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DUALITY IN HOMOTOPY THEORY
E. H. SpaNiEr and J. H. C. WHITEHEAD

1. Introduction. Certain results ([7], [8], [10], [11]) suggest that there
should be some principle of duality in homotopy theory. Among other
things one is led to expect that cohomotopy groups will appear as dual to
homotopy groups. But the fact that a cohomotopy group #*(X), unlike
7,(X), is only defined if dim X <C 2n—2 is a serious obstacle to the formula-
tion of such a principle. However, the set of S-maps (i.e. S-homotopy
classes [11]) X — Y is a group for every pair of spaces X, ¥. Therefore,
this difficulty does not appear in S-theory [11].

In this paper we formulate a principle of duality in the S-theory of
finite polyhedra. It is analogous to the Alexander duality in that it is
primarily defined for subsets, in our case subpolyhedra, of (polyhedral)
spheres. An “n-dual ” of a subpolyhedron X c 8" is a subpolyhedron
D, Xc 8*—X which is an “ S-deformation retract” of S*—X. An
S-map «:X—Y, where Y is also a subpolyhedron of 8", has a dual
D,a:D, YD, X, and the map «—D, « is an isomorphism?

X, 7}={D,Y, D, X}
If D, X is n-dual to X, then X is n-dual to D, X so we have an isomorphism
of {D, Y, D, X} onto {X, Y}. The duality is expressed by the statement
that these two isomorphisms are inverse to each other. Among other
things we show how the construction of a finite CW-complex by the
successive attaching of cells can be dualized.

The main results are stated in sections 3 through 7. Section 2 is
devoted to a summary of notation and background material and sections 8
through 13 contain the proofs of the results stated in the earlier sections.

The authors express their thanks to N. E. Steenrod for many helpful
suggestions during the early stages of this work.

2. Preliminaries. Let R™ denote the subset of Hilbert space con-
sisting of points (¢, #;, ...) such that #;= 0 for all but a finite set of values
of ¢. Let v,"= (8, & ...), where §"=0 if ¢ #n, §,»=1, and let
v, = (—8", —8&",...). Let 8,%=wv,uUv,’ and let 8" denote the geometrical
join i
8r=82%8,%%...%8,0=8"1%80
If X, Y c 8", we define {X, Y'; n} as the direct limit under suspension of
the setst [S* X, S¥ Y], where

SEW=W=u8 %..x8,, (W=X,7Y)

1 We use {4, B}, [4, B] to denote, respectively, the group of S-maps and the set of
ordinary homotopy classes 4 — B, where 4, B are arbitrary spaces. If f: A — B denotes
a map, then {f}, [ f] will denote the corresponding elements of {4, B}, [4, B]. We also
denote an element ae{4, B} by a:4 - B. Greek lotters, thus used, will always denote
S-maps and italic letters, as in f: 4 — B, will denote ordinary maps.

[MATHEMATIEA 2 (1955), 56-80]
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and v;, v/ are ordered as written. If ¢ >>n an isomorphism
0(g,n):{X,Y; n}={X,Y; q}

is defined in the obvious way, and we define {X, ¥} as the direct limit of
the groups {X, Y; =}, for every n such that X, Y c 8», under the
isomorphisms 6(q, n).

If K c S™1is a simplicial complex, then SK = K # §,° will denote the
simplicial complex whose simplexes are o #wv,, o %v,’ and their faces, for
every simplex o of K. In particular 8 has a rectilinear triangulation K,
which is defined inductively by K, = 8K,,_, if n > 0, K, being the unique
triangulation of 8°.

By a polyhedron we shall mean the space covered by a finite rectilinear
complex in RB®. We shall sometimes use the same symbol to denote a
polyhedron and one of its triangulations, always assumed to be rectilinear.
A piecewise linear map X -> ¥, where X, ¥ are polyhedra, is one which is
simplicial with respect to some pair of (rectilinear) triangulations of X, ¥.
Notice that, since all our polyhedra derive their piecewise linear structure
from R”, a polyhedron 4 C X is necessarily a subpolyhedron of X [i.e. the
inclusion map 4 C X is piecewise linear ([12], Theorem 5)].

Let X denote an n-dimensional polyhedron and let 4 = X ~ 82, where
q =2n+1. There is a piecewise linear homeomorphism 8?->82, which
maps A4 into a g-simplex of K, [see (11.3) below]. Hence it follows
that the inclusion map 4 < 87 can be extended to a piecewise linear homeo-
morphism &, of X into 87 (see [2], p. 139, for the case 4= ; the
generalization to an arbitrary 4 presents no difficulty). Notice that,
if B is any other polyhedron in 89, of at most n» dimensions, then X, 4 may
be replaced by Xw B, AU B so as to avoid “ accidental intersections
between X and B [i.e. points in AX ~(B—A4)].

Since the reduced homology and cohomology groups? ([6], p. 18) suspend
isomorphically and naturally, with respect to the homomorphisms induced
by maps and their suspensions, it follows that, for any pair of spaces 4, B,
an S-map «:4->B induces homomorphisms

ay H (A)~>H(B), «¥F:HYB)->H!A)

in the obvious way. If 4, B are CW-complexes, then a is an S-equivalence
(¢.e. has a 2-sided inverse «~1g {B, 4})if and only if «y is an isomorphism
onto for each g. To see this let f: §¥ 4 - S§* B denote a map representing
« and assume that S* A4, S* B are 1-connected (as is certainly the case if
k>3orif A, Barenon-emptyand & >2). Then fis an ordinary homotopy
equivalence ([15], Theorem 3) if and only if each «y is an isomorphism onto.

2 All homology and cchomology groups occurring in the sequel will be reduced and
will be denoted by H,(A), H'(A), etc.
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Similar remarks apply to o¥ if the complexes 4, B are finite3, Notice
that, if 4, B are 1-connected C'W-complexes and if the S-homotopy class
of a map f: 4 B is an S-equivalence, then f is an ordinary homotopy
equivalence.

Let 1:AcCX. Then we describe A as an S-deformation retract of X
if and only if the inclusion S-map = {f}: 4 Cc X is an S-equivalence. In
this case we describe =1: X — 4 as the S-retraction by deformation, or simply
the S-retraction, of X on A. If A’ C A and any two of the inclusion S-maps
A'cAd, AcX, A’'Cc X are S-equivalences so obviously is the third.

Let K denote a triangulation of 8" and X a subcomplex of K. We
describe X as complete if and only if every simplex of K with all its vertices
in X belongs to X. Evidently the barycentric subdivision of any sub-
complex is complete in the barycentric subdivision of K. The subcomplex
X#*c K complementary to X consists of the simplexes of K which do not
meet X. Evidently X# is complete and (X*)*=X if X is complete.
In the latter event X, X* are deformation retracts (and hence S-deforma-
tion retracts) of K—X#*, K—X. Also in this case X is complete in SK
and X, SX*, likewise SX, X*, are complementary to each other in SK.

Let X and also 4 CX denote complete subcomplexes of K. Then
X*c A*, where X*, A% are the subcomplexes of K complementary to
X, 4, and the diagram

Hy4) —F* L, H,(X) (:4ACX)
@nl l D, 2.1)

o

Hr-p-1(A%) ——> Ho0-1(X%)  (4: X*¥C 4%)

is commutative [5], where each D, is the appropriate Alexander duality
isomorphism. Therefore, if «,; is an isomorphism (onto), so is (y*. Hence,
if 4 is an S-deformation retract of X, so is X* of A*.

Let X, ..., X, denote polyhedra in 8™ and for each ¢ =1, ..., k let C,
denote a compact subset of S*—X,.

Lemma (2.2). There are polyhedra X ¥, ..., X;* such that
CicXrcS—X,
X;* is a deformation retract of S*—X; and whenever X;C X, then X,;*C X *.

Proof. Let K denote a triangulation of 8" such that X, ..., X, are
covered by complete subcomplexes of K. Let X;* denote the subcomplex
of K complementary to X;. Then X* is a deformation retract of K—X,

3 See §6 of [14] or use the universal coefficient theorem for HY(C, S"A), where ¢
denotes a mapping cylinder for f.
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and X;*c X* if X;,cX,. Therefore the lemma follows on taking the
mesh of K to be so small that C;c X* for each¢ =1, ..., k.

3. n-duals. Let X denote a polyhedron in S*. By an n-dual of X
we mean a polyhedron in 8*—X, which is an S-deformation retract of
S»—X. We shall use D, X to denote an n-dual of X. Evidently a poly-
hedron contained in D, X is an n-dual of X if, and only if, it is an
S-deformation retract of D, X. If X, X* are complete, complementary
subcomplexes of some triangulation of 8%, then each is a deformation
retract of the complement of the other. Therefore X, X* are mutually
n-dual. We shall prove that X is n-dual to every D, X. We first prove:

Levma (3.1). If A is a polyhedron in X, which is an S-deformation
retract of X, then every n-dual of X is an n-dual of A (whence D, X is an
S-deformation retract of D, A if D, X c D, A).

Proof. Let X*, A* be as in (2.1) and let the mesh of K, in §2, be so
small that D, Xc X*. Then D,X is an S-deformation retract of X*,
since D,, X, X* are both n-dual to X. Also X* is an S-deformation retract
of A* by a remark following (2.1). Therefore D, X is an S-deformation
retract of 4*. Since A¥ is n-dual to A4, so is D, X.

TaEOREM (3.2). If D, X is n-dual to X, then X is n-dual to D, X.
Furthermore, D, X is (n-+1)-dual to 8X (hence also X = D, D, X to SD,, X).
Thus we may set

D, X=8D,X, D,;8X=D,X. (3.3)

Proof. The first part follows from (3.1) with 4, X, D, X replaced
by D, X, X*, X. The second part follows from the fact that D, X is an
S-deformation retract of X*, which is complementary to SX in SK.

If X’ is a polyhedron in §”—X, then §*—X can be triangulated as a
COW-complex with a subcomplex covering X’. Therefore X’ is an n-dual
of X if, and only if, «:H (X')<H,(8"—X) for every q >0, where
X'c8r—X.

4. The basic duality. In §9 we define, for every pair of polyhedra
X, Y c 8" and every pair of n-duals D, X, D, Y, a map

D,:{X, ¥}>{D, ¥, D, X}
such that, if .: X Y, /:D, Y D, X, then
D=2, (4.1)
and if ae {X, Y}, Be{Y, Z} (where Z is any polyhedron in 8%) then
D, (Bx) = Dy, () D, (B), 4.2
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provided D, «, D, B are both relative to the same D, Y. It follows from
(4.1), (4.2) that, if « is an S-equivalence, so is D, « and D, a1 = (D, a)™L.
In particular, D, 1= /"1 if X is an S-deformation retract of ¥ and ¢, "
are as in (4.1).

For any pairs of spaces 4, B there is an isomorphism

8:{4, By=~{S4, SB}

such that corresponding elements are represented by the same map
S8*A—-S8% B (k>=1). In conformity with (3.3) we shall prove that
D,,,=8D,:{X, Y}->{8D,7, SD,,X}} s
D,,8=D,:{X, Y}~{D,Y, D, X}.
We shall also prove:

TarorEM (4.4). The map D, is uniquely determined by the conditions
(4.1), (4.2), (4.3).

Since X is n-dual to D, X, by (3.2), we have D,,: {D, Y, D, X} > {X, Y}.
We shall prove :

THEOREM (4.5). D, D, «=« for every ae{X, Y} or {D, Y, D, X}.

In §12 we show that D, is a homomorphism. Hence, and from (4.5),
it follows that
D, {X, }={D,Y, D, X} (4.86)

Let D, W denote another n-dual of W(= X, ¥) and let D,” W denote
an n-dual of W containing D, Wuw.D,' W [such a D,” W exists by (2.2)].
Let
w:D,WeD,”"W, /w:D,/’WcD,”W
and let (5% WC W. Then we have homomorphisms

Dy’ D,

0,Y, 0, X} (X, 1} 2 (D, 7, D" X}

and if ae {X, Y} it follows from (4.1) and the remarks following (4.2)
that the diagrams

o D,"” a

x sy D X<~2pry
N
x-Sy D,X<"2p 'y

are dual to each other. Since we have a similar situation with D, replaced
by D,’ it follows from (4.2) that

D, a=1x Dy () 7 = 1z’ Dy (o) .
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Therefore D,’(«) =151y D,(2) 5 p'. Let vp’’:D,” W 8"—W. Then
W o’ = (" wr) " (e’ ww') and we have

D,/ («) = ig " tx Dy (@) 7 o', (4.7)

‘where now vy : D, W 8"—W, w': D, Wc S*—W.
For any space A and any p > —1 let

S,(4) = {87, 4}, Zr(4)= {4, §7}.

Let n >pandlet 8771= 83, #...%8,0if n >p. Then §"= §r & Sr-»-1
and we may take D, 87 = Sp—»-1, It follows from (4.6) that

6D, :3,(Y)~=+2-1(D, Y) (4.8)

where 0:{D, Y, SpP} T+ (D, Y).
Let ae {X, Y} and consider the diagram

Hy(X) —* 5 g (T)

D l l D (4.9)
Hn—pn—l 0, %) 22 pnsd (D: Y)
where each D, is an Alexander duality isomorphism4. 1In §10 we prove:
THEOREM (4.10). The diagram (4.9) is commutative,
In the diagram
Zp(¥) ———> Hy(¥)
op,,l . =, (4.11)
Zn?-1(D,Y)— H*?1YD,Y)
let =, +* denote the homomorphisms defined by
Ta=oyu, T¥8=pF*D,u,

where «: 87> Y, B:D, Y8771 and u is a fixed generator of H,(S7)
(DpueHr»-1(Sp#1)). It follows from (4.10) that

#0D, « = (D, 0)* D, u =D, (ayu) =D, Ta.
Hence we have proved:
COROLLARY (4.12). The diagram (4.11) is commutative.

If 4,, A, are any spaces we define
Al VA2 = (Alxa2)u (G1XA2) () Al XAz,

4 i D, is composed of the Alexander duality isomorphism H, (W) H"~"~(8"— W)
and f#j H S — WYy HY»~Y(D* W) (W =X, 7Y). It follows from (4.1) that (2.1)

is a special case of (4.9).
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where a, 8 4,, a6 A, are what we call the base points for A, vA,. We shall
use (4,, @,) A, p=1, 2; A5 p) to denote 4, X a, or a; X 4, according as
A=1or 2. We describe sequences
X, 85X, X, XXX,

of S-maps between polyhedra in 8%, as n-dual to each other if, and only if,
X#=D, X, a#¥=D,a, (j=1,2,3; A=1, 2).

Let P,, P, denote non-empty, proper subpolyhedra of S* and let P,*
denote an n-dual of P, (A=1, 2). In §11 we prove:

TreoREM (4.13). With a suitable choice of base points, p,eP,,
py¥e P\*, there are piecewise linear homeomorphisms b, b', of P, v P,, P;*Vv P,*
into S™, such that, if X, =h(P,, p,), X,* =K (P\* p,*) A#p=1, 2),
then the sequences

fa [N P’ 5y
X, > X,uX,~>X,, X ¥*¥<X *oX,¥F<X,¥

are n-dual to each other, where v, v’ are inclusions and p,, p,' are the
S-homotopy classes of the retractions in which X, — X, N X,, X, * > X, *n X, *,

Let Y be (k—1)-connected and let dim X = p {2k—2 (¢ >1). Then
{X, Y} may be identified with [X, Y] in such a way that {f} = [f] for every
map f: XY (see (7.2) in [11]). Since §»—X is (n—p—2)-connected,
we may take D, X to be (n—p—2)-connected (e.g. D, X = the comple-
mentary complex to X in some triangulation of §7). Then we may similarly
identify {D, Y, D,X} with [D,Y, D, X] if dimD, Y <2(n—p—2).
Hence it follows from (4.8) that

0D, : 7 (V)= #2LD,Y) (p<2%k—2) (4.14)

if dim D, ¥ < 2(n—p—2), a8 is certainly the case if n > 2p+4-4.

5. Functorial presentation. In this section it is shown how the results
stated in the last section give rise to a duality in functorial form. Let X
denote an arbitrary collection of spaces. By the S-category of £ we mean
the category whose objects are the spaces in X and whose maps are all the
S-maps between them. Let C, G’ denote S-categories. We describe a
(contravariant) functor 7':CG— G’ as linear if and only if the map

T:{X, Y} {TY, TX}

is & homomorphism for every pair of spaces X, ¥ in CG. 7' is called an
1somorphism (onto), denoted by T': C = €, if and only if the object function
X —»TX and the mapping function «~> 7T« are both 1-1 correspondences.

 Let X, U, denote, respectively, the S-categories of all polyhedra in S»
and of their complements in S™.
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THEOREM (5.1). There is a linear, contravariant isomorphism
C,:X,~U,
such that, if wXcY, J:8"—Yc8S*—X,
then C,v=1 (whence C,X = 8*—X) for X, YeX,.

Proof. We define 0, X =8"—-X. Let «:X->Y denote a map in
X, and let vp: D, Wc S*—W where W =X or Y and D, W is an n-dual
of W. Then we define

Coa=1zD, (a)i5': 8"—Y > 8*—X.

1t follows from (4.7) that C, « does not depend on the choice of D, X,
D, Y, and the rest of the proof is left to the reader.

6. Weakly dual constructions. This section contains a theorem which
enables us to dualize a certain process, of which attaching a cell to a poly-
hedron or, more generally, a finite CW-complex is a special case. We
first define a relation of “ weak ” duality between finite CW-complexes,
which are not necessarily polyhedra.

Let X denote a finite CW-complex. Then X is of the same homotopy
type as a polyhedron X, ([15], p. 239). Moreover, we may take
dim Xy =dim X = p, say, and X,c 82#+1, In the diagrams

o ¥k
X—7Y X# «—0 Y*
|
el e (K (6.1)
%9 . Dn“o
x,-2, 7, D, X, 22D, ¥,

let W, W* (W =X, Y) denote finite CW-complexes, let W, D, W, denote
mutually dual polyhedra in S” and let £, 9, ¥, 9* denote S-equivalences.
Then we describe W, W* as weakly n-dual to each other. If «is a given
S-map we define first «y and then «* so that the diagrams (6.1) are com-
mutative. We shall sometimes write W* = D, W, «* = D,, «, remembering
that the operator D,, when thus defined, depends on &, 4, £%, *. Since
W, may be chosen so that dim W, = dim W = m, say, we can choose W#
(e.g. W#* =D, W,=a deformation retract of §*— W) so that dim W* <n
and W#¥ is (n-—m—2)-connected.

Let Be{Y, Z} where Z is a finite O W-complex. Then it follows from

(4.2) that
D, (Ba) = D, () D,(B)

provided D,, «, D, B are both defined in terms of the same 7, 9*.

From (4.3) it follows that D, ,«a=8D,a and D, ;S8«=D,a if
D, 2and D, ., S« are defined in terms of £,, S£*, Sn* and S¢, 8y, £¥, 9%,
respectively.
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It follows from (4.5) that D, D, 8= where Be {X, Y} or {Y#*, X%}
provided D, 8 is defined in terms of n¥-1, £¥-1 =1 £-1if Be {¥*, X*},

Thus (4.2), (4.3), (4.5) are valid for weak duality if £, #, £*, 9* are
suitably chosen, which we shall always assume to be the case. We do not
assume that (4.1) is necessarily valid for weak duality when X c Y [Cf.
(4.13) and (6.2) below]. However, we note that (4.1)is validif X = 7,
X#=T% ¢=n, £5=q* :

Let X, Y denote finite CW-complexes and f:X—Y a cellular map.

Let X denote a cone with vertex v, and X as base (X C X ). Assuming that

A
X, Y are disjoint from each other let Z, denote the CW-complex obtained

from )% v Y by identifying each xe X with fre Y. The points in Z, will
be represented by yeY and (z, ), where ze X, te 1, (x, 0) =fz, (2, 1) =1v,.
Let SX == X #(vuv’), where v, v’ are ordered as written, and let points
in 8X be represented by (z, s), where —1 <s <1, (2, —1)=v, (x, 1})=1v".
Define g: Z,— 8X by g(x, t) = (2, 2¢—1), g¥Y =w.

Let p=dimX, ¢g=dimY, r=dimZ;=max(p+41,¢q) and Ilet
n 2z 2r+1. Then there are finite C W-complexes X*, Y'*, which are weakly
n-dual to X, ¥ and are such that X*is (n—p—2)-connected and dim ¥'* < n.
Since n > 2p+3, whence n < 2(n—p—1)—1, we have D, {f}= {f*} for
some map f*: Y*-X* ([11], §7), which we assume to be cellular. ILet
Zw and g':Zp—SY* be defined in the same way as Z, and g. Let
1:YCZ;, ' : X*¥C Zp. Then, writing Z,=Z, Zp= 7%, we have

Y->7258%x, Sy*Lzzl x*

and it follows from (3.3) that Y, SY*, likewise SX, X%, aré weakly
(n+1)-dual to each other. In §13 we prove:

THEOREM (6.2). Z%* is weakly (n+1)-dual to Z (n =2dim Z+1) in

such o way that
Dn+1{7’.} = "{gl}’ Dn+1{g} = {7’,} (6.3)

Let &, 9, &%, n* be the S-equivalences used, as in (6. 1), to define D, {f}.
Then in (6.2) it is to be understood that ¢, », £*, n* are given and that
D, {i} and D, {g} are defined in terms of 5, Sn* and S¢, £*, together
with a pair of S-equivalences {: Z > Z,, {¥:D, ., Zy— Z,*, where Z, is a
polyhedron in 87+ [see (13.2) below]. On replacing £, {* by —{, {* or
{, —{* we have a weak duality between {1}, {g} and {g'}, —{i"}. If there
is an S-equivalence 6:Z->Z such that 0{i}= —{1}, {g}f= {g}, then
6, [* determine a weak duality between {i}, {g} and {g'}, {i’}. It follows
from (13.1) below that this is the case if 2{f} =0, e.g. if f is constant.
Hence one can use (6. 2), with a constant f: X, ~ 8X,, to prove a weak form
of (4.13).

Theorem (6.2) can be used to dualize some of the constructions which
are fundamental in combinatorial homotopy. Consider, for example, the
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process of attaching a (p+1)-cell to a finite CW-complex ¥ by a map

f:82>Y (fS?c Y?). The dual process consists of attaching 7+ to
8*P-1 by a “dual” map f¥:Y*- S»2r-1, We may assume that
f#Y#*n-p-2 g g single point and the result is then a CW-complex, which
is weakly (n-1)-dual to the one obtained by adjoining the (p+1)-cell to Y.
Let Y be a finite, (k— 1)-connected C' W-complex of at most 2k — 1 dimensions
which has been constructed by attaching cells one at a time. Assume
that the isomorphism (4.14), for the appropriate values of n, p, has been
calculated at each stage. Then this construction can be dualized to give
a weak g-dual of Y for a sufficiently large value of g.

Examples. Let P? denote the real and M* the complex projective
planes and let

Prtl— Sk-1P2 Mkt — Sk-2 1 (k> 4).

Then P%*+1ig of the form Z; where X, Y are k-spheres and f: X — Y is of
degree 2. We may take X*, Y* to be (n—k—1)-spheres and f* will
then be of degree 2. Hence, with a suitable choice of ¥, Z .= Pn-¥,
Similarly M*+2 = Z;, Z» = M™%, where Y is a k-sphere, X a (k+1)-sphere
and fis essential. Thus we describe P2, M* as self-dual “ up to suspension
and it follows from (4.14) that

T (PP T a7 Pr), m(MA2) oM7) (6.4)

provided &k >i+2, r = 2t+-2.
As another example, let

Qk+2 — Slku S72C+1 U8k+2, . Qk+2 — Sok v eg+1 ) eg+2’

where the spheres S;%, Si+! have a single common point, e*+2 is a
(k-+2)-cell attached to S,*w 8%l by a map S*+1— 8 U Skt which is
essential in S,* and of degree 4m over St+1, and ef*!, ek+2 are attached to
Sy* by maps which are, respectively, of degree +-m and essential. Then
Q% is weakly (n-+1)-dual to Q*+2, Therefore

T @) Q) (b >i42; r>242). (6.5)

Weak duals of the other elementary A4, 2polyhedra ([4]) can be con-
structed without difficulty. Therefore (6.2), (4.13) provide an effective
method of constructing a weak g¢- dual of a given A,%-polyhedron

(g>2n+-5).

7. Applications. We present some consequences of the results stated
in the preceding sections.

THEOREM (7.1). The cohomotopy groups #(X) (dim X < 2i—2) of a

finite CW-complex X are finitely generated.
F
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This follows from Prop. 1 on p. 491 of [9] and (4.14) [or induction on
the number of cells in X and the exactness of the cohomotopy sequence
of (X, X—e) where e is a principal (open) cell of X].

TaEOREM (7.2). Let Gy, Gy, ... denote a sequence of finitely generated
abelian groups of which all but a finite number are zero.  Then, for a sufficiently
large q, there is a (finite) polyhedron P such that w3+i(P) = G, for every i > 1.

Proof. Let G;=0 if 1 >1>0, let p>2I+1, and let X denote a
p-dimensional polyhedron [16] such that m(X)=~ @&, ; for —o0 <i<p
[7(X)=0 if 1<0]. Let k=p—1>=I+1. Then X is (k—1)-connected
and

p—1=k+1—1<<2%—2.
Let XC 8™ and let P denote an n-dual of X, where n >2p+2. Let
g=n—p—1. Then dim P <n, whence »/(P)=0 if j > n, and it follows
from (4.14) that
71"1+"(P)5257Tp_,-(X)zG,~ (7: > 1).
Let A, B denote finite CW-complexes and, for any integer [, let
{4, By={8'4, B} or {4, 8B}
according as I > 0 or I 0. For q sufficiently large let D, A, D, B denote
weak g-duals of 4, B. Then if I > 0 it follows from (3. 3) that we may take
D,,84=D,A, D,,,B=8D,B.
From this and a similar observation if I <0 it follows that
Dy {4, By={D, B, D, 4},

Let f: XY, Z=1Z;and g:Z—>SX be as in (6.2) and let : Y C Z.
Let Q denote any finite CW-complex. Then we have sequences

—enBendenten, .. @3
"'_—>{Y’ Q}lj_t{x’ Q}lfi{zy Q}l—_lﬁ{y, Q}l—lﬁ"'! (7.4)

where fy, f#, ¢4, ete. are the homomorphisms induced by f, 7, g and their
suspensions, composed with §-1: {Q, 8X}, =~ {@, X}, , if /> 0 in the case
of g and with S : {X, @< {SX, @}, if I < 0in the case of g*.

For n sufficiently large let @# denote a weak n-dual of @ and let (7. 3)%,
(7. 4)* denote the sequences analogous to (7.3), (7.4) with f, Z, @ replaced
by f*, Z*, Q% where f*, Z* mean the same as in §6. Then it follows
from (6.2) and (4.3) that the diagram

) g
1 L 0 0" 0,
Dn+l Dn+ll l Dn+l ‘ D'n-H—l (l > O):
Voo (e g'* i

{(X*, Q¥),—— {T* Q¥ ——{Z*, Q%) — {X*, Q%)
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where each D, is a weak duality isomorphism, is commutative up to sign.
The same applies when ! <0 except that the two left-hand isomorphisms
are replaced by D,,_; and the two on the right by D, _, ;. We express this
result as:

THEOREM (7.5). The sequences (7.3), (7.4)%, likewise (7.3)%, (7.4),
are weakly dual to each other up to sign.

The sequence (7.4) is isomorphic to the direct limit under suspension
of exact sequences of a kind introduced in [3]. Therefore (7.4), and
hence also (7.3)*, likewise (7.4)* and (7.3), are exact. In particular,
if @=28° then (7.3), (7.4) are, respectively, isomorphic to the
S-homotopy and the S-cohomotopy sequence of the pair (Z, Y).
[V.B.: Z{X) Zm(SX) = Xm+(Z, Y).]

8. Polyhedral mapping cylinders. Let X, Y denote polyhedra and
f:X—>Y a map such that fr==a if e XAY. By a polyhedral mapping
cylinder for f we mean a polyhedron P, containing X Y, of which Y is a
deformation retract such that ric~f, rel. X~Y, where ¢:XC P and
r:P->Y is a retraction. If P is a polyhedral mapping cylinder for f,
80 obviously is SP for 8f. If XnY = o, then P may be described as a
polyhedral mapping cylinder for [f]. Let r =max (dim X1, dim ).

LemMA (8.1). There is a polyhedral mapping cylinder P, for f, such
that dim P < r.

Proof. Assume XU Y to be triangulated as a simplicial complex with
subcomplexes K, L covering X, Y. Then there is a subdivision K, of K,
in which no simplex of K n Lissubdivided, and a homotopy fo~f,,rel. KA L,
such that f, is simplicial with respect to K, and L ([13], p. 289). Let the
vertices of K, be ordered and let K, L be imbedded as a subcomplex of
a simplex ¢¥. For every simplex o of K, with vertices ay, ..., a,, ordered

as written, let
P,=Ul_oay...arf1(@) ... fr(ap)
(if vy, ..., v, are vertices of o”, then v,...v, denotes the smallest simplex
of o which contains them, even if they are not distinct). Let
P=Lwv U P,
oceK,

Clearly K;wLc P. Let::K,c P. Then asimplicial retraction r: P— L
such that ri =f,, is defined by ra = f,a for every vertex a of K;. Also
dim P <r.

It remains to prove that L is a deformation retract of P. Let
%y, ..., ¥, denote the vertices of K;—K;nL, correctly ordered, and let
P(}) denote the union of all the simplexes of P which do not contain any of
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Tr1q, --es & Then

L=P(—-1)c..cPA-1)c PA)c..c Plg)= P.

If a is a vertex of K, P(}) which comes after z,, then ae K, L whence
fia=a. It follows that for A >0 every simplex of P(A) which contains
z, is of the form
' @y - Baf1 (Y1) - Sr (k)

where a,...2,¥; ... y;, 18 a simplex of K;. This is a face of

o -+ TaSr (@) f1(¥1) - 1 (r)-

Therefore the link of z, in P(A) is the join of f,(x,) and the link of z, f; (x,)-
Hence it follows that there is a homotopy g,: P(A) > P(A—1), rel. P(A—1),
such that g,=1, g; P(A) = P(A—1) and g,(x\% o) = z(t) % o for every simplex o
in the link of x,, where z(¢) is the point which divides z, f;(x,) in the ratio
t:1—¢. Therefore P(A—1) is a deformation retract of P(A). Hence it
follows from a downward induction on A that L is a deformation retract
of P and the proof is complete.

Notice that, if X, ¥ C 89, where ¢ > 2r+1, then we may assume that
Pc 8

9. Proof of (4.1), ..., (4.5). We prove the existence of a map
D, {X, Y}-{D,Y, D,X} having properties (4.1) through (4.5) by
stages. First a certain map A, :[X, Y]—{D, Y, D, X} is defined and
this is used to define D,. The map A, is, in turn, defined first for the case
XAY = gz and then extended to the general case.

A. Definition of A, : [X, Y]>{D, Y, D, X} when XnY = .

Let X, Y denote polyhedra in 8" with XnY =g. Let D, X, D, Y
denote arbitrary, but fixed, n-duals of X, Y and let f: XY be given.
Let Pc 8¢ (g >n) be a polyhedral mapping cylinder for [f]. It follows
from (2. 2) that there are g-duals X*, P¥ Y* of X, P, ¥ such that

P*CX*AY* D,W=8"D,WcW* (W=X,¥). (9.1)

Then D, X is an S-deformation retract of X* and, by (3.1), so is P* of Y*,
Therefore we have

D, XLx+<Lp+l v+l y, (9.2)
where ¢, «* are S-inclusions and p, p* are S-retractions by deformation.
We define

| X%, P*, Y*|=S"a(p#p* e (D, ¥, D, X}, (9.3)

where S¢n:{D,Y, D, X}~{D,Y, D, X} and 8" 2= (82%)-1, Notice
that, if D, Y cP¥ then p*1/=.: where /:D,YCP* (N.B.:
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p¥-1: P*C Y*). Therefore
Fp¥e=*:D ¥ c X*.
- Similarly if D, ¥ ¢ P*~ D, X, then
petp*e:D, YCD X. (9.4)
Our immediate objective is to show that | X*, P* ¥*| depends only
on [f] and not on the choices involved in its definition.
Let P,;c 8% denote a polyhedral mapping cylinder for [f] and let

X#, P,*, Y* denote g-duals of X, P,, ¥ which satisfy (9.1). Assume
that X#c X* P*cC P* Y*C Y* and consider the diagram

pl L# . p# ' L,
DX — X¥# <~ P#<—¥Y¥<—D Y

]
f\\i‘s * i‘z “ lh/ (9.5)
Xt pr Ll yx

in which the top line is the analogue of (9.2) and u, t,, ¢; are inclusion
S-maps. We have ¢ p#1=p%1y,, whence p¥y = 1,p%. Similarly
p' = ptg and so the diagram is commutative. Therefore pu* p¥ 1= p’ (¥ p¥ 1/
and, in this case,

[X#, P¥* Y¥|=|X¥*, P¥% Y¥#| (9.6)
(@) Independence of the choice of X*, P%, Y*,

Suppose X#, P#, Y# also satisfy (9.1) relative to P. It follows from
(2.2) that there are g-duals X¥%, p#% Y## such that PHEc X#E Y EE
and Z¥* 5 Z¥U Z¥# for Z =X, P, Y. Therefore, from (9.6) with P, = P,

| X%, P# Y#|—|X#% Pis YEE|—|X¥ P¥ Y¥|
and we write | X*, P¥, ¥#|=A,(P, g).

(b) Independence of the choice of q.

Let » > q and let A, (P, r) be defined by (9.3) when (9.2) is replaced
by its (r—q)-fold suspension. Then, obviously,

An(P: )= An(Pz q)= An(P)7 say.

(¢) Independence of the choice of P.

. Let P,c 8?7 denote another polyhedral mapping cylinder for [f].
By (b) above we may take p =g and if Pc P, it follows from (2#2) thit
there are g-duals X*, P*, P#, Y* asin (9.5) with X#=X*% YH=Y*
Therefore A, (P)=A,(P;) in this case. ]

If P, P, are arbitrary let P,C 8" (r >>¢) denote a polyhedral mappmg
cylinder for [f] (Cf. §2) such that PynP,=XvY, where k=10, 1 an
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Py=P. Ieti,:XcP,j:YCP, and let r,: P,— Y denote a retraction
(A=0, 1, 2). Then jr,~1:P,C P, and
' JaTitx S2Jaf e Tata =1y (k=0 1).

Therefore it follows from the homotopy extension theorem that
JoTe=9gy: Py,—> P, where g, maps XY identically. Let @, denote a
polyhedral mapping cylinder for g, [which exists by (8.1)]. Since @,
retracts onto P, which retracts onto Y with 7y, f, it follows that @,
is also a polyhedral mapping cylinder for [f]. Hence it follows from the
preceding paragraph that A, (P,) =A,(@;) = A, (P;). Therefore

AL (Pg) = A, (Py)
and A, (P) depends only on [f].
(d) Properties of the map A, :[X, Yj~—> {D,Y, D,X}.
We write A, (P)=A,[f], thus defining a map
A X, Y]1-{D,Y, D, X} (9.7)
If m>0 we have X, Yc S*c 8*m and it follows from (9.3), with
q = n-+m, that
Apim=8"A,:[X, Y]>{8"D, Y, 8D, X}. (9.8)

Letg:Y > Z where Zis a polyhedronin 8*— (X v Y). For g¢sufficiently
large let PNZ = z and let ¢ C 8¢ be a polyhedral mapping cylinder for
[g] such that QAP =Y. Evidently Pu@ is a polyhedral mapping
cylinder for [gf]. Let X*, P¥, Y% ete. be as in (2.2) and (9.1) and
consider the diagram

p P2 v 3 Q*
A A T
Lzl/ \L5 L4/ ] P3
¢ P1 b

D X< xe 2 (pu@rlozx< D 2z
where ¢, p;! are inclusions. Arguments similar to those used above show
that the diagram is commutative. Therefore
S AL G 1 =poriprio=Potaprt t3p3tg (e:Dg Y CT¥)

= 8T A, [f180 A, [g],
whence
A [9f1= A7, [f14,[9]- (9.9)
B. Definition of A, in general.

Let f: X — Y, where X, Y denote polyhedra in 8%, with X ~ Y arbitrary,
and let D, X, D, Y denote fixed n-duals of X, Y. For a sufficiently large
g=n let X;Cc 87— (XvY) denote a (polyhedral) copy of X. Let
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hy: X - X, denote a homeomorphism (onto) and define
Au(Lf]; by) = 8™ U (A (1] A [fRi 1)) e {D, Y, D, X}, (9.10)

where A, refers to D,W=8¢"D, W for W=X, Y. It follows from
(9.8) that A, ([f], k) does not depend on q. We shall now show that it
does not depend on the choice of 4.

(e) Independence of the choice of h,.

Let X,c 87— (XuY) also denote a copy of X and let hy: X —>X,
denote a homeomorphism. First assume that X;nX,= g. Then it
follows from (9.9) that '

Aq [h2] Aq [f hE]'] = Aq [kl] Aq [h2 hfl] Aq [f h2_1]

= Aq [hlj Aq [f hl-—l] )
whence A, ([f1, b,) = A, ([f], h,) in this special case.
For the case where X, N X, is arbitrary let X, c S? denote a copy of X
disjoint from X, v X, as well as XU Y and let ky: X — X, denote a homeo-
morphism. Then by the above

Au([f1 by) = Dy ([f1s kg) = Bu([S1s o),
so we may define A, [f]=A,([f], #,). It follows from (9.10) and (9.9)

that A,[f] is the same as in A if XnY = . Hence we have defined
(9.7) for every pair of polyhedra X, ¥ c S™.

(f) Properties of A,.

It follows from (9.8) and (9.10) that (9.8) is satisfied even if
XnY#o. Let f:X—>Y, g:Y—Z, where X, Y, Z denote polyhedra
in 8* Let h:X—>X,, k:Y—>Y, denote homeomorphisms where
X,, Y, c 8¢ are polyhedra, disjoint from each other and from X, Y, Z.
Then it follows from (9.9) for the pairs of maps

B it k! w7t '

X, ¥, s, XV —> Y,
th&t Aq [hl] Aq[afhl—l] = Aq [hll Aq [gkl-l klfkfl:]

= Aq [hl] Aq [klf hfl] Aq [g kl-_l]
= Ag[hy] A [FhT Aglky] Aglgkt™],

50 (9.9) holds in general.

Iet t:XcY and let :D,YcD,X. Let XXI=P; be piecewise
linearly imbedded in 8?7—(D,XwD,Y) (e.g. as part of the cone
Xxv,, ¢>n) so that (z, 0)==x for every xeX and PinY =X. Let
X,=Xx1landlet b, : X > X, be defined by b,z = (x,1). Let P= P, Y.
Then P,, P are mapping cylinders for k;, ih7l. Since D,X c §?—P,
and X, X, are deformation retracts of P,, we may take D X, =D P, =D X.
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Also D, Y € 82—P and in (9.2), with X replaced by X,, we may assume
D,Yc P* Since D, YcD,X and D, X=D,P,=D,X,, it follows
from (9.4) that
Alshit):D,Yc D, X, AJh):D,XcD,X.
Therefore A [i] = 8*".:D, ¥ C€D X, and it follows from (9.8) that
AJil=v:D, YCD,X. (9.11)

In particular, if 1: X CX, then A, [i]:D,X CD,X. Hence, using (9.9)
and (9.11), it follows that, if X is a deformation retract of ¥ and r: ¥ - X
is a retraction, then

Alr]=v1:D,X>D,7Y. (9.12)

Lumma (9.13). Let X, Y denote polyhedra in S™ and let f: X Y. If
q 18 sufficiently large, then f is homotopic fo a product of inclusion maps and
retractions by deformation between polyhedra in S9.

Proof: We have f= (fhi1)h,, where h, means the same as in (9. 10),
and (9.13) follows from (8.1), applied successively to A, and fhi?.

Lemma (9.14). If f: XY, where X, Y are polyhedra tn 8™, and if
D, SW=D,Wfor W=2X, Y, then A, ,[Sf1=A,[f]

Proof: Let r >n and let S, denote the suspension operator defined by
taking joins with 8,% applied to polyhedra in 871 and maps and S-maps
between such polyhedra. Thus S, W= W %8,° and S,f=f#e, where
e,:8,0c §8,%. If g is sufficiently large it follows from (9.13) that f is hemo-
topic to a product of inclusion maps and retractions by deformation in S4.
Ifi: X;c X,, then §,,,4:8,,, X, ©8,,, X, and if r: X3 X, is a retraction
by deformation, so is S,,;7 (X, ©8%9. Therefore it follows from (9.11),
(9.12), and (9.9) that

Apa[Sgaf1=A4,0f1. (9.15)

Let % denote the linear map of R onto itself which is defined by
by 1 = Vgi1s BV = Vpyq, bv" =0 if j #£n+1, g+1. For every 4 c Se+?
let 2y:A4—>hA denote the homeomorphism determined by .. Then an
isomorphism

hy:{A, By~ {hd, hB} (4, Bc 8¢
is defined by hy a« = {hp}a {h}t. If g:4-> B, let
g*=hgghz:hA—>hB.

It is easily verified that Ag,;[¢"] = ky A, [g]; also that S, ., W=hS, 4, W,
8pi1f = (8gesf)* and, if

Setnf = Sq Sn+lﬁ’ St]]_—nﬁ’ = Sq+1 Sn+2ﬁ’
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where Be{D,Y, D, X}, that® kg 87 "8 =81"h,B= 87" Hence it
follows from (9.8) and (9. 15) that
SF™(A, 11 [8p11f 1) = Aga[Spn f] = Apa[(8g1f M
= h* Aq+1 [Sq+1f 1= k* Aq [f 1
= hy SEAL[f1= 81" A,[f],
whence A,1[8,.11 = A,[f].
C. Definition and properties of D, : {X, Y}~ {D, Y, D, X}.

Let g: 8™ X~ 8™ Y denote a map representing a given ae {X, Y}. It
follows from (9.14) that an element «*e {D, Y, D, X}, depending only
on «, is defined by ae*=A_  [g] with D, ,S™W =D, Wfor W=X, 7.
We define D,,: {X, Y} {D, Y, D, X} by D,a=a* Then (4.1), (4.2),
(4.3) follow from (9.11), (9.9), (9.8) and the definition of D, «. (4.4) is
an immediate consequence of (9.13) and the other properties of D,,.

To prove (4.5) note that if wae {X, Y} or {D, Y, D, X} it follows from
(4.3) that, for ¢ =0, D, D,a=D,8"D, «=D,D,«. If X\, Y, Z,
are polyhedra in 87 and if «, & {Xy, Y4}, B1&{Y,, Z,} and D, e, D, B, refer
to the same D, Y;, then

D,Dy(B, %) = Dy(Dyey Dy ;) = Dy D, B, D, D,y
Hence (4.5) follows from (9.13), (4.1) and the fact that D 1= -1 if
v: X, C Y, is an S-equivalence and ': D, Y, c D X,.
10. Proof of (4.10). We observe that if g>=n and
D,W=8"D,W (W=2X,7),
then D, «=8¢"D, «, by (4.3), and the diagram

(D, 0)*
H»»4(D, X)—>"> Hr2-1(D, Y)

| |-

(-D q “) #
He-01(D, X)~—2 25 ga-s-1(D, )

is commutative. Moreover ([5]), 8¢ "D,u=2D,u for ueHy (W). Tt
follows that the integer » in (4.9) may be replaced by an arbitrary ¢ > ».
By (9.13) we see that it suffices to prove (4.10) in the case «: X c Y. If
(4.10) is true for one pair of n-duals D, X, D, Y, it is obviously true for
any other. Therefore (4.10) follows from the commutativity of (2.1).

5 Since the operator S; is defined by a geometrical construction in R® we have
8; 8; = 8 Si. (N.B.—Except for the ordering of v;, v;’ there are no orientations to be
considered.)
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11. Proof of (4.13). lLet P, P’ denote disjoint polyhedra in 8¢ and
A, ..., 4,, polyhedra whose union is §2. For every non-empty subset, 7,
of (1, ...,m)let 4, = N A4,.

i€r

Lemma (11.1). If P'nA,is an S-deformation retract of A,— P for each
T, then P’ is q-dual to P. ~

Proof. The lemma is trivial if m=1. If m>1 let B=A4,v4, and
let C be either S¢ or, if m > 2, A,, where r denotes a non-empty subset of
(3, ..., m). Then we have triads (P’"ABnC; P'nA,~C, PAnA,n0)
and ((BnO)—P; (A;nC)—P, (A2n0)~P) each of which can be
triangulated to form a CW-complex and a pair of subcomplexes. Therefore,
it follows from the hypothesis of (11.1) and the 5-lemma ([6], page 16),
applied to the Mayer-Vietoris sequences® ([6], page 39) of these triads, that

iy Hy(P'ABAC) X H,((BAC)—P) (k=0,1,...),

where iy is the injection. Therefore P'ABAC is an S-deformation
retract of (BAC)—P and A4,, ..., A,, may be replaced by B, 4,, ..., 4,.
The lemma now follows by induction on m.

By a polyhedral n-element (in B*) we mean a piecewise linear homeo-
morph of I*. Let K, be the standard triangulation of S" defined in §2,
let 04" be a simplex of K, and let o™ be a rectilinear simplex in oy"—g,™.

Lemma (11.2). 8S"—(o™—0") is @ polyhedral n-element’.
Proof. Let Ey* = 8%— (04" —0a4"), P"= o"— (o™®—0o") and let
z=(0,0, ...)e R,

On projecting from an inner point of o™ it follows from Theorem 5 in [12]
that E», P are piecewise linearly homeomorphic to z#s,*, E,*x I
respectively. (N.B.: o" = E’O".) Therefore E", likewise E,»u P", are
polyhedral n-elements. But E"uP"= §"—(o”"—s") and (11.2) is
proved.

As obvious, and well-known, corollaries of (11.2) we have:

CoroLLARY (11.3). Let E\», E,"C 8™ be polyhedral n-elements such
that E\"V E," = 8" and E\"NE,» = E," = E,". Then there is a piecewise
linear homeomorphism kb :8™— 8™ such that ho™ = E".

¢ Let A denote a subcomplex of & CW-complex X. Then H,(X, 4) may be calculated
combinatorially in terms of the cellsin X—4. Thus the homology groups of (X, 4) may be
regarded as the homology groups of the * open subcomplex ” X —A. Therefore the strong
excision theorem ([6], p. 165} is valid in the category of CW-complexes and subcomplexes.

7 This is a special case of Theorem [14 . 2] in [1] (¢f. Theorem 5 in [12] and §15in [17).
We indicate an ad hoc proof, leaving some details to be supplied by the reader.
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CorOLLARY (11.4). Let a, b and a’, b’ be pairs of distinct points in
871, Then there is a piecewise linear homeomorphism h: 8™ 1—> 8*1 guch
that ha =a', b =1b'.

We now prove (4.13). It is trivial if » = 0 so we assume that » > 1.
Let B = 8" 1%y, B, =819, andlet a, a* be distinct points in S”-1.
We proceed to prove that there is a piecewise linear homeomorphism
fi: 87— 8" (A=1, 2) such that

f)\(P)\UP)\*) C E)‘n, Sn—_lf\f)‘ PA =, S"“lr\f,\ P}\* == a/*. (11 . 5)

Since P, P,* is & closed, proper subset of 8™ there is a simplex o”, which
is interior to some simplex of K, and does not meet P,w P,*. Let
En= 8"—(o"—c"). Then it follows from (11.2), (11.3) that there is a
piecewise linear homeomorphism 8% 8" which interchanges E™ and o™.
So we assume from the outset that P, P,* co®—¢" Let R,*C R® be
the linear n-space which contains ¢™ and let & be the Euclidean distance
function which R, derives from Hilbert space. Let p,& P, p,*eP,*
be points such that &(p,, p\*) = 8(P,, P\*) and let V” be the interior and
boundary of the metric n-sphere in Ry* which has p,p,* as a diameter.
Then VA (P, P¥)=pup* and V"no" is a convex subset of o®.
Hence there is obviously an n-simplex ¢y C V*no™ which has p,, p\*
among its vertices. Therefore it follows from (11.3), (11.4) that there
is a piecewise linear homeomorphism f, : S*— S” such that

ho"=Er A#p=1or2), fim=a, ip*=a*

Clearly f\ satisfies (11.5).

We take p,, p\* to be the base points for P,v P,, P,*v P,*. Then
piecewise linear homeomorphisms &, %', of P; v P,, P * vy P,* into 8", are
defined by

h(p, o) = f1p, b(py, )=faq (pePy, qePy),
B (p*, pa*) =fip*, B (p* ¢%) =faq* (p*eP*, g*cP,*).

Let X, =/, P,, X, *=/f, P\*. Since P,*=D, P, it is an S-deformation
retract of 8»—P,. So therefore is X,* of S*—X,, whence X,* is n-dual
to X,. Evidently S"'—a is a deformation retract of E,"—a, whence
E»—X, is a deformation retract of S®—X,. Therefore X,* is an
S-deformation retract of B,"—X,. Also a* is an S-deformation retract
of §n—'—a and it follows from (11.1) that X, ¥ X,* is n-dual to X, U X,.

Let K, be a triangulation of E,*, which has a for a vertex, and let
A,c K, be the subcomplex complementary to a. Let the mesh of K,
be so small that X, *c 4,. Since E,"—a is contractible, so is 4, We
have 4, 8*"—X,, 4,nX,* =a*. Henceit follows that X,* is a deforma-
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tion retract of 4,wX,* and that 4,V X,* is n-dual to X,. Therefore
D,y =p" v = p\', where

o o
X FuX,* > A, 0X,* - X, *

are the inclusion and the S-retraction by deformation. Similarly
D, v’ =p, and (4.13) is proved.

12. Proof that D, is a homomorphism. Since §:{X, Y}~ {8X, 8T}
and D, =D, , 8, by (4.3), we may replace D, by
D, :{8X, 8Y}~{D,Y, D, X}.

Therefore we may assume to begin with that X #* o and, since D, may also
be replaced by SD,, that X £ 8" Let X £ or 8* and let X, uX,,
X, #¥0X,*, o, pa, &, pa’ be asin (4.13) with

P,=P,=X, P*=P,*=D, X.
Let &, : X - X, be a homeomorphism onto X,, let 8, = {h,} and let
ﬂ = L1B1+L2ﬁ2 . X_>XIU‘X2'

On considering the track addition of maps S(X,vX,)—>8(X,vX,) it
follows without difficulty that

uprtip: XiwX,c X,ulX,.
Similarly, and from (4.13), it follows that
D, (up)+D,(1p:): Xy ¥ Xp* C X ¥ U Xp*, (12.1)

Let o), 2,6 {X, Y} be given and let f,: S*X—-8*Y (k>1) be a ma,pl
representing a, such that fy S*x, = v, ,,, where 2, = h1(X,~X,). Define
g:8¥(X,VX,)>8*Y by gr=f(8* bz if ze X, and let y: X, uX,—>Y
be the S-map represented by g. Then yi, = «, 5L, whence yy, S\ = a,.
Therefore

atap =y(1 fit 2 Bs) = ¥B. (12.2)

Obviously pyu:X,CX, and py4,=0 if ps£A Therefore B, =p,B,
whence yu p,8=a,. Hence it follows from (12.2), (12.1) that

Dy (aa+03) = Dy (B) (D12 p1)+Dr(1a5)) Do)

= D”(’ybl plﬂ)-i-Dn(Wz P2B)
= Df,, “1+Dn ]

and the proof is complete.
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13. Proof of (6.2). Let A, B, A’, B’ denote CW-complexes, let
f:A-B, f': A'-> B’ be cellular maps and in the diagram

A1)

1o 12
¥
LUty
let «, B denote S-maps such that B{f}= {f'}a. Let Z,, Z, be defined as
in §6, likewise g: Z;—SA, ¢': Z;—SA’".
Lemma (13.1). There is an S-map {:Z,— Z; such that the diagram

B—{izf 9, 54

lﬁ l( J[(Soc
[}
RUR RU SR R
is commutative, where ©:BC Z;, i : B'C Zp. Furthermore, if «, B are
S-equivalences, so is {.

Proof : 1t is easily verified that SZ,= Zgs,. Therefore we may replace
the above diagrams by their k-fold suspensions for any % >0. Hence
we may assume that o = {u}, 8 = {v}, where u: 4—>4’, v: B> B’ are maps
such that yf ~f'u. This being so, let #,: 4 > B’ be a homotopy such that
ho=1vf, by =f'u. Then a map w:Z;— Z, is defined by wb=1b if be B
(whence wi =1’"v) and

hya  if 0<t<
wia, t) =
( (ua, 2t—1) if I <<t <1

for aeAd. Let p, p' denote the (ordered) poles of SA’. Then
(Su)gB =g wB=7p and

Dot

(Su) g(a, £) = Su(a, 2—1) = (ua, 2t—1),
P if 0<t<}

g, (a’y )— .
(ua, 44—3) if }<t<L

Hence, obviously, (Su)g~g’w and the first part of the lemma follows on
taking { = {w}. :
To prove the second part consider the sequence

T4 4 S~lgy
> H (A} —> H(B)—> H,(Z;) —> H, ;(4) — ...,

where fu, 14, g4 are the homomorphisms induced by f, 4, g. It follows
without difficulty from the excision theorem that this sequence is
isomorphic to the homology sequence of the pair (Z;, B). Therefore it
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is exact. Also it is natural with respect to ay, By, {y. Hence, if ay, By
are isomorphisms onto for every ¢, so is {y, by the 5-lemma. Therefore,
if a, B are S-equivalences, so is { and the proof is complete.

We now prove (6.2). In (6.1)let a = {f}, a*= {f*}. Then we have
to prove that there are S-equivalences ¢, {* such that the diagrams

y B, 7 9, ex grs I ge Bz
|
4 8¢, Sn* {*® £%  (13.2)
lﬂAl ul Tn__,\*T #*T
Yy 2, 8%, SV F e g <X

are commutative, where X* =D, X, Y * =D, Y,, Z,, Zy* are mutually
(n+1)-dual polyhedra in 8" and A*=D, A, p*=D,  u Let
£&: X—>X,, n,: Y=Y, be S-equivalences, where X,, Y, are polyhedra
in S”, and let

0=§E1X)>Xy, d=mn 11 X> Y,

Let D,W, be any n-dual of W, (W=X, Y. Possibly W,=W,,
D, W, D, W,). Let (6.1), (13.2)" denote (6.1), (13.2) with £, 5, &%,
7%, A, u replaced by &, 9, £¥D,0, n*D,$, Ap~Y, (88)p. Then it follows
from (4.2) that (6.1), (6.1) define the same D,{f} and that (13.2)’ are
commutative if, and only if, (13.2) are commutative. Therefore we may
choose ¢,  and the n-duals D, X,, D, Y, to suit our convenience.

Since #n > 2 dim Z-+1 there are disjoint polyhedra X,, ¥’ < 8" of the
same dimensionalities and homotopy types as X, Y. Let

u: X>X, v:Y>Y'

be homotopy equivalences, let %' : Xy — X be a homotopy inverse of » and
let fo=1ufu’: X;—Y'. Let Y,C 8" be a polyhedral mapping cylinder for
fo W.B.: dimY,=dimZ) and let {= {u}, = {lv}, where 1:Y'C Y,.

Then
1} = {lfu'} = {fo}: X, C T,
Thus n{f}é1={j}, where j: X,c Y, Let
Zy=12;= Yo (Xo %, 1).

Let ¢, ,(p) denote the (n+1)th coordinate of a given point pe R*. We
represent points in 87+ by (a, s), where ¢ = (a, 0)e 8™ and s = 2t,,(a, )
((a, s)ea# S%+1) . Thus (a, —2)=1v,,,, (@ 2)=v,,, and if 4C 8" we
imbed 4 x I in S*H so that (a, t)e S**! has its usual meaning in A4 x I
(aed, teI). We write AXI=A4;, Ax1=A4; and

(Axv,)0Ady=A,%v,,,.

Let Xo*c 8™ and Yy * c Xy* be n-duals of X, Y, let W * = (Wy#),
andlet h: X, *— X,* be defined by h(x, 1) =z (re X*). Letj*: Y * c X, *,
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J=h1*: Y ¥ > X ¥ and let
Zyt=Z;=X*O (Y *#v,,,).
Clearly X,*xIc 8™1—S8X, and since X * is (n+1)-dual to SX, so is
X*x I and hence also X;*. Moreover {h} is (n-+1)-dual to ¢: 8X,c 8X,.
Since the right-hand diagram in (6.1), with «y= {j}, D,ay= {j%},
a® = {f*}, is commutative, so is
X* ;{_fj}_ Yy
f*{k}T L (13.3)
X,* ij_}_ Y, *
In (11.1) let P=Zy, P'=Z,* and let 4,, ..., 4,, denote
St *v, ., S S"%v,, (@=n+1, m=3).
Then a homotopy h,: S;"— Zy— Sf*— Z,, rel. §;"—X,, such that
ho=1, b(Zy*NS") C Zy*~S”
and b (8" —Zy) = 8,"—X3,  h(Zy*n 8 = X, ¥,

is defined by hla, s) = (a, (1—t)s+t), for (a, 8)e 8/*—Z, Since X,* is
an S-deformation retract of 8*—X,, so is X;* of §;"— X, and it follows
that Z,*~ S is an S-deformation retract of 8;,*—Z,. It is obvious that
Zy#nA, is an S-deformation retract of 4,—Z, for the remaining sets 7.
Therefore it follows from (11.1) that Z,* is (n-1)-dual to Z,.

We have .
Vo2 2,8 8X,, SY ALz Lx
where 1y, %, are inclusions and g,, g," are defined in the same way as g, ¢'.
In (13.2) let A= {33}, p= {go}-

Let D, Yo= (Y *#v,,,)v (8" *#v,,,). Then D, Y, and §Y,* are
both (n-+1)-dual to Y, Leti:Z*cD,,,Y,andlet r:D; ;Y —>8Y*
be defined by
(a, (4s+2)3) if —2<s<1,

r(a, 8) = )
( {vnﬂ if 1<<s<g2.

Then A* =D, {ig}= {ri;}. Bubt ri; =wg,’, where w:S8Y*>S8Y* is
the “reflexion > which interchanges y#v, ,, y=*v,,,, with wy=y, for
every ye Y,*. Clearly {wg,’} = —{g,}, whence —A* = {g,'}.

Similarly D;/,;{iy} = {go} (not —{go} because the “vertex” of Z, is
v, ., and the analogue of r maps Y, on v,,,), where D, refers to
D12y = Zy*, Dya 8X,=X,*.

Let (13.2), denote (13.2) with X,*, £*%, u* replaced by X;*, £*{h},
p*{h}, where {h} means the same as in (13.3). Since {B} is (n+1)-dual to
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:8X,c 8X, we have u*{h}=D,\1{go}= {éy’}. Therefore, and since
—A*={g'}, {j}=n{f}¢* and (13.3) is commutative, it follows from
(13.1) that there are S-equivalences {, {* such that the diagrams (13.2),
are commutative. Hence, obviously, (13.2) are commutative and (6.2)
is proved.

Notice that, if the parts played by v,;, v,,, in the above argument
are interchanged, so that Z,, Z,* are reflected through S, then we are led
to a weak duality between {5}, {g} and {g'}, —{¢'}.
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