THE HUREWICZ THEOREM

By Daniel M. Kan

1. Introduction

Let L be a simplicial complex, $\pi_{n}(L)$ its $n^{\text {th }}$ homotopy group (relative to some base point) and $H_{n}(L)$ its $n^{\text {th }}$ homology group. For each integer $n>0$ let $h^{*}: \pi_{n}(L) \rightarrow H_{n}(L)$ be the Hurewiez homomorphism. Then the Hurewicz theorem states (see [2]):
(a) $h_{*}: \pi_{1}(L) \rightarrow H_{1}(L)$ is onto and has the commutator subgroup $\left[\pi_{1}(L), \pi_{1}(L)\right]$ as leernel.
(b) if $\pi_{i}(L)=0$ for $1 \leqq i \leqq n$, then $h_{*}: \pi_{n+1}(L) \rightarrow H_{n+1}(L)$ is an isomorphism and $h_{*}: \pi_{n+2}(L) \rightarrow H_{n+2}(L)$ is onto.

The usual definitions of the homotopy groups of L only involve its maderlying topological space and disregard the simplicial structure of L; consequently the corresponding proofs of the Hurewicz theorem are also of a topological nature. In [3] a definition of the homotopy groups of L and of the Hurewicz homomorphisms was given in terms of simplicial structure of L only. The object of this paper is, starting from these definitions to give a completely combinatorial proof of the Hurewicz theorem. In fact it will be shown that the Hurewicz theorem may be considered as a special case of a purely group theoretical theorem.

We shall only consider the case of a c.s.s. complex which has only one 0 -simplex. This is no real restriction as every simplicial complex may be converted into a e.s.s. complex by a (partial ordering of its vertices and as every connected c.s.s. complex is of the same homotopy type as one which has only one 0 -simplex.

The paper is divided into two parts. In Part I the necessary definitions are given and the Hurewicz theorem is formulated and reduced to a purely group theoretical theorem. The proof of this theorem is given in Part II.

Part I

2. C.s.s. complexes and c.s.s. groups

A c.s.s. complex K (see [1]) is a collection of elements (called simplices) to each of which is attached a dimension $n \leqq 0$, such that for every n-simplex $\sigma \in K$ and every integer i with $0 \leqq i \leqq n$ there are defined in K an $(n-1)$-simplex $\sigma \varepsilon^{i}$ (called face) and an ($n+1$)-simplex $\sigma \eta^{i}$ (called degenerate). The operators ε^{i} and η^{i} are required to satisfy the following identities

$$
\begin{array}{rlrl}
\varepsilon^{i} \varepsilon^{j-1} & =\varepsilon^{i} \varepsilon^{i} & i<j \\
\eta^{j-1} \eta^{i} & =\eta^{i} \eta^{j} & i<j \\
\eta^{i} \varepsilon^{i} & =\varepsilon^{i} \eta^{j-1} & i<j \\
\eta^{j} \varepsilon^{i} & =\text { identity } \quad i=j, j+1 \\
\eta^{i} \varepsilon^{i} & =\varepsilon^{i-1} \eta^{j} & i>j+1 . \\
& 225 &
\end{array}
$$

The set of the n-simplices of K is denoted by K_{n}. The face and degeneracy operators ε^{i} and η^{j} thus may be considered as functions $\varepsilon^{i}: K_{n} \rightarrow K_{n-1}$ and $\eta^{i}: K_{n} \rightarrow$ K_{n+1}.

A c.s.s. map $f: K \rightarrow L$ is a dimenision preserving function which commutes with all face and degeneracy operators, i.e., for every simplex $\sigma \in K_{n}$ and integer i with $0 \leqq i \leqq n$

$$
\begin{aligned}
(f \sigma) \varepsilon^{i} & =f\left(\sigma \varepsilon^{i}\right) \\
(f \sigma) \eta^{i} & =f\left(\sigma \eta^{i}\right)
\end{aligned}
$$

A c.s s. group G is a c.s.s. complex such that for every integer $n \geqq 0$
(a) G_{n} is a group.
(b) all face and degeneracy operations $\varepsilon^{i}: G_{n} \rightarrow G_{n-1}$ and $\eta^{i}: G_{n} \rightarrow G_{n+1}$ are homomorphisms.

Let G and H be c.s.s. groups. A c.s.s. homomorphism $f: G \rightarrow H$ is a e.s.s. map such that for every integer $n \geqq 0$ the restriction $f_{n}: G_{n} \rightarrow H_{n}$ is a homomorphism.

A c.s.s. group G is called free if G_{n} is a free (non abelian) group for all n.
Let G be a c.s.s. group. Define ${ }^{1}$ for each integer $n \geqq 0$ a subgroup $\tilde{G}_{n} \subset G_{n}$ by

$$
\widetilde{G}_{n}=\cap_{i=1}^{n} \text { kernel } \varepsilon^{i}
$$

Then $\sigma \in \widetilde{G}_{n+1}$ implies $\sigma \varepsilon^{0} \in \widetilde{G}_{n}$. Hence we may define a homomorphism $\tilde{\partial}_{n+1}: \tilde{G}_{n+1} \rightarrow \tilde{G}_{n}$ by

$$
\tilde{\partial}_{n+1} \sigma=\sigma \varepsilon^{0} \quad \sigma \in \tilde{G}_{n+1}
$$

For each integer $m<0$ let $\tilde{G}_{m}=1$ and let $\tilde{\partial}_{m+1}: \tilde{G}_{m+1} \rightarrow \tilde{G}_{m}$ be the trivial map. Then it can be shown that image $\tilde{\partial}_{n+1}$ is a normal subgroup of kernel $\tilde{\partial}_{n}$ for all n, i.e., $\tilde{G}=\left\{\tilde{G}_{n}, \tilde{\partial}_{n}\right\}$ is a (not necessarily abelian) chain complex. Its homology groups are

$$
H_{n}(\tilde{G})=\text { kernel } \tilde{\partial}_{n} / \text { image } \tilde{\partial}_{n+1}
$$

Let $\sigma \in$ kernel $\tilde{\partial}_{n}$. Then the element of $H_{n}(\tilde{G})$ containing σ will be denoted by $\{\sigma\}$.

3. The homotopy groups

Let K be a c.s.s. complex which has only one 0 -simplex. Then we define a c.s.s. group G as follows. G_{n} is the (not necessarily abelian) group which has a generator $\bar{\sigma}$ for every $\sigma \in K_{n+1}$ and a relation $\overline{\tau \eta^{0}}=1$ for every $\tau \in K_{n}$. As clearly the gioups G_{n} are free, it suffices to define the face and degeneracy homomorphisms $\varepsilon^{i}: G_{n} \rightarrow$ G_{n-1} and $\eta^{i}: G_{n} \rightarrow G_{n+1}$ on the generators of G_{n}. This is done by the following formulas:

$$
\begin{aligned}
\bar{\sigma} \varepsilon^{0} & =\overline{\left(\sigma \varepsilon^{0}\right)^{-1}} \overline{\sigma \varepsilon^{1}} \\
\tilde{\sigma} \varepsilon^{i} & =\overline{\sigma \varepsilon^{i+1}} \quad 0<i \leqq n \\
\bar{\sigma} \eta^{i} & =\overline{\sigma \eta^{i+1}} \quad 0 \leqq i \leqq n .
\end{aligned}
$$

[^0]For every integer $n>0$ we now define $\pi_{n}(K)$, the $n^{\text {th }}$ homotopy group of K, by

$$
\pi_{n}(K)=H_{n-1}(\widetilde{G})
$$

4. The homology groups

We define a c.s.s. group A as follows. For each integer $n \geqq 0$ let

$$
A_{n}=G_{n} /\left[G_{n}, G_{n}\right]
$$

where $\left[G_{n}, G_{n}\right]$ denotes the commutator subgroup of G_{n}, and let the face and degeneracy homomorphisms $\varepsilon^{i}: A_{n} \rightarrow A_{n-1}$ and $\eta^{i}: A_{n} \rightarrow A_{n+1}$ be those induced by the corresponding homomorphisms of G. Thus A is " G made abelian" and we write

$$
A \rightarrow G /[G, G] .
$$

Fou each integer $n>0$ we define $H_{n}(K)$, the $n^{\text {th }}$ homology group of K, by

$$
H_{n}(K)=H_{n-1}(\tilde{A})
$$

5. The Hurewicz homomorphisms

Let $k: G \rightarrow A$ denote the projection, i.e., k maps an n-simplex of G on the coset of $\left[G_{n}, G_{n}\right]$ containing it. Clearly k is a c.s.s. homomorphism. It induces a chain map $\tilde{k}: \tilde{G} \rightarrow \tilde{A}$ (i.e., $\tilde{\partial}_{n} \tilde{k} \sigma=\tilde{k} \tilde{\partial_{n}} \sigma$ for every $\sigma \in\left(\tilde{G}_{n}\right)$ and hence induces homomorphisms

$$
\tilde{K}_{*}: H_{n-1}(\tilde{G}) \rightarrow H_{n-1}(\tilde{A})
$$

for each integer $n>0$.
For each integer $n>0$ we now define the Hurewicz homomorphism $h_{*}: \pi_{n}(K) \rightarrow$ $H_{n}(K)$ by

$$
h_{*}=\tilde{k}_{*} .
$$

6. The Hurewicz theorem and its reduction to a group theoretical theorem

We first formulate both halves of the Hurewice theorem in Theorem la and lb below.

THEORem la. Let K be a c.s.s. complex which has only one 0 -simplex. Then the homomorphism $h_{*}: \pi_{1}(K) \rightarrow H_{1}(K)$ is onto and has $\left[\pi_{1}(K), \pi_{1}(K)\right]$ as kernel.

Treorem Ib. Let K be a c.s.s. complex which has only one 0 -simplex and let $\pi_{i}(K)=0$ for $0<i \leqq n$. Then $h_{*}: \pi_{n+1}(K) \rightarrow H_{n+1}(K)$ is an isomorphism and $h_{*}: \pi_{n+2}(K) \rightarrow H_{n+2}(K)$ is onto.

It follows immediately from the definition of the Hurewicz homomorphism (see §5) that Theorem 1a and 1 lb are a special case of the following group theoretical theorems.

Theorem 2a. Let \boldsymbol{F} be a free c.s.s. group, let $B=\boldsymbol{F} /[\boldsymbol{F}, \vec{F}]$ and let $\tilde{l}: \widetilde{F} \rightarrow \widetilde{B}$ be the chain map induced by the projection $l: F \rightarrow B$. Then $\bar{l}_{*}: H_{0}(\tilde{F}) \rightarrow H_{0}(\widetilde{B})$ is onto and has $\left[H_{0}(\tilde{F}), H_{0}(\tilde{F})\right]$ as kernel.

Theorem 2b. Let F be a free c.s.s. group, let $B=F /[F, F]$ and let $\tilde{l}: \tilde{F} \rightarrow \tilde{B}$ be
the chain map induced by the projection $l: F \rightarrow B$. Let $H_{i}(\widetilde{F})=0$ for $0 \leqq i<n$ Then $\tilde{l}_{*}: H_{n}(\tilde{F}) \rightarrow H_{n}(\widetilde{B})$ is an isomorphism into and $\tilde{l}_{*}: H_{n+1}(\tilde{F}) \rightarrow H_{n+1}(\tilde{B})$ is onto.

Part II

7. Proof of Theorem 2a

The following lemmas will be needed for the proof of Theorem 2a.
Lemma 1. ${ }^{2}$ Let F be a c.s.s. group and let $\alpha_{1}, \cdots, \alpha_{n} \in F_{n-1}$ be such that $\alpha_{i} \varepsilon^{j-1}=$ $\alpha_{j} \varepsilon_{j}$ for $0<i<j \leqq n$. Then there exists an $\alpha \in F_{n}$ such that $\alpha \varepsilon^{i}=\alpha_{i}$ for $i=$ 1. \cdots, n.

Proof. Let $\beta_{n}=\alpha_{n} \eta^{n-1}$. Then $\beta_{n} \varepsilon^{n}=\alpha_{n}$. Now suppose that $\beta_{k+1} \in \boldsymbol{F}_{n}$ already has been defined such that $\beta_{k+1} \varepsilon^{i}=\alpha_{i}$ for $i \geqq k+1$. Define

$$
\beta_{k}=\left(\alpha_{k} \eta^{k-1}\right)\left(\beta_{k+1} 1^{-1} \varepsilon^{k} \eta^{k-1}\right) \beta_{k+1} .
$$

Then

$$
\begin{aligned}
\beta_{k} \varepsilon^{k} & =\left(\alpha_{k} \eta^{k-1} \varepsilon^{k}\right)\left(\beta_{k+1}-1 \varepsilon^{k} \eta^{k-1} \varepsilon^{k}\right)\left(\beta_{k+1} \varepsilon^{k}\right)=\alpha_{k} \\
\beta_{k} \varepsilon^{i} & =\left(\alpha_{k} \eta^{k-1} \varepsilon^{i}\right)\left(\beta_{k+1}-1 \varepsilon^{k} \eta^{k-1} \varepsilon^{i}\right)\left(\beta_{k+1} \varepsilon^{i}\right) \\
& =\left(\alpha_{k} \varepsilon^{i-1} \eta^{k-1}\right)\left(\beta_{k+1}-1 \varepsilon^{i} \varepsilon^{k} \eta^{k-1}\right) \alpha_{i} \\
& =\left(\alpha_{i} \varepsilon^{k} \eta^{k-1}\right)\left(\alpha_{i}-1 \varepsilon^{k} \eta^{k-1}\right) \alpha_{i}=\alpha_{i} \quad i \geqq k+1
\end{aligned}
$$

i.e., $\beta_{k} \varepsilon^{i}=\alpha_{i}$ for $i \geqq k$. By induction on k we finally obtain $\alpha=\beta_{1} \in \boldsymbol{F}_{n}$ such that $\alpha \varepsilon^{i}=\beta_{1} \varepsilon^{i}=\alpha_{i}$ for $i=1, \cdots, n$.

Remark. In the above proof the element $\alpha \in F_{n}$ was obtained from the elements $\alpha_{1}, \cdots, \alpha_{n} \in F_{n-1}$ by application of the following operations only: $\varepsilon^{i}, \eta^{i}$, multiplication and taking inverses. We shall denote this element $\alpha \in F_{n}$ obtained from $\alpha_{1}, \cdots, \alpha_{n}$ in this specific way, by $e\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. Clearly if $l: F \rightarrow B$ is a c.s.s. homomorphism, then $l e\left(\alpha_{1}, \cdots, \alpha_{n}\right)=e\left(l \alpha_{1}, \cdots, l \alpha_{n}\right)$. Also if $\alpha_{i}=1_{n-1}$, the unit element of F_{n-1}, for all i, then $e\left(\alpha_{1}, \cdots, \alpha_{n}\right)=1_{n}$, the unit element of F_{n}.

Lemme 2. Let F be a c.s.s. group, let $B=F /[F, F]$ and let $l: F \rightarrow B$ be the projection. Let $\psi \in \tilde{B}_{n}$. Then there exists $a \phi \in \widetilde{F}_{n}$ such that $l \phi=\psi$.

Proof. Clearly l is a c.s.s. homomorphism onto. Hence there exists an $\alpha \in F_{n}$ such that $l \alpha=\psi$. Let $\beta=e\left(\alpha \varepsilon^{1}, \cdots, \alpha \varepsilon^{n}\right)$. Because $l\left(\alpha \varepsilon^{i}\right)=(l \alpha) \varepsilon^{i}=\psi \varepsilon^{i}=1_{n-1}$ for $i \neq 0$ it follows that $l \beta=l e\left(\alpha \varepsilon^{1}, \cdots, \alpha \varepsilon^{n}\right)=e\left(l\left(\alpha \varepsilon^{1}\right), \cdots, l\left(\alpha \varepsilon^{n}\right)\right)=1_{n}$. Let $\phi=\alpha \beta^{-1}$, then clearly $l \phi=l \alpha=\psi$ and $\phi \varepsilon^{i}=\left(\alpha \varepsilon^{i}\right)\left(\beta^{-1} \varepsilon^{i}\right)=1_{n-1}$ for $i \neq 0$, q.e.d.

Proof of Theorem 2a. The first part of Theorem 2a follows immediately from the fact that $l: \vec{F} \rightarrow B$ is a c.s.s. homomorphism onto.

Let $\sigma \in H^{0}$ be such that $\{l \sigma\}=0$, i.e., there exists a $\psi \in \widetilde{B}_{1}$ such that $l_{\sigma}=\psi \varepsilon{ }^{0}$. Let $\phi \in \tilde{F}_{1}$ be such that $l \phi=\psi$ and let $\tau=\left(\phi^{-1} \varepsilon^{0}\right) \sigma$. Then $\{\sigma\}=\{\tau\}$. Furthermore $l \tau=\left(l^{-1} \varepsilon^{0}\right)(l \sigma)=1_{0}$. Hence $\tau \varepsilon\left[F_{0}, \quad F_{0}\right]$ and $\{\sigma\}=\{\tau\} \in\left[H_{0}(\widetilde{F}), H_{0}(\tilde{F})\right]$. As $H_{0}(\widetilde{B})$ is abelian (because B_{0} is abelian) it follows that the kernel of $\bar{l}_{*}: H_{0}(\tilde{F}) \rightarrow$ $H_{0}(\tilde{B})$ is exactly $\left[H_{0}(\tilde{F}), H_{0}(\widetilde{F})\right]$. This completes the proof.

[^1]
8. Proof of Theorem $\mathbf{2 b}$

The following lemmas will be needed.
Lemma 3. Let F be a c.s.s. group and let $\alpha \in F_{n}$ and $\phi \in \vec{F}_{1}$ be such that $\alpha \varepsilon^{n} \ldots$ $\varepsilon^{1}=\phi \varepsilon^{0}$. Then there exist elements $\beta_{0}, \cdots, \beta_{n} \in F_{n+1}$ such that

$$
\begin{aligned}
\beta_{0} \varepsilon^{0} & =\alpha \\
\beta_{i} \varepsilon^{i} & =\beta_{i-1} \varepsilon^{i} \quad 0<i \leqq n \\
\beta_{i} \varepsilon^{n+1} \cdots \varepsilon^{i+1} & =1_{i} \quad 0 \leqq i \leqq n
\end{aligned}
$$

Proof. Let

$$
\beta_{0}=\left(\alpha \eta^{0}\right)\left(\alpha^{-1} \varepsilon^{n} \cdots \varepsilon^{1} \eta^{0} \cdots \eta^{n}\right)\left(\phi \eta^{1} \cdots \eta^{n}\right) .
$$

Then

$$
\begin{aligned}
& \beta_{0} \varepsilon^{0}=\alpha\left(\alpha^{-1} \varepsilon^{n} \cdots \varepsilon^{1} \eta^{0} \cdots \eta^{n-1}\right)\left(\phi \varepsilon^{0} \eta^{0} \cdots \eta^{n-1}\right)= \\
& \quad \beta_{0} \varepsilon^{n+1} \cdots \varepsilon^{1}=\left(\alpha \varepsilon^{n} \cdots \varepsilon^{1}\right)\left(\alpha^{-1} \varepsilon^{n} \cdots \varepsilon^{1}\right)\left(\phi \varepsilon^{1}\right)=1_{0}
\end{aligned}
$$

Now suppose β_{k-1} has already been defined in such a manner that $\beta_{k-1} \varepsilon^{k-1}=$ $\beta_{k-2} \varepsilon^{k-1}$ and $\beta_{k-1} \varepsilon^{n+1} \cdots \varepsilon^{k}=1_{k-1}$.
Let

$$
\beta_{k}=\left(\beta_{k-1} \varepsilon_{k} \eta^{k}\right)\left(\beta_{k-1}-1 \varepsilon^{n+1} \cdots \varepsilon^{k+2} \varepsilon^{k} \eta^{k} \cdots \eta^{n}\right)\left(\beta_{k-1} \varepsilon^{n+1} \cdots \varepsilon^{k+2} \varepsilon^{k} \eta^{k-1} \eta^{k+1} \cdots \eta^{n}\right)
$$

Then a straightforward computation yields

$$
\begin{aligned}
\beta_{k} \varepsilon^{k} & =\beta_{k-1} \varepsilon^{k} \\
\beta_{k} \varepsilon^{n+1} \cdots \varepsilon^{k+1} & =l_{k} .
\end{aligned}
$$

The lemma now follows by induction on k.
Lemma 4. Let F be a c.s.s. group, let $\gamma \in$ kernel $\tilde{\partial}_{n}$ and let $\alpha \in F_{n}$ and $\phi \in \widetilde{F}_{1}$ be such that $\alpha \varepsilon^{n} \cdots \varepsilon^{1}=\varphi \varepsilon^{0}$. Then there exists a $\lambda \in \tilde{F}_{n+1} \cap\left[F_{n+1}, F_{n+1}\right]$ such that $\lambda \varepsilon^{0}=\gamma \alpha \gamma^{-1} \alpha^{-1}$.

Proof. For each integer i with $0 \leqq i \leqq n$ let

$$
\lambda_{i}=\left(\gamma \eta^{i}\right) \beta_{i}\left(\gamma^{-1} \eta^{i}\right) \beta_{i}^{-1} \in\left[F_{n+1}, F_{n+1}\right.
$$

where β_{i} is as in Lemma 3. Then

$$
\begin{aligned}
\lambda_{0} \varepsilon^{0} & =\gamma \alpha \gamma^{-1} \alpha^{-1} \\
\lambda_{i} \varepsilon^{i} & =\gamma\left(\beta_{i} \varepsilon^{i}\right) \gamma^{-1}\left(\beta_{i}^{-1} \varepsilon^{i}\right) \\
\lambda_{i} \varepsilon^{i+1} & =\gamma\left(\beta_{i} \varepsilon^{i+1}\right) \gamma^{-1}\left(\beta_{i}^{-1} \varepsilon^{i+1}\right)=\gamma\left(\beta_{i+1} \varepsilon^{i+1}\right)^{\gamma-1}\left(\beta_{i+1}^{-1} \varepsilon^{i+1}\right), i \neq n \\
\lambda_{i} \varepsilon^{3} & =l_{n} j \neq i i+1 \\
\lambda_{n} \varepsilon^{n+1} & =l_{n} .
\end{aligned}
$$

Let

$$
\lambda=\prod_{i=0}^{n}\left(\lambda_{i}\right)^{i_{1}} \quad \text { where } \quad \varepsilon_{i}=(-1)^{i}
$$

Then it is readily verified that

$$
\begin{gathered}
\lambda \in \tilde{F}_{n+1} \cap\left[F_{n+1}, \vec{F}_{n+1}\right] \\
\lambda \varepsilon^{0}=\gamma \alpha \gamma^{-1} \alpha^{-1}, \quad \text { q.e.d. }
\end{gathered}
$$

Lemma 5. Let F be a c.s.s. group such that $H_{0}(\widetilde{F})=0$. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in F_{n}$ be such that $\alpha_{1} \varepsilon^{i}=\beta_{1} \varepsilon^{i}$ and $\alpha_{2} \varepsilon^{i}=\beta_{2} \varepsilon^{i}$ for all i. Then there exists $a v \in \widetilde{F}_{n+1} \cap\left[\widetilde{F}_{n+1}\right.$, $\left.F_{n+1}\right]$ such that

$$
\nu \varepsilon^{0}=\alpha_{1} \alpha_{2} \alpha_{1}^{-1} \alpha_{2}^{-1} \beta_{2} \beta_{1} \beta_{2}^{-1} \beta_{1}^{-1}
$$

Proof. Because $H_{0}(\widetilde{F})=0$ it follows (using Lemma 4) that there exist elements $\lambda, \mu \in \tilde{F}_{n+1} \cap\left[F_{n+1}, F_{n+1}\right]$ such that

$$
\begin{aligned}
& \lambda \varepsilon^{0}=\left(\beta_{2}^{-1} \alpha_{2}\right) \alpha_{1}^{-1}\left(\alpha_{2}^{-1} \beta_{2}\right) \alpha_{1} \\
& \mu \varepsilon^{0}=\left(\beta_{1}^{-1} \alpha_{1}\right) \beta_{2}\left(\alpha_{1}^{-1} \beta_{1}\right) \beta_{2}^{-1}
\end{aligned}
$$

Let

$$
\nu=\left(\alpha_{1} \eta^{0}\right)\left(\beta_{2} \eta^{0}\right) \lambda\left(\beta_{2}^{-1} \eta^{0}\right)\left(\alpha_{1}^{-1} \eta^{0}\right)\left(\beta_{1} \eta^{0}\right) \mu\left(\beta_{1}^{-1} \eta^{0}\right)
$$

Then a direct computation yields

$$
\begin{aligned}
& \nu \varepsilon^{0}=\alpha_{1} \alpha_{2} \alpha_{1}^{-1} \alpha_{2}^{-1} \beta_{2} \beta_{1} \beta_{2}^{-1} \beta_{1}^{-1} \\
& \nu \varepsilon^{i}=1_{n} \quad i \neq 0, \quad \text { q.e.d. }
\end{aligned}
$$

Lemma 6. Let F be a free c.s.s. group and let $H_{i}(\widetilde{F})=0$ for $0 \leqq i<n$. Then there exist homomorphisms $D_{i}: F_{i} \rightarrow F_{i+1}(0 \leqq i<n)$ such that for every $\alpha \in F_{i}$

$$
\begin{aligned}
& \left(D_{i} \alpha\right) \varepsilon^{0}=\alpha \\
& \left(D_{i} \alpha\right) \varepsilon^{j}=D_{i-1}\left(\alpha \varepsilon^{j-1}\right) \quad j \neq 0 .
\end{aligned}
$$

Proof. Let K be an integer such that $0 \leqq k<n$ and suppose that for $i<k$ homomorphisms $D_{i}: F_{i} \rightarrow F_{i+1}$ have been defined satisfying the above conditions. As F_{k} is a free group it is sufficient to define D_{k} on a set of generators \sum of F_{k}. This is done as follows. Let $\alpha \in \sum$ be a generator, and let

$$
\delta=e\left(D_{k-1}\left(\alpha \varepsilon^{0}\right), \cdots, D_{k-1}\left(\alpha \varepsilon^{k}\right)\right) .
$$

Then for $0 \leqq i \leqq k$

$$
\begin{aligned}
& \left(\alpha\left(\delta^{-1} \varepsilon^{0}\right)\right) \varepsilon^{i}=\left(\alpha \varepsilon^{i}\right)\left(\delta^{-1} \varepsilon^{0} \varepsilon^{i}\right)=\left(\alpha \varepsilon_{i}\right)\left(\delta^{-1} \varepsilon^{i+1} \varepsilon^{0}\right) \\
& =\left(\alpha \varepsilon^{i}\right)\left(\left(D_{k-1}\left(\alpha^{-1} \varepsilon^{i}\right)\right) \varepsilon^{0}\right)=\left(\alpha \varepsilon^{i}\right)\left(\alpha^{-1} \varepsilon^{i}\right)=l_{k-1}
\end{aligned}
$$

As $H_{k}(\tilde{F})=0$ there exists a $\phi \in \tilde{F}_{k+1}$ such that $\phi \varepsilon^{0}=\alpha\left(\delta^{-1} \varepsilon^{0}\right)$. Now define

$$
D_{k} \alpha=\phi \delta .
$$

In order to prove that the homomorphism $D_{k}: F_{k} \rightarrow F_{k+1}$ defined in this manner has the desired properties it clearly suffices to show that this is the case for each generator $\alpha \in \sum$. Indeed for each $\alpha \in \sum$ we have

$$
\begin{gathered}
\left(D_{k} \alpha\right) \varepsilon^{0}=(\phi \delta) \varepsilon^{0}=\alpha\left(\delta^{-1} \varepsilon^{0}\right)\left(\delta \varepsilon^{0}\right)=\alpha \\
\left(D_{k} \alpha\right) \varepsilon^{j}=(\phi \delta) \varepsilon^{j}=\delta \varepsilon^{j}=D_{k-1}\left(\alpha \varepsilon^{j-1}\right) \quad j \neq 0 .
\end{gathered}
$$

The lemma now follows by induction on k.

Lemma 7. Let \boldsymbol{F} be a free c.s.s. group and let $H_{i}(\tilde{F})=0$ for $0 \leqq i<n$. Let $\rho \in$ kernel $\tilde{\partial}_{n} \cap\left[F_{n}, F_{n}\right]$. Then there exists $a \chi \in \widetilde{F}_{n+1} \cap\left[F_{n+1}, F_{n+1}\right]$ such that $\chi \varepsilon^{0}=\rho$.

Proof. As $\rho \in\left[\boldsymbol{F}_{n}, \boldsymbol{F}_{n}\right]$ there exists an integer q and elements $\alpha_{1}, \cdots, \alpha_{2 q} \in \boldsymbol{F}_{n}$ such that

$$
\boldsymbol{\rho}=\prod_{s=1}^{q}\left[\alpha_{2 s-1}, \alpha_{2 s}\right]
$$

where [,] denotes the commutator. For $0 \leqq t \leqq 2 q$ let

$$
\delta_{t}=e\left(D_{n-1}\left(\alpha_{t} \varepsilon^{0}\right), \cdots, D_{n-1}\left(\alpha_{t} \varepsilon^{n}\right)\right)
$$

and let $\beta_{t}=\delta_{t} \varepsilon^{0}$. Then by Lemma 5 there exists for each integer s with $0 \leqq s \leqq q$ a $v_{s} \in F_{n+1} \cap\left[F_{n+1}, F_{n+1}\right]$ such that

$$
\nu_{s} \varepsilon^{0}=\left[\alpha_{2 s-1}, \alpha_{2 s}\right]\left[\beta_{2 s}, \beta_{2 s-1}\right]
$$

Let

$$
\chi=\prod_{s=1}^{q}\left(v_{s}\left[\delta_{2 s-1}, \delta_{2 s}\right]\right)
$$

Then a direct computation yields that $\chi \varepsilon^{0}=\rho$ and $\chi \varepsilon^{i}=1_{n}$ for $i \neq 0$, q e.d.
Proof of Theorem 2b. Let $\sigma \in$ kernel $\tilde{\partial} \cap F_{n}$ be such that $\{l \sigma\}=0$, i.e., there exists a $\psi \in \widetilde{B}_{n+1}$ such that $l \sigma=\psi \varepsilon^{0}$. Let $\phi \in \tilde{F}_{n+1}$ be such that $l \phi=\psi$ and let $\nu=\left(\phi^{-1} \varepsilon^{0}\right) \sigma$. Then $\{\sigma\}=\{\tau\}$ and $l \tau=\left(l \phi^{-1} \varepsilon^{0}\right)(l \sigma)=\mathbf{1}_{n}$, i.e., $\tau \in$ kernel $\tilde{\partial}_{n} \cap\left[F_{n^{\prime}}\right.$ $\left.F_{n}\right]$. Hence by Lemma $7\{\tau\}=0$. This proves the first part of Theorem 2b.
Let $\xi \in$ kernel $\tilde{\partial}_{n+1} \cap B_{n+1}$. Then there exists a $\rho \in \tilde{F}_{n+1}$ such that $l \rho=\xi$. As $\rho \varepsilon^{0} \varepsilon^{i}=\rho \varepsilon^{i+1} \varepsilon^{0}=1_{n-1}$ for all i and $l\left(\rho \varepsilon^{0}\right)=(l \rho) \varepsilon^{0}=\xi \varepsilon^{0}=1_{n}$, it follows that $\rho \varepsilon^{0} \in$ kernel $\tilde{\partial}_{n} \cap\left[F_{n}, F_{n}\right]$. By Lemma 7 there exists a $\chi \in \widetilde{F}_{n+1} \cap\left[F_{n+1}, F_{n+1}\right]$ such that $\chi \varepsilon^{0}=\rho \varepsilon^{0}$. Hence $\left(\rho \chi^{-1}\right) \varepsilon^{i}=1_{n}$ for all i and $l\left(\rho \chi^{-1}\right)=l_{\rho}=\xi$, i.e., $l_{*}\left\{\rho \chi^{-1}\right\}=\{\xi\}$. This completes the proof.

The Weizmann Institutee of Soience
Rehovoth, Israel
Princeton University
Princeton, New Jhrsey

Bibliography

1. Eilenberg, S. and Zhber, J. A., Semi-simplicial complexes and singular homology, Ann. of Math. 51 (1950), pp. 499-513.
2. Hurewicz, W., Beitrage zur Topologie der Deformationen, Neder. Akad. Wetenseh. 38 (1935), pp. 521-528.
3. Kan, D. M., Abstract homotopy IV, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), pp. 542-544.

[^0]: ${ }^{1}$ This construction is due to J. C. Moore.

[^1]: ${ }^{2}$ This lemma is due to J. C. Moore.

