THE HUREWICZ THEOREM

By Dawien M, Kaw

1. Iniroduction

Let L be a simplicial complex, (L) its n'® homotopy group (relative to some
base point) and H (L) its »'® homology group. For each integer n > 0 let
h* 1w (L)— H (L) be the Hurewicz homomorphism. Then the Hurewicz theorem
states (see [2]):

(@) by : my(L)— H (L) is onto and has the commuiator subgroup [mwy(L), wy(L)] as
kernel.

(b} of w(L) =0 for 1 < ¢ < m, then by : m,, (L) — H, (L) is an isomorphism
and hy 1w, (LY — H,  o{(L) is onfo.

The usual definitions of the homotopy groups of L only involve its underlying
topological space and disregard the simplicial structure of L; consequently the
corresponding proofs of the Hurewicz theorem are also of a topological nature.
In [3] a definition of the homotopy groups of L and of the Hurewicz homomorph-
isms was given in terms of simplicial structure of L only. The object of this paper
is, starting from these definitions to give a completely combinatorial proof of the
Hurewicz theorem. In fact it will be shown that the Hurewicz theorem may be
counsidered as a special case of a purely group theoretical theorem.

‘We shall only consider the case of a ¢.8.8. complex which has only one 0-simplex.
This is no real restriction as every simplicial complex may be converted into a c.8.s.
complex by a (partial ordering of its vertices and as every connected ¢.8.8. complex
is of the same homotopy type as one which has only one 0-simplex.

The paper is divided into two parts. In Part I the necessary definitions are
given and the Hurewicz theorem is formulated and reduced to a purely group
theoretical theorem. The proof of this theorem is given in Part II.

Parr I

2. C.s.s. complexes and c.s.s. groups
A c.s.8. complex K (see [1]) is a collection of elements (called simplices) to each of
which is attached a dimension n < 0, such that for every n-simplex ¢ € K and
every integer ¢ with 0 <4< n there are defined in K an (r — 1)-simplex os!
(called face} and an (n -} 1)-simplex o1 {called degeneraie). The operators ¢ and
%* are required to satisfy the following identities
gtedl o gt 1]
ni—nlni —_ 972'735 7 < J
,)Tisi = g1 i<
7l =identity 1=4,j+1
glet =gy i1
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The set of the n-simplices of K is denoted by K. The face and degeneracy opera-
tors ¢° and 77 thus may be considered as functions & : K,,— K,_, and 7 : K, —>
Kn+1'

A c.s.8. map f: K — L is a dimension preserving funetion which commutes with
all face and degeneracy operators, i.e., for every simplex ¢ € K, and integer ¢ with
0<ign

(fo)e* = f(oe?)
(fohy® = f(on’).

A c.g s. growp @ is a ¢.s.8. complex such that for every integer n => 0

(a) @, is a group.

(b) all face and degeneracy operations &:6G,— G, , and % : G, — G, 4 sre
homomorphisms.

Let G and H be ¢.8.8. groups. A ¢.s.8. homomorphism f: G— His a ¢.8.8. map such
~ that for every integer n > 0 the restriction f, : G, — H,, is a homomorphism.

A e.s.s. group G is called free if G, is a free (non abelian) group for all ».
Let @ be a c.s.s. group. Define! for each integer n > 0 a subgroup G, < G, by

G, = N?_, kernel &.
Then o € @,,, implies 0¢® € @,. Hence we may define a homomorphism
Ot ® Cra— G, Y

~

Op10=08" o€,

Tor each integer m << 0 let G, = 1 and let 5m 11 : @i — G, be the trivial map.
Then it can be shown that image 3, 1 I8 a normal subgroup of kernel 9, for all ,

ie,G={G, 5”} is a (not necessarily abelian) chain complex. Tts homology groups
are

H,(G) = kernel 5n/ima.ge 51;-1—1-
Let 0 € kernel 5,,. Then the element of H,(G) containing ¢ will be denoted by {o}.

3. The homotopy groups
Let K be a c.s.8. complex which has only one 0-simplex. Then we define a c.s.5.
group @ as follows. G, is the (not necessarily abelian) group which has a generator
G for every o € K,,,, and a relation W = 1 for every » € K,,. As clearly the groups
@, are free, it suffices to define the face and degeneracy homomorphisms & : §,—

G, ; and ¢*: @,— G, ., on the generators of ¢,. This is done by the following
formulas:

&8 = (oe%) 1 Gat
G =gt O0<i<n
577i = 0'271'-!—1 0 é i‘r__<_= 7.

1 This construction is due to J. C. Moore.
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- For every integer % > 0 we now define ,(K), the n'™ homotopy group of K, by
Wﬂ(K) = Hn—l(é)

4. The homology groups
We define a c.s.s. group 4 as follows. For each integer n = 0 let

An = Gn/ [Gn’ Gﬂ]

where [G,, G,] denotes the commutator subgroup of &,, and let the face and
degeneracy homomorphisms ' : 4, — A4, ;and#’: 4, — A4, bethoseinduced by
the corresponding homomorphisms of G. Thus 4 is “G made abelion” and we write

A—>G[G, G].
For each integer n > 0 we define H,(K), the ' homology group of K, by
HK)=H, ,(4).

5. The Hurewicz homomorphisms

Let k : G— 4 denote the projection, i.e., k maps an n-simplex of & on the coset
of[G,, G,] containing it. Clearly % is a c.s.s. homomorphism. It induces a chain map

E:G—> 4 (ie., 3 ko= kd,o for every ¢ €@,) and hence induces homomorphisms
By : H, (G)— H, ()

71
for each integer » > 0.

For each integer n > 0 we now define the Hurewicz homomorphism b, : m, (K) —
H,(K) by
By = Foy.

6. The Hurewicz theorem and its reduction to a group
theoretical theorem

We first formulate both halves of the Hurewicz theorem in Theorem la and 1b
below.

TarorEM la. Let K be o c.s.s. complex which has only one O-simplex. Then the
fomomorphism by, : w (K)— H,(K) is onfo and has [m,(K), =(K)] as kernel.

TaroREM 1b. Let K be a c.s.8. complex which has only one O-simplex and let
wfK) =0 for 0 i< n. Then hy : 7, {K)— H, (K} is an isomorphism and
by : ol K)~> H,  o(K) is onlo.

Tt follows immediately from the definitionof the Hurewicz homomorphism (see §5)
that Theorem 1a and 1b are a special case of the following group theoretical
theorems.

TarOREM 2a. Let F be a free c.s.s. group, let B = F|[F, Fl and let [: F—> B
be the chain map induced by the projection 1: F—> B. Then I, : Hy(F)— H(B) is
onto and has [(H(F), Hy(F)] as kernel.

TaporeM 2b. Let F be o free c.8.8. group, let B = F|[F, Fland let]: F— B be
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the chain map induced by the projection 1: F— B. Let H(F) =0 for 0 < i<n
Then I, : H(F)— H,(B) is an isomorphism into and U, : H,,, (F)— H, ,(B) is
onto.

Parr I1

. Proof of Theorem 2a

The following lemmas will be needed for the proof of Theorem 2a.

Luvma 1.2 Let F be a c.s.5. group and let «y, - - -, o0, € F,,__, be such that ot =
o;e; for 0 < i << j < n. Then there exists an a € F,, such that as® = «; for i =
1.---,m.

Proor. Let f, = a, 5™ L. Then f,&" = a,,. Now suppose that f,,, e F, already
has been defined such that 8, ,&* = «, for ¢ > k -+ 1. Define

B = () Brax™ &1 Pria-
Then

Bre® = (o™ 1) (Bryr e LN Brsa ) = oy
Bi* = (o ) Bryy 0" 26") (Brras”)

= (o ") (B e e,

= (o et e =0, iZE+1,

ie., By’ = «, for i = k. By induction on k we finally obtain a = §; € ¥, such that
ot =gt =g;fori=1,-+-,n

Remark. In the above proof the element « € F,, was obtained from the elements
oy, o, € F, y by application of the following operations only: &, %, multi-
plication and taking inverses. We shall denote this element o € F,, obtained from
o4y * * * 5 &, in this specific way, by e(a;, - -+, &,). Clearly if 1: F— Bis a c.5.8.
homomorphism, then le{ey, « * -, o, ) =e(lery, * -+, lax,)). Alsoif ;= 1,,_,, the unit
element of F,_,, for all 4, then e(ay, -« - , &,) = 1,, the unit element of F,,.

Lumma 2. Let F be a c.s.5. group, let B = F|[F, F] and let 1: F— B be the
projection. Let p & B,,. Then there exists ag € F',, such that I = vp.

Proow. Clearly lis a ¢.s.s. homomorphism onto. Hence there exists an o € ', such
that Jo = y. Let f = e(act, * - -, xe™). Because Hos?) = (lu)ef = ye' = 1,_; for
10 it follows that If = le(agt, -, ae®) = e(l{ac"), -« +, foe™) = 1,. Let
¢ = af™L, then clearly I = lo = p and ¢’ = (ae®)(fTe') = 1,_; for i £ 0, q.e.d.

Proor or THEOREM 2a. The first part of Theorem 2a follows immediately from
the fact that I : F— B is a c.s.5. homomorphism onfo.

Let o € F be such that {lo} = 0, i.e., there exists a p € B; such that lo = ys°.
Let ¢ € ', be such that Ip = v and let + = (¢~1c%)q. Then {¢} = {r}. Furthermore
Ir = (lg—2e%(lo) = 1. Hence 7e[Fy, Fyl and {o} = {7} e[H(F), Hy(F)]. As
H,(B) is abelian (because B, is abelian) it follows that the kernel of [, : H(F)—
H(B) is exactly [Hy(F), Hy(F)]. This completes the proof.

2 This lemma is due to J. €. Moore.
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8. Proof of Theorem 2b

The following lemmas will be needed.
Luwma 3. Let F be a c.s.s. group ond let « € F, and ¢ € F, be such that ae" - -
e' = ¢&%. Then there exist elemenis By, * - - , §, € F, ., such that

Boe® =
piet =Piae® 0<iZnm

Bertle--egl—1, 0<i<n
Proor. Let

/30 J— (omo)(m—lsn - 8117° e nn)(qgnl .o 77")-
Then

ﬂoso — oc(m—lsn .. 81110 e 7]”"1)(5{)80’)’]0 .o ,qn—l) —
Boe™t -+ - el = (o™ - - - e te™ - - - MY (et) = 1.
Now suppose ., has already been defined in such a manner that g, &5 =
Bioe®Fand By 4" - - g =1,
Let

Be = (Brr2e®) o™« - - 2" - - - ) (B g™ - - PRy - ),
Then a straightforward computation yields
Bit* = ﬁk—lsk
ﬂkan-;»l [ 81’4—1 — lk.

The lemma now follows by induction on .

Lemua 4. Let F be a c.s.s. group, let y  kernel 9, and lot a € F, and ¢ ¢ T,
be such that ag® - - - g1 = @&, Then there exists a Ae F, N [F, ., F, .1 such that
Ae® = yay—tat,

Proor. For each integer ¢ with 0 < i < n let

Ay = (P )By )BT €1 iy, Frogy
where f, is as in Lemma 3. Then
2g€® = yary ot
At = (B Yy (B e
Bt =y Yy ) = plBs) "B, i
A =1, jiitrl
A=l

Let
A=TTrolA)r where & = (—1)%
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Then it is readily verified that
Ae Py NIF iy, Foygl
&0 = yaytod, g-ed.

Levma 5. Let F be a c.s.s. group such that Hy(F) = 0. Let oy, oy, By, fa€ F,, be
such thai oye® = B1&* and aye® = Pye’ for all i. Then there existsave F, ,n[F, .4,
F, ] such that ;

ve® = ajopui toy By BT

Proor. Because Hy(F) = 0 it follows (using Lemma 4) that there exist elements

ApeF,  n[F,, ¥, ]such that
1e% = (B ap)oy Moz ooy
ue® = (BT o)) Balo By)fz

v = (y7°)(Ban®)ABa 1N 1) Bun®) By -
Then a direct computation yields

ve® = oy oy Bafi By Bt
yei=1, 13£0, «q.ed
Lirvma 6. Let I be a free c.s.s. group and let H(F) = 0 for 0 < 3 < n. Then there
exist homomorphisms D, : F;— F; , (0 < ¢ < n) such that for every o € F,
(D;o)e® = o
(Di)e' = Dy_s(@e™™)  j#0.
Proor. Let K be an integer such that 0 < & << » and suppose that for 1 <%
homomorphisms D, : F;— F, ; have been defined satisfying the above conditions,

As F, is a free group it is sufficient to define D, on & set of generators > of 7.
This is done as follows. Let o« € 3 be a generator, and let

0 = e(Dy_y(2e%), - + -, Dy_y(e")).

Let

Thenfor0 < i< k
(a(672e%))e® = (as*)(6~16%%) = (ag;) {0 1etH1el)
— () (Dy_y(0-169)e%) = (ae)(oc-1e") = I, ;.
As H,(F) = O there existsa ¢ € I, , such that ¢z = o(81£9). Now define
Do = ¢d.
In order to prove that the homomorphism Dy : F,— F,, defined in this manner

has the desired properties it clearly suffices to show that this is the case for each
generator o € . Indeed for each o & 5 we have

(Dy)e® = ($d)e® = (20 (0e% =«
(Dy)e = ($0)e! = def = D, y(e™) j 0.

The lemyma now follows by induction on k.
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Lumwma 7. Let F be a free c.s.s. group and let H(F) =0for 0<i<m. Letpe

kernel 3, 0 [F,, F,. Then there exists @ y € Fppy [ F,,q, F, 1] such that y® = p.
Proovr. As p e[F,, F ] there exists an integer ¢ and elements oy, * -, 005, € F,,
such that

p=Tl [y g, 5,
where [ , ] denotes the commutator. For 0 < ¢ < 2¢ let

0; = e(Dy (%%, =+ +, Dypy(2,8"))

and let #, = §,2% Then by Lemma 5 there exists for cach integer s with 0 < s < ¢
a7, € Fﬂ+1 n [F ntls *n+1] such that

7,60 = [og,_1, tosllBaer B2s1l-

= Ii=1 (0855 1, Gsc])-
Then a direct computation yields that ys® = p and ye = 1, for ¢ £ 0, q e.d.

Proor oF TaroREM 2b. Let ¢ & kernel 3 N F_ be such that {lo} = 0, i.e., there
exists a y € B, such that lo = ye®. Let ¢ € F,,.; be such that I = v and let
v = (¢~ %e%o0. Then {o} = {7} and Ir = (I$ 1% (o) = 1,, i.e., T € kernel ?,n[F,,
F_]. Hence by Lemma 7 {7} = 0. This proves the first part of Theorem 2b.

Let & e kernel 5” +10 B, . Then there exists a pe F,,, such that lp = &.
As pe¥e? = pettigl =1, , for all ¢ and I(pe®) = (Ip)e® = &€ =1, it follows that
pe® e kernel 3, N{F,, F,]. By Lemma 7 there exists a y &€ F, .y N[F,,;, F,.q]
such that ye® = pel. Hence (pyYef =1, for all ¢ and Upy ™) =Ip=§, ie,
Iy {px*} = {£}. This completes the proof.
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