THE HUREWICZ THEOREM

BY DANIEL M. KAN

1. Introduction

Let L be a simplicial complex, $\pi_n(L)$ its n^{th} homotopy group (relative to some base point) and $H_n(L)$ its n^{th} homology group. For each integer n > 0 let $h^*: \pi_n(L) \to H_n(L)$ be the Hurewicz homomorphism. Then the Hurewicz theorem states (see [2]):

(a) $h_*: \pi_1(L) \to H_1(L)$ is onto and has the commutator subgroup $[\pi_1(L), \pi_1(L)]$ as kernel.

(b) if $\pi_i(L) = 0$ for $1 \leq i \leq n$, then $h_* : \pi_{n+1}(L) \to H_{n+1}(L)$ is an isomorphism and $h_* : \pi_{n+2}(L) \to H_{n+2}(L)$ is onto.

The usual definitions of the homotopy groups of L only involve its underlying topological space and disregard the simplicial structure of L; consequently the corresponding proofs of the Hurewicz theorem are also of a topological nature. In [3] a definition of the homotopy groups of L and of the Hurewicz homomorphisms was given in terms of simplicial structure of L only. The object of this paper is, starting from these definitions to give a completely combinatorial proof of the Hurewicz theorem. In fact it will be shown that the Hurewicz theorem may be considered as a special case of a purely group theoretical theorem.

We shall only consider the case of a c.s.s. complex which has only one 0-simplex. This is no real restriction as every simplicial complex may be converted into a c.s.s. complex by a (partial ordering of its vertices and as every connected c.s.s. complex is of the same homotopy type as one which has only one 0-simplex.

The paper is divided into two parts. In Part I the necessary definitions are given and the Hurewicz theorem is formulated and reduced to a purely group theoretical theorem. The proof of this theorem is given in Part II.

PART I

2. C.s.s. complexes and c.s.s. groups

A c.s.s. complex K (see [1]) is a collection of elements (called *simplices*) to each of which is attached a *dimension* $n \leq 0$, such that for every *n*-simplex $\sigma \in K$ and every integer *i* with $0 \leq i \leq n$ there are defined in K an (n-1)-simplex $\sigma \varepsilon^i$ (called *face*) and an (n + 1)-simplex $\sigma \eta^i$ (called *degenerate*). The operators ε^i and η^i are required to satisfy the following identities

$$egin{aligned} &arepsilon^{i}arepsilon^{j-1} = arepsilon^{j}arepsilon^{i} & i < j \ &\eta^{j}arepsilon^{i} = arepsilon^{i}\eta^{j-1} & i < j \ &\eta^{j}arepsilon^{i} = arepsilon^{i}\eta^{j-1} & i < j \ &\eta^{j}arepsilon^{i} = arepsilon^{i-1}\eta^{j} & i > j, j+1 \ &\eta^{j}arepsilon^{i} = arepsilon^{i-1}\eta^{j} & i > j+1. \ &225 \end{aligned}$$

The set of the *n*-simplices of K is denoted by K_n . The face and degeneracy operators ε^i and η^j thus may be considered as functions $\varepsilon^i: K_n \to K_{n-1}$ and $\eta^i: K_n \to K_{n+1}$.

A c.s.s. map $f: K \to L$ is a dimension preserving function which commutes with all face and degeneracy operators, i.e., for every simplex $\sigma \in K_n$ and integer i with $0 \le i \le n$

$$(f\sigma)\varepsilon^i = f(\sigma\varepsilon^i)$$

 $(f\sigma)\eta^i = f(\sigma\eta^i).$

A c.s.s. group G is a c.s.s. complex such that for every integer $n \ge 0$ (a) G_n is a group.

(b) all face and degeneracy operations $\varepsilon^i: G_n \to G_{n-1}$ and $\eta^i: G_n \to G_{n+1}$ are homomorphisms.

Let G and H be c.s.s. groups. A c.s.s. homomorphism $f: G \to H$ is a c.s.s. map such that for every integer $n \ge 0$ the restriction $f_n: G_n \to H_n$ is a homomorphism.

A c.s.s. group G is called *free* if G_n is a free (non abelian) group for all n.

Let G be a c.s.s. group. Define¹ for each integer $n \ge 0$ a subgroup $\tilde{G}_n \subset G_n$ by

$$G_n = \bigcap_{i=1}^n \text{kernel } \varepsilon^i.$$

Then $\sigma \in \tilde{G}_{n+1}$ implies $\sigma \varepsilon^0 \in \tilde{G}_n$. Hence we may define a homomorphism $\tilde{\partial}_{n+1} : \tilde{G}_{n+1} \to \tilde{G}_n$ by

$${\widetilde \partial}_{n+1}\,\sigma=\sigma arepsilon^0 \qquad \sigma\in {\widetilde G}_{n+1}$$

For each integer m < 0 let $\tilde{G}_m = 1$ and let $\tilde{\partial}_{m+1} : \tilde{G}_{m+1} \to \tilde{G}_m$ be the trivial map. Then it can be shown that image $\tilde{\partial}_{n+1}$ is a normal subgroup of kernel $\tilde{\partial}_n$ for all n, i.e., $\tilde{G} = \{\tilde{G}_n, \tilde{\partial}_n\}$ is a (not necessarily abelian) chain complex. Its homology groups are

$$H_n(\widetilde{G}) = ext{kernel } \widetilde{\partial}_n/ ext{image } \widetilde{\partial}_{n+1}$$

Let $\sigma \in \text{kernel } \partial_n$. Then the element of $H_n(\tilde{G})$ containing σ will be denoted by $\{\sigma\}$.

3. The homotopy groups

Let K be a c.s.s. complex which has only one 0-simplex. Then we define a c.s.s. group G as follows. G_n is the (not necessarily abelian) group which has a generator $\overline{\sigma}$ for every $\sigma \in K_{n+1}$ and a relation $\overline{\tau\eta^0} = 1$ for every $\tau \in K_n$. As clearly the groups G_n are free, it suffices to define the face and degeneracy homomorphisms $e^i: G_n \rightarrow G_{n-1}$ and $\eta^i: G_n \rightarrow G_{n+1}$ on the generators of G_n . This is done by the following formulas:

$$ar{\sigma}arepsilon^{\mathbf{0}} = \overline{(\sigmaarepsilon^{\mathbf{0}})^{-1}} \, \overline{\sigma}arepsilon^{\mathbf{1}} \ ar{\sigma}arepsilon^{i} = \overline{\sigmaarepsilon^{i+1}} \quad 0 < i \leq n \ ar{\sigma}\eta^{i} = \overline{\sigma\eta^{i+1}} \quad 0 \leq i \leq n.$$

¹ This construction is due to J. C. Moore.

226

For every integer n > 0 we now define $\pi_n(K)$, the nth homotopy group of K, by

$$\pi_n(K) = H_{n-1}(\tilde{G}).$$

4. The homology groups

We define a c.s.s. group A as follows. For each integer $n \ge 0$ let

$$A_n = G_n / [G_n, G_n]$$

where $[G_n, G_n]$ denotes the commutator subgroup of G_n , and let the face and degeneracy homomorphisms $\varepsilon^i : A_n \to A_{n-1}$ and $\eta^i : A_n \to A_{n+1}$ be those induced by the corresponding homomorphisms of G. Thus A is "G made abelian" and we write

$$A \rightarrow G/[G, G].$$

For each integer n > 0 we define $H_n(K)$, the nth homology group of K, by

$$H_n(K) = H_{n-1}(\bar{A}).$$

5. The Hurewicz homomorphisms

Let $k: G \to A$ denote the projection, i.e., k maps an n-simplex of G on the coset of $[G_n, G_n]$ containing it. Clearly k is a c.s.s. homomorphism. It induces a chain map $\tilde{k}: \tilde{G} \to \tilde{A}$ (i.e., $\tilde{\partial}_n \tilde{k}\sigma = \tilde{k}\tilde{\partial}_n \sigma$ for every $\sigma \in \tilde{G}_n$) and hence induces homomorphisms

$$\tilde{k}_*: H_{n-1}(\tilde{G}) \longrightarrow H_{n-1}(\tilde{A})$$

for each integer n > 0.

For each integer n > 0 we now define the Hurewicz homomorphism $h_*: \pi_n(K) \to H_n(K)$ by

$$h_* = k_*$$

6. The Hurewicz theorem and its reduction to a group theoretical theorem

We first formulate both halves of the *Hurewicz theorem* in Theorem 1a and 1b below.

THEOREM 1a. Let K be a c.s.s. complex which has only one 0-simplex. Then the homomorphism $h_{\star}: \pi_1(K) \to H_1(K)$ is onto and has $[\pi_1(K), \pi_1(K)]$ as kernel.

THEOREM 1b. Let K be a c.s.s. complex which has only one 0-simplex and let $\pi_i(K) = 0$ for $0 < i \leq n$. Then $h_*: \pi_{n+1}(K) \to H_{n+1}(K)$ is an isomorphism and $h_*: \pi_{n+2}(K) \to H_{n+2}(K)$ is onto.

It follows immediately from the definition of the Hurewicz homomorphism (see §5) that Theorem 1a and 1b are a special case of the following group theoretical theorems.

THEOREM 2a. Let F be a free c.s.s. group, let B = F/[F, F] and let $\tilde{l}: \tilde{F} \to \tilde{B}$ be the chain map induced by the projection $l: F \to B$. Then $\tilde{l}_*: H_0(\tilde{F}) \to H_0(\tilde{B})$ is onto and has $[H_0(\tilde{F}), H_0(\tilde{F})]$ as kernel.

THEOREM 2b. Let F be a free c.s.s. group, let B = F/[F, F] and let $\tilde{l}: \tilde{F} \to \tilde{B}$ be

the chain map induced by the projection $l: F \to B$. Let $H_i(\tilde{F}) = 0$ for $0 \leq i < n$ Then $\tilde{l}_*: H_n(\tilde{F}) \to H_n(\tilde{B})$ is an isomorphism into and $\tilde{l}_*: H_{n+1}(\tilde{F}) \to H_{n+1}(\tilde{B})$ is onto.

PART II

7. Proof of Theorem 2a

The following lemmas will be needed for the proof of Theorem 2a.

LEMMA 1.² Let F be a c.s.s. group and let $\alpha_1, \dots, \alpha_n \in F_{n-1}$ be such that $\alpha_i \varepsilon^{j-1} = \alpha_j \varepsilon_j$ for $0 < i < j \leq n$. Then there exists an $\alpha \in F_n$ such that $\alpha \varepsilon^i = \alpha_i$ for $i = 1, \dots, n$.

PROOF. Let $\beta_n = \alpha_n \eta^{n-1}$. Then $\beta_n \varepsilon^n = \alpha_n$. Now suppose that $\beta_{k+1} \in F_n$ already has been defined such that $\beta_{k+1} \varepsilon^i = \alpha_i$ for $i \ge k+1$. Define

$$\beta_k = (\alpha_k \eta^{k-1}) (\beta_{k+1}^{-1} \varepsilon^k \eta^{k-1}) \beta_{k+1}$$

Then

$$\begin{split} \beta_k \varepsilon^k &= (\alpha_k \eta^{k-1} \varepsilon^k) (\beta_{k+1}^{-1} \varepsilon^k \eta^{k-1} \varepsilon^k) (\beta_{k+1} \varepsilon^k) = \alpha_k \\ \beta_k \varepsilon^i &= (\alpha_k \eta^{k-1} \varepsilon^i) (\beta_{k+1}^{-1} \varepsilon^k \eta^{k-1} \varepsilon^i) (\beta_{k+1} \varepsilon^i) \\ &= (\alpha_k \varepsilon^{i-1} \eta^{k-1}) (\beta_{k+1}^{-1} \varepsilon^i \varepsilon^k \eta^{k-1}) \alpha_i \\ &= (\alpha_i \varepsilon^k \eta^{k-1}) (\alpha_i^{-1} \varepsilon^k \eta^{k-1}) \alpha_i = \alpha_i \quad i \ge k+1, \end{split}$$

i.e., $\beta_k \varepsilon^i = \alpha_i$ for $i \ge k$. By induction on k we finally obtain $\alpha = \beta_1 \in F_n$ such that $\alpha \varepsilon^i = \beta_1 \varepsilon^i = \alpha_i$ for $i = 1, \dots, n$.

REMARK. In the above proof the element $\alpha \in F_n$ was obtained from the elements $\alpha_1, \dots, \alpha_n \in F_{n-1}$ by application of the following operations only: ε^i , η^i , multiplication and taking inverses. We shall denote this element $\alpha \in F_n$ obtained from $\alpha_1, \dots, \alpha_n$ in this specific way, by $e(\alpha_1, \dots, \alpha_n)$. Clearly if $l: F \to B$ is a c.s.s. homomorphism, then $le(\alpha_1, \dots, \alpha_n) = e(l\alpha_1, \dots, l\alpha_n)$. Also if $\alpha_i = 1_{n-1}$, the unit element of F_{n-1} , for all i, then $e(\alpha_1, \dots, \alpha_n) = 1_n$, the unit element of F_n .

LEMMA 2. Let F be a c.s.s. group, let B = F/[F, F] and let $l: F \to B$ be the projection. Let $\psi \in \tilde{B}_n$. Then there exists $a\phi \in \tilde{F}_n$ such that $l\phi = \psi$.

PROOF. Clearly l is a c.s.s. homomorphism onto. Hence there exists an $\alpha \in F_n$ such that $l\alpha = \psi$. Let $\beta = e(\alpha \varepsilon^1, \dots, \alpha \varepsilon^n)$. Because $l(\alpha \varepsilon^i) = (l\alpha)\varepsilon^i = \psi \varepsilon^i = 1_{n-1}$ for $i \neq 0$ it follows that $l\beta = le(\alpha \varepsilon^1, \dots, \alpha \varepsilon^n) = e(l(\alpha \varepsilon^1), \dots, l(\alpha \varepsilon^n)) = 1_n$. Let $\phi = \alpha\beta^{-1}$, then clearly $l\phi = l\alpha = \psi$ and $\phi\varepsilon^i = (\alpha\varepsilon^i)(\beta^{-1}\varepsilon^i) = 1_{n-1}$ for $i \neq 0$, q.e.d. PROOF OF THEOREM 2a. The first part of Theorem 2a follows immediately from the fact that $l: F \to B$ is a c.s.s. homomorphism onto.

Let $\sigma \in F^0$ be such that $\{l\sigma\} = 0$, i.e., there exists a $\psi \in \tilde{B}_1$ such that $l\sigma = \psi \varepsilon^0$. Let $\phi \in \tilde{F}_1$ be such that $l\phi = \psi$ and let $\tau = (\phi^{-1}\varepsilon^0)\sigma$. Then $\{\sigma\} = \{\tau\}$. Furthermore $l\tau = (l\phi^{-1}\varepsilon^0)(l\sigma) = 1_0$. Hence $\tau \varepsilon[F_0, F_0]$ and $\{\sigma\} = \{\tau\} \in [H_0(\tilde{F}), H_0(\tilde{F})]$. As $H_0(\tilde{B})$ is abelian (because B_0 is abelian) it follows that the kernel of $\tilde{l}_* : H_0(\tilde{F}) \to H_0(\tilde{B})$ is exactly $[H_0(\tilde{F}), H_0(\tilde{F})]$. This completes the proof.

² This lemma is due to J. C. Moore.

8. Proof of Theorem 2b

The following lemmas will be needed.

LEMMA 3. Let F be a c.s.s. group and let $\alpha \in F_n$ and $\phi \in \tilde{F}_1$ be such that $\alpha \varepsilon^n \cdots \varepsilon^1 = \phi \varepsilon^0$. Then there exist elements $\beta_0, \cdots, \beta_n \in F_{n+1}$ such that

$$egin{aligned} η_0arepsilon &lpha \ η_0arepsilon^0 &= lpha \ η_iarepsilon^i &= eta_{i-1}arepsilon^i & 0 < i \leq n \ η_iarepsilon^{n+1}\cdotsarepsilon^{i+1} &= 1_i & 0 \leq i \leq n \end{aligned}$$

PROOF. Let

Then

$$\beta_0 = (\alpha \eta^0)(\alpha^{-1}\varepsilon^n \cdots \varepsilon^1 \eta^0 \cdots \eta^n)(\phi \eta^1 \cdots \eta^n).$$

$$\beta_0 \varepsilon^0 = \alpha(\alpha^{-1}\varepsilon^n \cdots \varepsilon^1 \eta^0 \cdots \eta^{n-1})(\phi \varepsilon^0 \eta^0 \cdots \eta^{n-1}) =$$

$$\beta_0 \varepsilon^{n+1} \cdots \varepsilon^1 = (\alpha \varepsilon^n \cdots \varepsilon^1)(\alpha^{-1}\varepsilon^n \cdots \varepsilon^1)(\phi \varepsilon^1) = 1_0$$

Now suppose β_{k-1} has already been defined in such a manner that $\beta_{k-1}\varepsilon^{k-1} = \beta_{k-2}\varepsilon^{k-1}$ and $\beta_{k-1}\varepsilon^{n+1}\cdots\varepsilon^k = 1_{k-1}$. Let

$$\beta_k = (\beta_{k-1}\varepsilon_k\eta^k)(\beta_{k-1}^{-1}\varepsilon^{n+1}\cdots\varepsilon^{k+2}\varepsilon^k\eta^k\cdots\eta^n)(\beta_{k-1}\varepsilon^{n+1}\cdots\varepsilon^{k+2}\varepsilon^k\eta^{k-1}\eta^{k+1}\cdots\eta^n).$$

Then a straightforward computation yields

$$eta_k arepsilon^k = eta_{k-1} arepsilon^k$$
 $eta_k arepsilon^{n+1} \cdots arepsilon^{k+1} = l_k.$

The lemma now follows by induction on k.

LEMMA 4. Let F be a c.s.s. group, let $\gamma \in kernel \tilde{\partial}_n$ and let $\alpha \in F_n$ and $\phi \in \tilde{F}_1$ be such that $\alpha \varepsilon^n \cdots \varepsilon^1 = \varphi \varepsilon^0$. Then there exists a $\lambda \in \tilde{F}_{n+1} \cap [F_{n+1}, F_{n+1}]$ such that $\lambda \varepsilon^0 = \gamma \alpha \gamma^{-1} \alpha^{-1}$.

PROOF. For each integer *i* with $0 \leq i \leq n$ let

$$\lambda_i = (\gamma \eta^i) \beta_i (\gamma^{-1} \eta^i) \beta_i^{-1} \in [F_{n+1}, F_{n+1}]$$

where β_i is as in Lemma 3. Then

$$\begin{split} \lambda_0 \varepsilon^0 &= \gamma \alpha \gamma^{-1} \alpha^{-1} \\ \lambda_i \varepsilon^i &= \gamma (\beta_i \varepsilon^i) \gamma^{-1} (\beta_i^{-1} \varepsilon^i) \\ \lambda_i \varepsilon^{i+1} &= \gamma (\beta_i \varepsilon^{i+1}) \gamma^{-1} (\beta_i^{-1} \varepsilon^{i+1}) = \gamma (\beta_{i+1} \varepsilon^{i+1}) \stackrel{\gamma-1}{\rightarrow} (\beta_{i+1}^{-1} \varepsilon^{i+1}), i \neq n \\ \lambda_i \varepsilon^j &= l_n \quad j \neq i \quad i+1 \\ \lambda_n \varepsilon^{n+1} &= l_n. \end{split}$$

Let

$$\lambda = \prod_{i=0}^{n} (\lambda_i)^{\epsilon_1}$$
 where $\varepsilon_i = (-1)^i$.

Then it is readily verified that

$$\begin{split} \lambda \in \tilde{F}_{n+1} \cap [F_{n+1}, F_{n+1}] \\ \lambda \varepsilon^0 &= \gamma \alpha \gamma^{-1} \alpha^{-1}, \quad \text{q.e.d.} \end{split}$$

LEMMA 5. Let F be a c.s.s. group such that $H_0(\tilde{F}) = 0$. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in F_n$ be such that $\alpha_1 e^i = \beta_1 e^i$ and $\alpha_2 e^i = \beta_2 e^i$ for all i. Then there exists a $v \in \tilde{F}_{n+1} \cap [\tilde{F}_{n+1}, F_{n+1}]$ such that

$$u \varepsilon^{\mathbf{0}} = \alpha_1 \alpha_2 \alpha_1^{-1} \alpha_2^{-1} \beta_2 \beta_1 \beta_2^{-1} \beta_1^{-1}.$$

PROOF. Because $H_0(\tilde{F}) = 0$ it follows (using Lemma 4) that there exist elements $\lambda, \mu \in \tilde{F}_{n+1} \cap [F_{n+1}, F_{n+1}]$ such that

$$egin{aligned} \lambda arepsilon^{\mathbf{0}} &= (eta_2^{-1} \, lpha_2) lpha_1^{-1} (lpha_2^{-1} eta_2) lpha_1 \ \mu arepsilon^{\mathbf{0}} &= (eta_1^{-1} \, lpha_1) eta_2 (lpha_1^{-1} eta_1) eta_2^{-1}. \end{aligned}$$

Let

$$\nu = (\alpha_1 \eta^0) (\beta_2 \eta^0) \lambda (\beta_2^{-1} \eta^0) (\alpha_1^{-1} \eta^0) (\beta_1 \eta^0) \mu (\beta_1^{-1} \eta^0).$$

Then a direct computation yields

$$\begin{split} & \nu \varepsilon^{\mathbf{0}} = \alpha_1 \alpha_2 \alpha_1^{-1} \alpha_2^{-1} \beta_2 \beta_1 \beta_2^{-1} \beta_1^{-1} \\ & \nu \varepsilon^i = \mathbf{1}_n \quad i \neq 0, \quad \text{q.e.d.} \end{split}$$

LEMMA 6. Let F be a free c.s.s. group and let $H_i(\tilde{F}) = 0$ for $0 \leq i < n$. Then there exist homomorphisms $D_i: F_i \to F_{i+1}$ $(0 \leq i < n)$ such that for every $a \in F_i$

$$\begin{split} (D_i \alpha) \varepsilon^0 &= \alpha \\ (D_i \alpha) \varepsilon^j &= D_{i-1} (\alpha \varepsilon^{j-1}) \qquad j \neq 0. \end{split}$$

PROOF. Let K be an integer such that $0 \leq k < n$ and suppose that for i < k homomorphisms $D_i: F_i \to F_{i+1}$ have been defined satisfying the above conditions. As F_k is a free group it is sufficient to define D_k on a set of generators \sum of F_k . This is done as follows. Let $\alpha \in \sum$ be a generator, and let

 $\delta = e(D_{k-1}(\alpha \varepsilon^0), \cdots, D_{k-1}(\alpha \varepsilon^k)).$

Then for $0 \leq i \leq k$

$$\begin{split} & (\alpha(\delta^{-1}\varepsilon^0))\varepsilon^i = (\alpha\varepsilon^i)(\delta^{-1}\varepsilon^0\varepsilon^i) = (\alpha\varepsilon_i)(\delta^{-1}\varepsilon^{i+1}\varepsilon^0) \\ & = (\alpha\varepsilon^i)((D_{k-1}(\alpha^{-1}\varepsilon^i))\varepsilon^0) = (\alpha\varepsilon^i)(\alpha^{-1}\varepsilon^i) = l_{k-1}. \end{split}$$

As $H_k(\tilde{F}) = 0$ there exists a $\phi \in \tilde{F}_{k+1}$ such that $\phi \varepsilon^0 = \alpha(\delta^{-1}\varepsilon^0)$. Now define

$$D_k \alpha = \phi \delta.$$

In order to prove that the homomorphism $D_k: F_k \to F_{k+1}$ defined in this manner has the desired properties it clearly suffices to show that this is the case for each generator $\alpha \in \Sigma$. Indeed for each $\alpha \in \Sigma$ we have

$$(D_k \alpha) \varepsilon^0 = (\phi \delta) \varepsilon^0 = \alpha (\delta^{-1} \varepsilon^0) (\delta \varepsilon^0) = \alpha$$
$$(D_k \alpha) \varepsilon^j = (\phi \delta) \varepsilon^j = \delta \varepsilon^j = D_{k-1} (\alpha \varepsilon^{j-1}) \quad j \neq 0.$$

The lemma now follows by induction on k.

230

LEMMA 7. Let F be a free c.s.s. group and let $H_i(\tilde{F}) = 0$ for $0 \leq i < n$. Let $\rho \in kernel \ \tilde{\partial}_n \cap [F_n, F_n]$. Then there exists a $\chi \in \tilde{F}_{n+1} \cap [F_{n+1}, F_{n+1}]$ such that $\chi \varepsilon^0 = \rho$. PROOF. As $\rho \in [F_n, F_n]$ there exists an integer q and elements $\alpha_1, \dots, \alpha_{2q} \in F_n$ such that

$$ho = \prod_{s=1}^{q} \left[lpha_{2s-1}, lpha_{2s} \right]$$

where [,] denotes the commutator. For $0 \le t \le 2q$ let

$$\delta_t = e(D_{n-1}(\alpha_t \varepsilon^0), \cdots, D_{n-1}(\alpha_t \varepsilon^n))$$

and let $\beta_t = \delta_t \varepsilon^0$. Then by Lemma 5 there exists for each integer s with $0 \leq s \leq q$ a $v_s \in F_{n+1} \cap [F_{n+1}, F_{n+1}]$ such that

$$v_s \varepsilon^0 = [\alpha_{2s-1}, \alpha_{2s}][\beta_{2s}, \beta_{2s-1}]$$

 $\chi = \prod_{s=1}^q (v_s[\delta_{2s-1}, \delta_{2s}]).$

Let

Then a direct computation yields that $\chi \varepsilon^0 = \rho$ and $\chi \varepsilon^i = \mathbf{1}_n$ for $i \neq 0$, q e.d.

PROOF OF THEOREM 2b. Let $\sigma \in \text{kernel } \tilde{\partial} \cap F_n$ be such that $\{l\sigma\} = 0$, i.e., there exists a $\psi \in \tilde{B}_{n+1}$ such that $l\sigma = \psi \varepsilon^0$. Let $\phi \in \tilde{F}_{n+1}$ be such that $l\phi = \psi$ and let $\nu = (\phi^{-1}\varepsilon^0)\sigma$. Then $\{\sigma\} = \{\tau\}$ and $l\tau = (l\phi^{-1}\varepsilon^0)(l\sigma) = 1_n$, i.e., $\tau \in \text{kernel } \tilde{\partial}_n \cap [F_n, F_n]$. Hence by Lemma 7 $\{\tau\} = 0$. This proves the first part of Theorem 2b.

Let $\xi \in \text{kernel} \ \widetilde{\partial}_{n+1} \cap B_{n+1}$. Then there exists a $\rho \in \widetilde{F}_{n+1}$ such that $l\rho = \xi$. As $\rho \varepsilon^0 \varepsilon^i = \rho \varepsilon^{i+1} \varepsilon^0 = \mathbf{1}_{n-1}$ for all i and $l(\rho \varepsilon^0) = (l\rho)\varepsilon^0 = \xi \varepsilon^0 = \mathbf{1}_n$, it follows that $\rho \varepsilon^0 \in \text{kernel} \ \widetilde{\partial}_n \cap [F_n, F_n]$. By Lemma 7 there exists a $\chi \in \widetilde{F}_{n+1} \cap [F_{n+1}, F_{n+1}]$ such that $\chi \varepsilon^0 = \rho \varepsilon^0$. Hence $(\rho \chi^{-1})\varepsilon^i = \mathbf{1}_n$ for all i and $l(\rho \chi^{-1}) = l\rho = \xi$, i.e., $l_* \{\rho \chi^{-1}\} = \{\xi\}$. This completes the proof.

THE WEIZMANN INSTITUTE OF SCIENCE Rehovoth, Israel

PRINCETON UNIVERSITY PRINCETON, NEW JERSEY

BIBLIOGRAPHY

- EILENBERG, S. and ZILBER, J. A., Semi-simplicial complexes and singular homology, Ann. of Math. 51 (1950), pp. 499-513.
- HUREWICZ, W., Beitrage zur Topologie der Deformationen, Neder. Akad. Wetensch. 38 (1935), pp. 521-528.
- 3. KAN, D. M., Abstract homotopy IV, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), pp. 542-544.