation, as if x ∼ y and y ∼ z, then

d(x+ z, C⊥
X) ≤ d(x+ y, C⊥

X) + d(y + z, C⊥
X) ≤ 4c1ε2n,

and by the dichotomy of the property, since we are assuming ε is small, it is not ≥ c2n. Hence

it is still ≤ 2c1ε2n.

So there is a partition of Gε2
Z into the equivalence classes, call them B1

Z , B
2
Z , . . . . Due to

the dichotomoy of the clustering property, each pair of equivalence classes has distance ≥ c2n.

Similarly, Gε1
X splits up into B1

X , B
2
X , . . . .

We will bound the sizes of these clusters. Fix z ∈ Bi
Z . Then every other z′ ∈ Bi

Z has

hamming distance atmost 2c1ε2n from z + w for some w ∈ C⊥
X . Note |C⊥

X | = 2mx . So

Bi
Z ⊂

⋃
x∈C⊥

X

B2c1ε2n(x+ z′).

Now each closed ball of radius t with t ≤ n/2 is the union of flipping i bits for 0 ≤ i ≤ t. There

are
(
n
i

)
≤

(
n
t

)
ways for each i, and so the ball has lenght atmost (t+ 1)

(
n
t

)
.

|Bi
Z | ≤ 2kx

(
n

2c1ε2n

)
(4c1ε2n) ≤ (2c1ε2n+ 1)2mx+

√
2c1ε2n.

We used stirling approximation on the binomial coefficient. We can similarly bound |Bj
X |.

Now we will show either ∀iDZ(B
i
Z) < 99/100 or ∀j DX(Bj

X) < 99/100. Indeed if for some i,

DZ(B
i
Z) ≥ 99/100, then by the uncertainty principle lemma 4.3.1 we have

DX(Bj
X) ≤ 2

√
1−DZ(Bi

Z) +

√
|Bj

X | · |Bi
Z |

2n

≤ 1

5
+

√
2mx+my−n+4

√
2c1ε2n(2c1ε2n+ 1)2

=
1

5
+ 4c1ε2n2

−k/2+2
√
2c1ε2n

<
99

100

Now suppose WLOG that DZ(B
i
Z) < 99/100 for each i. Recall that Gε2

Z = ∪iB
i
Z and has
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measure ≥ 199/200 by lemma 4.3.2. we can find a q so that

DZ

(⋃
i<q

Bi
Z

)
<

1

400
and DZ

( ⋃
i<q+1

Bi
Z

)
≥ 1

400
.

Note that the second union cannot contain all the BZs, as the measure of Bq
Z is atmost 99/100,

and so the union is

DZ

( ⋃
i<q+1

Bi
Z

)
= DZ(B

q
Z) +DZ

(⋃
i<q

Bi
Z

)
<

99

100
+

1

400
=

397

100
.

I.e, it is not the entire union which has bigger measure at 199/200. Hence

DZ

( ⋃
i≥q+1

Bi
Z

)
= DZ(G

ε2
Z )−DZ

( ⋃
i<q+1

Bi
Z

)
>

1

400
.

Since each cluster has distance atleast c2n, so do the unions
⋃

i≥q+1B
i
Z and

⋃
i<q+1B

i
Z . This

shows the result.

We have proven the NLTS theorem, as combining this with the circuit lower bound of theorem

4.2.1, we get that either |ψ⟩ or H⊗n|ψ⟩ has a circuit of size atleast

1

3
log2

(
(c1n)

2

n log(2/(1/400))

)
= Θ(log(n)).

Note that we only looked at pure states. More or less the same proof would go through for

mixed states pthat have low energy on H, using the same circuit lower bound.
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