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DUALITY IN HOMOTOPY THEORY

E. H. SPANIBR and J. H. C. WHITEHEAD

1. Introduction. Certain results ([7], [8], [10], [11]) suggest that there
should be some principle of duality in homotopy theory. Among other
things one is led to expect that cohomotopy groups will appear as dual to
homotopy groups. But the fact that a cohomotopy group nn(X), unlike
Trn(X), is only defined if dim X ^ 2n—2 is a serious obstacle to the formula-
tion of such a principle. However, the set of #-maps (i.e. $-homotopy
classes [11]) X-> Y is a group for every pair of spaces X, Y. Therefore,
this difficulty does not appear in S-theory [11].

In this paper we formulate a principle of duality in the $-theory of
finite polyhedra. It is analogous to the Alexander duality in that it is
primarily defined for subsets, in our case subpolyhedra, of (polyhedral)
spheres. An " n-dual " of a subpolyhedron Xc8n is a subpolyhedron
DnXcS*—X which is an "^-deformation retract" of 8n—X. An
#-map <x.:X~+Y, where Y is also a subpolyhedron of 8n, has a dual
Dna.:Dn Y-^-DnX, and the map a.->Dna. is an isomorphism1

{X, Y}^{DnY, DnX}.
IiDn X is n-du&l to X, then X is rc-dual to Dn X so we have an isomorphism
of {Dn Y, DnX) onto {X, Y}. The duality is expressed by the statement
that these two isomorphisms are inverse to each other. Among other
things we show how the construction of a finite CTT-complex by the
successive attaching of cells can be dualized.

The main results are stated in sections 3 through 7. Section 2 is
devoted to a summary of notation and background material and sections 8
through 13 contain the proofs of the results stated in the earlier sections.

The authors express their thanks to N. E. Steenrod for many helpful
suggestions during the early stages of this work.

2. Preliminaries. Let R* denote the subset of Hilbert space con-
sisting of points (t0, tv ...) such that t{= 0 for all but a finite set of values
of i. Let vn'=(80

n, 8^, ...), where S,TC = 0 if i^n, 8n
n=l, and let

vn = (—80
m, — S^, ...). Let 8n° = vn\jvn' and let 8n denote the geometrical

join
S" = So°*8X°* ... *Sn

6 = S"-1 *8 n ° .

If X, YcSn, we define {X, Y; n} as the direct limit under suspension of
the sets1 [8kX, Sk Y], where

SkW=W*Sl+1*...*So
n+k (W = X,Y)

1 We use {A, B), [A, B] to denote, respectively, the group of (S-maps and the set of
ordinary homotopy classes A -> B, where A, B are arbitrary spaces. If / : A ->• B denotes
a map, then {/}, [/ ] will denote the corresponding elements of {A, B}, [A, B], We also
denote an element ae{A, B) by a :A ->- B. Greek letters, thus used, will always denote
(S-maps and italic letters, as in / : A ->- B, will denote ordinary maps.
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and v0 v/ are ordered as written. If q ̂  n an isomorphism

%, n):{X, Y; n}^{X, Y; q}

is defined in the obvious way, and we define {X, Y] as the direct limit of
the groups {X, Y; n], for every n such that X, Y(Z 8n, under the
isomorphisms 6(q, n).

If K C S^1 is a simplicial complex, then 8K = K * 8n° will denote the
simplicial complex whose simplexes are a * vn, a * vn' and their faces, for
every simplex a of K. In particular #n has a rectilinear triangulation isT̂ ,
which is defined inductively by Kn = SKn_1 if n > 0, isT0 being the unique
triangulation of 8°.

By a polyhedron we shall mean the space covered by a finite rectilinear
complex in E°. We shall sometimes use the same symbol to denote a
polyhedron and one of its triangulations, always assumed to be rectilinear.
A piecewise linear map X-> Y, where X, Y are polyhedra, is one which is
simplicial with respect to some pair of (rectilinear) triangulations of X, Y.
Notice that, since all our polyhedra derive their piecewise linear structure
from E°, a polyhedron A c X is necessarily a subpolyhedron of X [i.e. the
inclusion map AcX is piecewise linear ([12], Theorem 5)].

Let X denote an ^.-dimensional polyhedron and let i = I n S s , where
q^2n-\-\. There is a piecewise linear homeomorphism 8a->8s, which
maps A into a ^-simplex of Kq [see (11.3) below]. Hence it follows
that the inclusion map A C Sa can be extended to a piecewise linear homeo-
morphism h, of X into 8a (see [2], p. 139, for the case A = 0 ; the
generalization to an arbitrary A presents no difficulty). Notice that,
if B is any other polyhedron in 8a, of at most n dimensions, then X, A may
be replaced by X<uB, AKJB SO as to avoid "accidental intersections "
between hX and B [i.e. points in hXr\(B—A)].

Since the reduced homology and cohomology groups2 ([6], p. 18) suspend
isomorphically and naturally, with respect to the homomorphisms induced
by maps and their suspensions, it follows that, for any pair of spaces A, B,
an $-map a: A -> B induces homomorphisms

*#:Ha(A)-+Hq(B), afr:H*(B)+W(A)

in the obvious way. If A, B are CTT-complexes, then a is an S-equivalence
(i.e. has a 2-sided inverse a"1 s {B, A}) if and only if <x# is an isomorphism
onto for each q. To see this l e t / : 8kA->8kB denote a map representing
a and assume that 8kA, 8k B are 1-connected (as is certainly the case if
h > 3 or if A, B are non-empty and k > 2). Then/is an ordinary homotopy
equivalence ([15], Theorem 3) if and only if each a# is an isomorphism onto.

a All homology and cohomology groups occurring in the sequel will be reduced and
will be denoted by Hq(A), Hq(A), etc.
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Similar remarks apply to <x# if the complexes A, B are finite3. Notice
that, if A, B are 1-connected CJF-complexes and if the /S-homotopy class
of a map f:A->B is an /^-equivalence, then / is an ordinary homotopy
equivalence.

Let i: A C X. Then we describe A as an 8-deformation retract of X
if and only if the inclusion $-map i = { « } : i c l i s a n /^-equivalence. In
this case we describe t"1: X->A as the 8-retraction by deformation, or simply
the 8-retraction, of X on A. If A' C A and any two of the inclusion $-maps
A'cA, AcX, A'dX are zS-equivalences so obviously is the third.

Let K denote a triangulation of 8n and X a subcomplex of K. We
describe X as complete if and only if every simplex of K with all its vertices
in X belongs to X. Evidently the barycentric subdivision of any sub-
complex is complete in the barycentric subdivision of K. The subcomplex
X* C K complementary to X consists of the simplexes of K which do not
meet X. Evidently X* is complete and (X*)* = X if X is complete.
In the latter event X, X* are deformation retracts (and hence $-deforma-
tion retracts) of K—X*, K—X. Also in this case X is complete in 8K
and X, SX*, likewise 8X, X*, are complementary to each other in SK.

Let X and also AcX denote complete subcomplexes of K. Then
X*cA*, where X*, A* are the subcomplexes of K complementary to
X, A, and the diagram

HP(A) — *—> Hp(X) ( t : i c l )

(2-1)

(io:X*cA*)

is commutative [5], where each 3>n is the appropriate Alexander duality
isomorphism. Therefore, if i# is an isomorphism (onto), so is t0*. Hence,
if A is an ^-deformation retract of X, so is X* of A*.

Let Xlt ..., Xk denote polyhedra in 8n and for each i = 1, ..., k let C,
denote a compact subset of 8n—X(.

LEMMA (2.2). There are polyhedra Xj*, ..., Xk* such that

Ci(ZXi*(zSn-Xi,

X{* is a deformation retract of 8n—Xi and whenever I ( c l , - , then X3* c X(*.

Proof. Let K denote a triangulation of 8n such that Xv ..., Xk are
covered by complete subcomplexes of K. Let Xt* denote the subcomplex
of K complementary to X(. Then X(* is a deformation retract of K—X(

• See §6 of [14] or use the universal coefficient theorem for H9(G, 8kA), where C
denotes a mapping cylinder for / .
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and X^cXf* if X{C.Xj. Therefore the lemma follows on taking the
mesh of K to be so small that CiCXt* for each i = 1, ..., k.

3. n-duals. Let X denote a polyhedron in 8n. By an n-dual of X
we mean a polyhedron in Sn—X, which is an ^-deformation retract of
Sn—X. We shall use DnX to denote an n-dual of X. Evidently a poly-
hedron contained in DnX is an n-dual of X if, and only if, it is an
/̂ -deformation retract of Dn X. If X, X* are complete, complementary
subcomplexes of some triangulation of 8n, then each is a deformation
retract of the complement of the other. Therefore X, X* are mutually
n-dual. We shall prove that X is n-dual to every DnX. We first prove:

LEMMA (3.1). If A is a polyhedron in X, which is an S-deformation
retract of X, then every n-dual of X is an n-dual of A (whence DnX is an
S-deformation retract of DnAif DnXdDnA).

Proof. Let X*, A* be as in (2.1) and let the mesh of K, in §2, be so
small that DnXcX*. Then DnX is an ^-deformation retract of X*,
since Dn X, X* are both n-dual to X. Also X* is an ^-deformation retract
of A* by a remark following (2.1). Therefore DnX is an /̂ -deformation
retract of A*. Since A* is n-dual to A, so is DnX.

THEOREM (3.2). / / DnX is n-dual to X, then X is n-dual to DnX.
Furthermore, DnXis (n+l)-dual to SX (hence also X = DnDnXto 8DnX).
Thus we may set

Dn+1X = 8DnX, Dn+1SX = DnX. (3.3)

Proof. The first part follows from (3.1) with A, X, DnX replaced
by DnX, X*, X. The second part follows from the fact that DnX is an
/S-deformation retract of X*, which is complementary to SX in 8K.

If X' is a polyhedron in 8n—X, then Sn—X can be triangulated as a
OIF-complex with a subcomplex covering X'. Therefore X' is an n-dual
of X if, and only if, i#:Ha(X')ZZHq(8

n—X) for every ? > 0 , where
t:X'c8»-X.

4. The basic duality. In §9 we define, for every pair of polyhedra
X, Yc8n and every pair of re-duals DnX, Dn 7, a map

Dn:{X,Y}^{DnY,DnX]

such that, if c l c 7, v':Dn YczDnX, then

and if ae {X, Y}, jSe {7, Z} (where Z is any polyhedron in 8n) then

Dn09«) = £„(«)!>„(/?), (4.2)
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provided Dn a, Dnfl are both relative to the same Dn Y. It follows from
(4.1), (4.2) that, if a is an nS-equivalence, so is Dn « and Dn or1 — (Dn a)"1.
In particular, Dn c

1 = i'~x if X is an ^-deformation retract of Y and t, t'
are as in (4.1).

For any pairs of spaces A, B there is an isomorphism

8:{A,B}Si{8A, SB}

such that corresponding elements are represented by the same map
8kA->8kB (& > 1). In conformity with (3.3) we shall prove that

Dn+1 = 8Dn: (X, 7}-> [8Dn Y, SDnX} j

Dn+xS = Dn:{X,Y}-+{DnY,DnX). J

We shall also prove:

THEOREM (4.4). The map Dn is uniquely determined by the conditions
(4.1), (4.2), (4.3).

Since X is n-dual to Dn X, by (3.2), we have Dn: {Dn Y, Dn X} -» {X, Y}.
We shall prove :

THEOREM (4.5). DnDn<x = «. for every a. e {X, Y} or {Dn Y, Dn X}.

In §12 we show that Dn is a homomorphism. Hence, and from (4.5),
it follows that

Dn:{X,Y}^{DnY,DnX}. (4.6)

Let Dn' W denote another rc-dual of TF(= X, Y) and let Dn" W denote
an n-dual of W containing Dn W\jDn' W [such a Dn" W exists by (2.2)].
Let

iw:DnW<zDn"W, Sw:Dn'WcDn"W

and let iw°: W C W. Then we have homomorphisms

{Dn' Y, Dn'X} °l {X, Y} % {Dn" Y, Dn" X)

and if «.e{X, Y} it follows from (4.1) and the remarks following (4.2)
that the diagrams

X • Y D^' X <^— Dn" Y

} ! n
X >Y DnX±^-

are dual to each other. Since we have a similar situation with Dn replaced
by Dn' it follows from (4.2) that

Dn" a =
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Therefore Dn'(x) = Cp ixDn(x) if1 tY'. Let lw": Dn" We Sn~ W. Then
rf lw' = {iw" 'IT)"1 ('IT" 'IT')

 an<i we have

where now iw:Dn Wcz8n-W, iw':Dn' Wc8*-W.
For any space A and any p > — 1 let

(4.7)

Let n^p and let tf?-*-1 = #°+1 *... * Sn° if » > p. Then Sn = Sv* f̂
and we may take Dre ̂  = Sf-*-1. It follows from (4.6) that

(4.8)

where 9:{Dn Y, S?-*-1}^!,"-?-1^ Y).
Let a e {X, Y} and consider the diagram

«#
> Hp(7)

(Dn«)#
(4.9)

where each 25n is an Alexander duality isomorphism4. In §10 we prove:

THEOREM (4.10). The diagram (4.9) is commutative.

In the diagram

>HP(Y)
eDn\ * I®"

S»-*-i(Z>n 7) _ L ^ H^^{Dn Y)
let T, T* denote the homomorphisms defined by

( 4 t l l )

where a:/S*-»- F, j8:Dn F - ^ / S ^ - 1 and w is a fixed generator of Hp{
( ( / S f f - * - 1 ) ) . It follows from (4.10) that

= ®mroc.>n a = (2>re a)* ©„« = Sn(

Hence we have proved:

COROLLARY (4.12). The diagram (4.11) is commutative.

If Ax, A2 are any spaces we define

A1vA2= (A1xaz)\j(a1xA2)cA1xA2,

1 i.e. £>„ is composed of the Alexander duality isomorphism HP(W)£Z fl""*"1^"— W)
and ,# : fl—'-'(S"- W)^iT"-'-1(X)n If) (TT = X, F). It follows from (4 . 1) that (2 . 1)
is a special case of (4 . 9).
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where ax e Ax, a2eA2 are what we call the base points for Ax \A%. We shall
use {Ak, «„) (A, /*= 1, 2; A ^p) to denote AxXa2 or a x x ^ 2 according as
A = 1 or 2. We describe sequences

of #-maps between polyhedra in Sn, as n-dual to each other if, and only if,
X* = DnX,, «.x* = Dn*k ( i = l , 2, 3; A = l , 2).

Let P1 ; P2 denote non-empty, proper subpolyhedra of 8n and let PK*
denote an n-dasA of Px (A= 1, 2). In §11 we prove:

THEOREM (4.13). With a suitable choice of base points, pkePx,
pk*ePk*, therearepiecewiselinearhomeomorphisms h, h', of Px vP2, Px* vP2*
into Sn, such that, if Xk = h{Pk, pj, Xk* = h'{Pk*, p*) ( A ^ M = 1, 2),
then the sequences

are n-dual to each other, where ik, i / are inclusions and pK, pk' are the
S-homotopy classes of the retractions in which XIL->X1r\X2, X^*-+Xx*r\X2*.

Let Y be (k— l)-connected and let dimX = p <2ifc—2 (k > 1). Then
{X, T} may be identified with [X, Y] in such a way that {/} = [/] for every
map f:X^- Y (see (7.2) in [11]). Since Sn—X is (n— p—2)-connected,
we may take DnX to be (n—p—2)-connected {e.g. DnX = the comple-
mentary complex to X in some triangulation of 8n). Then we may similarly
identify {Dn Y, DnX} with [Dn Y, DnX] if dimDn Y <2(w— p—2).
Hence it follows from (4.8) that

2) (4.14)

if 6xmDn Y <2(»— p—2), as is certainly the case if n > 2p+4.

5. Functorial presentation. In this section it is shown how the results
stated in the last section give rise to a duality in functorial form. Let £
denote an arbitrary collection of spaces. By the 8-category of 2 we mean
the category whose objects are the spaces in 2 and whose maps are all the
/Sf-maps between them. Let C, C denote ^-categories. We describe a
(contravariant) functor T: C -> C as linear if and only if the map

T:{X, Y}->{TY, TX)

is a homomorphism for every pair of spaces X, Y in C. T is called an
isomorphism {onto), denoted by T: G^, G, if and only if the object function
X->TX and the mapping function a~>Tx are both 1-1 correspondences.

Let Xn, XJn denote, respectively, the /^-categories of all polyhedra in 8n

and of their complements in Sn.
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THEOREM (5.1). There is a linear, contravariant isomorphism

such that, if i: X c Y, t': Sn~ Y c 8n—X,

then Cni = t {whence CnX = Sn—X) for X, YeXn.

Proof. We define CnX = Sn—X. Let a.:X->Y denote a map in
Xn and let iw:DnWc Sn— W where W = X or Y and Dn W is an n-dual
of W. Then we define

Cn a = ixDn(*)<?: Sn- Y^ Sn-X.

It follows from (4.7) that Cna. does not depend on the choice of DnX,
Dn Y, and the rest of the proof is left to the reader.

6. Weakly dual constructions. This section contains a theorem which
enables us to dualize a certain process, of which attaching a cell to a poly-
hedron or, more generally, a finite OTF-complex is a special case. We
first define a relation of " weak " duality between finite CTF-complexes,
which are not necessarily polyhedra.

Let X denote a finite OIF-complex. Then X is of the same homotopy
type as a polyhedron Xo ([15], p. 239). Moreover, we may take

= p, say, and Xoc82l>+1. In the diagrams

a a*
X —-*• Y X* < Y*

V f*| h * (6-1)

let W, W* (W = X, Y) denote finite GW-complexes, let Wo> Dn Wo denote
mutually dual polyhedra in Sn and let £, 17, £*, 77* denote ^-equivalences.
Then we describe W, W* as weakly w-dual to each other. If a is a given
<S-map we define first <x0 and then a* so that the diagrams (6.1) are com-
mutative. We shall sometimes write W* = Dn W, a* = Dn a, remembering
that the operator Dn, when thus defined, depends on g, 17, f *, 17*. Since
Wo may be chosen so that dim Wo = dim W = m, say, we can choose W*
(e.g. W* = Dn Wo — a deformation retract of Sn— W) so that dim W* <; n
and W* is (n—m—2)-connected.

Let j8e {Y, Z} where Z is a finite CJF-complex. Then it follows from
(4.2) that

2>n(j8a) = .Dn(a).DB(i8)

provided Dna., Dnfl are both defined in terms of the same 17, 17*.
From (4.3) it follows that Dn+1«. = 8Dnx and Dn+1Sa. = Dn«. if

Dn+1 a and Dn+1 So. are defined in terms of £j, -q, Sg*, 8r)* and Si, Si), £*, 17*,
respectively.
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It follows from (4.5) that DnDnfi = fi where pe{X, 7} or {7*, X*}
provided Dnfi is defined in terms of rj*-1, g*-1, <q-\ t 1 if fie {7*, X*}.

Thus (4. 2), (4. 3), (4.5) are valid for weak duality if £, -q, £*, -q* are
suitably chosen, which we shall always assume to be the case. We do not
assume that (4.1) is necessarily valid for weak duality when XczY [Cf.
(4.13) and (6.2) below]. However, we note that (4.1) is valid if X = Y,

Let X, 7 denote finite OFF-complexes a n d / : X - > 7 a cellular map.
A A

Let X denote a cone with vertex v0 and X as base (X C X). Assuming that
A

X, Y are disjoint from each other let Zf denote the CTF-complex obtained
A

from J u F b y identifying each xeX with fxe Y. The points in Zf will
be represented by ye 7 and (x, t), where xeX, tel, (x, 0) —fx, (x, 1) = v0.
Let SX = J*(»u!) ' ) , where v, v' are ordered as written, and let points
in 8X be represented by (x, s), where — 1 < s < 1, (x, —l) = v, (x, 1) = v'.
Define g: Zf-+SX by g{x, t) = (x, 2t—l), gY = v.

Let p = dimX, q = dim 7, r = dim Zf = max {p-\-l, q) and let
n > 2r+l. Then there are finite CJF-complexes X*, 7*, which are weakly
n-dualto.3L, 7and are such that X* is (n—p—2)-connected and dim 7* < n.
Since w > 2 p + 3 , whence n <2(»— p—1)—1, we have Dn{f}= {/*} for
some m a p / * : Y*->X* ([11], §7), which we assume to be cellular. Let
Zf and g' :Zf->SY* be defined in the same way as Zf and #. Let

, i':X*czZf. Then, writing Zf=Z, Zf. = Z*, we have

and it follows from (3.3) that 7, SY*, likewise SX, X*, are weakly
(w+l)-dual to each other. In §13 we prove:

THEOREM (6.2). Z* is weakly {n-\-l)-dual to Z (n ^ 2 dim Z-{-l) in
such a way that

Dn+I{g}={i'}. (6.3)

Let f, rj, £*, rj* be the ^-equivalences used, as in (6.1), to define Dn{f}.
Then in (6.2) it is to be understood that £, -q, £*, rj* are given and that
Dn+1{i] and Dn+1{g} are defined in terms of t\, S-q* and 8£, £*, together
with a pair of ^-equivalences £: Z->Z0, l*:Dn+1Z0-+Z0*, where Zo is a
polyhedron in 8n+1 [see (13.2) below]. On replacing £, t* by — I, I* or
I, —£* we have a weak duality between {i}, {g} and {g'}, —{*'}• If there
is an ^-equivalence d:Z->Z such that 6{i}=—{i}, {g}Q={g}, th e n

1,8, ^* determine a weak duality between {i}, {g} and {g'}, {i1}. It follows
from (13.1) below that this is the case if 2{/} = 0, e.g. if/ is constant.
Hence one can use (6.2), with a constant/: X1 -> 8X2, to prove a weak form
of (4.13).

Theorem (6.2) can be used to dualize some of the constructions which
are fundamental in combinatorial homotopy. Consider, for example, the
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process of attaching a (p+l)-cell to a finite CTF-complex Y by a map

f:S*>->Y(fSP<zYi>). The dual process consists of attaching F* to
S^-P-I by a "dua l" map f*:Y*->Sn-^-1. We may assume that
/ * Y*n~p-2 is a single point and the result is then a CJF-complex, which
is weakly (n-\- l)-dual to the one obtained by adjoining the (p-\- l)-cell to Y.
Let Y be a finite, (k— l)-connected CTF-complex of at most 2k—I dimensions
which has been constructed by attaching cells one at a time. Assume
that the isomorphism (4.14), for the appropriate values of n, p, has been
calculated at each stage. Then this construction can be dualized to give
a weak g-dual of Y for a sufficiently large value of q.

Examples. Let P2 denote the real and Mi the complex projective
planes and let

pk+1 = jgk-l p2 Mk+2 = gk-2 Mi (jfe > 4).

Then Pk+1 is of the form Zf where X, Y are ^-spheres and / : X-> Y is of
degree ±2. We may take X*, Y* to be (n—k—l)-spheres a n d / * will
then be of degree ±2. Hence, with a suitable choice of/*, Zf, = Pn~k.
Similarly Mk+2 = Zf, Zf* = Mn~k, where Y is a ^-sphere, X a (&-|-l)-sphere
and/is essential. Thus we describe P2, Mi as self-dual " up to suspension "
and it follows from (4.14) that

7Tk+i(M
k+*) «V^(M') (6.4)

provided
As another example, let

Qk+2 = 80
kve,l+lyjel+2,

where the spheres 8^, 8l+1 have a single common point, ek+2 is a
(fc+2)-cell attached to 81

kvSk.+1 by a map Sk+1-^S1
k^Sl+1 which is

essential in S^ and of degree ^ m over Sl+1, and e\+x, e§+2 are attached to
80

k by maps which are, respectively, of degree ^ m and essential. Then
Qn-k j s weakly (n+l)-dual to Qk+2. Therefore

W < 3 f c + 2 ) ~ ^ ' ( £ r ) (*>» + 2; r > 2 t + 2 ) . (6.5)

Weak duals of the other elementary ^4re
2-polyhedra ([4]) can be con-

structed without difficulty. Therefore (6.2), (4.13) provide an effective
method of constructing a weak #-dual of a given j4w

2-polyhedron

7. Applications. We present some consequences of the results stated
in the preceding sections.

THEOREM (7.1). The cohomotopy groups TT{(X) (dimZ<2i—2) of a
finite CW-complex X are finitely generated.

E
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This follows from Prop. 1 on p. 491 of [9] and (4.14) [or induction on
the number of cells in X and the exactness of the cohomotopy sequence
of (X, X—e) where e is a principal (open) cell of X].

THEOREM (7.2). Let Gv G2, ... denote a sequence of finitely generated
abelian groups of which all but a finite number are zero. Then, for a sufficiently
large q, there is a (finite) polyhedron P such that ifi+i(P) ^ Gtfor every i ̂  1.

Proof. Let Gt = 0 if i>l^0, let p^2l+l, and let X denote a
^-dimensional polyhedron [16] such that fly(Z)£2Gp_( for — co<i<p
[7r,.(X) = 0 if * < 0 ] . Let k = p-l^l+l. ThenZis (k—l)-connected
and

Let XcSn and let P denote an w-dual of X, where n^2p+2. Let
q = n—p—1. Then dim P ^.n, whence ns(P) = 0 if j >n, and it follows
from (4.14) that

77«+'(P)« VjJiX)« Gt (i>l).

Let A, B denote finite CW-complexes and, for any integer I, let

{A,Bh={&A, E] or {A, B~>B}

according as I > 0 or I ^ 0 . For q sufficiently large let DqA, DqB denote
weak g-duals ofA,B. Then if I > 0 it follows from (3.3) that we may take

Dg+lS'A = DqA, Dg+lB = S'DgB.

From this and a similar observation if I ̂  0 it follows that

Let f:X-+Y, Z=Zf and g:Z->SX be as in (6.2) and letiiYCZ.
Let Q denote any finite CJF-complex. Then we have sequences

...~+{Q, X}t-^ {Q, Y}cX {Q, Z}{% {Q, X}^->..., (7.3)

...-*{Y, Q}A{X, Q)A{Z, QU^{Y, QU~>..., (7.4)
where f#, / * , t # , etc. are the homomorphisms induced by/ , i, g and their
suspensions, composed with 8'1: {Q, SX}^ {Q, X}i_x if l> 0 in the case
of g# and with 8: {X, Q}iX {SX, Q},_x if I < 0 in the case of g*.

For n sufficiently large let Q* denote a weak %-dual of Q and let (7.3)*,
(7.4)* denote the sequences analogous to (7.3), (7.4) with/, Z, Q replaced
b y / * , Z*, Q*, where/*, Z* mean the same as in §6. Then it follows
from (6.2) and (4. 3) that the diagram

> {Q,Z}l-^->{Q,X}l_1

Dn+l
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where each Dg is a weak duality isomorphism, is commutative up to sign.
The same applies when I < 0 except that the two left-hand isomorphisms
are replaced by Dn_t and the two on the right by Dn_l_v We express this
result as:f

j THEOEEM (7.5). The sequences (7.3), (7.4)*, likewise (7.3)*, (7.4),
; are weakly dual to each other up to sign.

I The sequence (7.4) is isomorphic to the direct limit under suspension
' of exact sequences of a kind introduced in [3]. Therefore (7.4), and

hence also (7.3)*, likewise (7 .4)* and (7.3), are exact. In particular,
if Q = 8°, then (7.3), (7.4) are, respectively, isomorphic to the
$-homotopy and the $-cohomotopy sequence of the pair (Z, Y).

Y).]

8. Polyhedral mapping cylinders. Let X, Y denote polyhedra and
/ : I - > 7 a map such that fx = x if xeXr\ Y. By a polyhedral mapping
cylinder for / we mean a polyhedron P, containing I u T , of which Y is a
deformation retract such that n ~ / , vel.XrtY, where i-.XdP and
r:P->Y is a retraction. If P is a polyhedral mapping cylinder for/ ,
so obviously is SP for 8f. If Xr\ Y = 0, then P may be described as a
polyhedral mapping cylinder for [/]. Let r = max (dimJf+1, dim Y).

LEMMA (8.1). There is a polyhedral mapping cylinder P, for f, such
that dimP

Proof. Assume l u Y to be triangulated as a simplicial complex with
subcomplexes K, L covering X, Y. Then there is a subdivision Kx of K,
in which no simplex of Kr\L is subdivided, and a homotopy/ ̂ / x , rel. Kr\L,
such that / x is simplicial with respect to Kx and L ([13], p. 289). Let the
vertices of Kx be ordered and let KX\JL be imbedded as a subcomplex of
a simplex o1'. For every simplex a of Kx with vertices a0, ..., ap, ordered
as written, let

P. = Uf=0 a0... aJM).. .Map)
(if v0, ..., vq are vertices of a", then vo...vq denotes the smallest simplex
of cr̂  which contains them, even if they are not distinct). Let

P = Lyj U Pa.

Clearly KX^JLCP. Let i:Kxc P. Then a simplicial retraction r:P^L
such that n = / 1 ; is defined by ra=f±a for every vertex a of Kx. Also

It remains to prove that L is a deformation retract of P . Let
x0, ..., xq denote the vertices of Kx—K^L, correctly ordered, and let
P(A) denote the union of all the simplexes of P which do not contain any of
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xk+1, ...,xr Then

L = P ( - l ) c . . . c P ( A - l ) c P ( A ) c . . . c P ( g ) = P.

If a is a vertex of K1r\P(X) which comes after xx, then aeK^rsL whence
f1a = a. It follows that for A ^ 0 every simplex of P(A) which contains
xK is of the form

where ao...xxy1...yk is a simplex of Kv This is a face of

a0...xj^xjf^)...fx{yk).

Therefore the link of xK in P(A) is the join of /i(#x) and the link of xxfi(xx).
Hence it follows that there is a homotopy gt: P(A)-*-P(A—1), rel. P(A—1),
such that g0 = 1, gx P(A) = P(A— 1) and gt(xk* a) = x(t)*ofor every simplex a
in the link of xx, where x(t) is the point which divides x^f^Xx) in the ratio
t:\-t. Therefore P(A—1) is a deformation retract of P(A). Hence it
follows from a downward induction on A that L is a deformation retract
of P and the proof is complete.

Notice that, if X, Y C Sa, where q ̂  2 r+ l , then we may assume that

9. Proof of (4.1), ..., (4.5). We prove the existence of a map
Dn:{X, Y}-+{DnY,DnX} having properties (4.1) through (4.5) by
stages. First a certain map An:[X, Y]^{DnY, DnX} is denned and
this is used to define Dn. The map Am is, in turn, defined first for the case
J r i 7 = 0 and then extended to the general case.

A. Definition of An: [X, Y] -> {Dn Y, Dn X} when Xr\Y= 0.

Let X, Y denote polyhedra in 8n with Xr\Y= 0. Let DnX, DnY
denote arbitrary, but fixed, n-duals of X, Y and let f:X-> Y be given.
Let P c Sq (q^n) be a polyhedral mapping cylinder for [/]. It follows
from (2. 2) that there are g-duals X*, P*, 7* of X, P, Y such that

P * C l * n 7 * DqW = S*-nDnWczW* (W = X,Y). (9.1)

Then DqX is an ^-deformation retract of X* and, by (3 .1), so is P * of Y*.
Therefore we have

DgX+-X*tp*£Y*^DQY, (9.2)

where t, 1* are ^-inclusions and p, p* are ^-retractions by deformation.
We define

IX*, P*. 7*I = S^{pi*P* t)e {Dn 7 , DnX), (9.3)

where S«-n: {Dn 7, Dn X) X. {Dg 7, Dg X} and 8*~< = (fl*-»)-i. Notice
that, if DaYcP*, then P *- 1

t ' = l) where ^ ^ Z c P * (N.B.:
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Similarly if Dq YcP*r\DaX, then

Our immediate objective is to show that |X*, P*, Y*\ depends only
on [/] and not on the choices involved in its definition.

Let PjC/S'9 denote a polyhedral mapping cylinder for [/] and let
X#, Pj*, 7* denote g--duals of X, P1; 7 which satisfy (9.1). Assume
that X#cX*, P^cP*, Y#<zY* and consider the diagram

-# ' p*

(9.5)

X* < P*

in which the top line is the analogue of (9.2) and t1; i2, i3 are inclusion

$-maps. We have <-1p*~1 = p*~x i2,i2, whence p* i1 = i2p*. Similarly
p' = pi3 and so the diagram is commutative. Therefore pi* p* i = p i* p# i
and, in this case,

(9.6)\X*t p*, 7*| = |X#, Px*, T*\.

(a) Independence of the choice of X*, P*, 7*.

Suppose X*, P#, 7* also satisfy (9.1) relative to P. It follows from
(2.2) that there are ^-duals X**, P**, 7** such that p * * c X * * o 7 * *
and Z** z>Z*vZ# for Z = X, P, 7. Therefore, from (9.6) with Px = P,

= |X#, P#, 7#|

and we write \X*, P*, Y*\ = An(P, q).

(b) Independence of the choice of q.

Let r > q and let An(P, r) be defined by (9.3) when (9.2) is replaced
by its (r—q'J-fold suspension". Then, obviously,

AB(P,r) = An(P,?) = An(P), say.

(c) Independence of the choice of P.

Let P X C ^ denote another polyhedral mapping cylinder for [/].
By (b) above we may take p = q and if P C Px it follows from (2 .2) that
there are ?-duals X*, P*, Pj*, 7* as in (9.5) with X# = X*, Y* = 7*.
Therefore An(P) = AB(PX) in this case.

If P, Pj are arbitrary let P2 c ^ (r > j) denote a polyhedral mapping
cylinder for [/] (Gf. §2) such that P2^Pfc = X ^ 7 , where fc = O, 1 and
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Po = P. Let ix:Xc Pk, jx:Yc Px and let rx: Px -> Y denote a retraction
(A = 0, 1, 2). Then jKr, ~ 1: PK C Pk and

»*—J»/—i«r«*« —»« (k = 0, 1).

Therefore it follows from the homotopy extension theorem that
j2rkc^.gk:Pk-^P2 where gk maps X^ Y identically. Let Qk denote a
polyhedral mapping cylinder for gk [which exists by (8.1)]. Since Qk

retracts onto P 2 which retracts onto Y with r 2 i 2 ~ / , it follows that Qk

is also a polyhedral mapping cylinder for [/]. Hence it follows from the
preceding paragraph that An(Pk) = An(Qk) = An(P2). Therefore

and An(P) depends only on [/].

(d) Properties of the map An: [X, Y] ~>{Dn Y, DnX).

We write An(P) = An[f], thus defining a map

An:[X,Y]^{DnY, DnX}. (9.7)

If m > 0 we have X, YaSncSn+m and it follows from (9.3), with
q > n-\-m, that

An+m = 5*A n : [X, Y] -> {5»Dn Y, S™DnX}. (9.8)

Let g: Y -> Z where Z is a polyhedron in Sn— (XKJY). For q sufficiently
large let Pr\Z = 0 and let QC^« be a polyhedral mapping cylinder for
[g] such that Qr\P= Y. Evidently PKJQ is a polyhedral mapping
cylinder for [gf]. Let X*, P*, Y*, etc. be as in (2.2) and (9.1) and
consider the diagram

where tx, p^1 are inclusions. Arguments similar to those used above show
that the diagram is commutative. Therefore

S^An[gf] = PollPlc0 = Pot2p2u-1 L3p3c0 ( . : i ) , r c 7*)

whence
An [«/•] = An[/]An[sr]. (9.9)

B. Definition of An in general.

Let / : X-> Y, where Z , Y denote polyhedra in 8n, with I n T arbitrary,
and let Dn X, Dn Y denote fixed w-duals of X, Y. For a sufficiently large

let XXC8*—{X\JY) denote a (polyhedral) copy of X. Let
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denote a homeomorphism (onto) and define

4»(EA Ai) = ^ ( V A J WK1!) e {A* F, />.*}, (9.10)
where Aa refers to Da JF = Sq-nDn W for JF = X, Y. It follows from
(9.8) that An([f], hj) does not depend on q. We shall now show that it
does not depend on the choice of hv

(e) Independence of the choice of hv

Let Zac8«— (Z«-»Y) also denote a copy of X and let h2:X->X2

denote a homeomorphism. First assume that X1nX2= 0. Then it
follows from (9.9) that

whence An ([/], Ax) = An([/], &a) in this special case.
For the case where Xtr\X2 is arbitrary let X3 c 8* denote a copy of X

disjoint from X±<JX2 as well as X\J Y and let h3:X->X3 denote a homeo-
morphism. Then by the above

], K) = An([/], ha) = An([f], h2),

so we may define An[f] = AB([/], hj). It follows from (9.10) and (9.9)
that Au[/] is the same as in A if Xn> Y= 0. Hence we have defined
(9. 7) for every pair of polyhedra X, Y C 8n.

(f) Properties of An.

It follows from (9.8) and (9.10) that (9.8) is satisfied even if
Xr\Y^0. Le t / :X->7, g:Y-+Z, where X, Y, Z denote polyhedra
in 8n. Let hx: X->-Xv Tcx: Y-> Yx denote homeomorphisms where
Xv Yt c Sa are polyhedra, disjoint from each other and from X, Y, Z.
Then it follows from (9.9) for the pairs of maps

xx — > rx — > z, A! — > i — > *!

that A8[AJ Aa[gfh^] = Aq\

= Ag

so (9.9) holds in general.
Let i:Xc Y and let i':Dn Y<zDnX. Let Z x / = P t be piecewise

linearly imbedded in 8q—(DqXvDgY) (e.g. as part of the cone
X*vq', q>n) so that (x, 0) — x for every xeX and P1f*»F = X Let

Then P1; P are mapping cylinders for hx, ihj;1. Since DqXc8a—Px

and X, Xx are deformation retracts of Px, we may take DqXx — DaPx = DqX.
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Also Dq Y C 8Q—P and in (9.2), with X replaced by Xx, we may assume
DgYcP*. Since DqYaDqX and DgX = DgP1 = DgX1, it follows
from (9.4) that

gX, AJAJ:DqXcDSX.

Therefore Ag[i] = $«-» t' : Dg Y C DgZ, and it follows from (9.8) that

An[t] = t ' : 2 ) B r c Z ) B Z . (9.11)

In particular, if t : X CX, then Are[*] :DnX<ZDnX. Hence, using (9.9)
and (9.11), it follows that, if X is a deformation retract of Y and r:Y->X
is a retraction, then

An[r] = ^:DnX-+DnY. (9.12)

LEMMA (9.13). Let X, Y denote polyhedra in Sn and letf:X-> Y. If
q is sufficiently large, then f is homotopic to a product of inclusion maps and
retractions by deformation between polyhedra in S9.

Proof: We have / = {fhi1)^, where hx means the same as in (9. TO),
and (9.13) follows from (8.1), applied successively to hr and fh^1.

LEMMA (9.14). If f:X-> Y, where X, Y are polyhedra in Sn, and if
Dn+1 SW = Dn Wfor W = X,Y, then &n+1[Sf] = A J / ] .

Proof: Let r > n and let 8r denote the suspension operator defined by
taking joins with 8r°, applied to polyhedra in $r~x and maps and $-maps
between such polyhedra. Thus Sr W = W *Sr° and 8rf=f*er where
er: 8r° c 8r°. If q is sufficiently large it follows from (9.13) tha t / i s homo-
topic to a product of inclusion maps and retractions by deformation in 8q.
Ifi:X1cX2, then 8a+1 i: 8q+1 Xx c 8g+1 X2 and if r: X3 -> Xt is a retraction
by deformation, so is Sg+1r (X^cS9). Therefore it follows from (9.11),
(9.12), and (9.9) that

Let h denote the linear map of i?° onto itself which is defined by
hv'n+i = va+i, hv'g+1 = v'n+1, hv/ = v/ if j ^n+l,q+l. For every A c 8*+1

let hA : A -> hA denote the homeomorphism determined by h. Then an
isomorphism

A, : {A, B)« {hA, hB} {A, Be. S^1)

is defined by h% a = {hB} a {A^}"1. If g: A -> B, let

gh = hB ghj1: hA -+ hB.

It is easily verified that AQ+1[gh] = h% \+1[g]; also that 8n+1 W — h8g+1 W,
$n+if= (Sa+1f)

h and, if

= Sa... 8n+1fi, StnP = Sq+1... Sn+2p,
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where pe{DnY, DnX}, that5 hH.S«-nP = Sl~nh^^ = Sf-np. Hence it
follows from (9. 8) and (9.15) that

[^+ 1/]) = Ag+1[Sn+1f] = A,+1[(^+1/)"]

whence An+1[Sn+1f] = AB[/].

C. Definition and properties of Dn: {X, Y] -> {Dn Y, Dn X}.

Let g:SmX->8mY denote a map representing a given ae {X, Y}. It
follows from (9.14) that an element a.*e{DnY, DnX}, depending only
on a, is denned by a* = Am+n[g] with Dm+n SmW = DnW for W = X, Y.
We define Dn: {X, Y}-^ {Dn Y, DnX} by Dn a = a*. Then (4.1), (4. 2),
(4. 3) follow from (9.11), (9.9), (9. 8) and the definition of Dn «.. (4.4) is
an immediate consequence of (9.13) and the other properties of Dn.

To prove (4. 5) note that if as {X, Y} or {Dn Y, DnX) it follows from
(4.3) that, for q^n, DqDq* = DqS«-"Dnz = DnDn*. If Xv Yv Zx

are polyhedra in S9 and if axe {Xlt Y^, /^e {Yt, Zx} and DqoLv D^ refer
to the same Dq Ylt then

Hence (4.5) follows from (9.13), (4.1) and the fact that Dgr
1= t'-J if

i:X±c Yx is an /^-equivalence and i :DqYxcDaXv

10. Proof of (4.10). We observe that if q > n and

DqW= S«-nDn W (W = X,7),

then Dqo. = Sq~nDn a, by (4. 3), and the diagram

i(DnX) _ ^ _ > Hn-P~i(Dn Y)

j I gq-n

i(2)flX) —^—^ R*-v--L(Pq Y)

is commutative. Moreover ([5]), Sq~n£>nu = ®9u for «8^g(Jf) . It
follows that the integer n in (4.9) may be replaced by an arbitrary q > n.
By (9.13) we see that it suffices to prove (4.10) in the case t : I c 7 , If
(4.10) is true for one pair of w-duals DnX, Dn Y, it is obviously true for
any other. Therefore (4.10) follows from the commutativity of (2.1).

5 Since the operator St is defined by a geometrical construction in R" we have
Si Sj = Sj St. (N.B.—Except for the ordering of «,-, «/ there are no orientations to be
considered.)



74 E. H. SPANIER and J. H. C. WHITEHBAD

11. Proof of (4.13). Let P, P' denote disjoint polyhedra in Sq and
Av ..., Am polyhedra whose union is Sq. For every non-empty subset, T,
of (1, ...,!») let ^ T = HA,.

• ET

LEMMA (11.1). / / P'r\AT is an S-deformation retract of A7—P for each
T, then P' is q-dual to P.

Proof. The lemma is trivial if m = 1. If m > 1 let B = AX\JA% and
let G be either Sq or, if m > 2, AT, where T denotes a non-empty subset of
(3, ..., m). Then we have triads (P'r\Br>C; P'rsA^C, P'r\A2r\C)
and {(Br\C)—P; (A^Cj—P, (A2r\C)—P) each of which can be
triangulated to form a C TF-complex and a pair of subcomplexes. Therefore,
it follows from the hypothesis of (11.1) and the 5-lemma ([6], page 16),
applied to the Mayer-Vietoris sequences6 ([6], page 39) of these triads, that

where t# is the injection. Therefore P'r\Br\C is an /^-deformation
retract of {Br\C)—P and Av ..., Am may be replaced by B, A3, ..., AM.
The lemma now follows by induction on m.

By a polyhedral n-element (in i?°°) we mean a piecewise linear homeo-
morph of In. Let Kn be the standard triangulation of Sn defined in §2,
let ao

n be a simplex of Kn and let an be a rectilinear simplex in ao
n—bo

n.

LEMMA (11.2). Sn— (an—bn) is a polyhedral n-element1.

Proof. Let Eo
n = Sn- (cr0

n-b0% Pn = <rQ»- (a*—a*) and let

x= (0, 0, ...)

On projecting from an inner point of an it follows from Theorem 5 in [12]
that J80

n, Pn are piecewise linearly homeomorphic to x*ao
n, Eo

nxl
respectively. (N.B.: ao

n = Eo
n.) Therefore Eo

n, likewise Eo
nKjPn, are

polyhedral ^-elements. But Eo
n\jPn = Sn—{on—an) and (11.2) is

proved.

As obvious, and well-known, corollaries of (11.2) we have:

COROLLARY (11.3). Let Ex
n, E2

nc.8n be polyhedral n-elements such
that E-? \J E2

n = Sn and Ex
n o E2

n = Ex
n = E2

n. Then there is a piecewise
linear homeomorphism h :8n-+8n such that han = E^1.

6 Let A denote a subeomplex of a OF-complex X. Then Hr(X, A) may be calculated
combinatorially in terms of the cells in X— A. Thus the homology groups of (X, A) may be
regarded as the homology groups of the " open subeomplex " X—A. Therefore the strong
excision theorem ([6], p. 165) is valid in the category of OPT-complexes and subcomplexes.

7 This is a special case of Theorem [14 . 2] in [1] {of. Theorem 5 in [12] and §15 in [1]).
We indicate an ad hoc proof, leaving some details to be supplied by the reader.
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COROLLARY (11.4). Let a, b and a', b' be pairs of distinct points in
Sn~x. Then there is a piecewise linear homeomorphism h: Sn~1-:>-8n~1 such
that ha = a', hb = b'.

We now prove (4.13). It is trivial if n = 0 so we assume that n ^ 1.
Let Ex

n = 8n~x * vn, E2
n = S"-1 * vn' and let a, a* be distinct points in 8n-\

We proceed to prove that there is a piecewise linear homeomorphism
fx;8

n->8n (A= 1, 2) such that

fx(PxvPx*)<zEx
n, 8n~^fxPx = a, 8n~1^fxPx* = a*. (11.5)

Since PX\JPX* is a closed, proper subset of 8n there is a simplex an, which
is interior to some simplex of Kn and does not meet PX\JPX*. Let
En = 8n—(an—an). Then it follows from (11.2), (11.3) that there is a
piecewise linear homeomorphism 8n-+8n which interchanges En and an.
So we assume from the outset that PXKJPX* Can—an. Let Ro

nC Bx be
the linear »-space which contains an and let 8 be the Euclidean distance
function which Bo

n derives from Hilbert space. Let pxePx, px*ePx*
be points such that 8(px, px*) = 8(PX, Px*) and let Vn be the interior and
boundary of the metric ^-sphere in Ro

n which has pxpK* as a diameter.
Then Vnr\{PKvP)*) =pkvpK* and Vnr\an is a convex subset of an.
Hence there is obviously an %-simplex oJlcVnr\on which has pk, pK*
among its vertices. Therefore it follows from (11.3), (11.4) that there
is a piecewise linear homeomorphism fK :8n-+8n such that

fk ax
n = E« (A # M = 1 or 2), fkpK = a, fkpx* = a*.

Clearly fK satisfies (11.5).
We take pk, px* to be the base points for P1 v P2, P±* v P2*. Then

piecewise linear homeomorphisms h, h', of Px vP2, Px* vP 2 * into 8n, are
defined by

qsP2),

h'(p*,p2*)=f1p*, h'(Pl*,q*)

Let Xk = / x PK, Xk* = / x Px*. Since Px* = Dn Px it is an ^-deformation
retract of 8n—Px. So therefore is Z x * of 8n—Xk, whence Xx* is rc-dual
to Zx. Evidently S"-1—a is a deformation retract of E^—a, whence
Ex

n—Xk is a deformation retract of Sn—Xx. Therefore Xx* is an
^-deformation retract of Ex

n—Xx. Also a* is an ^-deformation retract
of 8n~1—a and it follows from (11.1) that X1*v~<.X2* is rc-dual to X1<^X2.

Let Kn be a triangulation of E™, which has a for a vertex, and let
ApCKp be the subcomplex complementary to a. Let the mesh of K,,
be so small that X,*cA^ Since Ef—a is contractible, so is A^. We
have A? C 8n—Xx, A^X)* = a*. Hence it follows that X,* is a deforma-
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tion retract of AUKJXX* and that A^X^* is rc-dual to XA. Therefore
A* *A = / > A ' V = /»*'. where

are the inclusion and the ^-retraction by deformation. Similarly
Dn ix' = px and (4.13) is proved.

12. Proof that Dn is a homomorphism. Since S: {X, Y}~{8X, 8Y}
and Dn = Dn+1 S, by (4. 3), we may replace Dn by

Dn+1:{SX,SY}^{DnY,DnX}.

Therefore we may assume to begin with that 1 / 0 and, since Dn may also
be replaced by 8Dn, that X ^ Sn. Let X =£ 0 or Sn and let

, ix, Px, »*', />/ be as in (4.13) with

Let hx: X->XX be a homeomorphism onto Xx, let pA = {AA} and let

On considering the track addition of maps ^(X1>-'X2)->>8'(X1v^X2) it
follows without difficulty that

Similarly, and from (4.13), it follows that

. (12.1)

Let av a.2e{X, Y} be given and let fK: SkX-+Sk Y (k > 1) be a map
representing <xx such that fkS

kxk = vn+k, where a;̂  = h^iX^X^). Define
^:/8f*(Z1^Z8)->i8*r by gx=fx{8kh^)x if « I X and let yiZx
be the £-map represented by g. Then yix = «x)8r1» whence fi
Therefore

+ ( ^ 8 = yi3. (12.2)

Obviously ftiA:I»dA and ^ ^ = 0 if M #A. Therefore & =
whence ytx/oA^ = aA. Hence it follows from (12.2), (12.1) that

and the proof is complete.
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13. Proof of (6.2). Let A, B, A', B' denote CW-complexes, let
f:A-+B,f':A'->B' be cellular maps and in the diagram

{/'} ^
A' ---> B'

let a, )8 denote #-maps such that /?{/} = {/'}a. Let Zr, ^ / be defined as
in §6, likewise g:Zf-+8A, g':Zf-+8A'.

LEMMA (13.1). There is an 8-map l:Zf-^-Zf' such that the diagram

B-^Lz^LsA

B' • Z r •SA'

is commutative, where i: B c Zf, i': B' C Zf. Furthermore, if a, /3 are
8-equivalences, so is £.

Proof: It is easily verified that 8Zf = ZSf. Therefore we may replace
the above diagrams by their &-fold suspensions for any 1c ^ 0. Hence
we may assume that a = {u}, /? = {v}, where u: A ->A', v.B-^B' are maps
such that vfc^f'u. This being so, let ht:A->B' be a homotopy such that
h0 = vf, hx = / ' u . Then a map w: Zf-+Zf is defined by wb = vb if b e B
(whence wi = i' v) and

(a, 0 =
; if 0 <

, 2t—l) if i < t f < l

for a&A. Let p, p' denote the (ordered) poles of SA''. Then
(8u)gB = g' wB = p and

(8u)g(a, t) = Su(a, 2t—l)= (ua, 2t—l),
rp if Oi

g'w(a, t) =
(ua, U—3) */

Hence, obviously, (8u)g ~g'w and the first part of the lemma follows on
taking £ = {w}.

To prove the second part consider the sequence

where / # , i#, gr# are the homomorphisms induced by /, i, g. It follows
without difficulty from the excision theorem that this sequence is
isomorphio to the homology sequence of the pair (Zf, B). Therefore it
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is exact. Also it is natural with respect to a#, /?#, £#. Hence, if a#, /?#
are isomorphisms onto for every q, so is £#, by the 5-lemma. Therefore,
if a, ft are /^-equivalences, so is £ and the proof is complete.

We now prove (6.2). In (6.1) let a = {/}, a* = {/*}. Then we have
to prove that there are ^-equivalences £, £* such that the diagrams

r -^> £ -^> iSfz #r* ^— z* ^ - - z*
, k \S€, t ^* ft* tf* (13.2)

\ * u * i — A * I u* '

r0 —> z0 -^-> ̂ z0 ^r0* <— z* +— x0*
are commutative, where Xo* = DnX0, Yo* = Dn Yo, Zo, Zo* are mutually

polyhedra in Sn+1 and \* = Dn+1\, n* = Dn+1fj.. Let
rj1:Y^^Y1 be ^-equivalences, where Xx, Y1 are polyhedra

in iS", and let

Let DnWx be any w-dual of W± (W = X, Y. Possibly W1=W0,
Dn Wj. ^Dn Wo). Let (6.1)', (13.2)' denote (6.1), (13.2) with £ , , £*,
7*, A, /i replaced by &, 17̂  ^*Z>TĈ , -q*Dn<t>> ty~\ (se)f^- Then it follows
from (4.2) that (6.1), (6.1)' define the same Dn{f} and that (13.2)' are
commutative if, and only if, (13.2) are commutative. Therefore we may
choose £, rj and the w-duals DnXQ, Dn Yo to suit our convenience.

Since n > 2 dim Z+l there are disjoint polyhedra Xo, Y' c 8n of the
same dimensionalities and homotopy types as X, Y. Let

u:X-+X0, v.Y-^Y'

be homotopy equivalences, let u' :X0->X be a homotopy inverse of u and
let /„ = vfu' :X0->Y'. Let Fo c Sn be a, polyhedral mapping cylinder for
f0 (N.B.: dimro = dimZ) and let £={«}, i\ = {ty, where l:Y'cY0.
Then

Thus t, {fit1 = {j }, where j : XocYo. Let

Let ^ft+i(i3) denote the {n-\-1 )th coordinate of a given point p e i2°°. We
represent points in <Sn+:1 by (a, *), where a = (a, 0) s Sn and * = 2tn+1(a, s)
((o, «) e a * £°+1) . Thus (a, — 2) = wB+1, (a, 2) = < + 1 and if AcSn we
imbed . 4 x 7 in Sn+1 so that (a, <)e<Sw+1 has its usual meaning i
(aeA, tel). We write AxI = Aj, Axl = Ax and

Let X0*c8n and 7 o * c I 0 * be w-duals of Xo, Yo, let Wr
1*= (JT0*)i

andletA:X1*->X0*bedefinedbyA(a;, l) = x(xeX0*). Letj*:Y0*(zX0*,
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/ = h-ij*: T0*~>Xj* and let

Clearly Xo*xl czSn+1—SX0 and since Z o * is (w+l)-dual to SX0 so is
X*XI and hence also Xj*. Moreover {h} is (n+ l)-dual to i: £X0 c £X0.
Since the right-hand diagram in (6.1), with <xo= {j}, Dnx0= {j*},
<** = {/*}> is commutative, so is

{/*}

x r 0 *
In (11 .1) let P = Zo, P' = Zo* and let Av ..., Am denote

Sin*v'n+1, Sf, Sn*vn+1 (q = n+1, m = 3).

Then a homotopy ht: SI
n—Z0-+SI

n—Z0, rehS^—X^ such that

h0 = 1, A,(Z0*r»flfj») C

and A1(flfI«-Z0) = 5 1 » -Z 1 , ft1(

is defined by A,(a, «) = (a, (l—t)s+i), for (a, s)eSI
n~Z0. Since Zo* is

an >S-deformation retract of 8n~X0, so is Xx* of S^—Xj^ and it follows
that Z0*r\SI

n is an ^-deformation retract of S^—ZQ. It is obvious that
•Z0*o.4T is an /^-deformation retract of AT—Z0 for the remaining sets T.
Therefore it follows from (11.1) that Zo* is (»+l)-dual to Zo.

We have

where i0, i0' are inclusions and g0, g0' are defined in the same way as g, g'.
In (13.2) let A = {i0}, /x = {g0}.

Let D'n+1 Yo = (Tj*# vn+1)^(Sf*v'n+1). Then Z>;+1 Fo and 8Yo* are
both (n+ l)-dual to Fo. Let »x: Zo* c D'n+1 Yo and let r:D'n+1 Y0^SY0*
be defined by

^.)=K o > ( 4 > + 2 ) / 8 ) f 7 ' f ^ 1 '
Then A* = Dn + 1 {*<>}= H ) . But rix = wgj, where w: /Sro*->/S7o* is
the "reflexion" which interchanges y*vn+1, y*v'n+1, with wy = y, for
every ye Fo*. Clearly H ' } = - { ? o ' } . whence —A* = {g0'}.

Similarly -D '̂+i{*0'} = {fi'o} ( n o t "~ {̂ o} because the " vertex " of Zo is
v'n+1 and the analogue of r maps Yo on vm+1), where X>̂ '+1 refers to

; + I O V

Let (13.2)x denote (13.2) with Xo*, |*, ^* replaced by Xx*, £*{h},
u*{h\, where {fy means the same as in (13.3). Since {h} is (w+l)-dual to
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t: 8Xocz8Xo we have fi* {h} = B'n'+1{g0} = {i0'}. Therefore, and since
—A*={<70'}, {j} = ^]{f}i~1 and (13.3) is commutative, it follows from
(13.1) that there are ^-equivalences £, £* such that the diagrams (13.2)x

are commutative. Hence, obviously, (13.2) are commutative and (6.2)
is proved.

Notice that, if the parts played by vn+1, v'n+1 in the above argument
are interchanged, so that Zo, Zo* are reflected through 8n, then we are led
to a weak duality between {i}, {g} and {g'}, —{*'}•
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