
THE HUREWICZ THEOREM 

By DANIEL M. RAN 

1. Introduction 

Let L be a simplicial complex, 7T",(L) its nth homotopy group (relative to some 
base point) and Hn(L) its nth homology group. For each integer n > 0 let 
h*: 7Tn(L)~Hn(L) be the Rurewicz homomorphism. Then the Hurewicz them-em 
states (see [2]): 

(a) h* : 7TI(L) ~ H I(L) is onto and has the commutator subgroup [7T1(L), 7T1(L)] as 
kernel. 

(b) if 7Ti(L) = 0 for 1 < i < n, then h* : 7Tn+1(L) ~ H n+1(L) is an isomorphism 
and h*: 7T"'+2(L)~Hn+2(L) is onto. 

The usual definitions of the homotopy groups of L only involve its underlying 
topological space and disregard the simplicial structure of L; consequently the 
corresponding proofs of the Rurewicz theorem are also of a topological nature. 
In [3] a definition of the homotopy groups of L and of the Rurewicz homomorph­
isms was given in terms of simplicial structure of L only. The object of this paper 
is, starting from these definitions to give a completely combinatorial proof of the 
Rurewicz theorem. In fact it will be shown that the Hurewicz thilorem may be 
considered as a special case of a purely group theoretical theorem. 

We shall only consider the case of a c.s.s. complex which has only one O-simplex. 
This is no real restriction as every simplicial complex may be converted into a c.s.s. 
complex by a (partial ordering of its vertices and as every connected C.S.s. complex 
is of the same homotopy type as one which has only one O-simplex. 

The paper is divided into two parts. In Part I the necessary definitions are 
given and the Hurewicz theorem is formulated and reduced to a purely group 
theoretical theorem. The proof of this theorem is given in Part II. 

PART I 

2. C.s.s. complexes and c.s.S. groups 
A C.S.s. complex K (see [1]) is a collection of elements (called 8implices) to each of 

which is attached a dimension n < 0, such that for every n-simplex (I E K and 
every integer i with 0 < i < n there are defined in K an (n - 1)-simplt'x (IF/' 

(called face) and an (n + I)-simplex (I'{/ (called degenerate). The operators ei and 
r/ are required to satisfy the following identities 

e'e;-1 = tie' i <j 
'f}Hr/ = 'f}i'f}i i <j 

'f}iei = eV-1 i <j 
r/ei = identity i =;,j + 1 
'f}1ei. = ei - 1'f}i i > j + l. 
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The set of the n-simplices of K is denoted by K",. The face and degeneracy opera­
tors ei and'rf thus may be considered as functions ei : K" ~ K n- 1 and 'fJi : K",-+ 

K,,+l' 
A c.S.S. map j : K ~ L is a dimension preserving function which commutes with 

all face and degeneracy operators, i.e., for every simplex a E K", and integer i with 
O<i<n 

(faJei = f( aei ) 

(fa}'fJi = f( (J'fJi). 

A C.s s. group a is a c.s.s. complex such that for every integer n > 0 
(a) an is a group. 
(b) all face and degeneracy operations ei : an -+ a 17.-1 and 'fJi : a n ~ a "H are 

homomorphisms. 
Let a and H be c.S.S. groups. A c.s.s. lwmomorphism f : a-+ H is a c.s.s. map such 

that for every integer n > 0 the restriction f n : a n ~ H n is a homomorphism. 
A c.S.S. group a is called free if an is a free (non abelian) group for all n. 
Let a be a c.S.S. group. Define1 for each integer n > 0 a subgroup 0" can by 

On = n~=1 kernel ei
. 

Then a E OMI implies aeo E On" Hence we may define a homomorphism 

an+!: On+! ~ 0", by 

8n+1 (J = aeO (J E Gn+1 

For each integer m < 0 let Om = 1 and let ~mH : Om+! ~ Om be the trivial map. 

Then it can be shown that image a"+1 is a normal subgroup of kernel ~n for all n, 
i.e., 0 = {On' ~n} is a (not necessarily abelian) chain complex. Its homology groups 
are 

Hn{O) = kernel an/image an+!' 
Let (J ekernel an" Then the element of H 71'<G) containing (J will be denoted by {a}. 

3. The homotopy groUps 

Let K be a c.s.s. complex which has only one O-simplex. Then we define a c.s.s. 
group a as follows. an is the (not necessarily abelian) group which has a generator 

G for every (j e Kn+! and a relation T'll = 1 for every T E K". As clearly the gloups 
an are free, it suffices to define the face and degeneracy homomorphisms ei : a n ~ 

a .. _1 and 1/: a .. ~ a .. +! on the generators of an' This is done by the following 
formulas: 

Get = (jei+1 

G'fJi = m,/+l 

1 This construction is due to J. C. Moore. 

O<i<n 

0< i< n. 
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For every integer n > 0 we now define '1Tn{K), the nth homotopy group of K, by 

'1Tn(K) = Hn_I(G). 

4. The homology groups 
We define a c.s.s. group A as follows. For each integer n > 0 let 

An = Gn/[Gn, Gn] 

where [Gn , Gn ] denotes the commutator subgroup of Gn , and let the face and 
degeneracy homomorphisms ei : A ... -+ A"'_l and r/ : An -+ AnH be those induced by 
the corresponding homomorphisms of G. Thus A is "G made abelian" and we write 

A -+ Gf[G, GJ. 

FOl each integer n > 0 we define Hn(K), the nth homology group of K, by 

Hn(K) = Hn_I(·A). 

5. The Hurewicz homomorphisms 
Let k : G-+ A denote the projection, i.e., k maps an n-simplex of G on the coset 

of[G .. , GnJ containingUi. Clearly k is a C.S.s. homomorphism. It induces a chain map 

k : G -+ A (i.e., a nka = kana for every a E (J n) and hence induces homomorphisms 

k* : Hn_1«(J) -+ Hn_I(A) 

for each integer n > o. 
For each integer n > 0 we now define the Hurewicz homomorphism h* : 1Tn(K) -+ 

H .. (K) by 

6. The Hurewicz theorem and its reduction to a group 
theoretical theorem 

We first formulate both halves of the Hurewicz theorem in Theorem la and lb 
below. 

THEOREM lao Let K be a c.s.s. complex which has only one O-simplex. Then the 
hmnomorphism h* : '1TI(K) -+ HI(K) is onto and has ['1TI(K), 1TI(K)] as kernel. 

THEOREM lb. Let K be a c.s.s. complex which has only one O.Bimplex and let 
'1Ti(K) = 0 for 0 < i:::;;' n. Then h* : 1Tn+1(K)-+H"+1(K) is an isomorphism and 
h* : '1Tn+2(K) -+ H n+2(K) is onto. 

It follows immediately from the definition of the Hurewicz homomorphism (see §5) 
that Theorem la and lb are a special case of the following group theoretical 
theorems. 

THEOREM 2a. Let F be a free c.s.s. group, let B = F/[F, FJ and let 1: 1!' -+ Jj 
be the chain map induced by the projection l : F -+ B. Then 1", : HoC!') -+ Ho(lJ) is 
onto and has [Ho(.F), Ho{P)J as kernel. 

TaEOREM 2b. Let F be a free C.S.s. group, let B = FI[F, F] and let 1: P -+ lJ be 
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the chain map induced by the projection l : F --'1-- B. Let HkF) = 0 for 0 < i < n 
Then 1* : HnCF)--'1--Hn(lJ) is an isomorphism into and 1*; Hn+1CF)--)oHn+l(/l) is 
onto. 

PART II 

7. Proof of Theorem 2a 
The following lemmas will be needed for the proof of Theorem 2a. 
LEMMA 1.2 Let Ii' be a C.S.b. group and let oc1> ••• , oc .. E F .. -1 be such that OCiei-1 = 

ocjej for 0 < i < j < n. Then there exists an oc E F n such that ocei = OCi for i = 
1.···, n. 

PROOF. Let P .. = oc,,1Jn-I. Then p"en = oc ... Now suppose that Plot-I E F .. already 
has been defined such that p"+lei = OCt for i > Ie + 1. Define 

Then 
p" = (OC,,1JTc.-l)(P"+l-1 e"TJ"-I)P"+l' 

p"ek = (oc,,1JTc.-lek:)(Plot-l-lek:1JTc.-lek:)(P1£+le") = OC1£ 

Plrl = (l1.k1Jlc-l1/)(p"+l-1ek:r/"-lsi)(Plot-lSi) 

= (l1.kei-1TJTc.-l)(plot-l-1eie"1J"-1)OCi 

= (oc.e"1JTc.-l)(oci-1e"1Jk-l) OCi = oci i > Ie + 1, 

i.e., Pkei = OCi for i > k. By induction on Ie we finally obtain 11. = PI E Ii' n such that 
l1.ei = PIe' = OCi for i = 1, ... , n. 

REMARK. In the above proof the element oc E Ii' '10 was obtained from the elements 
11.1' ••• , OC" € Ii' '10-1 by application of the following operations only: ei, TJ i , multi­
plication and taking inverses. We shall denote this element oc E F .. obtained from 
OC1' ••• , oc'" in this specific way, by e(oc1,' •• , ocn ). Clearly if l: Ii' -+ B is a c.S.S. 
homomorphism, then Ze(11.1 • ••• , 11.70 ) = e(111.1' ••• • 1ocn). Also if OCi = In-I' the unit 
element of Ii' .. _I' for all i, then e(11.1'··· ,oc .. ) = 1 .. , the unit element of Fn. 

LEMMA. 2. Let F be a C.s.S. group, let B = F/[F, F] and let l: F-+ B be the 
projection. Let "P E /In' Then there exists cup E J!' " such that lcp = "P. 

PROOF. Clearly lis a c.s.s. homomorphism onto. Hence there exists an 11. E F" such 
that 111. = "P' Let P = e(ocel, ... ,oce"). Because l(ocei

) = (loc}ei = "Pei = 1,,-1 for 
i ::/= 0 it follows that Ip = 1e(oce1, ••• , l1.e") = e.(1(oce1), ••• , l(ocen» = 1". Let 
cp = 11.p-1, then clearly lcp = loc = "P and cpei = (ocei )(p-1ei ) = I n- 1 for i ::/= 0, q.e.d. 

PROOF OF THEOREM 2a. The first part of Theorem 2a follows immediately from 
the fact that 1 : F -+ B is a c.s.s. homomorphism onto. 

Let a E FO be such that {La} = 0, i.e., there exists a "P E 1/1 such that 1a = "Peo. 
Letcp E PI besuchthatlcp = "PandletT = (cp-leO)a. Then {a} = {T}. Furthermore 
IT = (74)-1eO)(la) = 10' Hence Te[Fo• Fo] and {a} = {T} E[Ho(P), Ho{P)]. As 
H o(1/) is abelian (because Bo is abelian) it follows that the kernel of 1* : Ho(p}--'1-­
Ho(1/) is exactly [Ho(P), Ho(P)J. This completes the proof. 

S This lemma. is due to J. C. Moure. 
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8. Proof of Theorem 2b 
The following lemmas will be needed. 

229 

LEMMA 3. Let F.be a c.s.s. group and let oc E F'TO and cp E 1\ be such that oce" ••. 
el = cpeo. Then there e:ci8t element8 Po, .•• ,p" E F"+1 such that 

poeo = oc 

Piei = Pi_lei 0 < i < n 

Pie"+! ••• ei+l = Ii 0 < i < n 
PROOF. Let 

Then 
{Joeo = oc(oc-1e" •.. elrl' •• 'fJ"-l)(cpe0'fJ0 ••• 'fJn-l) = 

{Joe"+! •.• el = (oce" ••• e1)(OC-len ••• eI)(cpe1) = 10, 

Now suppose {Jke-l has already been defined in such a manner that Pk_ltf<-l = 
Pke-2ek-l and PTe-I en+! ••• ek = Ike-I' 

Let 

Pk = (Pke-leTcrl)(Plc-l-len+! ••• tf<+2tf<'fJTc • .• 'fJU){Pke-Ien+! •.. tf<+2tf<'fJk-l'fJk+I • •• 'fJn). 

Then a straightforward computation yields 

Pktf< = Plc-Itf< 

Pken+l .•• tf<+l = lTc' 

The lemma now follows by induction on k. 

LEMMA 4. Let F be a C.S.s. group, let y E kernel an and let ocEF" and cp EP'I 

be such that ocen ••• 131 = fIIeo• Then there exists a A E P' n+1 n [F '10+1' F n+1J such that 
Aeo = yocy-1oc-I• 

PROOF. For each integer i with 0 < i < n let 

Ai = (y'fJi)/li(y-I'fJiW;I E [Fn+1' F n+1 

where Pi is as in Lemma 3. Then 

Aoeo = yocy-1oc-1 

Let 

Aiei = y(Piei}y-\/l.-lei ) 

Aiei+! = Y(Pie
i+!)y-l(p;lei+!} = y({Ji+1ei+I) r-l(P£+llei+1),i =1= n 

Aie; = In j =1= i i + 1 

Anen+! = In. 
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Then it is readily verified that 

1 E Pn+1n [F"+1' F.,+IJ 

Aeo = yocy-I ccl, q.e.d. 

LEMMA. 5. Let F be a C.S.8. group 8uch that Ho(P) = O. Let (X.l' oc2, PI' P2 E F .. be 
suck that (X.18i = P18' and OC28i = P2ei for all i. Tken tkere exists a 'P E P n+1 n [p .. +1' 
F n+1J 8uch that 

'1'80 = (X.l(X.2OCi 1
rxz,-

l P2PlP;IPi l • 

PROOF. Because Ho{P) = 0 it follows (using Lemma 4) that there exist elements 
1, f.t E P n+l n [F n+l' F .,+lJ such that 

Let 

A80 = (P;l OC2)(X.l1( rxz,-l (2)(X.l 

f.t80 = (P11 OCI)fJ2«(X.ilPI)P?:1. 

v = (oclrl)(P2'fj°)A(P?:1",O)( OCl1'fj°)(Pl'l/) p(P11'll). 

Then a direct computation yields 

veo = (X.I(X.2(X.l1rxz,-
l P2PlP?:lPll 

vei = In i =1= 0, q.e.d. 

LEMMA. 6. Let F be a free c.u. group and let H,(P) = 0 for 0 < i < n. Tken tkere 
exist homomorphisms D. : Fr~ 11.+1 (0 < i < n) such that for every oc E Fi 

(Di(x')8D = oc 

(Dioc)ei = D' __ 1(ocei-1) j =1= O. 

PROOF. Let K be an integer such that 0 < lc < n and suppose that for i < k 
homomorphisms fli : F.-+ Fi+l have been defined satisfying the above conditions. 
As 11k is a free group it is sufficient to define Dk on a set of generators 2: of FTt;. 
This is done as follows. Let oc E 2: be a generator, and let 

~ = e(Dk-l(oc80), ••• , Dk-l(OC.sk». 
ThenforO< i< k 

(oc(~-180»ei = (ocei)(~-1808i) = (OC8i)(~-18i+18D) 

= (ocei)«Dk-l«(X.-18i~)80) = (OCSi ){(X.-18i ) = lk-l' 

As HTc(P) = o there exists a <p E PHI such that <peD = oc(~-180). Nowdefrne 

DTcoc = <p~, 

In order to prove that the homomorphism DTt;: F lt --+ Fk+l defrnedin this manner 
has the desired properties it clearly suffices to show that this is the case for each 
generator oc E 2:. Indeed for each oc E 2: we have 

(DTcoc)eO = (<p~)80 = a(~-180)(~80) = oc 

(DTt;a)ei = (<p~)ei = ~ei = Dk-l(ocei-1) j =1= O. 

The lemma now follows by induction on k. 
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LEMMA 7. Let F be a free c.s.s. group ani!, let Hkil') = 0 for 0 < i < n. Let p E 

kerneZ an n [F", F n]' Then there exists a X E J! .. +1 n [F 1'1+1' F n+1] such that xeo = p. 
PRoOF. As p E [F ", F .. ] there exists an integer q and elements oc1> ... , oc2q E F n 

such that 

p = IIi=l [ocas-I> oc2.] 

where [ , ] denotes the commutator. For 0 < t < 2q let 

Of = e(Dn_l(OCteO), ••• , Dn _ 1(octe"» 

and let Pt = OteGo Then by Lemma 5 there exists for each integer s with 0 < s < q 
a 'II.E F"+1 n [Fn+1' F"+1] such that - -

'IIBeo = [oc2s-1' OC2.][P2., P2s-1]' 
Let 

X = IIi=l ('118r 02s-1' O2.]), 

Then a direct computation yields that Xe(} = p and xei = I .. for i ::f= 0, q e.d. 

PRooF OF THEOREM 2b. Let U Ekernel a n F" be such that {luI = 0, i.e., there 
exists a 'P E En+1 such that lu = 'Peo. Let rfo E J! ,,+1 be such that lrfo = '1jJ and let 

'II = {rfo-1eO}u. Then {u} = {T} and IT = (lrfo-1eO)(lu) = 1", i.e., T E kernel a" n [Fn' 
F 101. Hence by Lemma 7 {r} = O. This proves the first part of Theorem 2b. 

Let ~ E kernel an+1 n B,,+1' Then there exists apE if"+1 such that lp = ~. 
As peOei = pei+1eO = 1"_1 for all i and l(peO) = (lp)eO = ~eo = 1 .. , it follows that 

peG E kernel ~" n '[ F n' F ,,]. By Lemma 7 there exists a X E J! 10+1 n [F ,,+1' F ,,+1J 
such that xeo = peo. Hence (prl)ei = 1" for all i and l(pX-1) = lp = ~, i.e., 
l* {prl} = {no This completes the proof. 
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