DUALITY IN HOMOTOPY THEORY

E. H. Spanier and J. H. C. Whitehead

1. Introduction. Certain results ([7], [8], [10], [11]) suggest that there should be some principle of duality in homotopy theory. Among other things one is led to expect that cohomotopy groups will appear as dual to homotopy groups. But the fact that a cohomotopy group $\pi^{n}(X)$, unlike $\pi_{n}(X)$, is only defined if $\operatorname{dim} X \leqslant 2 n-2$ is a serious obstacle to the formulation of such a principle. However, the set of S-maps (i.e. S-homotopy classes [11]) $X \rightarrow Y$ is a group for every pair of spaces X, Y. Therefore, this difficulty does not appear in S-theory [11].

In this paper we formulate a principle of duality in the S-theory of finite polyhedra. It is analogous to the Alexander duality in that it is primarily defined for subsets, in our case subpolyhedra, of (polyhedral) spheres. An "n-dual" of a subpolyhedron $X \subset S^{n}$ is a subpolyhedron $D_{n} X \subset S_{n}^{n}-X$ which is an " S-deformation retract" of $S^{n}-X$. An S-map $\alpha: X \rightarrow Y$, where Y is also a subpolyhedron of S^{n}, has a dual $D_{n} \alpha: D_{n} Y \rightarrow D_{n} X$, and the map $\alpha \rightarrow D_{n} \alpha$ is an isomorphism ${ }^{1}$

$$
\{X, Y\} \approx\left\{D_{n} Y, D_{n} X\right\}
$$

If $D_{n} X$ is n-dual to X, then X is n-dual to $D_{n} X$ so we have an isomorphism of $\left\{D_{n} Y, D_{n} X\right\}$ onto $\{X, Y\}$. The duality is expressed by the statement that these two isomorphisms are inverse to each other. Among other things we show how the construction of a finite $C W$-complex by the successive attaching of cells can be dualized.

The main results are stated in sections 3 through 7 . Section 2 is devoted to a summary of notation and background material and sections 8 through 13 contain the proofs of the results stated in the earlier sections.

The authors express their thanks to N. E. Steenrod for many helpful suggestions during the early stages of this work.
2. Preliminaries. Let R^{∞} denote the subset of Hilbert space consisting of points $\left(t_{0}, t_{1}, \ldots\right)$ such that $t_{i}=0$ for all but a finite set of values of i. Let $v_{n}{ }^{\prime}=\left(\delta_{0}{ }^{n}, \delta_{1}{ }^{n}, \ldots\right)$, where $\delta_{i}{ }^{n}=0$ if $i \neq n, \delta_{n}{ }^{n}=1$, and let $v_{n}=\left(-\delta_{0}{ }^{n},-\delta_{1}{ }^{n}, \ldots\right)$. Let $S_{n}{ }^{0}=v_{n} \cup v_{n}{ }^{\prime}$ and let S^{n} denote the geometrical join

$$
S^{n}=S_{0}^{0} * S_{1}{ }^{0} * \ldots * S_{n}{ }^{\dot{0}}=S^{n-1} * S_{n}{ }^{0}
$$

If $X, Y \subset S^{n}$, we define $\{X, Y ; n\}$ as the direct limit under suspension of the $\operatorname{sets}^{1}\left[S^{k} X, S^{k} Y\right]$, where

$$
S^{k} W=W * S_{n+1}^{0} * \ldots * S_{n+k}^{0} \quad(W=X, Y)
$$

[^0][Mathematika 2 (1955), 56-80]
and v_{i}, v_{i}^{\prime} are ordered as written. If $q \geqslant n$ an isomorphism
$$
\theta(q, n):\{X, Y ; n\} \approx\{X, Y ; q\}
$$
is defined in the obvious way, and we define $\{X, Y\}$ as the direct limit of the groups $\{X, Y ; n\}$, for every n such that $X, Y \subset S^{n}$, under the isomorphisms $\theta(q, n)$.

If $K \subset S^{n=1}$ is a simplicial complex, then $S K=K * S_{n}{ }^{0}$ will denote the simplicial complex whose simplexes are $\sigma * v_{n}, \sigma * v_{n}{ }^{\prime}$ and their faces, for every simplex σ of K. In particular S^{n} has a rectilinear triangulation K_{n}, which is defined inductively by $K_{n}=S K_{n-1}$ if $n>0, K_{0}$ being the unique triangulation of S^{0}.

By a polyhedron we shall mean the space covered by a finite rectilinear complex in R^{∞}. We shall sometimes use the same symbol to denote a polyhedron and one of its triangulations, always assumed to be rectilinear. A piecewise linear map $X \rightarrow Y$, where X, Y are polyhedra, is one which is simplicial with respect to some pair of (rectilinear) triangulations of X, Y. Notice that, since all our polyhedra derive their piecewise linear structure from R^{∞}, a polyhedron $A \subset X$ is necessarily a subpolyhedron of X [i.e. the inclusion map $A \subset X$ is piecewise linear ([12], Theorem 5)].

Let X denote an n-dimensional polyhedron and let $A=X \cap S^{q}$, where $q \geqslant 2 n+1$. There is a piecewise linear homeomorphism $S^{q} \rightarrow S^{q}$, which maps A into a q-simplex of K_{q} [see (11.3) below]. Hence it follows that the inclusion map $A \subset S^{q}$ can be extended to a piecewise linear homeomorphism h, of X into S^{q} (see [2], p. 139, for the case $A=\varnothing$; the generalization to an arbitrary A presents no difficulty). Notice that, if B is any other polyhedron in S^{q}, of at most n dimensions, then X, A may be replaced by $X \cup B, A \cup B$ so as to avoid "accidental intersections" between $h X$ and B [i.e. points in $h X \cap(B-A)]$.

Since the reduced homology and cohomology groups ${ }^{2}$ ([6],p.18) suspend isomorphically and naturally, with respect to the homomorphisms induced by maps and their suspensions, it follows that, for any pair of spaces A, B, an S-map $\alpha: A \rightarrow B$ induces homomorphisms

$$
\alpha_{\#}: H_{q}(A) \rightarrow H_{q}(B), \quad \alpha^{\#}: H^{q}(B) \rightarrow H^{q}(A)
$$

in the obvious way. If A, B are $C W$-complexes, then α is an S-equivalence (i.e. has a 2 -sided inverse $\alpha^{-1} \varepsilon\{B, A\}$) if and only if $\alpha_{\#}$ is an isomorphism onto for each q. To see this let $f: S^{k} A \rightarrow S^{k} B$ denote a map representing α and assume that $S^{k} A, S^{k} B$ are 1-connected (as is certainly the case if $k \geqslant 3$ or if A, B are non-empty and $k \geqslant 2$). Then f is an ordinary homotopy equivalence ($[15]$, Theorem 3) if and only if each $\alpha_{\#}$ is an isomorphism onto.

[^1]Similar remarks apply to $\alpha^{\#}$ if the complexes A, B are finite ${ }^{3}$. Notice that, if A, B are 1-connected $C W$-complexes and if the S-homotopy class of a map $f: A \rightarrow B$ is an S-equivalence, then f is an ordinary homotopy equivalence.

Let $i: A \subset X$. Then we describe A as an S-deformation retract of X if and only if the inclusion S-map $\imath=\{i\}: A \subset X$ is an S-equivalence. In this case we describe $\iota^{-1}: X \rightarrow A$ as the S-retraction by deformation, or simply the S-retraction, of X on A. If $A^{\prime} \subset A$ and any two of the inclusion S-maps $A^{\prime} \subset A, A \subset X, A^{\prime} \subset X$ are S-equivalences so obviously is the third.

Let K denote a triangulation of S^{n} and X a subcomplex of K. We describe X as complete if and only if every simplex of K with all its vertices in X belongs to X. Evidently the barycentric subdivision of any subcomplex is complete in the barycentric subdivision of K. The subcomplex $X^{*} \subset K$ complementary to X consists of the simplexes of K which do not meet X. Evidently X^{*} is complete and $\left(X^{*}\right)^{*}=X$ if X is complete. In the latter event X, X^{*} are deformation retracts (and hence S-deformation retracts) of $K-X^{*}, K-X$. Also in this case X is complete in $S K$ and $X, S X^{*}$, likewise $S X, X^{*}$, are complementary to each other in $S K$.

Let X and also $A \subset X$ denote complete subcomplexes of K. Then $X^{*} \subset A^{*}$, where X^{*}, A^{*} are the subcomplexes of K complementary to X, A, and the diagram

is commutative [5], where each \mathfrak{D}_{n} is the appropriate Alexander duality isomorphism. Therefore, if $\iota_{\#}$ is an isomorphism (onto), so is $\iota_{0} \#$. Hence, if A is an S-deformation retract of X, so is X^{*} of A^{*}.

Let X_{1}, \ldots, X_{k} denote polyhedra in S^{n} and for each $i=1, \ldots, k$ let C_{i} denote a compact subset of $S^{n}-X_{i}$.

Lemma (2.2). There are polyhedra $X_{1} *, \ldots, X_{k} *$ such that

$$
C_{i} \subset X_{i}^{*} \subset S^{n}-X_{i}
$$

$X_{i}{ }^{*}$ is a deformation retract of $S^{n}-X_{i}$ and whenever $X_{i} \subset X_{i}$, then $X_{i} * \subset X_{i}{ }^{*}$.
Proof. Let K denote a triangulation of S^{n} such that X_{1}, \ldots, X_{k} are covered by complete subcomplexes of K. Let $X_{i}{ }^{*}$ denote the subcomplex of K complementary to X_{i}. Then $X_{i}{ }^{*}$ is a deformation retract of $K-X_{i}$

[^2]and $X_{j}{ }^{*} \subset X_{i}^{*}$ if $X_{i} \subset X_{j}$. Therefore the lemma follows on taking the mesh of K to be so small that $C_{i} \subset X_{i}^{*}$ for each $i=1, \ldots, k$.
3. n-duals. Let X denote a polyhedron in S^{n}. By an n-dual of X we mean a polyhedron in $S^{n}-X$, which is an S-deformation retract of $S^{n}-X$. We shall use $D_{n} X$ to denote an n-dual of X. Evidently a polyhedron contained in $D_{n} X$ is an n-dual of X if, and only if, it is an S-deformation retract of $D_{n} X$. If X, X^{*} are complete, complementary subcomplexes of some triangulation of S^{n}, then each is a deformation retract of the complement of the other. Therefore X, X^{*} are mutually n-dual. We shall prove that X is n-dual to every $D_{n} X$. We first prove :

Lemma (3.1). If A is a polyhedron in X, which is an S-deformation retract of X, then every n-dual of X is an n-dual of A (whence $D_{n} X$ is an S-deformation retract of $D_{n} A$ if $D_{n} X \subset D_{n} A$).

Proof. Let X^{*}, A^{*} be as in (2.1) and let the mesh of K, in §2, be so small that $D_{n} X \subset X^{*}$. Then $D_{n} X$ is an S-deformation retract of X^{*}, since $D_{n} X, X^{*}$ are both n-dual to X. Also X^{*} is an S-deformation retract of A^{*} by a remark following (2.1). Therefore $D_{n} X$ is an S-deformation retract of A^{*}. Since A^{*} is n-dual to A, so is $D_{n} X$.

Theorem (3.2). If $D_{n} X$ is n-dual to X, then X is n-dual to $D_{n} X$. F urthermore, $D_{n} X$ is $(n+1)$-dual to $S X$ (hence also $X=D_{n} D_{n} X$ to $S D_{n} X$). Thus we may set

$$
\begin{equation*}
D_{n+1} X=S D_{n} X, \quad D_{n+1} S X=D_{n} X \tag{3.3}
\end{equation*}
$$

Proof. The first part follows from (3.1) with $A, X, D_{n} X$ replaced by $D_{n} X, X^{*}, X$. The second part follows from the fact that $D_{n} X$ is an S-deformation retract of X^{*}, which is complementary to $S X$ in $S K$.

If X^{\prime} is a polyhedron in $S^{n}-X$, then $S^{n}-X$ can be triangulated as a $C W$-complex with a subcomplex covering X^{\prime}. Therefore X^{\prime} is an n-dual of X if, and only if, $\iota_{\#}: H_{q}\left(X^{\prime}\right) \approx H_{q}\left(S^{n}-X\right)$ for every $q \geqslant 0$, where $\iota X^{\prime} \subset S^{n}-X$.
4. The basic duality. In $\S 9$ we define, for every pair of polyhedra $X, Y \subset S^{n}$ and every pair of n-duals $D_{n} X, D_{n} Y$, a map

$$
D_{n}:\{X, Y\} \rightarrow\left\{D_{n} Y, D_{n} X\right\}
$$

such that, if $\iota: X \subset Y, \iota^{\prime}: D_{n} Y \subset D_{n} X$, then

$$
\begin{equation*}
D_{n} \iota=\iota^{\prime}, \tag{4.1}
\end{equation*}
$$

and if $\alpha \varepsilon\{X, Y\}, \beta \varepsilon\{Y, Z\}$ (where Z is any polyhedron in S^{n}) then

$$
\begin{equation*}
D_{n}(\beta \alpha)=D_{n}(\alpha) D_{n}(\beta) \tag{4.2}
\end{equation*}
$$

provided $D_{n} \alpha, D_{n} \beta$ are both relative to the same $D_{n} Y$. It follows from (4.1), (4.2) that, if α is an S-equivalence, so is $D_{n} \alpha$ and $D_{n} \alpha^{-1}=\left(D_{n} \alpha\right)^{-1}$. In particular, $D_{n} \iota^{-1}=\iota^{-1}$ if X is an S-deformation retract of Y and ι, ι^{\prime} are as in (4.1).

For any pairs of spaces A, B there is an isomorphism

$$
S:\{A, B\} \approx\{S A, S B\}
$$

such that corresponding elements are represented by the same map $S^{k} A \rightarrow S^{k} B(k \geqslant 1)$. In conformity with (3.3) we shall prove that

$$
\left.\begin{array}{rl}
D_{n+1} & =S D_{n}:\{X, Y\} \rightarrow\left\{S D_{n} Y, S D_{n} X\right\} \tag{4.3}\\
D_{n+1} S & =D_{n}:\{X, Y\} \rightarrow\left\{D_{n} Y, D_{n} X\right\} .
\end{array}\right\}
$$

We shall also prove:
Theorem (4.4). The map D_{n} is uniquely determined by the conditions (4.1), (4.2), (4.3).

Since X is n-dual to $D_{n} X$, by (3.2), we have $D_{n}:\left\{D_{n} Y, D_{n} X\right\} \rightarrow\{X, Y\}$. We shall prove:

Theorem (4.5). $\quad D_{n} D_{n} \alpha=\alpha$ for every $\alpha \varepsilon\{X, Y\}$ or $\left\{D_{n} Y, D_{n} X\right\}$.
In $\S 12$ we show that D_{n} is a homomorphism. Hence, and from (4.5), it follows that

$$
\begin{equation*}
D_{n}:\{X, Y\} \approx\left\{D_{n} Y, D_{n} X\right\} \tag{4.6}
\end{equation*}
$$

Let $D_{n}{ }^{\prime} W$ denote another n-dual of $W(=X, Y)$ and let $D_{n}{ }^{\prime \prime} W$ denote an n-dual of W containing $D_{n} W \cup D_{n}{ }^{\prime} W$ [such a $D_{n}{ }^{\prime \prime} W$ exists by (2.2)]. Let

$$
\iota_{W}: D_{n} W \subset D_{n}^{\prime \prime} W, \quad \iota_{W}^{\prime}: D_{n}^{\prime} W \subset D_{n}^{\prime \prime} W
$$

and let $\iota_{W^{0}}: W \subset W$. Then we have homomorphisms

$$
\left\{D_{n}{ }^{\prime} Y, D_{n}{ }^{\prime} X\right\} \stackrel{D_{n}^{\prime}}{\leftarrow}\{X, Y\} \xrightarrow{D_{n}^{\prime \prime}}\left\{D_{n}^{\prime \prime} Y, D_{n}^{\prime \prime} X\right\}
$$

and if $\alpha \varepsilon\{X, Y\}$ it follows from (4.1) and the remarks following (4.2) that the diagrams

are dual to each other. Since we have a similar situation with D_{n} replaced by $D_{n}{ }^{\prime}$ it follows from (4.2) that

$$
D_{n}{ }^{\prime \prime} \alpha=\iota_{X} D_{n}(\alpha) \iota_{Y}^{1}=\iota_{X}^{\prime} D_{n}^{\prime}(\alpha) \iota_{X}^{\prime-1} .
$$

Therefore $D_{n}^{\prime}(\alpha)=\iota_{X}^{\prime} \iota_{X} D_{n}(\alpha) \iota_{\bar{Y}} \iota_{Y}^{\prime}$. Let $\iota_{F}{ }^{\prime \prime}: D_{n}{ }^{\prime \prime} W \subset S^{n}-W$. Then $\stackrel{\rightharpoonup}{W}^{\prime} \iota_{W}{ }^{\prime}=\left(\iota_{W}{ }^{\prime \prime} \iota_{W}\right)^{-1}\left(\iota_{W}{ }^{\prime \prime} \iota_{W}{ }^{\prime}\right)$ and we have

$$
\begin{equation*}
D_{n}^{\prime}(\alpha)=\iota_{X}^{\prime} \iota_{X}{ }^{1} D_{n}(\alpha) \iota_{\bar{Y}}^{1} \iota_{Y}{ }^{\prime}, \tag{4.7}
\end{equation*}
$$

where now $\iota_{W}: D_{n} W \subset S^{n}-W, \iota_{W}{ }^{\prime}: D_{n}{ }^{\prime} W \subset S^{n}-W$.
For any space A and any $p \geqslant-1$ let

$$
\Sigma_{p}(A)=\left\{S^{p}, A\right\}, \quad \Sigma^{p}(A)=\left\{A, S^{p}\right\}
$$

Let $n \geqslant p$ and let $S_{1}^{n-p-1}=S_{p+1}^{0} * \ldots * S_{n}{ }^{0}$ if $n>p$. Then $S^{n}=S^{p} * S_{1}^{n-p-1}$ and we may take $D_{n} S^{p}=S_{1}^{n-p-1}$. It follows from (4.6) that

$$
\begin{equation*}
\theta D_{n}: \Sigma_{p}(Y) \approx \Sigma^{n-p-1}\left(D_{n} Y\right) \tag{4.8}
\end{equation*}
$$

where $\theta:\left\{D_{n} Y, S_{1}^{n-p-1}\right\} \approx \Sigma^{n-p-1}\left(D_{n} Y\right)$.
Let $\alpha \varepsilon\{X, Y\}$ and consider the diagram

$$
\begin{gather*}
H_{p}(X) \xrightarrow{\alpha_{\#}} H_{p}(Y) \tag{4.9}\\
H_{n} \downarrow^{n-p-1}\left(D_{n} X\right) \xrightarrow{\left(D_{n} \alpha\right)^{\#}} \underset{\longrightarrow}{\downarrow} H^{n-p-1}\left(D_{n} Y\right)
\end{gather*}
$$

where each \mathfrak{D}_{n} is an Alexander duality isomorphism ${ }^{4}$. In $\S 10$ we prove:
Theorem (4.10). The diagram (4.9) is commutative.
In the diagram

let τ, τ^{*} denote the homomorphisms defined by

$$
\tau \alpha=\alpha_{\#} u, \quad \tau^{*} \theta \beta=\beta^{\#} \mathfrak{D}_{n} u
$$

where $\alpha: S^{p} \rightarrow Y, \beta: D_{n} Y \rightarrow S_{1}^{n-p-1}$ and u is a fixed generator of $H_{p}\left(S^{p}\right)$ $\left(\mathfrak{D}_{n} u \varepsilon H^{n-p-1}\left(S_{1}^{n-p-1}\right)\right)$. It follows from (4.10) that

$$
\tau^{*} \theta D_{n} \alpha=\left(D_{n} \alpha\right)^{\#} \mathfrak{D}_{n} u=\mathfrak{D}_{n}\left(\alpha_{\#} u\right)=\mathfrak{D}_{n} \tau \alpha
$$

Hence we have proved:
Corollary (4.12). The diagram (4.11) is commutative.
If A_{1}, A_{2} are any spaces we define

$$
A_{1} \vee A_{2}=\left(A_{1} \times a_{2}\right) \cup\left(a_{1} \times A_{2}\right) \subset A_{1} \times A_{2}
$$

[^3]where $a_{1} \varepsilon A_{1}, a_{2} \varepsilon A_{2}$ are what we call the base points for $A_{1} \vee A_{2}$. We shall use $\left(A_{\lambda}, a_{\mu}\right)(\lambda, \mu=1,2 ; \lambda \neq \mu)$ to denote $A_{1} \times a_{2}$ or $a_{1} \times A_{2}$ according as $\lambda=1$ or 2 . We describe sequences
$$
X_{1} \xrightarrow{\alpha_{1}} X_{2} \xrightarrow{\alpha_{2}} X_{3}, \quad X_{1} * \stackrel{\alpha_{2}^{*}}{\leftarrow} X_{2} * \stackrel{\alpha_{2}^{*}}{\leftarrow} X_{3} *,
$$
of S-maps between polyhedra in S^{n}, as n-dual to each other if, and only if, $X_{j}{ }^{*}=D_{n} X_{j}, \alpha_{\lambda}{ }^{*}=D_{n} \alpha_{\lambda}(j=1,2,3 ; \lambda=1,2)$.

Let P_{1}, P_{2} denote non-empty, proper subpolyhedra of S^{n} and let $P_{\lambda} *$ denote an n-dual of $P_{\lambda}(\lambda=1,2)$. In §11 we prove:

Theorem (4.13). With a suitable choice of base points, $p_{\lambda} \varepsilon P_{\lambda}$, $p_{\lambda}{ }^{*} \varepsilon P_{\lambda}{ }^{*}$, there are piecewise linear homeomorphisms h, h^{\prime}, of $P_{1} \vee P_{2}, P_{1} * \vee P_{2}{ }^{*}$ into S^{n}, such that, if $X_{\lambda}=h\left(P_{\lambda}, p_{\mu}\right), X_{\lambda}^{*}=h^{\prime}\left(P_{\lambda}{ }^{*}, p_{\mu}{ }^{*}\right)(\lambda \neq \mu=1,2)$, then the sequences

$$
X_{\lambda} \xrightarrow{{\iota_{\lambda}}_{\lambda}} X_{1} \cup X_{2} \xrightarrow{\rho_{\lambda}} X_{\lambda}, \quad X_{\lambda} * \stackrel{\rho_{\lambda}^{\prime}}{\leftarrow} X_{1} * \cup X_{2}^{*} * X_{\lambda}^{\iota_{\lambda}^{\prime}} *
$$

are n-dual to each other, where ι_{λ}, $\iota_{\lambda}{ }^{\prime}$ are inclusions and $\rho_{\lambda}, \rho_{\lambda}{ }^{\prime}$ are the S-homotopy classes of the retractions in which $X_{\mu} \rightarrow X_{1} \cap X_{2}, X_{\mu}{ }^{*} \rightarrow X_{1} * \cap X_{2}{ }^{*}$.

Let Y be $(k-1)$-connected and let $\operatorname{dim} X=p \leqslant 2 k-2(k \geqslant 1)$. Then $\{X, Y\}$ may be identified with $[X, Y]$ in such a way that $\{f\}=[f]$ for every $\operatorname{map} f: X \rightarrow Y$ (see (7.2) in [11]). Since $S^{n}-X$ is $(n-p-2)$-connected, we may take $D_{n} X$ to be ($n-p-2$)-connected (e.g. $D_{n} X=$ the complementary complex to X in some triangulation of S^{n}). Then we may similarly identify $\left\{D_{n} Y, D_{n} X\right\}$ with $\left[D_{n} Y, D_{n} X\right]$ if $\operatorname{dim} D_{n} Y \leqslant 2(n-p-2)$. Hence it follows from (4.8) that

$$
\begin{equation*}
\theta D_{n}: \pi_{p}(Y) \approx \pi^{n-p-1}\left(D_{n} Y\right) \quad(p \leqslant 2 k-2) \tag{4.14}
\end{equation*}
$$

if $\operatorname{dim} D_{n} Y \leqslant 2(n-p-2)$, as is certainly the case if $n \geqslant 2 p+4$.
5. Functorial presentation. In this section it is shown how the results stated in the last section give rise to a duality in functorial form. Let Σ denote an arbitrary collection of spaces. By the S-category of Σ we mean the category whose objects are the spaces in Σ and whose maps are all the \boldsymbol{S}-maps between them. Let $\mathbf{C}, \mathrm{C}^{\prime}$ denote \boldsymbol{S}-categories. We describe a (contravariant) functor $T: \mathbf{C} \rightarrow \mathrm{C}^{\prime}$ as linear if and only if the map

$$
T:\{X, Y\} \rightarrow\{T Y, T X\}
$$

is a homomorphism for every pair of spaces X, Y in $\mathbf{C} . \quad T$ is called an isomorphism (onto), denoted by $T: \mathbf{G} \approx \mathbf{C}^{\prime}$, if and only if the object function $X \rightarrow T X$ and the mapping function $\alpha \rightarrow T \alpha$ are both $1-1$ correspondences.

Let $\mathbf{X}_{n}, \mathbf{U}_{n}$ denote, respectively, the S-categories of all polyhedra in S^{n} and of their complements in S^{n}.

Theorem (5.1). There is a linear, contravariant isomorphism

$$
C_{n}: \mathbf{X}_{n} \approx \mathbf{U}_{n}
$$

such that, if

$$
\iota: X \subset Y, \iota^{\prime}: S^{n}-Y \subset S^{n}-X
$$

then $C_{n} \iota=\iota^{\prime}$ (whence $C_{n} X=S^{n}-X$) for $X, Y \varepsilon \mathbf{X}_{n}$.
Proof. We define $C_{n} X=\mathbb{S}^{n}-X$. Let $\alpha: X \rightarrow Y$ denote a map in \mathbf{X}_{n} and let $\iota_{W}: D_{n} W \subset S^{n}-W$ where $W=X$ or Y and $D_{n} W$ is an n-dual of W. Then we define

$$
C_{n} \alpha=\iota_{X} D_{n}(\alpha)_{\iota_{Y}}^{1}: S^{n}-Y \rightarrow S^{n}-X
$$

It follows from (4.7) that $C_{n} \propto$ does not depend on the choice of $D_{n} X$, $D_{n} Y$, and the rest of the proof is left to the reader.
6. Weakly dual constructions. This section contains a theorem which enables us to dualize a certain process, of which attaching a cell to a polyhedron or, more generally, a finite $C W$-complex is a special case. We first define a relation of "weak" duality between finite $C W$-complexes, which are not necessarily polyhedra.

Let X denote a finite $C W$-complex. Then X is of the same homotopy type as a polyhedron X_{0} ([15], p. 239). Moreover, we may take $\operatorname{dim} X_{0}=\operatorname{dim} X=p$, say, and $X_{0} \subset S^{2 p+1}$. In the diagrams

$$
\begin{gather*}
X^{*} \stackrel{\alpha^{*}}{\longleftarrow} Y^{*} \tag{6.1}\\
\xi^{*} \uparrow \\
D_{n} X_{0} \stackrel{D_{n} \alpha_{0}}{\longleftarrow} D_{n} Y_{0}
\end{gather*}
$$

let W, W^{*} ($W=X, Y$) denote finite $C W$-complexes, let $W_{n}, D_{n} W_{0}$ denote mutually dual polyhedra in S^{n} and let $\xi, \eta, \xi^{*}, \eta^{*}$ denote S-equivalences. Then we describe W, W^{*} as weakly n-dual to each other. If α is a given S-map we define first α_{0} and then α^{*} so that the diagrams (6.1) are commutative. We shall sometimes write $W^{*}=D_{n} W, \alpha^{*}=D_{n} \alpha$, remembering that the operator D_{n}, when thus defined, depends on $\xi, \eta, \xi^{*}, \eta^{*}$. Since W_{0} may be chosen so that $\operatorname{dim} W_{0}=\operatorname{dim} W=m$, say, we can choose W^{*} (e.g. $W^{*}=D_{n} W_{0}=$ a deformation retract of $S^{n}-W$) so that $\operatorname{dim} W^{*} \leqslant n$ and W^{*} is $(n-m-2)$-connected.

Let $\beta \varepsilon\{Y, Z\}$ where Z is a finite $C W$-complex. Then it follows from (4.2) that

$$
D_{n}(\beta \alpha)=D_{n}(\alpha) D_{n}(\beta)
$$

provided $D_{n} \alpha, D_{n} \beta$ are both defined in terms of the same η, η^{*}.
From (4.3) it follows that $D_{n+1} \alpha=S D_{n} \alpha$ and $D_{n+1} S \alpha=D_{n} \alpha$ if $D_{n+1} \alpha$ and $D_{n+1} S \alpha$ are defined in terms of $\xi, \eta, S \xi^{*}, S \eta^{*}$ and $S \xi, S \eta, \xi^{*}, \eta^{*}$, respectively.

It follows from (4.5) that $D_{n} D_{n} \beta=\beta$ where $\beta \varepsilon\{X, Y\}$ or $\left\{Y^{*}, X^{*}\right\}$ provided $D_{n} \beta$ is defined in terms of $\eta^{*-1}, \xi^{*-1}, \eta^{-1}, \xi^{-1}$ if $\beta \varepsilon\left\{Y^{*}, X^{*}\right\}$.

Thus (4.2), (4.3), (4.5) are valid for weak duality if $\xi, \eta, \xi^{*}, \eta^{*}$ are suitably chosen, which we shall always assume to be the case. We do not assume that (4.1) is necessarily valid for weak duality when $X \subset Y[C f$. (4.13) and (6.2) below]. However, we note that (4.1) is valid if $X=Y$, $X^{*}=Y^{*}, \xi=\eta, \xi^{*}=\eta^{*}$.

Let X, Y denote finite $C W$-complexes and $f: X \rightarrow Y$ a cellular map. Let \hat{X} denote a cone with vertex v_{0} and X as base ($X \subset \hat{X}$). Assuming that \hat{X}, Y are disjoint from each other let Z_{f} denote the $C W$-complex obtained from $\hat{X} \cup Y$ by identifying each $x \varepsilon X$ with $f x \in Y$. The points in Z_{f} will be represented by $y \varepsilon Y$ and (x, t), where $x \varepsilon X, t \varepsilon I,(x, 0)=f x,(x, 1)=v_{0}$. Let $S X=X *\left(v \cup v^{\prime}\right)$, where v, v^{\prime} are ordered as written, and let points in $S X$ be represented by (x, s), where $-1 \leqslant s \leqslant 1,(x,-1)=v,(x, 1)=v^{\prime}$. Define $g: Z_{f} \rightarrow S X$ by $g(x, t)=(x, 2 t-1), g Y=v$.

Let $p=\operatorname{dim} X, \quad q=\operatorname{dim} Y, \quad r=\operatorname{dim} Z_{f}=\max (p+1, q) \quad$ and \quad let $n \geqslant 2 r+1$. Then there are finite $C W$-complexes X^{*}, Y^{*}, which are weakly n-dual to X, Y and are such that X^{*} is $(n-p-2)$-connected and $\operatorname{dim} Y^{*} \leqslant n$. Since $n \geqslant 2 p+3$, whence $n \leqslant 2(n-p-1)-1$, we have $D_{n}\{f\}=\left\{f^{*}\right\}$ for some $\operatorname{map} f^{*}: Y^{*} \rightarrow X^{*}$ ([11], §7), which we assume to be cellular. Let $Z_{f^{*}}$ and $g^{\prime}: Z_{f^{*}} \rightarrow S Y^{*}$ be defined in the same way as Z_{f} and g. Let $i: Y \subset Z_{f}, i^{\prime}: X^{*} \subset Z_{f^{*}}$. Then, writing $Z_{f}=Z, Z_{f^{*}}=Z^{*}$, we have

$$
Y \xrightarrow[\rightarrow]{\rightarrow} \xrightarrow[\rightarrow]{g} S X, \quad S Y^{*} \stackrel{g^{\prime}}{\leftarrow} Z^{*} \stackrel{i^{\prime}}{\leftarrow} X^{*} .
$$

and it follows from (3.3) that $Y, S Y^{*}$, likewise $S X, X^{*}$, are weakly $(n+1)$-dual to each other. In $\S 13$ we prove:

Theorem (6.2). Z^{*} is weakly $(n+1)$-dual to $Z(n \geqslant 2 \operatorname{dim} Z+1)$ in such a way that

$$
\begin{equation*}
D_{n+1}\{i\}=-\left\{g^{\prime}\right\}, \quad D_{n+1}\{g\}=\left\{i^{\prime}\right\} . \tag{6.3}
\end{equation*}
$$

Let $\xi, \eta, \xi^{*}, \eta^{*}$ be the S-equivalences used, as in (6.1), to define $D_{n}\{f\}$. Then in (6.2) it is to be understood that $\xi, \eta, \xi^{*}, \eta^{*}$ are given and that $D_{n+1}\{i\}$ and $D_{n+1}\{g\}$ are defined in terms of $\eta, S \eta^{*}$ and $S \xi$, ξ^{*}, together with a pair of S-equivalences $\zeta: Z \rightarrow Z_{0}, \zeta^{*}: D_{n+1} Z_{0} \rightarrow Z_{0}{ }^{*}$, where Z_{0} is a polyhedron in S^{n+1} [see (13.2) below]. On replacing ζ, ζ^{*} by $-\zeta$, ζ^{*} or $\zeta,-\zeta^{*}$ we have a weak duality between $\{i\},\{g\}$ and $\left\{g^{\prime}\right\},-\left\{i^{\prime}\right\}$. If there is an S-equivalence $\theta: Z \rightarrow Z$ such that $\theta\{i\}=-\{i\},\{g\} \theta=\{g\}$, then $\zeta \theta, \zeta^{*}$ determine a weak duality between $\{i\},\{g\}$ and $\left\{g^{\prime}\right\},\left\{i^{\prime}\right\}$. It follows from (13.1) below that this is the case if $2\{f\}=0$, e.g. if f is constant. Hence one can use (6.2), with a constant $f: X_{1} \rightarrow S X_{2}$, to prove a weak form of (4.13).

Theorem (6.2) can be used to dualize some of the constructions which are fundamental in combinatorial homotopy. Consider, for example, the
process of attaching a $(p+1)$-cell to a finite $C W$-complex Y by a map $f: S^{p} \rightarrow Y\left(f S^{p} \subset Y^{p}\right)$. The dual process consists of attaching \hat{Y}^{*} to S^{n-p-1} by a "dual" map $f^{*}: Y^{*} \rightarrow S^{n-p-1}$. We may assume that $f^{*} Y^{* n-p-2}$ is a single point and the result is then a $C W$-complex, which is weakly $(n+1)$-dual to the one obtained by adjoining the $(p+1)$-cell to Y. Let Y be a finite, $(k-1)$-connected $C W$-complex of at most $2 k-1$ dimensions which has been constructed by attaching cells one at a time. Assume that the isomorphism (4.14), for the appropriate values of n, p, has been calculated at each stage. Then this construction can be dualized to give a weak q-dual of Y for ac sufficiently large value of q.

Examples. Let P^{2} denote the real and M^{4} the complex projective planes and let

$$
P^{k+1}=S^{k-1} P^{2}, M^{k+2}=S^{k-2} M^{4} \quad(k \geqslant 4)
$$

Then P^{k+1} is of the form Z_{f} where X, Y are k-spheres and $f: X \rightarrow Y$ is of degree ± 2. We may take X^{*}, Y^{*} to be ($n-k-1$)-spheres and $f *$ will then be of degree ± 2. Hence, with a suitable choice of $f^{*}, Z_{f^{*}}=P^{n-k}$. Similarly $M^{k+2}=Z_{f}, Z_{f^{*}}=M^{n-k}$, where Y is a k-sphere, X a $(k+1)$-sphere and f is essential. Thus we describe P^{2}, M^{4} as self-dual " up to suspension " and it follows from (4.14) that

$$
\begin{equation*}
\pi_{k+i}\left(P^{k+1}\right) \approx \pi^{r-i}\left(P^{r}\right), \quad \pi_{k+i}\left(M^{k+2}\right) \approx \pi^{r-i}\left(M^{r}\right) \tag{6.4}
\end{equation*}
$$

provided $k \geqslant i+2, r \geqslant 2 i+2$.
As another example, let

$$
Q^{k+2}=S_{1}^{k} \cup S_{2}^{k+1} \cup e^{k+2}, \quad \bar{Q}^{k+2}=S_{0}^{k} \cup e_{0}^{k+1} \cup e_{0}^{k+2}
$$

where the spheres $S_{1}{ }^{k}, S_{2}^{k+1}$ have a single common point, e^{k+2} is a $(k+2)$-cell attached to $S_{1}^{k} \cup S_{2}^{k+1}$ by a map $S^{k+1} \rightarrow S_{1}^{k} \cup S_{2}^{k+1}$ which is essential in $S_{1}{ }^{k}$ and of degree $\pm m$ over S_{2}^{k+1}, and e_{0}^{k+1}, e_{0}^{k+2} are attached to $S_{0}{ }^{k}$ by maps which are, respectively, of degree $\pm m$ and essential. Then \bar{Q}^{n-k} is weakly $(n+1)$-dual to Q^{k+2}. Therefore

$$
\begin{equation*}
\pi_{k+i}\left(Q^{k+2}\right) \approx \pi^{r-i}\left(\bar{Q}^{r}\right) \quad(k \geqslant i+2 ; r \geqslant 2 i+2) \tag{6.5}
\end{equation*}
$$

Weak duals of the other elementary $A_{n}{ }^{2}$-polyhedra ([4]) can be constructed without difficulty. Therefore (6.2), (4.13) provide an effective method of constructing a weak q-dual of a given $A_{n}{ }^{2}$-polyhedron $(q \geqslant 2 n+5)$.
7. Applications. We present some consequences of the results stated in the preceding sections.

Theorem (7.1). The cohomotopy groups $\pi^{i}(X)(\operatorname{dim} X \leqslant 2 i-2)$ of a finite $C W$-complex X are finitely generated.

This follows from Prop. 1 on p. 491 of [9] and (4.14) [or induction on the number of cells in X and the exactness of the cohomotopy sequence of ($X, X-e$) where e is a principal (open) cell of $X]$.

Theorem (7.2). Let G_{1}, G_{2}, \ldots denote a sequence of finitely generated abelian groups of which all but a finite number are zero. Then, for a sufficiently large q, there is a (finite) polyhedron P such that $\pi^{q+i}(P) \approx G_{i}$ for every $i \geqslant 1$.

Proof. Let $G_{i}=0$ if $i>l \geqslant 0$, let $p \geqslant 2 l+1$, and let X denote a p-dimensional polyhedron [16] such that $\pi_{i}(X) \approx G_{p-i}$ for $-\infty<i<p$ $\left[\pi_{i}(X)=0\right.$ if $\left.i<0\right]$. Let $k=p-l \geqslant l+1$. Then X is $(k-1)$-connected and

$$
p-1=k+l-1 \leqslant 2 k-2
$$

Let $X \subset S^{n}$ and let P denote an n-dual of X, where $n \geqslant 2 p+2$. Let $q=n-p-1$. Then $\operatorname{dim} P \leqslant n$, whence $\pi^{j}(P)=0$ if $j>n$, and it follows from (4.14) that

$$
\pi^{q+i}(P) \approx \pi_{p-i}(X) \approx G_{i} \quad(i \geqslant 1)
$$

Let A, B denote finite $C W$-complexes and, for any integer l, let

$$
\{A, B\}_{l}=\left\{S^{l} A, B\right\} \text { or }\left\{A, S^{-l} B\right\}
$$

according as $l>0$ or $l \leqslant 0$. For q sufficiently large let $D_{q} A, D_{q} B$ denote weak q-duals of A, B. Then if $l>0$ it follows from (3.3) that we may take

$$
D_{q+l} S^{l} A=D_{q} A, D_{q+l} B=S^{l} D_{q} B
$$

From this and a similar observation if $l \leqslant 0$ it follows that

$$
D_{q+|l|}:\{A, B\}_{l} \approx\left\{D_{q} B, D_{q} A\right\}_{l}
$$

Let $f: X \rightarrow Y, Z=Z_{f}$ and $g: Z \rightarrow S X$ be as in (6.2) and let $i: Y \subset Z$. Let Q denote any finite $C W$-complex. Then we have sequences

$$
\begin{align*}
& \ldots \rightarrow\{Q, X\}_{l} \xrightarrow{f_{\#}}\{Q, Y\}_{l} \xrightarrow{i_{\#}}\{Q, Z\}_{l} \xrightarrow{g_{\#}}\{Q, X\}_{l-1} \rightarrow \ldots, \tag{7.3}\\
& \ldots \rightarrow\{Y, Q\}_{l} \xrightarrow{f \#}\{X, Q\}_{l} \xrightarrow{g_{\#}^{\#}}\{Z, Q\}_{l-1} \xrightarrow{i \#}\{Y, Q\}_{l-1} \rightarrow \ldots, \tag{7.4}
\end{align*}
$$

where $f_{\#}, f^{\#}, i_{\#}$, etc. are the homomorphisms induced by f, i, g and their suspensions, composed with $S^{-1}:\{Q, S X\}_{l} \approx\{Q, X\}_{l-1}$ if $l>0$ in the case of $g_{\#}$ and with $S:\{X, Q\}_{l} \approx\{S X, Q\}_{l-1}$ if $l \leqslant 0$ in the case of $g^{\#}$.

For n sufficiently large let Q^{*} denote a weak n-dual of Q and let (7.3)*, $(7.4)^{*}$ denote the sequences analogous to (7.3), (7.4) with f, Z, Q replaced by f^{*}, Z^{*}, Q^{*}, where f^{*}, Z^{*} mean the same as in §6. Then it follows from (6.2) and (4.3) that the diagram
where each D_{q} is a weak duality isomorphism, is commutative up to sign. The same applies when $l \leqslant 0$ except that the two left-hand isomorphisms are replaced by D_{n-l} and the two on the right by D_{n-l-1}. We express this result as:

Theorem (7.5). The sequences (7.3), (7.4)*, likewise (7.3)*, (7.4), are weakly dual to each other up to sign.

The sequence (7.4) is isomorphic to the direct limit under suspension of exact sequences of a kind introduced in [3]. Therefore (7.4), and hence also (7.3)*, likewise (7.4)* and (7.3), are exact. In particular, if $Q=S^{0}$, then (7.3), (7.4) are, respectively, isomorphic to the S-homotopy and the S-cohomotopy sequence of the pair (Z, Y). $\left[N . B .: \Sigma^{m}(X) \approx \Sigma^{m+1}(S X) \approx \Sigma^{m+1}(Z, Y)\right.$.]
8. Polyhedral mapping cylinders. Let X, Y denote polyhedra and $f: X \rightarrow Y$ a map such that $f x=x$ if $x \varepsilon X \cap Y$. By a polyhedral mapping cylinder for f we mean a polyhedron P, containing $X \cup Y$, of which Y is a deformation retract such that $r i \simeq f$, rel. $X \cap Y$, where $i: X \subset P$ and $r: P \rightarrow Y$ is a retraction. If P is a polyhedral mapping cylinder for f, so obviously is $S P$ for $S f$. If $X \cap Y=\varnothing$, then P may be described as a polyhedral mapping cylinder for $[f]$. Let $r=\max (\operatorname{dim} X+1, \operatorname{dim} Y)$.

Lemma (8.1). There is a polyhedral mapping cylinder P, for f, such that $\operatorname{dim} P \leqslant r$.

Proof. Assume $X \cup Y$ to be triangulated as a simplicial complex with subcomplexes K, L covering X, Y. Then there is a subdivision K_{1} of K, in which no simplex of $K \cap L$ is subdivided, and a homotopy $f \simeq f_{1}$, rel. $K \cap L$, such that f_{1} is simplicial with respect to K_{1} and L ([13], p. 289). Let the vertices of K_{1} be ordered and let $K_{1} \cup L$ be imbedded as a subcomplex of a simplex σ^{N}. For every simplex σ of K_{1} with vertices a_{0}, \ldots, a_{p}, ordered as written, let

$$
P_{\sigma}=\cup_{\lambda=0}^{p} a_{0} \ldots a_{\lambda} f_{1}\left(a_{\lambda}\right) \ldots f_{1}\left(a_{p}\right)
$$

(if v_{0}, \ldots, v_{q} are vertices of σ^{N}, then $v_{0} \ldots v_{q}$ denotes the smallest simplex of σ^{N} which contains them, even if they are not distinct). Let

$$
P=L \cup \underset{\sigma \varepsilon K_{1}}{\cup} P_{\sigma}
$$

Clearly $K_{1} \cup L \subset P$. Let $i: K_{1} \subset P$. Then a simplicial retraction $r: P \rightarrow L$ such that $r i=f_{1}$, is defined by $r a=f_{1} a$ for every vertex a of K_{1}. Also $\operatorname{dim} P \leqslant r$.

It remains to prove that L is a deformation retract of P. Let x_{0}, \ldots, x_{q} denote the vertices of $K_{1}-K_{1} \cap L$, correctly ordered, and let $P(\lambda)$ denote the union of all the simplexes of P which do not contain any of
$x_{\lambda+1}, \ldots, x_{q}$. Then

$$
L=P(-1) \subset \ldots \subset P(\lambda-1) \subset P(\lambda) \subset \ldots \subset P(q)=P
$$

If a is a vertex of $K_{1} \cap P(\lambda)$ which comes after x_{λ}, then $a \varepsilon K_{1} \cap L$ whence $f_{1} a=a$. It follows that for $\lambda \geqslant 0$ every simplex of $P(\lambda)$ which contains x_{λ} is of the form

$$
a_{0} \ldots x_{\lambda} f_{1}\left(y_{1}\right) \ldots f_{1}\left(y_{k}\right)
$$

where $a_{0} \ldots x_{\lambda} y_{1} \ldots y_{k}$ is a simplex of K_{1}. This is a face of

$$
a_{0} \ldots x_{\lambda} f_{1}\left(x_{\lambda}\right) f_{1}\left(y_{1}\right) \ldots f_{1}\left(y_{k}\right)
$$

Therefore the link of x_{λ} in $P(\lambda)$ is the join of $f_{1}\left(x_{\lambda}\right)$ and the link of $x_{\lambda} f_{1}\left(x_{\lambda}\right)$. Hence it follows that there is a homotopy $g_{t}: P(\lambda) \rightarrow P(\lambda-1)$, rel. $P(\lambda-1)$, such that $g_{0}=1, g_{1} P(\lambda)=P(\lambda-1)$ and $g_{t}\left(x_{\lambda} * \sigma\right)=x(t) * \sigma$ for every simplex σ in the link of x_{λ}, where $x(t)$ is the point which divides $x_{\lambda} f_{1}\left(x_{\lambda}\right)$ in the ratio $t: 1-t$. Therefore $P(\lambda-1)$ is a deformation retract of $P(\lambda)$. Hence it follows from a downward induction on λ that L is a deformation retract of P and the proof is complete.

Notice that, if $X, Y \subset S^{q}$, where $q \geqslant 2 r+1$, then we may assume that $P \subset S^{q}$.
9. Proof of (4.1), ..., (4.5). We prove the existence of a map $D_{n}:\{X, Y\} \rightarrow\left\{D_{n} Y, D_{n} X\right\}$ having properties (4.1) through (4.5) by stages. First a certain map $\Delta_{n}:[X, Y] \rightarrow\left\{D_{n} Y, D_{n} X\right\}$ is defined and this is used to define D_{n}. The map Δ_{n} is, in turn, defined first for the case $X \cap Y=\varnothing$ and then extended to the general case.
A. Definition of $\Delta_{n}:[X, Y] \rightarrow\left\{D_{n} Y, D_{n} X\right\}$ when $X \cap Y=\varnothing$.

Let X, Y denote polyhedra in S^{n} with $X \cap Y=\varnothing$. Let $D_{n} X, D_{n} Y$ denote arbitrary, but fixed, n-duals of X, Y and let $f: X \rightarrow Y$ be given. Let $P \subset S^{q}(q \geqslant n)$ be a polyhedral mapping cylinder for $[f]$. It follows from (2.2) that there are q-duals X^{*}, P^{*}, Y^{*} of X, P, Y such that

$$
\begin{equation*}
P^{*} \subset X^{*} \cap Y^{*}, D_{q} W=S^{q-n} D_{n} W \subset W^{*} \quad(W=X, Y) \tag{9.1}
\end{equation*}
$$

Then $D_{q} X$ is an S-deformation retract of X^{*} and, by (3.1), so is P^{*} of Y^{*}. Therefore we have

$$
\begin{equation*}
D_{q} X \stackrel{\rho}{\leftarrow} X^{*} \stackrel{\iota^{*}}{\leftarrow}-P^{*} \stackrel{\rho^{*}}{\leftarrow} Y^{*} \stackrel{\llcorner }{\leftarrow} D_{q} Y, \tag{9.2}
\end{equation*}
$$

where ι, ι^{*} are S-inclusions and ρ, ρ^{*} are S-retractions by deformation. We define

$$
\begin{equation*}
\left|X^{*}, P^{*}, Y^{*}\right|=S^{n-q}\left(\rho \rho^{*} \rho^{*} \iota\right) \varepsilon\left\{D_{n} Y, D_{n} X\right\} \tag{9.3}
\end{equation*}
$$

where $S^{q-n}:\left\{D_{n} Y, D_{n} X\right\} \approx\left\{D_{q} Y, D_{q} X\right\}$ and $S^{n-q}=\left(S^{q-n}\right)^{-1}$. Notice that, if $D_{q} Y \subset P^{*}$, then $\rho^{*-1} \iota^{\prime}=\iota$, where $\iota^{\prime}: D_{q} Y \subset P^{*} \quad(N . B .:$
$\left.\rho^{*-1}: P^{*} \subset Y^{*}\right)$. Therefore

$$
\iota^{*} \rho^{*} \iota=\iota^{*} \iota^{\prime}: D_{q} Y \subset X^{*} .
$$

Similarly if $D_{q} Y \subset P^{*} \cap D_{q} X$, then

$$
\begin{equation*}
\rho \iota^{*} \rho^{*} \iota: D_{q} Y \subset D_{q} X \tag{9.4}
\end{equation*}
$$

Our immediate objective is to show that $\left|X^{*}, P^{*}, Y^{*}\right|$ depends only on $[f]$ and not on the choices involved in its definition.

Let $P_{1} \subset S^{q}$ denote a polyhedral mapping cylinder for [f] and let $X^{\#}, P_{1}{ }^{\#}, Y^{\#}$ denote q-duals of X, P_{1}, Y which satisfy (9.1). Assume that $X^{\#} \subset X^{*}, P_{1}{ }^{\#} \subset P^{*}, Y^{\#} \subset Y^{*}$ and consider the diagram

in which the top line is the analogue of (9.2) and $\iota_{1}, \iota_{2}, \iota_{3}$ are inclusion S-maps. We have $\iota_{1} \rho^{\#-1}=\rho^{*-1} \iota_{2}$, whence $\rho^{*} \iota_{1}=\iota_{2} \rho^{\#}$. Similarly $\rho^{\prime}=\rho \iota_{3}$ and so the diagram is commutative. Therefore $\rho \iota^{*} \rho^{*} \iota=\rho^{\prime} \iota^{\#} \rho^{\#} \iota^{\prime}$ and, in this case,

$$
\begin{equation*}
\left|X^{*}, P^{*}, Y^{*}\right|=\left|X^{\#}, P_{1}^{\#}, Y^{\#}\right| . \tag{9.6}
\end{equation*}
$$

(a) Independence of the choice of X^{*}, P^{*}, Y^{*}.

Suppose $X^{\#}, P^{\#}, Y^{\#}$ also satisfy (9.1) relative to P. It follows from (2.2) that there are q-duals $X^{* *}, P^{* *}, Y^{* *}$ such that $P^{* *} \subset X^{* *} \cap Y^{* *}$ and $Z^{* *} \supset Z^{*} \cup Z^{\#}$ for $Z=X, P, Y$. Therefore, from (9.6) with $P_{1}=P$,

$$
\left|X^{*}, P^{*}, Y^{*}\right|=\left|X^{* *}, P^{* *}, Y^{* *}\right|=\left|X^{\#}, P^{\#}, Y^{\#}\right|
$$

and we write $\left|X^{*}, P^{*}, Y^{*}\right|=\Delta_{n}(P, q)$.
(b) Independence of the choice of q.

Let $r>q$ and let $\Delta_{n}(P, r)$ be defined by (9.3) when (9.2) is replaced by its $(r-q)$-fold suspension. Then, obviously,

$$
\Delta_{n}(P, r)=\Delta_{n}(P, q)=\Delta_{n}(P), \text { say }
$$

(c) Independence of the choice of P.

Let $P_{1} \subset S^{p}$ denote another polyhedral mapping cylinder for $[f]$. By (b) above we may take $p=q$ and if $P \subset P_{1}$ it follows from (2.2) that there are q-duals $X^{*}, P^{*}, P_{1}^{\#}, Y^{*}$ as in (9.5) with $X^{\#}=X^{*}, Y^{\#}=Y^{*}$. Therefore $\Delta_{n}(P)=\Delta_{n}\left(P_{1}\right)$ in this case.

If P, P_{1} are arbitrary let $P_{2} \subset S^{r}(r \geqslant q)$ denote a polyhedral mapping cylinder for $[f](C f . \S 2)$ such that $P_{2} \cap P_{k}=X \cup Y$, where $k=0,1$ and
$P_{0}=P$. Let $i_{\lambda}: X \subset P_{\lambda}, j_{\lambda}: Y \subset P_{\lambda}$ and let $r_{\lambda}: P_{\lambda} \rightarrow Y$ denote a retraction $(\lambda=0,1,2)$. Then $j_{\lambda} r_{\lambda} \simeq 1: P_{\lambda} \subset P_{\lambda}$ and

$$
j_{2} r_{k} i_{k} \simeq j_{2} f \simeq j_{2} r_{2} i_{2} \simeq i_{2} \quad(k=0,1)
$$

Therefore it follows from the homotopy extension theorem that $j_{2} r_{k} \simeq g_{k}: P_{k} \rightarrow P_{2}$ where g_{k} maps $X \cup Y$ identically. Let Q_{k} denote a polyhedral mapping cylinder for g_{k} [which exists by (8.1)]. Since Q_{k} retracts onto P_{2} which retracts onto Y with $r_{2} i_{2} \simeq f$, it follows that Q_{k} is also a polyhedral mapping cylinder for [f]. Hence it follows from the preceding paragraph that $\Delta_{n}\left(P_{k}\right)=\Delta_{n}\left(Q_{k}\right)=\Delta_{n}\left(P_{2}\right)$. Therefore

$$
\Delta_{n}\left(P_{0}\right)=\Delta_{n}\left(P_{1}\right)
$$

and $\Delta_{n}(P)$ depends only on $[f]$.
(d) Properties of the map $\Delta_{n}:[X, Y] \rightarrow\left\{D_{n} Y, D_{n} X\right\}$.

We write $\Delta_{n}(P)=\Delta_{n}[f]$, thus defining a map

$$
\begin{equation*}
\Delta_{n}:[X, Y] \rightarrow\left\{D_{n} Y, D_{n} X\right\} \tag{9.7}
\end{equation*}
$$

If $m \geqslant 0$ we have $X, Y \subset S^{n} \subset S^{n+m}$ and it follows from (9.3), with $q \geqslant n+m$, that

$$
\begin{equation*}
\Delta_{n+m}=S^{m} \Delta_{n}:[X, Y] \rightarrow\left\{S^{m} D_{n} Y, S^{m} D_{n} X\right\} \tag{9.8}
\end{equation*}
$$

Let $g: Y \rightarrow Z$ where Z is a polyhedron in $S^{n}-(X \cup Y)$. For q sufficiently large let $P \cap Z=\varnothing$ and let $Q \subset S^{q}$ be a polyhedral mapping cylinder for [g] such that $Q \cap P=Y$. Evidently $P \cup Q$ is a polyhedral mapping cylinder for [gf]. Let X^{*}, P^{*}, Y^{*}, etc. be as in (2.2) and (9.1) and consider the diagram

where $\iota_{\lambda}, \rho_{\lambda}^{-1}$ are inclusions. Arguments similar to those used above show that the diagram is commutative. Therefore

$$
\begin{aligned}
S^{q-n} \Delta_{n}[g f] & =\rho_{0} \iota_{1} \rho_{1} \iota_{0}=\rho_{0} \iota_{2} \rho_{2} \iota \iota^{-1} \iota_{3} \rho_{3} \iota_{0} \quad\left(\iota: D_{q} Y \subset Y^{*}\right) \\
& =S^{q-n} \Delta_{n}[f] S^{q-n} \Delta_{n}[g]
\end{aligned}
$$

whence

$$
\begin{equation*}
\Delta_{n}[g f]=\Delta_{n}[f] \Delta_{n}[g] . \tag{9.9}
\end{equation*}
$$

B. Definition of Δ_{n} in general.

Let $f: X \rightarrow Y$, where X, Y denote polyhedra in S^{n}, with $X \cap Y$ arbitrary, and let $D_{n} X, D_{n} Y$ denote fixed n-duals of X, Y. For a sufficiently large $q \geqslant n$ let $X_{1} \subset S^{q}-(X \cup Y)$ denote a (polyhedral) copy of X. Let
$h_{1}: X \rightarrow X_{1}$ denote a homeomorphism (onto) and define

$$
\begin{equation*}
\Delta_{n}\left([f], h_{1}\right)=S^{n-q}\left(\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[f h_{1}^{-1}\right]\right) \varepsilon\left\{D_{n} Y, D_{n} X\right\} \tag{9.10}
\end{equation*}
$$

where Δ_{q} refers to $D_{q} W=S^{q-n} D_{n} W$ for $W=X, Y$. It follows from (9.8) that $\Delta_{n}\left([f], h_{1}\right)$ does not depend on q. We shall now show that it does not depend on the choice of h_{1}.
(e) Independence of the choice of h_{1}.

Let $X_{2} \subset S^{q}-(X \cup Y)$ also denote a copy of X and let $h_{2}: X \rightarrow X_{2}$ denote a homeomorphism. First assume that $X_{1} \cap X_{2}=\varnothing$. Then it follows from (9.9) that

$$
\begin{aligned}
\Delta_{q}\left[h_{2}\right] \Delta_{q}\left[f h_{2}^{-1}\right] & =\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[h_{2} h_{1}^{-1}\right] \Delta_{q}\left[f h_{2}^{-1}\right] \\
& =\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[f h_{1}^{-1}\right]
\end{aligned}
$$

whence $\Delta_{n}\left([f], h_{1}\right)=\Delta_{n}\left([f], h_{2}\right)$ in this special case.
For the case where $X_{1} \cap X_{2}$ is arbitrary let $X_{3} \subset S^{q}$ denote a copy of X disjoint from $X_{1} \cup X_{2}$ as well as $X \cup Y$ and let $h_{3}: X \rightarrow X_{3}$ denote a homeomorphism. Then by the above

$$
\Delta_{n}\left([f], h_{1}\right)=\Delta_{n}\left([f], h_{3}\right)=\Delta_{n}\left([f], h_{2}\right)
$$

so we may define $\Delta_{n}[f]=\Delta_{n}\left([f], h_{1}\right)$. It follows from (9.10) and (9.9) that $\Delta_{n}[f]$ is the same as in A if $X \cap Y=\varnothing$. Hence we have defined (9.7) for every pair of polyhedra $X, Y \subset S^{n}$.

(f) Properties of Δ_{n}.

It follows from (9.8) and (9.10) that (9.8) is satisfied even if $X \cap Y \neq \varnothing$. Let $f: X \rightarrow Y, g: Y \rightarrow Z$, where X, Y, Z denote polyhedra in S^{n}. Let $h_{1}: X \rightarrow X_{1}, k_{1}: Y \rightarrow Y_{1}$ denote homeomorphisms where $X_{1}, Y_{1} \subset S^{q}$ are polyhedra, disjoint from each other and from X, Y, Z. Then it follows from (9.9) for the pairs of maps

$$
X_{1} \xrightarrow{k_{1} f_{n}^{-1}} Y_{1} \xrightarrow{g k_{1}^{-1}} Z, \quad X_{1} \xrightarrow{{f h_{1}^{-1}}^{l}} Y \xrightarrow{k_{1}} Y_{1}
$$

that

$$
\begin{aligned}
\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[q f h_{1}^{-1}\right] & =\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[g k_{1}^{-1} k_{1} f h_{1}^{-1}\right] \\
& =\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[k_{1} f h_{1}^{-1}\right] \Delta_{q}\left[g k_{1}^{-1}\right] \\
& =\Delta_{q}\left[h_{1}\right] \Delta_{q}\left[f h_{1}^{-1}\right] \Delta_{q}\left[k_{1}\right] \Delta_{q}\left[g k_{1}^{-1}\right]
\end{aligned}
$$

so (9.9) holds in general.
Let $i: X \subset Y$ and let $\iota^{\prime}: D_{n} Y \subset D_{n} X$. Let $X \times I=P_{1}$ be piecewise linearly imbedded in $S^{q}-\left(D_{q} X \cup D_{q} Y\right)$ (e.g. as part of the cone $X * v_{q}^{\prime}, q>n$) so that $(x, 0)=x$ for every $x \varepsilon X$ and $P_{1} \cap Y=X$. Let $X_{1}=X \times 1$ and let $h_{1}: X \rightarrow X_{1}$ be defined by $h_{1} x=(x, 1)$. Let $P=P_{1} \cup Y$. Then P_{1}, P are mapping cylinders for $h_{1}, i h_{1}^{-1}$. Since $D_{q} X \subset S^{q}-P_{1}$ and X, X_{1} are deformation retracts of P_{1}, we may take $D_{q} X_{1}=D_{q} P_{1}=D_{q} X$.

Also $D_{q} Y \subset S^{q}-P$ and in (9.2), with X replaced by X_{1}, we may assume $D_{q} Y \subset P^{*}$. Since $D_{q} Y \subset D_{q} X$ and $D_{q} X=D_{q} P_{1}=D_{q} X_{1}$, it follows from (9.4) that

$$
\Delta_{q}\left[i h_{1}^{-1}\right]: D_{q} Y \subset D_{q} X, \quad \Delta_{q}\left[h_{1}\right]: D_{q} X \subset D_{q} X
$$

Therefore $\Delta_{q}[i]=S^{q-n} \iota^{\prime}: D_{q} Y \subset D_{q} X$, and it follows from (9.8) that

$$
\begin{equation*}
\Delta_{n}[i]=\iota^{\prime}: D_{n} Y \subset D_{n} X \tag{9.11}
\end{equation*}
$$

In particular, if $i: X \subset X$, then $\Delta_{n}[i]: D_{n} X \subset D_{n} X$. Hence, using (9.9) and (9.11), it follows that, if X is a deformation retract of Y and $r: Y \rightarrow X$ is a retraction, then

$$
\begin{equation*}
\Delta_{n}[r]=\iota^{\prime-1}: D_{n} X \rightarrow D_{n} Y \tag{9.12}
\end{equation*}
$$

Lemma (9.13). Let X, Y denote polyhedra in S^{n} and let $f: X \rightarrow Y$. If q is sufficiently large, then f is homotopic to a product of inclusion maps and retractions by deformation between polyhedra in S^{q}.

Proof: We have $f=\left(f h_{1}^{-1}\right) h_{1}$, where h_{1} means the same as in (9.10), and (9.13) follows from (8.1), applied successively to h_{1} and $f h_{1}^{-1}$.

Lemma (9.14). If $f: X \rightarrow Y$, where X, Y are polyhedra in S^{n}, and if $D_{n+1} S W=D_{n} W$ for $W=X, Y$, then $\Delta_{n+1}[S f]=\Delta_{n}[f]$.

Proof: Let $r>n$ and let S_{r} denote the suspension operator defined by taking joins with S_{r}^{0}, applied to polyhedra in S^{r-1} and maps and S-maps between such polyhedra. Thus $S_{r} W=W * S_{r}^{0}$ and $S_{r} f=f * e_{r}$ where $e_{r}: S_{r}{ }^{0} \subset S_{r}{ }^{0}$. If q is sufficiently large it follows from (9.13) that f is homotopic to a product of inclusion maps and retractions by deformation in S^{q}. If $i: X_{1} \subset X_{2}$, then $S_{q+1} i: S_{q+1} X_{1} \subset S_{q+1} X_{2}$ and if $r: X_{3} \rightarrow X_{4}$ is a retraction by deformation, so is $S_{q+1} r\left(X_{\lambda} \subset S^{q}\right)$. Therefore it follows from (9.11), (9.12), and (9.9) that

$$
\begin{equation*}
\Delta_{q+1}\left[\mathcal{S}_{q+1} f\right]=\Delta_{q}[f] \tag{9.15}
\end{equation*}
$$

Let h denote the linear map of R^{∞} onto itself which is defined by $h v_{n+1}^{\prime}=v_{q+1}, h v_{q+1}^{\prime}=v_{n+1}^{\prime}, h v_{j}^{\prime}=v_{j}^{\prime}$ if $j \neq n+1, q+1$. For every $A \subset S^{q+1}$ let $h_{A}: A \rightarrow h A$ denote the homeomorphism determined by h. Then an isomorphism

$$
h_{*}:\{A, B\} \approx\{h A, h B\} \quad\left(A, B \subset \dot{S}^{q+1}\right)
$$

is defined by $h_{*} \alpha=\left\{h_{B}\right\} \propto\left\{h_{A}\right\}^{-1}$. If $g: A \rightarrow B$, let

$$
g^{h}=h_{B} g h_{A}^{-1}: h A \rightarrow h B
$$

It is easily verified that $\Delta_{q+1}\left[g^{h}\right]=h_{*} \Delta_{q+1}[g]$; also that $S_{n+1} W=h S_{q+1} W$, $S_{n+1} f=\left(S_{q+1} f\right)^{h}$ and, if

$$
S^{q+n} \beta=S_{q} \ldots S_{n+1} \beta, \quad S_{1}^{q-n} \beta=S_{q+1} \ldots S_{n+2} \beta
$$

where $\beta \varepsilon\left\{D_{n} Y, D_{n} X\right\}$, that ${ }^{5} h_{*} S^{q-n} \beta=S_{1}^{q-n} h_{*} \beta=S_{1}^{q-n} \beta$. Hence it follows from (9.8) and (9.15) that

$$
\begin{aligned}
S_{1}^{q-n}\left(\Delta_{n+1}\left[S_{n+1} f\right]\right) & =\Delta_{q+1}\left[S_{n+1} f\right]=\Delta_{q+1}\left[\left(S_{q+1} f\right)^{n}\right] \\
& =h_{*} \Delta_{q+1}\left[S_{q+1} f\right]=h_{*} \Delta_{q}[f] \\
& =h_{*} S^{q-n} \Delta_{n}[f]=S_{1}^{q-n} \Delta_{n}[f]
\end{aligned}
$$

whence $\Delta_{n+1}\left[S_{n+1} f\right]=\Delta_{n}[f]$.
C. Definition and properties of $D_{n}:\{X, Y\} \rightarrow\left\{D_{n} Y, D_{n} X\right\}$.

Let $g: S^{m} X \rightarrow S^{m} Y$ denote a map representing a given $\alpha \varepsilon\{X, Y\}$. It follows from (9.14) that an element $\alpha^{*} \varepsilon\left\{D_{n} Y, D_{n} X\right\}$, depending only on α, is defined by $\alpha^{*}=\Delta_{m+n}[g]$ with $D_{m+n} S^{m} W=D_{n} W$ for $W=X, Y$. We define $D_{n}:\{X, Y\} \rightarrow\left\{D_{n} Y, D_{n} X\right\}$ by $D_{n} \alpha=\alpha^{*}$. Then (4.1), (4.2), (4.3) follow from (9.11), (9.9), (9.8) and the definition of $D_{n} \alpha$. (4.4) is an immediate consequence of (9.13) and the other properties of D_{n}.

To prove (4.5) note that if $\alpha \varepsilon\{X, Y\}$ or $\left\{D_{n} Y, D_{n} X\right\}$ it follows from (4.3) that, for $q \geqslant n, D_{q} D_{q} \alpha=D_{q} S^{q-n} D_{n} \alpha=D_{n} D_{n} \alpha$. If X_{1}, Y_{1}, Z_{1} are polyhedra in S^{q} and if $\alpha_{1} \varepsilon\left\{X_{1}, Y_{1}\right\}, \beta_{1} \varepsilon\left\{Y_{1}, Z_{1}\right\}$ and $D_{q} \alpha_{1}, D_{q} \beta_{1}$ refer to the same $D_{q} Y_{1}$, then

$$
D_{q} D_{q}\left(\beta_{1} \alpha_{1}\right)=D_{q}\left(D_{q} \alpha_{1} D_{q} \beta_{1}\right)=D_{q} D_{q} \beta_{1} D_{q} D_{q} \alpha_{1}
$$

Hence (4.5) follows from (9.13), (4.1) and the fact that $D_{q} i^{-1}=i^{-1}$ if $\iota: X_{1} \subset Y_{1}$ is an S-equivalence and $\iota^{\prime}: D_{q} Y_{1} \subset D_{q} X_{1}$.
10. Proof of (4.10). We observe that if $q \geqslant n$ and

$$
D_{q} W=S^{q-n} D_{n} W \quad(W=X, Y)
$$

then $D_{q} \alpha=S^{q-n} D_{n} \alpha$, by (4.3), and the diagram

is commutative. Moreover ([5]), $\sum^{q-n} \mathfrak{D}_{n} u=\mathfrak{D}_{q} u$ for $u \varepsilon H_{q}(W)$. It follows that the integer n in (4.9) may be replaced by an arbitrary $q>n$. By (9.13) we see that it suffices to prove (4.10) in the case $\alpha: X \subset Y$. If (4.10) is true for one pair of n-duals $D_{n} X, D_{n} Y$, it is obviously true for any other. Therefore (4.10) follows from the commutativity of (2.1).

[^4]11. Proof of (4.13). Let P, P^{\prime} denote disjoint polyhedra in S^{q} and A_{1}, \ldots, A_{m} polyhedra whose union is S^{q}. For every non-empty subset, τ, of $(1, \ldots, m)$ let $A_{\tau}=\bigcap_{i \varepsilon_{\tau}} A_{i}$.

Lemma (11.1). If $P^{\prime} \cap A_{\tau}$ is an S-deformation retract of $A_{\tau}-P$ for each τ, then P^{\prime} is q-dual to P.

Proof. The lemma is trivial if $m=1$. If $m>1$ let $B=A_{1} \cup A_{2}$ and let C be either S^{q} or, if $m>2, A_{\tau}$, where τ denotes a non-empty subset of $(3, \ldots, m)$. Then we have triads ($P^{\prime} \cap B \cap C ; P^{\prime} \cap A_{1} \cap C, P^{\prime} \cap A_{2} \cap C$) and $\left((B \cap C)-P ; \quad\left(A_{1} \cap C\right)-P,\left(A_{2} \cap C\right)-P\right)$ each of which can be triangulated to form a $C W$-complex and a pair of subcomplexes. Therefore, it follows from the hypothesis of (11.1) and the 5 -lemma ([6], page 16), applied to the Mayer-Vietoris sequences ${ }^{6}$ ([6], page 39) of these triads, that

$$
i_{\#}: H_{k}\left(P^{\prime} \cap B \cap C\right) \approx H_{k}((B \cap C)-P) \quad(k=0,1, \ldots)
$$

where $i_{\#}$ is the injection. Therefore $P^{\prime} \cap B \cap C$ is an S-deformation retract of $(B \cap C)-P$ and A_{1}, \ldots, A_{m} may be replaced by B, A_{3}, \ldots, A_{m}. The lemma now follows by induction on m.

By a polyhedral n-element (in R^{∞}) we mean a piecewise linear homeomorph of I^{n}. Let K_{n} be the standard triangulation of S^{n} defined in §2, let $\sigma_{0}{ }^{n}$ be a simplex of K_{n} and let σ^{n} be a rectilinear simplex in $\sigma_{0}{ }^{n}-\dot{\sigma}_{0}{ }^{n}$.

Lemma (11.2). $S^{n}-\left(\sigma^{n}-\dot{\sigma}^{n}\right)$ is a polyhedral n-element ${ }^{7}$.
Proof. Let $E_{0}{ }^{n}=S^{n}-\left(\sigma_{0}{ }^{n}-\dot{\sigma}_{0}{ }^{n}\right), P^{n}=\sigma_{0}{ }^{n}-\left(\sigma^{n}-\dot{\sigma}^{n}\right)$ and let

$$
x=(0,0, \ldots) \varepsilon R^{\infty} .
$$

On projecting from an inner point of σ^{n} it follows from Theorem 5 in [12] that $E_{0}{ }^{n}, P^{n}$ are piecewise linearly homeomorphic to $x * \dot{\sigma}_{0}{ }^{n}, \dot{E}_{0}{ }^{n} \times I$ respectively. (N.B.: $\dot{\sigma}_{0}{ }^{n}=\dot{E}_{0}{ }^{n}$.) Therefore $E_{0}{ }^{n}$, likewise $E_{0}{ }^{n} \cup P{ }^{n}$, are polyhedral n-elements. But $E_{0}{ }^{n} \cup P^{n}=S^{n}-\left(\sigma^{n}-\dot{\sigma}^{n}\right)$ and (11.2) is proved.

As obvious, and well-known, corollaries of (11.2) we have:
Corollary (11.3). Let $E_{1}{ }^{n}, E_{2}{ }^{n} \subset S^{n}$ be polyhedral n-elements such that $E_{1}{ }^{n} \cup E_{2}{ }^{n}=S^{n}$ and $E_{1}{ }^{n} \cap E_{2}{ }^{n}=\dot{E}_{1}{ }^{n}=\dot{E}_{2}{ }^{n}$. Then there is a piecewise linear homeomorphism $h: S^{n} \rightarrow S^{n}$ such that $h_{\sigma^{n}}=E_{1}{ }^{n}$.

[^5]Corollary (11.4). Let a, b and a^{\prime}, b^{\prime} be pairs of distinct points in S^{n-1}. Then there is a piecewise linear homeomorphism $h: S^{n-1} \rightarrow S^{n-1}$ such that $h a=a^{\prime}, h b=b^{\prime}$.

We now prove (4.13). It is trivial if $n=0$ so we assume that $n \geqslant 1$. Let $E_{1}{ }^{n}=S^{n-1} * v_{n}, E_{2}^{n}=S^{n-1} * v_{n}^{\prime}$ and let a, a^{*} be distinct points in S^{n-1}. We proceed to prove that there is a piecewise linear homeomorphism $f_{\lambda}: S^{n} \rightarrow S^{n}(\lambda=1,2)$ such that

$$
\begin{equation*}
f_{\lambda}\left(P_{\lambda} \cup P_{\lambda}^{*}\right) \subset E_{\lambda}^{n}, S^{n-1} \cap f_{\lambda} P_{\lambda}=a, S^{n-1} \cap f_{\lambda} P_{\lambda}^{*}=a^{*} \tag{11.5}
\end{equation*}
$$

Since $P_{\lambda} \cup P_{\lambda}{ }^{*}$ is a closed, proper subset of S^{n} there is a simplex σ^{n}, which is interior to some simplex of K_{n} and does not meet $P_{\lambda} \cup P_{\lambda}{ }^{*}$. Let $E^{n}=S^{n}-\left(\sigma^{n}-\dot{\sigma}^{n}\right)$. Then it follows from (11.2), (11.3) that there is a piecewise linear homeomorphism $S^{n} \rightarrow S^{n}$ which interchanges E^{n} and σ^{n}. So we assume from the outset that $P_{\lambda} \cup P_{\lambda}{ }^{*} \subset \sigma^{n}-\dot{\sigma}^{n}$. Let $R_{0}{ }^{n} \subset R^{\infty}$ be the linear n-space which contains σ^{n} and let δ be the Euclidean distance function which $R_{0}{ }^{n}$ derives from Hilbert space. Let $p_{\lambda} \varepsilon P_{\lambda}, p_{\lambda}{ }^{*} \varepsilon P_{\lambda}{ }^{*}$ be points such that $\delta\left(p_{\lambda}, p_{\lambda}{ }^{*}\right)=\delta\left(P_{\lambda}, P_{\lambda} *\right)$ and let V^{n} be the interior and boundary of the metric n-sphere in $R_{0}{ }^{n}$ which has $p_{\lambda} p_{\lambda}{ }^{*}$ as a diameter. Then $V^{n} \cap\left(P_{\lambda} \cup P_{\lambda}{ }^{*}\right)=p_{\lambda} \cup p_{\lambda}{ }^{*}$ and $V^{n} \cap \sigma^{n}$ is a convex subset of σ^{n}. Hence there is obviously an n-simplex $\sigma_{1}{ }^{n} \subset V^{n} \cap \sigma^{n}$ which has $p_{\lambda}, p_{\lambda}{ }^{*}$ among its vertices. Therefore it follows from (11.3), (11.4) that there is a piecewise linear homeomorphism $f_{\lambda}: S^{n} \rightarrow S^{n}$ such that

$$
f_{\lambda} \sigma_{1}^{n}=E_{\mu}^{n}(\lambda \neq \mu=1 \text { or } 2), f_{\lambda} p_{\lambda}=a, f_{\lambda} p_{\lambda}^{*}=a^{*}
$$

Clearly f_{λ} satisfies (11.5).
We take $p_{\lambda}, p_{\lambda}^{*}$ to be the base points for $P_{1} \vee P_{2}, P_{1} * \vee P_{2} *$. Then piecewise linear homeomorphisms h, h^{\prime}, of $P_{1} \vee P_{2}, P_{1}{ }^{*} \vee P_{2} *$ into S^{n}, are defined by

$$
\begin{aligned}
& h\left(p, p_{2}\right)=f_{1} p, \quad h\left(p_{1}, q\right)=f_{2} q \quad\left(p \varepsilon P_{1}, q \varepsilon P_{2}\right), \\
& h^{\prime}\left(p^{*}, p_{2}^{*}\right)=f_{1} p^{*}, \quad h^{\prime}\left(p_{1}^{*}, q^{*}\right)=f_{2} q^{*} \quad\left(p^{*} \varepsilon P_{1}^{*}, q^{*} \varepsilon P_{2}^{*}\right) .
\end{aligned}
$$

Let $X_{\lambda}=f_{\lambda} P_{\lambda}, X_{\lambda}^{*}=f_{\lambda} P_{\lambda}{ }^{*}$. Since $P_{\lambda}{ }^{*}=D_{n} P_{\lambda}$ it is an S-deformation retract of $S^{n}-P_{\lambda}$. So therefore is $X_{\lambda}{ }^{*}$ of $S^{n}-X_{\lambda}$, whence $X_{\lambda}{ }^{*}$ is n-dual to X_{λ}. Evidently $S^{n-1}-a$ is a deformation retract of $E_{\mu}^{n}-a$, whence $E_{\lambda}{ }^{n}-X_{\lambda}$ is a deformation retract of $S^{n}-X_{\lambda}$. Therefore $X_{\lambda}{ }^{*}$ is an S-deformation retract of $E_{\lambda}{ }^{n}-X_{\lambda}$. Also a^{*} is an S-deformation retract of $S^{n-1}-a$ and it follows from (11.1) that $X_{1}{ }^{*} \cup X_{2}{ }^{*}$ is n-dual to $X_{1} \cup X_{2}$.

Let K_{μ} be a triangulation of $E_{\mu}{ }^{n}$, which has a for a vertex, and let $A_{\mu} \subset K_{\mu}$ be the subcomplex complementary to a. Let the mesh of K_{μ} be so small that $X_{\mu}{ }^{*} \subset A_{\mu}$. Since $E_{\mu}{ }^{n}-a$ is contractible, so is A_{μ}. We have $A_{\mu} \subset S^{n}-X_{\lambda}, A_{\mu} \cap X_{\lambda} *=a^{*}$. Hence it follows that X_{μ}^{*} is a deforma-
tion retract of $A_{\mu} \cup \bar{X}_{\lambda}^{*}$ and that $A_{\mu} \cup \bar{X}_{\lambda}^{*}$ is n-dual to X_{λ}. Therefore $D_{n} \iota_{\lambda}=\rho_{\lambda}{ }^{\prime \prime} \iota_{\lambda}{ }^{\prime \prime}=\rho_{\lambda}{ }^{\prime}$, where

$$
X_{1} * \cup X_{2} * \xrightarrow{L_{\lambda}^{\prime \prime}} A_{\mu} \cup X_{\lambda} * \xrightarrow{\rho_{\lambda}^{\prime \prime}} X_{\lambda} *
$$

are the inclusion and the S-retraction by deformation. Similarly $D_{n} \iota_{\lambda}{ }^{\prime}=\rho_{\lambda}$ and (4.13) is proved.
12. Proof that D_{n} is a homomorphism. Since $S:\{X, Y\} \approx\{S X, S Y\}$ and $D_{n}=D_{n+1} S$, by (4.3), we may replace D_{n} by

$$
D_{n+1}:\{S X, S Y\} \rightarrow\left\{D_{n} Y, D_{n} X\right\}
$$

Therefore we may assume to begin with that $X \neq \varnothing$ and, since D_{n} may also be replaced by $S D_{n}$, that $X \neq S^{n}$. Let $X \neq \varnothing$ or S^{n} and let $X_{1} \cup X_{2}$, $X_{1}{ }^{*} \cup X_{2}{ }^{*}, \iota_{\lambda}, \rho_{\lambda}, \iota_{\lambda}{ }^{\prime}, \rho_{\lambda}{ }^{\prime}$ be as in (4.13) with

$$
P_{1}=P_{2}=X, \quad P_{1}^{*}=P_{2}^{*}=D_{n} X
$$

Let $h_{\lambda}: X \rightarrow X_{\lambda}$ be a homeomorphism onto X_{λ}, let $\beta_{\lambda}=\left\{h_{\lambda}\right\}$ and let

$$
\beta=\iota_{1} \beta_{1}+\iota_{2} \beta_{2}: X \rightarrow X_{1} \cup X_{2}
$$

On considering the track addition of maps $S\left(X_{1} \cup X_{2}\right) \rightarrow S\left(X_{1} \cup X_{2}\right)$ it follows without difficulty that

$$
\iota_{1} \rho_{1}+\iota_{2} \rho_{2}: X_{1} \cup X_{2} \subset X_{1} \cup X_{2}
$$

Similarly, and from (4.13), it follows that

$$
\begin{equation*}
D_{n}\left(\iota_{1} \rho_{1}\right)+D_{n}\left(\iota_{2} \rho_{2}\right): X_{1}^{*} \cup X_{2}^{*} \subset X_{1}^{*} \cup X_{2}^{*} \tag{12.1}
\end{equation*}
$$

Let $\alpha_{1}, \alpha_{2} \varepsilon\{X, Y\}$ be given and let $f_{\lambda}: S^{k} X \rightarrow S^{k} Y(k \geqslant 1)$ be a map representing α_{λ} such that $f_{\lambda} S^{k} x_{\lambda}=v_{n+k}$, where $x_{\lambda}=h_{\lambda}^{-1}\left(X_{1} \cap X_{2}\right)$. Define $g: S^{k}\left(X_{1} \cup X_{2}\right) \rightarrow S^{k} Y$ by $g x=f_{\lambda}\left(S^{k} h_{\lambda}^{-1}\right) x$ if $x \varepsilon X_{\lambda}$ and let $\gamma: X_{1} \cup X_{2} \rightarrow Y$ be the S-map represented by g. Then $\gamma t_{\lambda}=\alpha_{\lambda} \beta_{\lambda}^{-1}$, whence $\gamma \iota_{\lambda} \beta_{\lambda}=\alpha_{\lambda}$. Therefore

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}=\gamma\left(\iota_{1} \beta_{1}+\iota_{2} \beta_{2}\right)=\gamma \beta \tag{12.2}
\end{equation*}
$$

Obviously $\rho_{\lambda} c_{\lambda}: X_{\lambda} \subset X_{\lambda}$ and $\rho_{\lambda} c_{\mu}=0$ if $\mu \neq \lambda$. Therefore $\beta_{\lambda}=\rho_{\lambda} \beta$, whence $\gamma t_{\lambda} \rho_{\lambda} \beta=\alpha_{\lambda}$. Hence it follows from (12.2), (12.1) that

$$
\begin{aligned}
D_{n}\left(\alpha_{1}+\alpha_{2}\right) & =D_{n}(\beta)\left(D_{n}\left(\iota_{1} \rho_{1}\right)+D_{n}\left(\iota_{2} \rho_{2}\right)\right) D_{n}(\gamma) \\
& =D_{n}\left(\gamma \iota_{1} \rho_{1} \beta\right)+D_{n}\left(\gamma \iota_{2} \rho_{2} \beta\right) \\
& =D_{n} \alpha_{1}+D_{n} \alpha_{2}
\end{aligned}
$$

and the proof is complete.
13. Proof of (6.2). Let $A, B, A^{\prime}, B^{\prime}$ denote $C W$-complexes, let $f: A \rightarrow B, f^{\prime}: A^{\prime} \rightarrow B^{\prime}$ be cellular maps and in the diagram

$$
\begin{gathered}
A \xrightarrow{\{f\}} B \\
\downarrow \begin{array}{ll}
\downarrow & \mid \beta \\
\left.A^{\prime} \xrightarrow{\{ }\right\} & \downarrow \\
B^{\prime}
\end{array}
\end{gathered}
$$

let α, β denote S-maps such that $\beta\{f\}=\left\{f^{\prime}\right\} \alpha$. Let $Z_{f}, Z_{f^{\prime}}$ be defined as in §6, likewise $g: Z_{f} \rightarrow S A, g^{\prime}: Z_{f^{\prime}} \rightarrow S A^{\prime}$.

Lemma (13.1). There is an S-map $\zeta: Z_{f} \rightarrow Z_{f^{\prime}}$ such that the diagram

is commutative, where $i: B \subset Z_{f}, i^{\prime}: B^{\prime} \subset Z_{f^{\prime}}$. Furthermore, if α, β are S-equivalences, so is ζ.

Proof: It is easily verified that $S Z_{f}=Z_{S f}$. Therefore we may replace the above diagrams by their k-fold suspensions for any $k \geqslant 0$. Hence we may assume that $\alpha=\{u\}, \beta=\{v\}$, where $u: A \rightarrow A^{\prime}, v: B \rightarrow B^{\prime}$ are maps such that $v f \simeq f^{\prime} u$. This being so, let $h_{t}: A \rightarrow B^{\prime}$ be a homotopy such that $h_{0}=v f, h_{1}=f^{\prime} u$. Then a $\operatorname{map} w: Z_{f} \rightarrow Z_{f^{\prime}}$ is defined by $w b=v b$ if $b \varepsilon B$ (whence $w i=i^{\prime} v$) and

$$
w(a, t)= \begin{cases}h_{2 t} a & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\ (u a, 2 t-1) & \text { if } \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

for $a \varepsilon A$. Let p, p^{\prime} denote the (ordered) poles of $\mathbb{S} A^{\prime}$. Then $(S u) g B=g^{\prime} w B=p$ and

$$
\begin{aligned}
(S u) g(a, t) & =S u(a, 2 t-1)=(u a, 2 t-1), \\
g^{\prime} w(a, t) & = \begin{cases}p & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\
(u a, 4 t-3) & \text { if } \frac{1}{2} \leqslant t \leqslant 1 .\end{cases}
\end{aligned}
$$

Hence, obviously, $(S u) g \simeq g^{\prime} w$ and the first part of the lemma follows on taking $\zeta=\{w\}$.

To prove the second part consider the sequence

$$
\ldots \longrightarrow H_{q}(A) \xrightarrow{f_{\#}} H_{q}(B) \xrightarrow{i_{\#}} H_{q}\left(Z_{f}\right) \xrightarrow{S^{-1} g_{\#}} H_{q-1}(A) \longrightarrow
$$

where $f_{\#}, i_{\#}, g_{\#}$ are the homomorphisms induced by f, i, g. It follows without difficulty from the excision theorem that this sequence is isomorphic to the homology sequence of the pair (Z_{f}, B). Therefore it
is exact. Also it is natural with respect to $\alpha_{\#}, \beta_{\#}, \zeta_{\#}$. Hence, if $\alpha_{\#}, \beta_{\#}$ are isomorphisms onto for every q, so is $\zeta_{\#}$, by the 5 -lemma. Therefore, if α, β are S-equivalences, so is ζ and the proof is complete.

We now prove (6.2). In (6.1) let $\alpha=\{f\}, \alpha^{*}=\left\{f^{*}\right\}$. Then we have to prove that there are S-equivalences ζ, ζ^{*} such that the diagrams

are commutative, where $X_{0} *=D_{n} X_{0}, Y_{0}^{*}=D_{n} Y_{0}, Z_{0}, Z_{0}{ }^{*}$ are mutually $(n+1)$-dual polyhedra in S^{n+1} and $\lambda^{*}=D_{n+1} \lambda, \mu^{*}=D_{n+1} \mu$. Let $\xi_{1}: X \rightarrow X_{1}, \eta_{1}: Y \rightarrow Y_{1}$ be S-equivalences, where X_{1}, Y_{1} are polyhedra in S^{n}, and let

$$
\theta=\xi_{1} \xi^{-1}: X_{0} \rightarrow X_{1}, \phi=\eta_{1} \eta^{-1}: X_{0} \rightarrow Y_{1}
$$

Let $D_{n} W_{1}$ be any n-dual of $W_{1}\left(W=X, Y\right.$. Possibly $W_{1}=W_{0}$, $D_{n} W_{1} \neq D_{n} W_{0}$). Let (6.1)', (13.2)' denote (6.1), (13.2) with ξ, η, ξ^{*}, η^{*}, λ, μ replaced by $\xi_{1}, \eta_{1}, \xi^{*} D_{n} \theta, \eta^{*} D_{n} \phi, \lambda \phi^{-1},(S \theta) \mu$. Then it follows from (4.2) that (6.1), (6.1)' define the same $D_{n}\{f\}$ and that (13.2)' are commutative if, and only if, (13.2) are commutative. Therefore we may choose ξ, η and the n-duals $D_{n} X_{0}, D_{n} Y_{0}$ to suit our convenience.

Since $n \geqslant 2 \operatorname{dim} Z+1$ there are disjoint polyhedra $X_{0}, Y^{\prime} \subset S^{n}$ of the same dimensionalities and homotopy types as X, Y. Let

$$
u: X \rightarrow X_{0}, v: Y \rightarrow Y^{\prime}
$$

be homotopy equivalences, let $u^{\prime}: X_{0} \rightarrow X$ be a homotopy inverse of u and let $f_{0}=v f u^{\prime}: X_{0} \rightarrow Y^{\prime}$. Let $Y_{0} \subset S^{n}$ be a polyhedral mapping cylinder for $f_{0}\left(N . B .: \operatorname{dim} Y_{0}=\operatorname{dim} Z\right)$ and let $\xi=\{u\}, \eta=\{l v\}$, where $l: Y^{\prime} \subset Y_{0}$. Then

$$
\eta\{f\} \xi^{-1}=\left\{l v f u^{\prime}\right\}=\left\{l f_{0}\right\}: X_{0} \subset Y_{0} .
$$

Thus $\eta\{f\} \xi^{-1}=\{j\}$, where $j: X_{0} \subset Y_{0}$. Let

$$
Z_{0}=Z_{j}=Y_{0} \cup\left(X_{0} * v_{n+1}^{\prime}\right)
$$

Let $t_{n+1}(p)$ denote the $(n+1)$ th coordinate of a given point $p \varepsilon R^{\infty}$. We represent points in S^{n+1} by (a, s), where $a=(a, 0) \varepsilon S^{n}$ and $s=2 t_{n+1}(a, s)$ $\left((a, s) \varepsilon a * S_{n+1}^{0}\right)$. Thus $(a,-2)=v_{n+1},(a, 2)=v_{n+1}^{\prime}$ and if $A \subset S^{n}$ we imbed $A \times I$ in S^{n+1} so that ($\left.a, t\right) \varepsilon S^{n+1}$ has its usual meaning in $A \times I$ $(a \in A, t \in I)$. We write $A \times I=A_{I}, A \times \mathrm{I}=A_{1}$ and

$$
\left(A * v_{n+1}\right) \cup A_{r}=A_{1} \# v_{n+1}
$$

Let $X_{0}{ }^{*} \subset S^{n}$ and $Y_{0}{ }^{*} \subset X_{0}{ }^{*}$ be n-duals of X_{0}, Y_{0}, let $W_{1}{ }^{*}=\left(W_{0}{ }^{*}\right)_{1}$ and let $h: X_{1}{ }^{*} \rightarrow X_{0}{ }^{*}$ be defined by $h(x, 1)=x\left(x \varepsilon X_{0}{ }^{*}\right)$. Let $j^{*}: Y_{0}{ }^{*} \subset X_{0}{ }^{*}$,
$j^{\prime}=h^{-1} j^{*}: Y_{0}{ }^{*} \rightarrow X_{1} *$ and let

$$
Z_{0}^{*}=Z_{j^{\prime}}=X_{1}^{*} \cup\left(Y_{1} * \# v_{n+1}\right)
$$

Clearly $X_{0}^{*} \times I \subset S^{n+1}-S X_{0}$ and since $X_{0} *$ is $(n+1)$-dual to $S X_{0}$ so is $X * \times I$ and hence also $X_{1} *$. Moreover $\{h\}$ is $(n+1)$-dual to $\iota: S X_{0} \subset S X_{0}$. Since the right-hand diagram in (6.1), with $\alpha_{0}=\{j\}, D_{n} \alpha_{0}=\left\{j^{*}\right\}$, $\alpha^{*}=\left\{f^{*}\right\}$, is commutative, so is

In (11.1) let $P=Z_{0}, P^{\prime}=Z_{0}^{*}$ and let A_{1}, \ldots, A_{m} denote

$$
S_{1}^{n} * v_{n+1}^{\prime}, S_{I}^{n}, S^{n} * v_{n+1} \quad(q=n+1, m=3)
$$

Then a homotopy $h_{t}: S_{I}{ }^{n}-Z_{0} \rightarrow S_{I}{ }^{n}-Z_{0}$, rel. $S_{1}{ }^{n}-X_{1}$, such that

$$
h_{0}=1, h_{l}\left(Z_{0}^{*} \cap S_{I}^{n}\right) \subset Z_{0}^{*} \cap S_{I}^{n}
$$

and

$$
h_{1}\left(S_{I}^{n}-Z_{0}\right)=S_{1}^{n}-X_{1}, \quad h_{1}\left(Z_{0}^{*} \cap S_{I}^{n}\right)=X_{1} *
$$

is defined by $h_{t}(a, s)=(a,(1-t) s+t)$, for $(a, s) \varepsilon S_{I}^{n}-Z_{0}$. Since X_{0}^{*} is an S-deformation retract of $S^{n}-X_{0}$, so is $X_{1}{ }^{*}$ of $S_{1}{ }^{n}-X_{1}$ and it follows that $Z_{0}{ }^{*} \cap S_{I}{ }^{n}$ is an S-deformation retract of $S_{I}^{n}-Z_{0}$. It is obvious that $Z_{0}{ }^{*} \cap A_{\tau}$ is an S-deformation retract of $A_{\tau}-Z_{0}$ for the remaining sets τ. Therefore it follows from (11.1) that $Z_{0}{ }^{*}$ is $(n+1)$-dual to Z_{0}.

We have

$$
Y_{0} \xrightarrow{i_{0}} Z_{0} \xrightarrow{g_{0}} S X_{0}, \quad S Y_{0} * \stackrel{g_{0}^{\prime}}{\leftarrow} Z_{0} * i_{i_{0}^{\prime}}^{\leftarrow} X_{1} *
$$

where $i_{0}, i_{0}{ }^{\prime}$ are inclusions and $g_{0}, g_{0}{ }^{\prime}$ are defined in the same way as g, g^{\prime}. In (13.2) let $\lambda=\left\{i_{0}\right\}, \mu=\left\{g_{0}\right\}$.

Let $D_{n+1}^{\prime} Y_{0}=\left(Y_{1} * \# v_{n+1}\right) \cup\left(S_{1}{ }^{n} * v_{n+1}^{\prime}\right)$. Then $D_{n+1}^{\prime} Y_{0}$ and $S Y_{0} *$ are both $(n+1)$-dual to Y_{0}. Let $i_{1}: Z_{0}^{*} \subset D_{n+1}^{\prime} Y_{0}$ and let $r: D_{n+1}^{\prime} Y_{0} \rightarrow S Y_{0}{ }^{*}$ be defined by

$$
r(a, s)= \begin{cases}(a,(4 s+2) / 3) & \text { if }-2 \leqslant s \leqslant 1 \\ v_{n+1}^{\prime} & \text { if } 1 \leqslant s \leqslant 2\end{cases}
$$

Then $\lambda^{*}=D_{n+1}\left\{i_{0}\right\}=\left\{r i_{1}\right\}$. But $r i_{1}=w g_{0}{ }^{\prime}$, where $w: S Y_{0}{ }^{*} \rightarrow S Y_{0}{ }^{*}$ is the "reflexion" which interchanges $y * v_{n+1}, y * v_{n+1}^{\prime}$, with $w y=y$, for every $y \in Y_{0}{ }^{*}$. Clearly $\left\{w g_{0}{ }^{\prime}\right\}=-\left\{g_{0}{ }^{\prime}\right\}$, whence $-\lambda^{*}=\left\{g_{0}{ }^{\prime}\right\}$.

Similarly $D_{n+1}^{\prime \prime}\left\{i_{0}{ }^{\prime}\right\}=\left\{g_{0}\right\}$ (not - $\left\{g_{0}\right\}$ because the "vertex" of Z_{0} is v_{n+1}^{\prime} and the analogue of r maps Y_{0} on v_{n+1}), where $D_{n+1}^{\prime \prime}$ refers to $D_{n+1}^{\prime \prime} Z_{0}=Z_{0}^{*}, D_{n+1}^{\prime \prime} S X_{0}=X_{1}^{*}$ 。

Let (13.2) denote (13.2) with $X_{0}{ }^{*}, \xi^{*}, \mu^{*}$ replaced by $X_{1}{ }^{*}, \xi^{*}\{h\}$, $\mu^{*}\{h\}$, where $\{h\}$ means the same as in (13.3). Since $\{h\}$ is $(n+1)$-dual to
$\iota: S X_{0} \subset S X_{0}$ we have $\mu^{*}\{h\}=D_{m+1}^{\prime \prime}\left\{g_{0}\right\}=\left\{i_{0}{ }^{\prime}\right\}$. Therefore, and since $-\lambda^{*}=\left\{g_{0}{ }^{\prime}\right\},\{j\}=\eta\{f\} \xi^{-1}$ and (13.3) is commutative, it follows from (13.1) that there are S-equivalences ζ, ζ^{*} such that the diagrams (13.2) are commutative. Hence, obviously, (13.2) are commutative and (6.2) is proved.

Notice that, if the parts played by $v_{n+1}, v_{n+1}^{\prime}$ in the above argument are interchanged, so that $Z_{0}, Z_{0}{ }^{*}$ are reflected through S^{n}, then we are led to a weak duality between $\{i\},\{g\}$ and $\left\{g^{\prime}\right\},-\left\{i^{\prime}\right\}$.

References.

1. J. W. Alexander, "The combinatorial theory of complexes ", Annals of Math., 31 (1930), 292-320.
2. P. Alexandroff and H. Hopf., Topologie, Berlin (1935).
3. M. G. Barratt, "Track groups (1)", Proc. London Math. Soc. (3), 5 (1955), 71-106.
4. S. C. Chang, "Homotopy invariants and continuous mappings ", Proc. Royal Soc., A, 202 (1950), 253-63.
5. B. Clarke, "A note on Alexander's duality" (to appear).
6. S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton (1952).
7. W. S. Massey, "Exact couples in algebraic topology", Annals of Math., 56 (1952), 353-96; 57 (1953), 248-56.
8. M. Nakaoka, "Exact sequences $\Sigma_{p}(K, L)$ and their applications", J. Inst. Polytech., Osaka City Univ., 3 (1953), 83-100.
9. J.-P. Serre, "Homologie singulière des espaces fibrés ", Annals of Math., 54 (1951), 425-505.
10. E. H. Spanier, " Borsuk's cohomotopy groups ", Annals of Math., 50 (1949), 203-45.
11. E. H. Spanier and J. H. C. Whitehead, "The theory of carriers and S-theory", Annals of Math. (to appear).
12. J. H. C. Whitehead, " On subdivisions of complexes ", Proc. Camb. Phil. Soc., 31 (1935), 69-75.
13. -_, "On the groups $\pi_{r}\left(V_{n, m}\right)$ and sphere bundles ", Proc. London Math. Soc. (2), 48 (1944), 243-91.
14. -_, "On simply connected 4-dimensional polyhedra ", Comm. Math. Helvetici, 22 (1949), 48-92.
15. ——, "Combinatorial homotopy I", Bull. Amer. Math. Soc., 55 (1949), 213-45.
16. -._, "On the realizability of homotopy groups ", Annals of Math., 50 (1949), 261-3.

University of Chicago.
Magdalen College, Oxford.

[^0]: ${ }^{1}$ We use $\{A, B\},[A, B]$ to denote, respectively, the group of S-maps and the set of ordinary homotopy classes $A \rightarrow B$, where A, B are arbitrary spaces. If $f: A \rightarrow B$ denotes a map, then $\{f\}$, $[f]$ will denote the corresponding elements of $\{A, B\},[A, B]$. We also denote an element $\alpha \varepsilon\{A, B\}$ by $\alpha: A \rightarrow B$. Greek letters, thus used, will always denote S-maps and italic letters, as in $f: A \rightarrow B$, will denote ordinary maps.

[^1]: ${ }^{2}$ All homology and cohomology groups occurring in the sequel will be reduced and will be denoted by $H_{q}(A), H^{q}(A)$, etc.

[^2]: ${ }^{2}$ See $\S 6$ of $[14]$ or use the universal coefficient theorem for $H^{q}\left(C, S^{k} A\right)$, where C denotes a mapping cylinder for f.

[^3]: 4 i.e. D_{n} is composed of the Alexander duality isomorphism $H_{p}(W) \approx H^{n-p-1}\left(S^{n}-W\right)$ and $\iota_{W}^{\#}: H^{n-p-1}\left(S^{n}-W\right) \approx H^{n-p-1}\left(D^{n} W\right)(W=X, Y)$. It follows from (4.1) that (2.1) is a special case of (4.9).

[^4]: ${ }^{5}$ Since the operator S_{i} is defined by a geometrical construction in R^{∞} we have $S_{i} S_{j}=S_{j} S_{i}$. (N.B.-Except for the ordering of $v_{i}, v_{i}{ }^{\prime}$ there are no orientations to be considered.)

[^5]: ${ }^{6}$ Let A denote a subcomplex of a $C W$-complex X. Then $H_{r}(X, A)$ may be calculated combinatorially in terms of the cells in $X-A$. Thus the homology groups of (X, A) may be regarded as the homology groups of the "open subcomplex " $X-A$. Therefore the strong excision theorem ($[6]$, p. 165) is valid in the category of $C W$-complexes and subcomplexes. 7 This is a special case of Theorem [14.2] in [1] (cf. Theorem 5 in [12] and §15. in [1]). We indicate an $a d$ hoc proof, leaving some details to be supplied by the reader.

