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preface

The text which follows is based mostly on lectures at Princeton University in
1957. The senior author wishes to apologize for the delay in publication.

The theory of characteristic classes began in the year 1935 with almost simul-
taneous work by Hassler Whitney in the United States and Eduard Stiefel
in Switzerland. Stiefel’s thesis, written under the direction of Heinz Hopf, intro-
duced and studied certain “characteristic” homology classes determined by the
tangent bundle of a smooth manifold. Whitney, then at Harvard University,
treated the case of an arbitrary sphere bundle. Somewhat later he invented the
language of cohomology theory, hence the concept of a characteristic cohomology
class, and proved the basic product theorem.

In 1942 Lev Pontrjagin of Moscow University began to study the homology
of Grassmann manifolds, using a cell subdivision due to Charles Ehresmann.
This enabled him to construct important new characteristic classes. (Pontrjagin’s
many contributions to mathematics are the more remarkable in that he is totally
blind, having lost his eyesight in an accident at the age of fourteen.)

In 1946 Shing-Shen Chern, recently arrived at the Institute for Advanced
Study from Kunming in southwestern China, defined characteristic classes for
complex vector bundles. In fact he showed that the complex Grassmann man-
ifolds have a cohomology structure which is much easier to understand than
that of the real Grassmann manifolds. This has led to a great clarification of
the theory of real characteristic classes. We are happy to report that the four
original creators of characteristic class theory all remain mathematically active:
Whitney at the Institute for Advanced Study in Princeton, Stiefel as director of
the Institute for Applied Mathematics of the Federal Institute of Technology in
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Zürich, Pontrjagin as director of the Steklov Institute in Moscow, and Chern at
the University of California in Berkeley. This book is dedicated to them.

-John Milnor
- James Stasheff



Preface to the new typesetting

The book was TeX’d up by the Texromancers, a latexing group. The credits
for the typesetting of this book go to: Aareyan Manzoor, Abhishek Shivkumar,
Yohan Wittgenstein, Kelvin Chan, RokettoJanpu, George Coote, John Cerkan,
Mervyn Brumbach (III), Carl Sun, and others.

Here is a link to a dyslexic friendly version: https://aareyanmanzoor.git

hub.io/assets/books/characteristic-classes-dyslexic.pdf .
We added citations and references with hyperlinks. References to e.g. the-

orems/lemmas in the book are in blue, while citations to the bibliography is in
red. The bibliography also has URLs now, for easy access. Some of the books in
the bibliography had newer editions, so we went with those.

Some editor’s notes were put in footnotes to point things out or talk about
changes since the book came out.

A lot of little notation was changed to better fit the new latex’d version. For
example, we changed tangent space to TxM rather than DxM . Things like char-
acteristic classes or homologies or special groups have formatting to emphasize
them.

A section defining fibre bundles was added as the book uses the terminology
in a few places. In the appendix, a section defining relative homology was added
for the same reason.

Figures were redrawn to better fit the new style of the book.

11

https://aareyanmanzoor.github.io/assets/books/characteristic-classes-dyslexic.pdf
https://aareyanmanzoor.github.io/assets/books/characteristic-classes-dyslexic.pdf


Chapter 0: CONTENTS

12



1. Smooth Manifolds

This section contains a brief introduction to the theory of smooth manifolds
and their tangent spaces.

Let Rn denote the coordinate space consisting of all n-tuples x = (x1, . . . , xn)

of real numbers. For the special case n = 0 it is to be understood that R0 consists
of a single point. The real numbers themselves will be denoted by R.

The word “smooth” will be used as a synonym for “differentiable of class C∞.”
Thus a function defined on an open set U ⊂ Rn with values in Rk is “smooth” if
its partial derivatives of all orders exist and are continuous.

For some purposes it is convenient to use a coordinate space RA which may
be infinite dimensional. Let A be any index set and let RA denote the vector
space consisting of all functions1 x from A to R. The value of a vector x ∈ RA on
α ∈ A will be denoted by xα and called the α-th coordinate of x. Similarly, for
any function f : Y −→ RA, the α-th coordinate of f(y) will be denoted fα(y).

We topologize this space RA as a Cartesian product of copies of R. For any
subset M ⊂ RA, we give M the relative topology. Thus a function
f : Y −→ M ⊂ RA is continuous if and only if each of the associated functions
fα : Y −→ R are continuous. Here Y can be an arbitrary topological space.

Definition. For U ⊂ Rn, a function f : U −→ M ⊂ RA is said to be smooth
if each of the associated functions fα : U −→ R is smooth. If f is smooth, then
the partial derivative ∂f/∂ui can be defined as the smooth function U −→ RA

whose α-th coordinate is ∂fα/∂ui for i = 1, 2, . . . , n.

The most classical and familiar examples of smooth manifolds are curves and
1Of course our previous coordinate space Rn can be obtained as a special case of this more

general concept, simply by taking A to be the set of integers between 1 and n.
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Chapter 1: Smooth Manifolds

surfaces in the coordinate space R3. Generalizing the classical description of
curves and surfaces, we will consider n-dimensional objects in a coordinate space
RA.

Definition. A subset M ⊂ RA is a smooth manifold of dimension n ≥ 0 if,
for each x ∈M there exists a smooth function

h : U −→ RA

defined on an open set U ⊂ Rn such that

1) h maps U homeomorphically onto an open neighborhood V of x in M, and

2) for each u ∈ U the matrix [∂hα(u)/∂uj ] has rank n. (In other words the n

vectors ∂h/∂u1, . . ., ∂h/∂un, evaluated at u, must be linearly independent.)

The image h(U) = V of such a mapping will be called a coordinate neigh-
borhood in M , and the triple (U, V, h) will be called a local parameterization2

of M .

Lemma 1.1. Let (U, V, h) and (U ′, V ′, h′) be two local parameterizations of M
such that V ∩ V ′ is non-vacuous. Then the correspondence

u′ 7→ h−1(h′(u′))

defines a smooth mapping from the open set (h′)−1(V ∩ V ′) ⊂ Rn to the open
set h−1(V ∩ V ′) ⊂ Rn.

Proof. Let x = h(u) = h(u′) be an arbitrary point of V ∩ V ′. Choose indices
α1, . . . , αn ∈ A so that the n × n matrix [∂hαi

/∂uj ], evaluated at u, is non-
singular. Then it follows from the inverse function theorem that one can solve
for u1, . . . , un as smooth functions

uj = fj(hα1
(u), . . . , hαn

(u))

2The inverse h−1 : V −→ U ⊂ Rn is often called a “local coordinate system” or “chart” for
M .
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Chapter 1: Smooth Manifolds

for some u in some neighborhood of u. (See for example [Whi57, p.69].) Writing
these equations in vector notation as u = f(hα1

(u), . . . , hαn
(u)), and setting

h(u) = h′(u′), it follows that the function

u′ 7→ h−1h′(u′) = f(h′
α1
(u), . . . , h′

αn
(u))

is smooth throughout some neighborhood of u′. This completes the proof.

The concept of a tangent vector can be defined as follows. Let x be a fixed
point of M , and let (−ϵ, ϵ) denote the set of real numbers t with −ϵ < t < ϵ. A
smooth path through x in M will mean a smooth function

p : (−ϵ, ϵ) −→M ⊂ RA,

defined on some interval (−ϵ, ϵ) of real numbers, with p(0) = x. The velocity
vector of such a path is defined to be the vector

dp

dt

∣∣∣
t=0
∈ RA

whose α-th component is dpα/dt. (Compare Figure 1.)

Definition. A vector v ∈ RA is tangent to M at x if v can be expressed as the
velocity vector of some smooth path through x in M . The set of all such tangent
vectors will be called the tangent space of M at x, and will be denoted TxM .
(In some presentations, the vector v is identified with the collection of paths p

with common velocity vector v. This allows an intrinsic definition of tangent
vector independent of the embedding in RA.)

In terms of local parameterization (U, V, h) with h(u) = x, the tangent space
can be described as follows.

Lemma 1.2. A vector v ∈ RA is tangent to M at x if and only if v can be
expressed as a linear combination of the vectors

∂h

∂u1
(u), . . . ,

∂h

∂un
(u).

Thus TxM is an n-dimensional vector space over the real numbers.

15



Chapter 1: Smooth Manifolds

The proof is straightforward.

manifold
M

Tangent Space

origin O
velocity vector

dp

dt

path p

x

TxM

Figure 1

The tangent manifold of M is defined to be the subspace

TM ⊂M × RA

consisting of all pairs (x, v) with x ∈ M and v ∈ TxM . It follows easily from
Lemma 1.2 that TM , considered as a subset of RA × RA, is a smooth manifold
of dimension 2n.

Now consider two smooth manifolds M ⊂ RA and N ⊂ RB , and a function
f : M −→ N . Let x be a point of M and (U, V, h) a local parameterization of M
with x = h(u).

16



Chapter 1: Smooth Manifolds

Definition. The function f is said to be smooth at x if the composition3

f ◦ h : U −→ N ⊂ RB

is smooth throughout some neighborhood of u.

It follows from Lemma 1.1 that this definition does not depend on the choice
of local parameterization.

Definition. The function f : M −→ N is smooth if it is smooth at every point
x ∈ M . A function f : M −→ N is called a diffeomorphism if f is one-to-one
onto, and if both f and the inverse function f−1 : N −→M are smooth.

Lemma 1.3. The identity map of M is always smooth. Furthermore the com-
position of two smooth maps M

g−→M ′ f−→M ′′ is smooth.

The proof is similar to that of 1.1. Details will be omitted.
Any map f : M −→ N which is smooth at x determines a linear map dfx

from the tangent space TxM to Tf(x)N as follows. Given v ∈ TxM express v

as the velocity vector

v =
dp

dt

∣∣∣
t=0

of some smooth path through x in M , and define dfx(v) to be the velocity vector

d(f ◦ p)
dt

∣∣∣
t=0

of the image path f ◦ p : (−ϵ, ϵ) −→ N . It is easily seen that this definition does
not depend on the choice of p, and that dfx is a linear mapping. In fact, in terms
of a local parameterization (U, V, h), one has the explicit formula

dfx

(∑
ci

∂h

∂ui

)
=

∑
ci
∂(f ◦ h)
∂ui

,

for any real numbers c1, . . . , cn.

Definition. The linear transformation dfx is called the derivative, or the Ja-
cobian of f at x.

3The notation f ◦ g will be used for the composition of two functions X
g−→ Y

f−→ Z.
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Chapter 1: Smooth Manifolds

Now suppose that f : M −→ N is smooth everywhere. Combining all of the
Jacobians dfx one obtains the function

df : TM −→ TN

where df(x, v) = (f(x),dfx(v)).

Lemma 1.4. T is a functor4 from the category of smooth manifolds and smooth
maps into itself.

In other words:

(1) If M is a smooth manifold, then TM is a smooth manifold.

(2) If f is a smooth map from M to N then df is a smooth map from TM to
TN .

(3) If I is the identity map of M then dI is the identity map of TM ; and

(4) If the composition f ◦ g of two smooth maps is defined, then
d(f ◦ g) = (df) ◦ (dg).

The proofs are straightforward.
One immediate consequence is the following: If f is a diffeomorphism from

M to N then df is a diffeomorphism from TM to TN .

Remarks. According to our definitions, the tangent space TxRn of the coordi-
nate space Rn at x is equal to the vector space Rn itself. In particular, for any
real number u the tangent space TuR is equal to R. Thus if f : M −→ R is a
smooth real valued function, then the derivative dfx : TxM −→ Tf(x)R = R can
be thought of as an element of the dual vector space

HomR(TxM,R).

This element dfx of the dual space, sometimes called the “total differential” of f
at x, is commonly denoted by df(x). Note that Leibniz’s rule is satisfied:

d(fg)x = f(x)dgx + g(x)dfx,

4For the concepts of category and functor, see for example [ES52, Chapter IV].
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Chapter 1: Smooth Manifolds

where fg stands for the product function x 7→ f(x)g(x).

For any tangent vector v ∈ TxM the real number dfx(v) is called the direc-
tional derivative of the real-valued function f at x in the direction v. If we
keep (x, v) fixed but let f vary over the vector space C∞(M,R) consisting of all
smooth real valued functions on M , then a linear differential operator

X : C∞(M,R) −→ R

can be defined by the formula X(f) = dfx(v). Leibniz’s rule now takes the form

X(fg) = f(x)X(g) +X(f)g(x).

In many expositions on the subject, the tangent vector (x, v) is identified with
this linear operator X.

One defect of the above presentation is that the “smoothness” of a manifold
M is made to depend on some particular embedding of M in a coordinate space.
It is possible however to canonically embed any smooth manifold M into one
preferred coordinate space.

Given a smooth manifold M ⊂ RA let F = C∞(M,R) denote the set of all
smooth functions from M to the real numbers R. Define the embedding

i : M −→ RF

by if (x) = f(x). Let M1 denote the image i(M) ⊂ RF .

Lemma 1.5. This image M1 is a smooth manifold in RF , and the canonical map
i : M −→M1 is a diffeomorphism.

The proof is straightforward.

Thus any smooth manifold has a canonical embedding in an associated coor-
dinate space. This suggests the following definition. Let M be a set and let F

be a collection of real valued functions on M which separates points. (That is,
given x ̸= y in M there exists f ∈ F such that f(x) ̸= f(y).) Then M can be

19



Chapter 1: Smooth Manifolds

identified with its image under the canonical imbedding5 i : M −→ RF .

Definition. The collection F is a smoothness structure on M if the subset
i(M) ⊂ RF is a smooth manifold, and if F is precisely the set of all smooth real
valued functions on this smooth manifold.6

Note. This definition of “smoothness” is similar to that given by [Nom56]. In the
classical point of view the “smoothness structure” of a manifold is prescribed by
the collection of local parameterizations. (See for example [Ste51, p.21].) In still
another point of view, one uses collections of smooth functions on open subsets.
(Compare [Rha55].) All of these definitions are equivalent.

In conclusion here are three problems for the reader. The first two of these
will play an important role in later sections.

Problem 1-A. Let M1 ⊂ RA and M2 ⊂ RB be smooth manifolds. Show that
M1 × M2 ⊂ RA × RB is a smooth manifold, and that the tangent manifold
T(M1×M2) is canonically diffeomorphic to the product TM1×TM2. Note that
a function x 7→ (f1(x), f2(x)) from M to M1 ×M2 is smooth if and only if both
f1 : M −→M1 and f2 : M −→M2 are smooth.

Problem 1-B. Let Pn denote the set of all lines through the origin in the coor-
dinate space Rn+1. Define a function

q : Rn+1 − {0} −→ Pn

by q(x) = Rx = line through x. Let F denote the set of all functions f : Pn −→ R
such that f ◦ q is smooth.

a) Show that F is a smooth structure on Pn. The resulting smooth manifold
is called the real projective space of dimension n.

b) Show that the functions

fij(Rx) =
xixj∑
k x

2
k

5Editor’s note: The book uses embedding and imbedding interchangably, this is just a
different spelling.

6If only the first condition is satisfied, then F might be called a “basis” for a smoothness
structure on M .
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Chapter 1: Smooth Manifolds

define a diffeomorphism between Pn and the submanifold of Mn+1(R)7 con-
sisting of all symmetric (n + 1) × (n + 1) matrices A of trace 1 satisfying
AA = A.

c) Show that Pn is compact, and that a subset V ⊂ Pn is open if and only if
q−1(V ) is open.

Problem 1-C. For any smooth manifold M show that the collection F =

C∞(M,R) of smooth real valued functions on M can be made into a ring, and
that every point x ∈ M determines a ring homomorphism F −→ R and hence
a maximal ideal in F . If M is compact, show that every maximal ideal in F

arises this way from a point in M . More generally, if there is a countable basis
for the topology of M , show that every ring homomorphism F −→ R is ob-
tained in this way. (Make use of an element f ≥ 0 in F such that each f−1[0, c]

is compact.) Thus the smooth manifold M is completely determined by the
ring F . For x ∈ M , show that any R-linear mapping X : F −→ R satisfying
X(fg) = X(f)g(x) + f(x)X(g) is given by X(f) = dfx(v) for some uniquely
determined vector v ∈ TxM .

7Editor’s note: This is the set of (n + 1) × (n + 1) matrices given a smooth structure by
identifying it with R(n+1)2 .
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2. Vector Bundles

Let B denote a fixed topological space, which will be called the base space.

Definition. A real vector bundle ξ over B consists of the following:

1) A topological space E = E(ξ) called the total space.

2) A (continuous) map π : E −→ B called the projection map.

3) For each b ∈ B, the structure of a vector space1 over the real numbers in
the set π−1(b).

These must satisfy the following restriction:
Condition of local triviality. For each point p ∈ B, there should exist a

neighborhood U ⊂ B, and integer n ≥ 0, and a homeomorphism
h : U × Rn −→ π−1(U) so that, for each b ∈ U , the correspondence x 7→ h(b, x)

defines an isomorphism between the vector space Rn and the vector space π−1(b).
Such a pair (U, h) will be called a local coordinate system for ξ about b.

If it is possible to choose U equal to the entire base space, then ξ will be called
a trivial bundle.

The vector space π−1(b) is called the fiber over b. It may be denoted by Fb

or Fb(ξ). Note that Fb is never vacuous, although it may consist of a single point.
The dimension n of Fb is allowed to be a (locally constant) function of b; but in

1To be more precise, this vector space structure could be specified by giving the subset of
R× R× E × E × E consisting of all 5-tuples (t1, t2, e1, e2, e3) with

π(e1) = π(e2) = π(e3) and e3 = t1e1 + t2e2
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most cases of interest this function is constant. One then speaks of an n-plane
bundle, or briefly an Rn-bundle.

The concept of a smooth vector bundle can be defined similarly. One
requires that B and E be smooth manifolds, that π be a smooth map, and that,
for each b ∈ B there exist a local coordinate system (U, h) with b ∈ U such that
h is a diffeomorphism.

Remark. An Rn-bundle is a very special example of a fibre bundle. (See
[WS51].) In Steenrod’s terminology an Rn-bundle is a fiber bundle with fiber Rn

and with the full linear group GLn(R) in n variables as structural group.

Now consider two vector bundles ξ and η over the same base space B.

Definition. ξ is isomorphic to η, written ξ ∼= η, if there exists a homeomor-
phism

f : E(ξ) −→ E(η)

between the total spaces which maps each vector space Fb(ξ) isomorphically onto
the corresponding vector space Fb(η).

Example 1. The trivial bundle with total space B × Rn, with projection map
π(b, x) = b, and with the vector space structures in the fibers defined by

t1(b, x1) + t2(b, x2) = (b, t1x1 + t2x2)

will be denoted by εnB . Note that a Rn-bundle over B is trivial if and only if it is
isomorphic to εnB .

Example 2. The tangent bundle τM of a smooth manifold M . The total space
of τM is the manifold TM consisting of all pairs (x, v) with x ∈M and v tangent
to M at x. The projection map π : TM −→ M is defined by π(x, v) = x; and

the vector space structure in π−1(x) is defined by

t1(x, v1) + t2(x, v2) = (x, t1v1 + t2v2).

The local triviality condition is not difficult to verify. Note that τM is an example
of a smooth vector bundle.
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If τM is a trivial bundle, then the manifold M is called parallelizable. For
example, suppose that M is an open subset of Rn. Then TM is equal to M×Rn,
and M is clearly parallelizable.

The unit 2-sphere S2 ⊂ R3 provides an example of a manifold which is not
parallelizable. (Compare 2-B.) In fact we will see in §9 that a parallelizable
manifold must have Euler characteristic zero, whereas the 2-sphere has Euler
characteristic +2. (See Proposition 9.3 and Lemma 11.6.)

Example 3. The normal bundle νM of a smooth manifold M ⊂ Rn is obtained
as follows. The total space E ⊂ M × Rn is the set of all pairs (x, v) such that
v is orthogonal to the tangent space TxM . The projection map π : E −→ M

and the vector space structure in π−1(x) are defined, as in Examples 1, 2, by the
formulas

π(x, v) = x, t1(x, v1) + t2(x, v2) = (x, t1v1 + t2v2).

The proof that νM satisfies the local triviality condition will be deferred until
3.4.

Example 4. The real projective space Pn can be defined2 as the set of all
unordered pairs {x,−x} where x ranges over the unit sphere Sn ⊂ Rn+1; and is
topologized as a quotient space of Sn.

Let E(γ1
n) be the subset of Pn×Rn+1 consisting of all pairs ({±x} , v) such that

the vector v is a multiple of x. Define π : E(γ1
n) −→ Pn by π({±x} , v) = {±x}.

Thus each fiber π−1({±x}) can be identified with the line through x and −x in
Rn+1. Each such line is to be given its usual vector space structure. The resulting
vector bundle γ1

n will be called the canonical line bundle over Pn.

Proof that γ1
n is locally trivial. Let U ⊂ Sn be any open set which is

small enough so as to contain no pair of antipodal points, and let U1 denote the
image of U in Pn. Then a homeomorphism h : U1×Rn −→ π−1(U1) is defined by
the requirement that h({±x} , t) = ({±x} , tx) for each (x, t) ∈ U ×R. Evidently
(U1, h) is a local coordinate system; hence γ1

n is locally trivial.

Theorem 2.1. The bundle γ1
n over Pn is not trivial, for n ≥ 1.

2Alternatively, Pn can be defined as the set of lines through the origin in Rn+1. (Compare
1-B.) This amounts to the same thing since every such line cuts Sn in two antipodal points.
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Proof. This will be proved by studying cross-sections of γ1
n

Definition. A cross-section of a vector bundle ξ with base space B is a con-
tinuous function s : B −→ E(ξ) which takes each b ∈ B into the corresponding
fiber Fb(ξ). Such a cross-section is nowhere zero if s(b) is a non-zero vector of
Fb(ξ) for each b.

(A cross-section of the tangent bundle of a smooth manifold M is usually
called a vector field on M .)

Evidently a trivial R1-bundle possesses a cross-section which is nowhere zero.
We will see that the bundle γ1

n has no such cross-section.
Let s : Pn −→ E(γ1

n) be any cross-section, and consider the composition

Sn −→ Pn s−→ E(γ1
n)

which carries each x ∈ Sn to some pair

({±x} , t(x)x) ∈ E(γ1
n)

Evidently t(x) is a continuous real valued function of x, and t(−x) = −t(x). Since
Sn is connected, it follows from the intermediate value theorem that t(x0) = 0

for some x0. Hence s({±x0}) = ({±x0} , 0). This completes the proof.

It is interesting to take a closer look at the space E(γ1
n) for the special case

n = 1. In this case each point e = ({±x} , v) of E(γ1
n) can be written as

e = ({±(cos θ, sin θ)} , t(cos θ, sin θ))

with 0 ≤ θ ≤ π, t ∈ R. This representation is unique except that the point
({±(cos 0, sin 0)} , t(cos 0, sin 0)) is equal to ({±(cosπ, sinπ)} ,−t(cosπ, sinπ)) for
each t. In other words, E(γ1

1) can be obtained from the strip [0, π] × R in the
(θ, t)-plane by identifying the left hand boundary [0] × R with the right hand
boundary [π] × R under the correspondence (0, t) 7→ (π,−t). Thus E(γ1

1) is an
open Möbius band. (Compare Figure 2.)

This description gives an alternative proof that γ1
1 is non-trivial, for the

Möbius band is certainly not homeomorphic to the cylinder P1 × R.
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Figure 2

Now consider a collection {s1, . . . , sn} of cross-sections of a vector bundle ξ.

Definition. The cross-sections s1, . . . , sn are nowhere dependent if, for each
b ∈ B, the vectors s1(b), . . . , sn(b) are linearly independent.

Theorem 2.2. An Rn-bundle ξ is trivial if and only if ξ admits n cross-sections
s1(b), . . . , sn(b) which are nowhere dependent.

The proof will depend on the following basic result.

Lemma 2.3. Let ξ and η be vector bundles over B and let f : E(ξ) −→ E(η) be
a continuous function which maps each vector space Fb(ξ) isomorphically onto
the corresponding vector space Fb(η). Then f is necessarily a homeomorphism.
Hence ξ is isomorphic to η.

Proof. Given any point b0 ∈ B, choose local coordinate systems (U, g) for ξ and
(V, h) for η, with b0 ∈ U ∩ V . Then we must show that the composition

(U ∩ V )× Rn h−1◦f◦g−−−−−→ (U ∩ V )× Rn

is a homeomorphism. Setting

h−1(f(g(b, x))) = (b, y)
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it is evident that y = {y1, . . . , yn} can be expressed in the form

yi =
∑
j

fij(b)xj

where [fij(b)] denotes a non-singular matrix of real numbers. Furthermore, the
entries fij(b) depend continuously on b. Let [Fji(b)] denote the inverse matrix.
Evidently

(g−1 ◦ f−1 ◦ h)(b, y) = (b, x),

where
xj =

∑
i

Fji(b)yi

Since the numbers Fji(b) depend continuously on the matrix [fij(b)], they depend
continuously on b. Thus g−1 ◦ f−1 ◦ h is continuous, which completes the proof
of 2.3.

Proof of 2.2. Let s1, . . . , sn be cross-sections of ξ which are nowhere linearly de-
pendent. Define f : B × Rn −→ E by

f(b, x) = x1s1(b) + · · ·+ xnsn(b)

Evidently f is continuous and maps each fiber of the trivial bundle εnB isomor-
phically onto the corresponding fiber of ξ. Hence f is a bundle isomorphism, and
ξ is trivial.

Conversely suppose that ξ is trivial, with coordinate system (B, h). Defining

si(b) = h(b, (0, . . . , 0, 1, 0, . . . , 0)) ∈ Fb(ξ)

(with the 1 in the i-th place), it is evident that s1, . . . , sn are nowhere dependent
cross-sections. This completes the proof.

As an illustration, the tangent bundle of the circle S1 ⊂ R2 admits one
nowhere zero cross-section, as illustrated in Figure 3. (The indicated arrows
lead from x ∈ S1 to x+ v, where s(x) = (x, v) = ((x1, x2), (−x2, x1)).) Hence S1

is parallelizable. Similarly the 3-sphere S3 ⊂ R4 admits three nowhere dependent
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vector fields si(x) = (x, si(x)) where

s1(x) = (−x2, x1,−x4, x3),

s2(x) = (−x3, x4, x1,−x2),

s3(x) = (−x4,−x3, x2, x1).

Hence S3 is parallelizable. (These formulas come from the quaternion multipli-
cation in R4. Compare [WS51].)

Figure 3

2.1 Euclidean Vector Bundles

For many purposes it is important to study vector bundles in which each fiber
has the structure of a Euclidean vector space.

Recall that a real valued function µ on a finite dimensional vector space V is
quadratic if µ can be expressed in the form

µ(v) =
∑
i

ℓi(v)ℓ
′
i(v),

where each ℓi and each ℓ′i is linear. Each quadratic function determines a sym-
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metric and bilinear pairing v, w 7→ v · w from V × V to R, where

v · w =
1

2
(µ(v + w)− µ(v)− µ(w)).

Note that v · v = µ(v). The quadratic function µ is called positive definite if
µ(v) > 0 for v ̸= 0.

Definition. A Euclidean vector space is a real vector space V together with
a positive definite quadratic function

µ : V −→ R.

The real number v · w will be called the inner product of the vectors v and w.
The number v · v = µ(v) may also be denoted by |v|2.

Definition. A Euclidean vector bundle is a real vector bundle µ together
with a continuous function

µ : E(ξ) −→ R,

such that the restriction of µ to each fiber of ξ is positive definite and quadratic.
The function µ itself will be called a Euclidean metric on the vector bundle ξ.

In the case of the tangent bundle τM of a smooth manifold, a Euclidean metric

µ : TM −→ R,

is called a Riemannian metric, and M together with µ is called a Riemannian
manifold. (In practice one usually requires that µ be a smooth function. The
notation µ = ds2 is often used for a Riemannian metric.)

Note. In Steenrod’s terminology, a Euclidean metric on ξ gives rise to a reduction
of the structural group of ξ from the full linear group to the orthogonal group.
Compare [Ste51, §12.9].

Example 5. The trivial bundle εnB can be given the Euclidean metric

µ(b, x) = x2
1 + · · ·+ x2

n.

30



Section 2.1: Euclidean Vector Bundles

Since the tangent bundle of Rn is trivial it follows that the smooth manifold Rn

possesses a standard Riemannian metric. For any smooth manifold M ⊂ Rn the
composition

TM ⊂ TRn µ−→ R,

now makes M into a Riemannian manifold.

A priori there appear to be two different concepts of triviality for Euclidean
vector bundles; however the next lemma shows that these coincide.

Lemma 2.4. Let ξ be a trivial vector bundle of dimension n over B, and let µ

be any Euclidean metric on ξ. Then there exist n cross-sections s1, . . . , sn of ξ
which are normal and orthogonal in the sense that

si(b) · sj(b) = δij (= Kronecker delta)

for each b ∈ B.

Thus ξ is trivial also as a Euclidean vector bundle. (Compare 2-E below.)

Proof. Let s′1, . . . , s
′
n be any n cross-sections which are nowhere linearly depen-

dent. Applying the Gram-Schmidt3 process to s′1(b), . . . , s
′
n(b) we obtain a normal

orthogonal basis s1(b), . . . , s′n(b) for Fb(ξ). Since the resulting functions s1, . . . , sn
are clearly continuous, this completes the proof.

Here are six problems for the reader.

Problem 2-A. Show that the unit sphere Sn admits a vector field which is
nowhere zero, provided that n is odd. Show that the normal bundle of Sn ⊂ Rn+1

is trivial for all n.

Problem 2-B. If Sn admits a vector field which is nowhere zero, show that the
identity map of Sn is homotopic to the antipodal map. For n even show that the
antipodal map of Sn is homotopic to the reflection

r(x1, . . . , xn+1) = (−x1, x2, . . . , xn+1);

3See any text book on linear algebra.
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and therefore has degree −1. (Compare [ES52, p.304].) Combining these facts,
show that Sn is not parallelizable for n even, n ≥ 2.

Problem 2-C (Existence theorem for Euclidean metrics.). Using a partition of
unity, show that any vector bundle over a paracompact base space can be given
a Euclidean metric. (See 5.3; or see [Kel55, pp. 156 and 171].)

Problem 2-D. The Alexandroff line L (sometimes called the “long line”) is a
smooth, connected, 1-dimensional manifold which is not paracompact. (Refer-
ence: [Kne58].) Show that L cannot be given a Riemannian metric.

Problem 2-E (Isometry theorem.). Let µ and µ′ be two different Euclidean
metrics on the same vector bundle ξ. Prove that there exists a homeomorphism
f : E(ξ) → E(ξ) which carries each fiber isomorphically onto itself, so that the
composition µ ◦ f : E(ξ) −→ R is equal to µ′. [Hint: Use the fact that every
positive definite matrix A can be expressed uniquely as the square of a positive
definite matrix

√
A. The power series expansion

√
tI +X =

√
t

(
I +

1

2t
X − 1

8t2
X2 +− . . .

)
,

is valid providing that the characteristic roots of tI +X = A lie between 0 and
2t. This shows that the function A 7→

√
A is smooth.]

Problem 2-F. As in 1-C, let F denote the algebra of smooth real valued func-
tions on M . For each x ∈M let Ir+1

X be the ideal consisting of all functions in F

whose derivatives of order ≤ r vanish at x. An element of the quotient algebra
F/Ir+1

X is called an r-jet of a real valued function at x. (Compare [Ehr53].)
Construct a locally trivial “bundle of algebras” A(r)

M over M with typical fiber
F/Ir+1

X .
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3. Constructing New Vector Bundles

Out of Old

This section will describe a number of basic constructions involving vector
bundles.

(a) Restricting a bundle to a subset of the base space.
Let ξ be a vector bundle with projection π : E −→ B and let B be a subset

of B. Setting E = π−1(B), and letting

π : E −→ B

be the restriction of π to E, one obtains a new vector bundle which will be
denoted by ξ|B , and called the restriction of ξ to B. Each fiber Fb(ξ|B) is
equal to the corresponding fiber Fb(ξ), and is to be given the same vector
space structure.

As an example if M is a smooth manifold and U is an open subset of M ,
then the tangent bundle τU is equal to τM |U .

More generally one has the following construction.

(b) Induced bundles.
Let ξ be as above and let B1 be an arbitrary topological space. Given any
map f : B1 → B one can construct the induced bundle f∗ξ over B1. The
total space E1 of f∗ξ is the subset E1 ⊂ B1×E consisting of all pairs (b, e)
with

f(b) = π(e).
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The projection map π1 : E1 −→ B1 is defined by π1(b, e) = b. Thus one
has a commutative diagram

E1 E

B1 B

f̂

π1 π

f

where f̂(b, e) = e. The vector space structure in π−1
1 (b) is defined by

t1(b, e1) + t2(b, e2) = (b, t1e1 + t2e2).

Thus f̂ carries each vector space Fb(f
∗ξ) isomorphically onto the vector

space Ff(b)(ξ).

If (U, h) is a local coordinate system for ξ, set U1 = f−1(U) and define

h1 : U1 × Rn −→ π−1
1 (U1),

by h1(b, x) = (b, h(f(b), x)). Then (U1, h1) is clearly a local coordinate system
for f∗ξ. This proves that f∗ξ is locally trivial. (If ξ happens to be trivial, it
follows that f∗ξ is trivial.)

Remark 1. If ξ is a smooth vector bundle and f a smooth map, then it can be
shown that E1 is a smooth submanifold of B1 × E, and hence that f∗ξ is also a
smooth vector bundle.

The above commutative diagram suggests the following concept which a priori,
is more general. Let ξ and η be vector bundles.

Definition. A bundle map from η to ξ is a continuous function

g : E(η) −→ E(ξ),

which carries each vector space Fb(η) isomorphically onto one of the vector spaces
Fb′(ξ).
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Setting g(b) = b′, it is clear that the resulting function

g : B(η) −→ B(ξ),

is continuous.

Lemma 3.1. If g : E(η) −→ E(ξ) is a bundle map, and if g : B(η)→ B(ξ) is the
corresponding map of base spaces, then η is isomorphic to the induced bundle
g∗ξ.

Proof. Define h : E(η) −→ E(g∗ξ) by

h(e) = (π(e), g(e))

where π denotes the projection map of η. Since h is continuous and maps each
fiber Fb(η) isomorphically onto the corresponding fiber Fb(g

∗ξ), it follows from
Lemma 2.3 that h is an isomorphism.

(c) Cartesian products

Given two vector bundles ξ1, ξ2 Projection maps πi : Ei −→ Bi, i = 1, 2, the
Cartesian product ξ1 × ξ2 is defined to be the bundle with projection map

π1 × π2 : E1 × E2 −→ B1 ×B2;

where each fiber

(π1 × π2)
−1(b1, b2) = Fb1(ξ1)× Fb2(ξ2),

is given the obvious vector space structure. Clearly ξ1 × ξ2 is locally trivial.
As an example, if M = M1 ×M2 is a product of smooth manifolds, then the

tangent bundle τM is isomorphic to τM1 × τM2 . (Compare 1-A.)

(d) Whitney sums

Next consider two bundles ξ1, ξ2 over the same base space B. Let

∆ : B −→ B ×B
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denote the diagonal embedding. The bundle ∆∗(ξ1 × ξ2) over B is called the
Whitney sum of ξ1 and ξ2; and will denoted by ξ1 ⊕ ξ2. Note that each fiber
Fb(ξ1 ⊕ ξ2) is canonically isomorphic to the direct sum Fb(ξ1)⊕ Fb(ξ2).

Definition. Consider two vector bundles ξ and η over the same base space B

with E(ξ) ⊂ E(η); then ξ is a sub-bundle of η (written ξ ⊂ η) if each fiber
Fb(ξ) is a sub-vector-space of the corresponding fiber Fb(η).

Lemma 3.2. Let ξ1 and ξ2 be sub-bundles of η such that each vector space
Fb(η) is equal to the direct sum of the sub-spaces Fb(ξ1) and Fb(ξ2). Then η is
isomorphic to the Whitney sum ξ1 ⊕ ξ2.

Proof. Define f : E(ξ1 ⊕ ξ2) −→ E(η) by f(b, e1, e2) = e1 + e2. It follows from
Lemma 2.3 that f is an isomorphism.

(e) Orthogonal complements

This suggests the following question. Given a sub-bundle ξ ⊂ η does there exist
a complementary sub-bundle so that η splits as a Whitney sum? If η is provided
with a Euclidean metric then such a complementary summand can be constructed
as follows.1

Let Fb(ξ
⊥) denote the subspace of Fb(η) consisting of all vectors v such that

v · w = 0 for all w ∈ Fb(ξ). Let E(ξ⊥) ⊂ E(η) denote the union of the Fb(ξ
⊥).

Definition. ξ⊥ will be called the orthogonal complement of ξ in η.

Theorem 3.3. E(ξ⊥) is the total space of a sub-bundle ξ⊥ ⊂ η. Furthermore η

is isomorphic to the Whitney sum ξ ⊕ ξ⊥.

Proof. Clearly each vector space Fb(η) is the direct sum of the sub-spaces Fb(ξ)

and Fb(ξ
⊥). Thus the only problem is to prove that ξ⊥ satisfies the local triviality

condition.
Given any point b0 ∈ B, let U be a neighborhood of b0 which is sufficiently

small that both ξ|U and η|U are trivial. Let s1, . . . , sm be normal orthogonal
cross-sections of ξ|U and let s′1, . . . , s

′
n be normal orthogonal cross-sections of

1If the base space B is paracompact, then η can always be given a Euclidean metric (2-
C); hence a sub-bundle ξ ⊂ η is always a Whitney summand. If B is not required to be
paracompact, then counterexamples can be given.
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η|U ; where m and n are the respective fiber dimensions. (Compare lemma 2.4.)
Thus the m× n matrix [

si(b0) · s′j(b0)
]

has rank m. Renumbering the s′j if necessary, we may assume that the first m

columns are linearly independent.

Let V ⊂ U be the open set consisting of all points b for which the first m

columns of the matrix
[
si(b) · s′j(b)

]
are linearly independent. Then the n cross-

sections
s1, s2, . . . , sm, s′m+1, . . . , s

′
n

of η|U are not linearly dependent at any point of V . (For a linear relation would
imply that some non-zero linear combination of s1(b), . . . , sm(b) was also a linear
combination of s′m+1(b), . . . , s

′
n(b), hence orthogonal to s′1(b), . . . , s

′
m(b).) Ap-

plying the Gram-Schmidt process to this sequence of cross-sections, we obtain
normal orthogonal cross-sections s1, . . . sm, sm+1, . . . , sn of η|V .

Now a local coordinate system

h : V × Rn−m −→ E(ξ⊥),

for ξ⊥ is given by the formula

h(b, x) = x1sm+1(b) + · · ·+ xn−msn(b).

The identity
h−1(e) = (πe, (e · sm+1(πe), . . . , e · sn(πe))),

shows that h is a homeomorphism, and completes the proof of Theorem 3.3.

As an example, suppose that M ⊂ N ⊂ RA are smooth manifolds, and sup-
pose that N is provided with a Riemannian metric. Then the tangent bundle τM

is a sub-bundle of the restriction τN |M . In this case the orthogonal complement
τ⊥M ⊂ τN |M is called the normal bundle ν of M in N . Thus we have:

Corollary 3.4. For any smooth submanifold M of a smooth Riemannian mani-
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fold N the normal bundle ν is defined, and

τM ⊕ ν ∼= τN |M .

More generally a smooth map f : M −→ N between smooth manifolds is
called an immersion if the Jacobian

dfx : TxM −→ Tf(x)N

maps the tangent space TxM injectively (i.e. with kernel zero) for each x ∈ M .
[It follows from the implicit function theorem that an immersion is locally an
embedding of M in N , but in the large there may be self-intersections. A typical
immersion of the circle in the plane is illustrated in 4.]

Figure 4

Suppose that N is a Riemannian manifold. Then for each x ∈M , the tangent
space Tf(x)N splits as the direct sum of the image dfx(TxM) and its orthogonal
complement. Correspondingly the induced bundle f∗τN over M splits as the
Whitney sum of a sub-bundle isomorphic to τM and a complementary sub-bundle
νf . Thus:

Corollary 3.5. For any immersion f : M −→ N , with N Riemannian, there is
a Whitney sum decomposition

f∗τN ∼= τM ⊕ νf .

38



Chapter 3: Constructing New Vector Bundles Out of Old

This bundle νf will be called the normal bundle of the immersion f .

(f) Continuous functors of vector spaces and vector bundles

The direct sum operation is perhaps the most important method for building new
vector spaces out of old, but many other such constructions play an important
role in differential geometry. For example, to any pair V,W of real vector spaces
one can assign:

1) the vector space Hom(V,W ) of linear transformations from V to W ;

2) the tensor product2 V ⊗W ;

3) the vector space of all symmetric bilinear transformations from V × V to
W ;

and so on. To a single vector space V one can assign:

4) the dual vector space Hom(V,R);

5) the k-th exterior power3 ΛkV ;

6) the vector space of all 4-linear transformations V ×V ×V ×V → R satisfying
the symmetry relations:

K(v1, v2, v3, v4) = K(v3, v4, v1, v2) = −K(v1, v2, v4, v3)

and
K(v1, v2, v3, v4) +K(v1, v4, v2, v3) +K(v1, v3, v4, v2) = 0.

(This last example would be rather far-fetched, were it not important in the
theory of Riemannian curvature.)

These examples suggest that we consider a general functor of several vector
space variables.

2See for example [Lan65, pp. 408].
3See for example [Lan65, pp. 424].
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Definition. Let VectR denote the category consisting of all finite dimensional
real vector spaces and all isomorphisms between such vector spaces. By a (co-
variant)4 functor T : VectR ×VectR −→ VectR is meant an operation which
assigns

1. to each pair V,W ∈ VectR of vector spaces a vector space T (V,W ) ∈
VectR;

and

2. to each pair f : V → V ′, g : W →W ′ of isomorphisms an isomorphism

T (f, g) : T (V,W ) −→ T (V ′,W ′);

so that

3. T (idV , idW ) = idT (V,W ) and

4. T (f1 ◦ f2, g1 ◦ g2) = T (f1, g1) ◦ T (f2, g2).

Such a functor will be called continuous if T (f, g) depends continuously on
f and g. This makes sense, since the set of all isomorphisms from one finite
dimensional vector space to another has a natural topology.

The concept of a continuous functor T : VectR × · · · ×VectR −→ VectR in
k variables is defined similarly. Note that examples 1, 2, 3 above are continuous
functors of two variables, and that examples 4, 5, 6 are continuous functors of
one variable.

Let T : VectR × · · · × VectR −→ VectR be such a continuous functor of k
variables, and let ξ1, . . . , ξk be vector bundles over a common base space B. Then
a new vector bundle over B is constructed as follows. For each b ∈ B let

Fb = T (Fb(ξ1), . . . , Fb(ξk)).

Let E denote the disjoint union of the vector spaces Fb and define π : E −→ B

by π(Fb) = b.
4The distinction between covariant and contravariant functors is not important here, since

we are working only with isomorphisms.
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Theorem 3.6. There exists a canonical topology for E so that E is the total
space of a vector bundle with projection π and with fibers Fb.

Definition. This bundle will be denoted by T (ξ1, . . . , ξk).

For example starting with the tensor product functor, this construction defines
the tensor product ξ ⊗ η of two vector bundles. Starting with the direct sum
functor one obtains the Whitney sum ξ ⊕ η of two bundles. Starting with the
duality functor

V 7→ Hom(V,R),

one obtains the functor
ξ 7→ Hom(ξ, ε1),

which assigns to each vector bundle its dual vector bundle.
The proof of Theorem 3.6 will be indicated only briefly. Let (U, h1), . . . , (U, hk)

be local coordinate systems for (ξ1, . . . , ξk) respectively, all using the same open
set U . For each b ∈ U define

hib : Rni −→ Fb(ξi),

by hib(x) = hi(b, x). Then the isomorphism

T (h1b, . . . , hkb) : T (Rn1 , . . . ,Rnk) −→ Fb

is defined. The correspondence

(b, x) −→ T (h1b, . . . , hkb)(x)

defines a one-to-one function

h : U × T (Rn1 , . . . ,Rnk) −→ π−1(U).

Assertion. There is a unique topology on E so that each such h is a homeomor-
phism, and so that each π−1(U) is an open subset of E.

Proof. The uniqueness is clear. To prove existence, it is only necessary to ob-
serve that if two such “coordinate systems” (U, h) and (U ′, h′) overlap, then the
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transformation

(U ∩ U ′)× T (Rn1 , . . . ,Rnk)
h−1h′

−−−−→ (U ∩ U ′)× T (Rn1 , . . . ,Rnk)

is continuous. This follows from the continuity of T .
It is now clear that π : E −→ B is continuous, and that the resulting vector

bundle T (ξ1, . . . , ξk) satisfies the local triviality condition.

Remark 1. This construction can be translated into Steenrod’s terminology as
follows. Let GLn = GLn(R) denote the group of automorphisms of the vector
space Rn. Then T determines a continuous homomorphism from the product
group GLn1

× · · ·×GLnk
, to the group GL′ of automorphisms of the vector space

T (Rn1 , . . . ,Rnk). Hence given bundles (ξ1, . . . , ξk) over B with structural groups
GLn1

× · · · × GLnk
respectively, there corresponds a bundle T (ξ1, . . . , ξk) with

structural group GL′ and with fiber T (Rn1 , . . . ,Rnk). For further discussion, see
[Hir66, §3.6].

Remark 2. Given bundles (ξ1, . . . , ξk) over distinct base spaces, a similar con-
struction gives rise to a vector bundle T̂ (ξ1, . . . , ξk) over B(ξ1)×· · ·×B(ξk), with
typical fiber T (Fb1(ξ1)×· · ·×Fb1(ξk)). This yields a functor T̂ from the category
of vector bundles and bundle maps into itself. As an example, starting from the
direct sum functor ⊕ on the category VectR one obtains the Cartesian product
functor

ξ, η 7→ ξ⊕̂η = ξ × η,

for vector bundles.

Remark 3. If (ξ1, . . . , ξk) are smooth vector bundles, then T (ξ1, . . . , ξk) can
also be given the structure of a smooth vector bundle. The proof is similar to
that of Theorem 3.6. It is necessary to make use of the fact that the isomorphism
T (f1, . . . , fk) is a smooth function of the isomorphisms T (f1, . . . , fk). This follows
from [Che99, p. 128].

As an illustration, let M f−→ N be a smooth map. Then Hom(τM , f∗τN ) is a
smooth vector bundle over M . Note that df gives rise to a smooth cross-section
of this vector bundle.
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As a second illustration, if M ⊂ N with normal bundle ν, where N is a smooth
Riemannian manifold, then the second fundamental form can be defined as
a smooth symmetric cross-section of the bundle Hom(τM ⊗ τN , ν). (Compare
[BC11], as well as 5-B.)

Here are six problems for the reader.

Problem 3-A. A smooth map f : M −→ N between smooth manifolds is called
a submersion if each Jacobian

dfx : TxM −→ Tf(x)N

is surjective (i.e. is onto). Construct a vector bundle κf built up out of the
kernels of the dfx. If M is Riemannian, show that

τM ∼= κf ⊕ f∗τN .

Problem 3-B. Given vector bundles ξ ⊂ η define the quotient bundle η/ξ

and prove that it is locally trivial. If η has a Euclidean metric, show that

ξ⊥ ∼= η/ξ.

Problem 3-C. More generally let ξ, η be arbitrary vector bundles over B and
let f be a cross-section of the bundle Hom(ξ, η). If the rank of the linear function

f(b) : Fb(ξ) −→ Fb(η)

is locally constant as a function of b, define the kernel κf ⊂ ξ and the cokernel
νf , and prove that they are locally trivial.

Problem 3-D. If a vector bundle ξ possesses a Euclidean metric, show that ξ

is isomorphic to its dual bundle Hom(ξ, ε1).

Problem 3-E. Show that the set of isomorphism classes of 1-dimensional vector
bundles over B forms an abelian group with respect to the tensor product oper-
ation. Show that a given R1-bundle ξ possesses a Euclidean metric if and only if
ξ represents an element of order ≤ 2 in this group.
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Problem 3-F. (Compare [Swa62].) Let B be a Tychonoff space5 and let R(B)

denote the ring of continuous real valued functions on B. For any vector bundle
ξ over B, let S(ξ) denote the R(B)-module consisting of all cross-sections of ξ.

1. Show that S(ξ⊕ η) ∼= S(ξ)⊕S(η). Show that ξ is trivial if and only if S(ξ)
is free.

2. If ξ⊕ η is trivial, show that S(ξ) is a finitely generated projective module.6

Conversely if Q is a finitely generated projective module over R(B), show
that Q ∼= S(ξ) for some ξ.

3. Show that ξ ∼= η if and only if S(ξ) ∼= S(η).

5A topological space is Tychonoff if it is Hausdorff, and if for every point x and disjoint
closed subset A there exists a continuous real valued function separating x from A. (Compare
[Kel55].)

6A module is projective if it is a direct summand of a free module. See for example [LB99,
p. 368].
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4. Stiefel-Whitney Classes

This section will begin the study of characteristic classes by introducing four
axioms which characterize the Stiefel-Whitney cohomology classes of a vector
bundle. The existence and uniqueness of cohomology classes satisfying these
axioms will only be established in later sections.

The expression Hi(B;G) denotes the i-th singular cohomology group of B

with coefficients in G. For an outline of basic definitions and theorems concerning
singular cohomology theory, the reader is referred to appendix A. In this section
the coefficient group will always be Z/2, the group of integers modulo 2.

Axiom 1. To each vector bundle ξ there corresponds a sequence of cohomology
classes

wi(ξ) ∈ Hi(B(ξ);Z/2), i = 0, 1, 2, . . .

called the Stiefel-Whitney classes of ξ. The class w0(ξ) is equal to the unit
element

1 ∈ H0(B(ξ);Z/2),

and wi(ξ) equals zero for i > n if ξ is an n-plane bundle.

Axiom 2 (Naturality). If f : B(ξ) → B(η) is covered by a bundle map from ξ

to η, then
wi(ξ) = f∗ wi(η).

Axiom 3 (The Whitney Product Theorem). If ξ and η are vector bundles over
the same base space, then

wk(ξ ⊕ η) =

k∑
i=0

wi(ξ) ⌣ wk−i(η).
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Chapter 4: Stiefel-Whitney Classes

For example w1(ξ ⊕ η) = w1(ξ) + w1(η),

w2(ξ ⊕ η) = w2(ξ) + w1(ξ) w1(η) + w2(η), etc

(We will omit the symbol ⌣ for cup product whenever it seems convenient.)

Axiom 4. For the line bundle γ1
1 over the circle P1, the Stiefel-Whitney class

w1(γ
1
1) is non-zero.

Remark 4. Characteristic homology classes for the tangent bundle of a smooth
manifold were defined by [Sti35] in 1935. In the same year [Whi36] defined the
classes wi for any sphere bundle over a simplicial complex. (A “sphere bundle” is
the object obtained from a Euclidean vector bundle by considering only vectors of
unit length in the total space.) The Whitney product theorem is due to [Whi40];
[Whi41] and [Wu48]. This axiomatic definition of Stiefel-Whitney classes was
suggested by Hirzebruch [Hir66, p. 58], where an analogous definition of Chern
classes is given.

It is not at all obvious that classes wi(ξ) satisfying the four axioms can be
defined. Nevertheless this will be assumed for the rest of this section. A number
of applications of this assumption will be given.

4.1 Consequences of the Four Axioms

As immediate consequences of Axiom 2 one has the following.

Proposition 1. If ξ is isomorphic to η then wi(ξ) = wi(η).

Proposition 2. If ε is a trivial vector bundle then wi(ε) = 0 for i > 0.

For if ε is trivial then there exists a bundle map from ε to a vector bundle
over a point.

Combining this information with the Whitney product theorem, one obtains:

Proposition 3. If ε is trivial, then wi(ε⊕ η) = wi(η).
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Section 4.1: Consequences of the Four Axioms

Proposition 4. If ξ is an Rn-bundle with a Euclidean metric which possesses a
nowhere zero cross-section, then wn(ξ) = 0. If ξ possesses k cross-sections which
are nowhere linearly dependent, then

wn−k+1(ξ) = wn−k+2(ξ) = · · · = wn(ξ) = 0.

For it follows from Theorem 3.3 that ξ splits as a Whitney sum ε⊕ ε⊥ where
ε is trivial and ε⊥ has dimension n− k.

A particularly interesting case of the Whitney product theorem occurs when
the Whitney sum ξ ⊕ η is trivial. Then the relations

w1(ξ) + w1(η) = 0

w2(ξ) + w1(ξ) w1(η) + w2(η) = 0

w3(ξ) + w2(ξ) w1(η) + w1(ξ) w2(η) + w3(η) = 0, etc.,

can be solved inductively, so that wi(η) is expressed as a polynomial in the Stiefel-
Whitney classes of ξ. It is convenient to introduce the following formalism.

Definition. HΠ(B;Z/2) will denote the ring consisting of all formal infinite series

a = a0 + a1 + a2 + · · ·

with ai ∈ Hi(B;Z/2). The product operation in this ring is to be given by the
formula

(a0 + a1 + a2 + · · · )(b0 + b1 + b2 + · · · )

= (a0b0) + (a1b0 + a0b1) + (a2b0 + a1b1 + a0b2) + · · · .

This product is commutative (since we are working modulo 2) and associa-
tive. Additively, HΠ(B;Z/2) is to be simply the Cartesian product of the groups
Hi(B;Z/2).

The total Stiefel-Whitney class of an n-plane bundle ξ over B is defined
to be the element

w(ξ) = 1 + w1(ξ) + w2(ξ) + · · ·+wn(ξ) + 0 + · · ·
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Chapter 4: Stiefel-Whitney Classes

of this ring. Note that the Whitney product theorem can now be expressed by
the simple formula

w(ξ ⊕ η) = w(ξ) w(η).

Lemma 4.1. The collection of all infinite series

w = 1 + w1 +w2 + · · · ∈ HΠ(B;Z/2)

with leading term 1 forms a commutative group under multiplication.

(This is precisely the group of units of the ring HΠ(B;Z/2).)

Proof. The inverse
w = 1 + w1 +w2 +w3 + · · ·

of a given element w can be constructed inductively by the algorithm

wn = w1 wn−1 +w2 wn−2 + · · ·+wn−1 w1 +wn .

Thus one obtains:

w1 = w1

w2 = w2
1 +w2

w3 = w3
1 +w3

w4 = w4
1 +w2

1 w2 +w2
2 +w4,

and so on. This completes the proof.

Alternatively w can be computed by the power series expansion:

w = [1 + (w1 +w2 +w3 + · · · )]−1

= 1− (w1 +w2 +w3 + · · · ) + (w1 +w2 + · · · )2 − (w1 +w2 + · · · )3 + · · ·

= 1− w1 +(w2
1−w2) + (−w3

1 +2w1 w2−w3) + · · ·

(where the signs are of course irrelevant). This leads to the precise expression
(i1 + · · ·+ ik)!/i1! · · · ik! for the coefficient of wi1

1 wi2
2 · · ·w

ik
k in w.
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Now consider two vector bundles ξ and η over the same base space. It follows
from Proposition 1 that the equation

w(ξ ⊕ η) = w(ξ) w(η)

can be uniquely solved as

w(η) = w(ξ) w(ξ ⊕ η).

In particular, if ξ ⊕ η is trivial, then

w(η) = w(ξ).

One important special case is the following.

Lemma 4.2 (Whitney duality theorem). If τM is the tangent bundle of a man-
ifold in Euclidean space and ν is the normal bundle then

wi(ν) = wi(τM ).

Now let us compute the Stiefel-Whitney classes in some special cases. It will
frequently be convenient to use the abbreviation w(M) for the total Stiefel-Whitney
class of a tangent bundle τM .

Example 6. For the tangent bundle τ of the unit sphere Sn, the class
w(τ) = w(Sn) is equal to 1. In other words, τ cannot be distinguished from the
trivial bundle over Sn by means of Stiefel-Whitney classes.

Proof. For the standard imbedding Sn ⊂ Rn+1, the normal bundle ν is trivial.
Since w(τ) w(ν) = 1 and w(ν) = 1 it follows that w(τ) = 1.

Alternative proof (without using the Whitney product theorem): The canonical
map

f : Sn −→ Pn

to projective space is locally a diffeomorphism. Hence the induced map

df : TSn −→ TPn
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of tangent bundles is a bundle map. Applying Axiom 2, one obtains the identity

f∗ wn(Pn) = wn(S
n)

where the homomorphism

f∗ : Hn(Pn;Z/2) −→ Hn(Sn;Z/2)

is well known to be zero. (Compare the remark below.) Therefore wn(S
n) = 0,

which completes the alternative proof.

The rest of §4 will be concerned with bundles over the projective space Pn.
It is first necessary to describe the mod 2 cohomology of Pn.

Lemma 4.3. The group Hi(Pn;Z/2) is cyclic of order 2 for 0 ≤ i ≤ n and is
zero for higher values of i. Furthermore, if a denotes the non-zero element of
H1(Pn;Z/2) then each Hi(Pn;Z/2) is generated by the i-fold cup product ai.

Thus H•(Pn;Z/2) can be described as the algebra with unit over Z/2 having
one generator a and one relation an+1 = 0.

For a proof the reader may refer to [Pal, § 4.3.3] or [Spa81, p. 264]. See
Problems 11-A and 12-C. (Compare Theorem 14.4.)

Remark 5. This lemma can be used to compute the homomorphism

f∗ : Hn(Pn;Z/2) −→ Hn(Sn;Z/2)

providing that n > 1. In fact

f∗(an) = (f∗a)n

is zero since f∗a ∈ H1(Sn;Z/2) = 0.

Example 7. The total Stiefel-Whitney class of the canonical line bundle γ1
n over

Pn is given by
w(γ1

n) = 1 + a.
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Proof. The standard inclusion j : P1 −→ Pn is clearly covered by a bundle map

from γ1
1 to γ1

n. Therefore

j∗ w1(γ
1
n) = w1(γ

1
1) ̸= 0.

This shows that w1(γ
1
n) cannot be zero, hence must be equal to a. Since the re-

maining Stiefel-Whitney classes of γ1
n are determined by Axiom 1 , this completes

the proof.

Example 8. By its definition, the line bundle γ1
n over Pn is contained as a

sub-bundle in the trivial bundle εn+1. Let γ⊥ denote the orthogonal complement
of γ1

n in εn+1. (Thus the total space E(γ⊥) consists of all pairs

({±x}, v) ∈ Pn × Rn+1

with v perpendicular to x.) Then

w(γ⊥) = 1 + a+ a2 + · · ·+ an.

Proof. Since γ1
n ⊕ γ⊥ is trivial we have

w(γ⊥) = w(γ1
n) = (1 + a)−1 = 1 + a+ a2 + · · ·+ an.

This example shows that all of the n Stiefel-Whitney classes of an Rn-bundle
may be non-zero.

Example 9. Let τ be the tangent bundle of the projective space Pn.

Lemma 4.4. The tangent bundle τ of Pn is isomorphic to Hom(γ1
n, γ

⊥).

Proof. Let L be a line through the origin in Rn+1, intersecting Sn in the points
±x, and let L⊥ ⊂ Rn+1 be the complementary n-plane. Let f : Sn −→ Pn denote
the canonical map, f(x) = {±x}. Note that the two tangent vectors (x, v) and
(−x,−v) in TSn both have the same image under the map

df : TSn −→ TPn
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L

Sphere Sn

path p(t)

−x −p(t)

−v = −dp
dt

x

v = dp
dt

Figure 5

which is induced by f . (Compare Figure 5.) Thus the tangent manifold TPn can
be identified with the set of all pairs {(x, v), (−x,−v)} satisfying

x · x = 1, x · v = 0

But each such pair determines, and is determined by, a linear mapping

ℓ : L −→ L⊥,

where
ℓ(x) = v.

Thus the tangent space of Pn at {±x} is canonically isomorphic to the vector
space Hom(L,L⊥). It follows that the tangent vector bundle τ is canonically
isomorphic to the bundle Hom(γ1

n, γ
⊥). This completes the proof of Lemma 4.4.

We cannot compute w(Pn) directly from this lemma since we do not yet have
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any procedure for relating the Stiefel-Whitney classes of Hom(γ1
n, γ

⊥) to those of
γ1
n and γ⊥. However the computation can be carried through as follows. Let ε1

be a trivial line bundle over Pn.

Theorem 4.5. The Whitney sum τ⊕ε1 is isomorphic to the (n+1)-fold Whitney
sum γ1

n ⊕ γ1
n ⊕ · · · ⊕ γ1

n. Hence the total Stiefel-Whitney class of Pn is given by

w(Pn) = (1 + a)n+1 = 1 +

(
n+ 1

1

)
a+

(
n+ 1

2

)
a2 + · · ·+

(
n+ 1

n

)
an.

Proof. The bundle Hom(γ1
n, γ

1
n) is trivial since it is a line bundle with a canonical

nowhere zero cross-section. Therefore

τ ⊕ ε1 ∼= Hom(γ1
n, γ

⊥)⊕Hom(γ1
n, γ

1
n).

This is clearly isomorphic to

Hom(γ1
n, γ

⊥ ⊕ γ1
n)
∼= Hom(γ1

n, ε
n+1),

and therefore is isomorphic to the (n+ 1)-fold sum

Hom(γ1
n, ε

1 ⊕ · · · ⊕ ε1) ∼= Hom(γ1
n, ε

1)⊕ · · · ⊕Hom(γ1
n, ε

1)

But the bundle Hom(γ1
n, ε

1) is isomorphic to γ1
n, since γ

1
n has a Euclidean metric.

(Compare Problem 3-D.) This proves that

τ ⊕ ε1 ∼= γ1
n ⊕ · · · ⊕ γ1

n

Now the Whitney product theorem (Axiom 3) implies that w(τ) = w(τ ⊕ ε1) is
equal to

w(γ1
n) · · ·w(γ1

n) = (1 + a)n+1

Expanding by the binomial theorem, this completes the proof of 4.5.

Here is a table of the binomial coefficients
(
n+1
i

)
modulo 2 , for n ≤ 14.
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1

1 1

P 1 : 1 0 1

P 2 : 1 1 1 1

P 3 : 1 0 0 0 1

P 4 : 1 1 0 0 1 1

P 5 : 1 0 1 0 1 0 1

P 6 : 1 1 1 1 1 1 1 1

P 7 : 1 0 0 0 0 0 0 0 1

P 8 : 1 1 0 0 0 0 0 0 1 1

P 9 : 1 0 1 0 0 0 0 0 1 0 1

P 10 : 1 1 1 1 0 0 0 0 1 1 1 1

P 11 : 1 0 0 0 1 0 0 0 1 0 0 0 1

P 12 : 1 1 0 0 1 1 0 0 1 1 0 0 1 1

P 13 : 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

P 14 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The right hand edge of this triangle can be ignored for our purposes since
Hn+1(Pn;Z/2) = 0. As examples one has:

w(P2) = 1 + a+ a2

w(P3) = 1

and
w(P4) = 1 + a+ a4.

Corollary 4.6. (Stiefel). The class w(Pn) is equal to 1 if and only if n + 1 is
a power of 2. Thus the only projective spaces which can be parallelizable are
P1,P3,P7,P15, . . . .

(We will see in a moment that P1,P3, and P7 actually are parallelizable. On
the other hand it is known that the higher projective spaces P15,P31, . . . are not
parallelizable. See [BM58],[Ker58],[Ada60].)
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Proof. The identity (a+ b)2 ≡ a2 + b2 modulo 2 implies that

(1 + a)2
r

= 1 + a2
r

Therefore if n+ 1 = 2r then

w(Pn) = (1 + a)n+1 = 1 + an+1 = 1.

Conversely if n+ 1 = 2rm with m odd, m > 1, then

w(Pn) = (1 + a)n+1 = (1 + a2
r

)m = 1 +ma2
r

+
m(m− 1)

2
a2·2

r

+ · · · ̸= 1

since 2r < n+ 1. This completes the proof.

4.2 Division Algebras

Closely related is the question of the existence of real division algebras.

Theorem 4.7 (Stiefel). Suppose that there exists a bilinear product operation1

p : Rn × Rn −→ Rn

without zero divisors. Then the projective space Pn−1 is parallelizable, hence n

must be a power of 2.

In fact such division algebras are known to exist for n = 1, 2, 4, 8: namely the
real numbers, the complex numbers, the quaternions, and the Cayley numbers.
It follows that the projective spaces P1,P3 and P7 are parallelizable. That no
such division algebra exists for n > 8 follows from the references cited above on
parallelizability.

Proof of 4.7. Let b1, . . . , bn be the standard basis for the vector space Rn. Note
that the correspondence y 7→ p(y, b1) defines an isomorphism of Rn onto itself.

1This product operation is not required to be associative, or to have an identity element.
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Hence the formula
vi(p(y, b1)) = p(y, bi)

defines a linear transformation

vi : Rn −→ Rn.

Note that v1(x), . . . , vn(x) are linearly independent for x ̸= 0, and that v1(x) = x.
The functions v2, . . . , vn give rise to n− 1 linearly independent cross-sections

of the vector bundle
τPn−1

∼= Hom(γ1
n−1, γ

⊥).

In fact for each line L through the origin, a linear transformation

vi : L −→ L⊥

is defined as follows. For x ∈ L, let vi(x) denote the image of vi(x) under the
orthogonal projection

Rn −→ L⊥.

Clearly v1 = 0, but v2, . . . , vn are everywhere linearly independent. Thus the
tangent bundle τPn−1 is a trivial bundle. This completes the proof of 4.7.

4.3 Immersions

As a final application of Theorem 4.5, let us ask which projective spaces can
be immersed in the Euclidean space of a given dimension.

If a manifold M of dimension n can be immersed in the Euclidean space Rn+k

then the Whitney duality theorem

wi(ν) = wi(M)

implies that the dual Stiefel-Whitney classes wi(M) are zero for i > k.
As a typical example, consider the real projective space P9. Since

w(P9) := (1 + a)10 = 1 + a2 + a8
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we have
w(P9) = 1 + a2 + a4 + a6

Thus if P9 can be immersed in R9+k, then k must be at least 6.
The most striking results for Pn are obtained when n is a power of 2. If n = 2r

then
w(Pn) = (1 + a)n+1 := 1 + a+ an

hence
w (Pn) = 1 + a+ a2 + · · ·+ an−1.

Thus:

Theorem 4.8. If P2r can be immersed in R2r+k, then k must be at least 2r − 1.

On the other hand Whitney has proved that every smooth compact manifold
of dimension n > 1 can actually be immersed in R2n−1. (See [Whi44].) Thus 4.8
provides a best possible estimate.

Note that estimates for other projective spaces follow from 4.8. For example
since P8 cannot be immersed in R14, it follows a fortiori that P9 cannot be
immersed in R14. This duplicates the earlier estimate concerning P9. See [Jam71].

An extensive and beautiful theory concerning immersions of manifolds has
been developed by S. Smale and M. Hirsch. For further information the reader
should consult [Hir59] and [Sma59].

4.4 Stiefel-Whitney Number

We will now describe a tool which allows us to compare certain Stiefel-
Whitney classes of two different manifolds.

Let M be a closed, possibly disconnected, smooth n-dimensional manifold.
Using mod 2 coefficients, there is a unique fundamental homology class

µM ∈ Hn(M ; Z/2).

(See Appendix A.) Hence for any cohomology class v ∈ Hn(M ; Z/2), the Kro-
necker index

⟨v, µM ⟩ ∈ Z/2,
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is defined. We will sometimes use the abbreviated notation v[M ] for this Kro-
necker index.

Let r1, . . . , rn be non-negative integers with r1 + 2r2 + · · · + nrn = n. Then
corresponding to any vector bundle ξ we can form the monomial

w1(ξ)
r1 · · ·wn(ξ)

rn

in Hn(B(ξ); Z/2). In particular we can carry out this construction if ξ is the
tangent bundle of the manifold M .

Definition. The corresponding integer mod 2

⟨w1(τM )r1 · · ·wn(τM )rn , µM ⟩ or briefly wr1
1 · · ·wrn

n [M ],

is called the Stiefel-Whitney number of M associated with the monomial
wr1

1 · · ·wrn
n .

In studying these numbers, we will be interested in the collection of all possible
Stiefel-Whitney numbers for a given manifold. Thus two different manifolds M

and M ′ have the same Stiefel-Whitney numbers if

wr1
1 · · ·wrn

n [M ] = wr1
1 · · ·wrn

n [M ′]

for every monomial wr1
1 · · ·wrn

n of total dimension n. (Compare Definition 88 of
a partition and 6-D.)

As an example, let us try to compute the Stiefel-Whitney numbers of the
projective space Pn. (which is about the only manifold we are able to handle
at this point.) Let τ denote the tangent bundle of Pn. If n is even, then the
cohomology class wn(τ) = (n + 1)an is non-zero, and it follows that the Stiefel-
Whitney number wn[Pn] is non-zero. Similarly, since w1(τ) = (n + 1)a ̸= 0, it
follows that wn

1 [Pn] ̸= 0. If n is actually a power of 2, then w(τ) = 1+a+an, and
it follows that all other Stiefel-Whitney numbers of Pn are zero. In any case, even
if n is not a power of 2, the remaining Stiefel-Whitney numbers can certainly be
computed effectively as products of binomial coefficients.

On the other hand if n is odd, say n = 2k−1, then w(τ) = (1+a)2k = (1+a2)k,
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so it follows that wj(τ) = 0 whenever j is odd. Since every monomial of total
dimension 2k − 1 must contain a factor wj of odd dimension, it follows that all
of the Stiefel-Whitney numbers of P2k−1 are zero. This gives some indication of
how much detail and structure this invariant overlooks.

The importance of Stiefel-Whitney numbers is indicated by the following the-
orem and its converse.

Theorem 4.9 (Pontrjagin). If B is a smooth compact (n+1)-dimensional mani-
fold with boundary equal to M (compare §17), then the Stiefel-Whitney numbers
of M are all zero.

Proof. Let us denote the fundamental homology class of the pair by

µB ∈ Hn+1(B,M),

the coefficient group Z/2 being understood. Then the natural homomorphism

∂ : Hn+1(B,M) −→ Hn(M)

maps µB to µM . (Compare Appendix A.) For any class v ∈ Hn(M), note the
identity

⟨v, ∂µB⟩ = ⟨δv, µB⟩,

where δ denotes the natural homomorphism from Hn(M) to Hn+1(B,M). (There
is no sign since we are working mod 2.) Consider the tangent bundle τB restricted
to M , as well as the sub-bundle τM . Choosing a Euclidean metric on τB , there
is a unique outward normal vector field along M , spanning a trivial line bundle
ε1, and it follows that

τB |M ∼= τM ⊕ ε1.

Hence the Stiefel-Whitney classes of τB , restricted to M , are precisely equal to
the Stiefel-Whitney classes wj of τM . Using the exact sequence

Hn(B)
i∗−→ Hn(M)

δ−→ Hn+1(B,M)
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where i∗ is the restriction homomorphism, it follows that

δ(wr1
1 . . .wrn

n ) = 0,

and therefore
⟨(wr1

1 · · ·wrn
n ), ∂µB⟩ = ⟨δ(wr1

1 · · ·wrn
n ), µB⟩.

Thus all Stiefel-Whitney numbers of M are zero.

The converse, due to Thom, is much harder to prove.

Theorem 4.10 (Thom). If all of the Stiefel-Whitney numbers of M are zero,
then M can be realized as the boundary of some smooth compact manifold.

For proof, the reader is referred to [Sto68].
For example the union of two disjoint copies of M , which certainly has all

Stiefel-Whitney numbers zero, is equal to the boundary of the cylinder M× [0, 1].
Similarly, the odd dimensional projective space P2k−1 has all Stiefel-Whitney
numbers zero. The reader may enjoy trying to prove directly that P2k−1 is a
boundary.

Now let us introduce the concept of “cobordism class”.

Definition. Two smooth closed n-manifolds M1 and M2 belong to the same
unoriented cobordism class iff their disjoint union M1 ⊔M2 is the boundary of a
smooth compact (n+ 1)-dimensional manifold.

Figure 6

Theorems 4.9, 4.10 have the following important consequence.
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Corollary 4.11. Two smooth closed n-manifolds belong to the same cobordism
class if and only if all of their corresponding Stiefel-Whitney numbers are equal.

Proof. The proof is immediate.

Here are five problems for the reader.

Problem 4-A. Show that the Stiefel-Whitney classes of a Cartesian product are
given by

wk(ξ × η) =

k∑
i=0

wi(ξ)× wk−i(η).

Problem 4-B. Prove the following theorem of Stiefel. If n + 1 = 2rm with m

odd, then there do not exist 2r vector fields on the projective space Pn which are
everywhere linearly independent.2

Problem 4-C. A manifold M is said to admit a field of tangent k-planes if its
tangent bundle admits a sub-bundle of dimension k. Show that Pn admits a field
of tangent 1-planes if and only if n is odd. Show that P4 and P6 do not admit
fields of tangent 2-planes.

Problem 4-D. If the n-dimensional manifold M can be immersed in Rn+1 show
that each wi(M) is equal to the i-fold cup product w1(M)i. If Pn can be immersed
in Rn+1 show that n must be of the form 2r − 1 or 2r − 2.

Problem 4-E. Show that the set Nn consisting of all unoriented cobordism
classes of smooth closed n-manifolds can be made into an additive group. This
cobordism group Nn is finite by corollary 4.11, and is clearly a module over
Z/2. Using the manifolds P2 × P2 and P4, show that N4 contains at least four
distinct elements.

2Compare [Sti35]; [WS51]; [Ada62].
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5. Grassmann Manifold and Univer-

sal Bundles

In classical differential geometry one encounters the “spherical image” of a
curve M1 ⊂ Rk+1. This is the image of M1 under the mapping

t : M1 −→ Sk

which carries each point of M1 to its unit tangent vector. Similarly Gauss defined
the spherical image of a hypersurface Mk ⊂ Rk+1 as the image of Mk under the
mapping

n : Mk −→ Sk

which carries each point of M to its unit normal vector. (Compare figure 7, 8.) In
order to specify the sign of the tangent or normal vector it is necessary to assume
that M1 or Mk has a preferred orientation. (Compare §9.) However without this
orientation one can still define a corresponding map from the manifold to the real
projective space Pk.

More generally let M be a smooth manifold of dimension n in the coordinate
space Rn+k. Then to each point x of M one can assign the tangent space
TxM ⊂ Rn+k. We will think of TxM as determining a point in a new topological
space Grn(Rn+k).

Definition. The Grassmann manifold Grn(Rn+k) is the set of all n-dimensional
planes through the origin of the coordinate space Rn+k. This is to be topologized
as a quotient space, as follows. An n-frame in Rn+k is an n-tuple of linearly
independent vectors of Rn+k. The collection of all n-frames in Rn+k forms an
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x

M1

t(x)

O

S2

Figure 7

open subset of the n-fold Cartesian product Rn+k×· · ·×Rn+k, called the Stiefel
manifold Vn(Rn+k). (Compare [Ste51, §7.7].) There is a canonical function

q : Vn(Rn+k) −→ Grn(Rn+k)

which maps each n-frame to the n-plane which it spans. Now give Grn(Rn+k)

the quotient topology: a subset U ⊂ Grn(Rn+k) is open if and only if its inverse
image q−1(U) ⊂ Vn(Rn+k) is open.

Alternatively let V0
n(Rn+k) denote the subset of Vn(Rn+k) consisting of all

orthonormal n-frames, Then Grn(Rn+k) can also be considered as an identifica-
tion space of V0

n(Rn+k). One sees from the following commutative diagram that
both constructions yield the same topology for Grn(Rn+k).

V0
n(Rn+k) Vn(Rn+k) V0

n(Rn+k)

Grn(Rn+k)

q0
q

Gram-Schmidt Process

q0

Here q0 denotes the restriction of q to V0
n(Rn+k).

Lemma 5.1. The Grassmann manifold Grn(Rn+k) is a compact topological man-
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n(x)

S2

x

M2

O

Figure 8

ifold1 of dimension nk. The correspondence X → X⊥, which assigns to each n-
plane its orthogonal k-plane, defines a homeomorphism between Grn(Rn+k) and
Grk(Rn+k).

Remark. For the special case k = 1 note that Gr1(Rn+1) is equal to the real
projective space Pn. It follows that the manifold Grn(Rn+1) of n-planes in (n+1)-
space is canonically homeomorphic to Pn.

Proof of 5.1. In order to show that Grn(Rn+k) is a Hausdorff space it is sufficient
to show that any two points can be separated by a continuous real valued function.
For fixed w ∈ Rn+k, let ρw(X) denote the square of the Euclidean distance from
w to X. If x1, . . . , xn is an orthonormal basis for X, then the identity

ρw(X) = w · w − (w · x1)
2 − · · · − (w · xn)

2

shows that the composition

V0
n(Rn+k)

q0−→ Grn(Rn+k)
ρw−−→ R

is continuous; hence that ρw is continuous. Now if X,Y are distinct n-planes, and

1A topological manifold of dimension d is a Hausdorff space in which every point has a
neighborhood homeomorphic to Rd.
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w belongs to X but not Y , then ρw(X) ̸= ρw(Y ). This proves that Grn(Rn+k)

is a Hausdorff space.
The set V0

n(Rn+k) of orthonormal n-frames is a closed, bounded subset of
Rn+k × · · · × Rn+k, and therefore is compact. It follows that

Grn(Rn+k) = q0(V
0
n(Rn+k))

is also compact.

Proof. that every point X0 of Grn(Rn+k) has a neighborhood U which is homeo-
morphic to Rnk. It will be convenient to regard Rn+k as the direct sum X0⊕X0

⊥.
Let U be the open subset of Grn(Rn+k) consisting of all n-planes Y such that
the orthogonal projection

p : X0 ⊕X⊥
0 −→ X0

maps Y onto X0 (i,e., all Y such that Y ∩X⊥
0 = 0 ). Then each Y ∈ U can be

considered as the graph of a linear transformation

T (Y ) : X0 −→ X⊥
0 .

This defines a one-to-one correspondence

T : U −→ Hom(X0, X
⊥
0 ) ∼= Rnk.

We will see that T is a homeomorphism.
Let x1, . . . , xn be a fixed orthonormal basis for X0. Note that each n-plane

Y ∈ U has a unique basis y1, . . . , yn such that

p(y1) = x1, . . . , p(yn) = xn.

It is easily verified that the n-frame (y1, . . . , yn) depends continuously on Y .
Now note the identity

yi = xi + T (Y )xi.
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Since yi depends continuously on Y , it follows that the image T (Y )xi ∈ X⊥
0

depends continuously on Y . Therefore the linear transformation T (Y ) depends
continuously on Y .

On the other hand this identity shows that the n-frame (y1, . . . , yn) depends
continuously on T (Y ), and hence that Y depends continuously on T (Y ). Thus
the function T−1 is also continuous. This completes the proof that Grn(Rn+k) is
a manifold.

Proof that Y ⊥ depends continuously on Y . Let (x1, . . . , xk) be a fixed basis for
X0

⊥. Define a function
f : q−1U −→ Vk(Rn+k)

as follows. For each (y1, . . . , yn) ∈ q−1U , apply the Gram-Schmidt process to
the vectors (y1, . . . , yn, x1, . . . , xk); thus obtaining an orthonormal (n+ k)-frame
(y′1, . . . , y

′
n+k) with y′n+1, . . . , y

′
n+k ∈ Y ⊥. Setting f(y1, . . . , yn) = (y′n+1, . . . , y

′
n+k),

it follows that the diagram

q−1U Vk(Rn+k)

U Grk(n+ k)

f

q q

⊥

is commutative. Now f is continuous, so q ◦ f is continuous, therefore the cor-
respondence Y 7→ Y ⊥ must also be continuous. This completes the proof of
5.1.

A canonical vector bundle γn(Rn+k) over Grn(Rn+k) is constructed as follows.
Let

E = E(γn(Rn+k))
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be the set of all pairs2

(n-plane in Rn+k, vector in that n-plane).

This is to be topologized as a subset of Grn(Rn+k)×Rn+k. The projection map
π : E −→ Grn(Rn+k) is defined by π(X,x) = X, and the vector space structure
in the fiber over X is defined by t1(X,x1) + t2(X,x2) = (X, t1x1 + t2x2). (Note
that γ1(Rn+1) is the same as the line bundle γ1

n described in §2.)

Lemma 5.2. The vector bundle γn(Rn+k) constructed in this way satisfies the
local triviality condition.

Proof. Let U be the neighborhood of X0 constructed as in Lemma 5.1. Define
the coordinate homeomorphism

h : U ×X0 −→ π−1(U)

as follows. Let h(Y, x) = (Y, y) where y denotes the unique vector in Y which is
carried into x by the orthogonal projection

p : Rn+k −→ X0.

The identities
h(Y, x) = (Y, x+ T (Y )x)

and
h−1(Y, y) = (Y, py)

show that h and h−1 are continuous. This completes the proof of 5.2.

Given a smooth n-manifold M ⊂ Rn+k the generalized Gauss map

g : M −→ Grn(Rn+k),

can be defined as the function which carries each x ∈ M to its tangent space

2Here, and elsewhere, the expression “n-plane” means linear subspace of dimension n. Thus
we only consider n-planes through the origin.
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TxM ∈ Grn(Rn+k). This is covered by a bundle map

g : E(τM ) −→ E(γn(Rn+k)).

where g(x, v) = (TxM,v). We will use the abbreviated notation

g : τM −→ γn(Rn+k).

It is clear that both g and g are continuous.
Not only tangent bundles, but most other Rn-bundles can be mapped into the

bundle γn(Rn+k) providing that k is sufficiently large. For this reason γn(Rn+k)

is called a universal bundle. (Compare Theorems 5.6 and 5.7, as well as [WS51,
§ 19].)

Lemma 5.3. For any n-plane bundle ξ over a compact base space B there exists
a bundle map ξ → γn(Rn+k) provided that k is sufficiently large.

In order to construct a bundle map f : ξ −→ γn(Rm) it is sufficient to
construct a map

f̂ : E(ξ) −→ Rm

which is linear and injective (i.e., has kernel zero) on each fiber of ξ. The required
function f can then be defined by

f(e) = (f̂(fiber through e), f̂(e)).

The continuity of f is not difficult to verify, making use of the fact that ξ is
locally trivial.

Proof of 5.3. Choose open sets U1, . . . , Ur covering B so that each ξ |Ui
is trivial.

Since B is normal, there exist open sets V1, . . . , Vr covering B with V i ⊂ Ui.
(Compare [Kel55, p. 171].) Here V i denotes the closure of Vi. Similarly construct
W1, . . . ,Wr with W i ⊂ Vi. By Urysohn’s lemma (Compare [Mun00, §33]) we have
continuous functions

λi : B −→ R

which takes the value 1 on W i and the value 0 outside of Vi.

69



Chapter 5: Grassmann Manifold and Universal Bundles

Since ξ|Ui
is trivial there exists a map

hi : π
−1(Ui) −→ Rn

which maps each fiber of ξ|Ui
linearly onto Rn. Define h′

i : E(ξ) −→ Rn by

h′
i(e) =

0 for π(e) /∈ Vi

λi(π(e))hi(e) for π(e) ∈ Ui

Evidently h′
i is continuous, and is linear on each fiber. Now define

f̂ : E(ξ) −→ Rn ⊕ · · · ⊕ Rn ∼= Rrn

by f̂(e) = (h′
1(e), h

′
2(e), . . . , h

′
r(e)). Then f̂ is also continuous and maps each

fiber injectively. This completes the proof of 5.3.

5.1 Infinite Grassmann Manifolds

A similar argument applies if the base space B is paracompact and finite
dimensional. (Compare Problem 5-E.) However in order to take care of bundles
over more exotic base spaces it is necessary to allow the dimension of Rn+k to
tend to infinity, thus yielding an infinite Grassmann “manifold” Grn(R∞).

Let R∞ denote the vector space consisting of those infinite sequences

x = (x1, x2, x3, . . .)

of real numbers for which all but a finite number of the xi are zero. (Thus R∞ is
much smaller than the infinite coordinate spaces utilized in §1.) For fixed k, the
subspace consisting of all

x = (x1, x2, . . . , xk, 0, 0, . . .)

will be identified with the coordinate space Rk. Thus R1 ⊂ R2 ⊂ R3 ⊂ · · · with
union R∞.
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Definition. The infinite Grassmann manifold

Grn = Grn(R∞)

is the set of all n–dimensional linear sub–spaces of R∞, topologized as the direct
limit3 of the sequence

Grn(Rn) ⊂ Grn(Rn+1) ⊂ Grn(Rn+2) ⊂ · · · .

In other words, a subset of Grn is open [or closed] if and only if its intersection
with Grn(Rn+k) is open [or closed] as a subset of Grn(Rn+k) for each k. This
makes sense since Grn(R∞) is equal to the union of the subsets Grn(Rn+k).

As a special case, the infinite projective space P∞ = Gr1(R∞) is equal to
the direct limit of the sequence P1 ⊂ P2 ⊂ P3 ⊂ · · · .

Similarly R∞ itself can be topologized as the direct limit of the sequence
R1 ⊂ R2 ⊂ · · · .

5.2 The Universal Bundle γn

A canonical bundle γn over Grn is constructed, just as in the finite dimensional
case, as follows. Let

E(γn) ⊂ Grn×R∞

be the set of all pairs

(n-plane in R∞, vector in that n-plane),

topologized as a subset of the Cartesian product. Define π : E(γn) → Grn by
π(X,x) = X, and define the vector space structures in the fibers as before.

Lemma 5.4. This vector bundle γn satisfies the local triviality condition.

3It is customary in algebraic topology to call this the “weak topology,” a weak topology
being one with many open sets. This usage is unfortunate since analysts use the term weak
topology with precisely the opposite meaning. On the other hand the terms “fine topology” or
“large topology” or “Whitehead topology” are certainly acceptable.
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The proof will be essentially the same as that of Lemma 5.2. However the
following technical lemma will be needed. (Compare [Whi61, §18.5].)

Lemma 5.5. Let A1 ⊂ A2 ⊂ · · · and B1 ⊂ B2 ⊂ · · · be sequences of locally
compact spaces with direct limits A and B respectively. Then the Cartesian
product topology on A × B coincides with the direct limit topology which is
associated with the sequence A1 ×B1 ⊂ A2 ×B2 ⊂ · · · .

Proof. Let W be open in the direct limit topology, and let (a, b) be any point of
W . Suppose that (a, b) ∈ Ai×Bi. Choose a compact neighborhood Ki of a in Ai

and a compact neighborhood Li of b in Bi so that Ki×Li ⊂W . It is now possible
(with some effort) to choose compact neighborhoods Ki+1 of Ki in Ai+1 and Li+1

of Li in Bi+1 so that Ki+1 × Li+1 ⊂ W . Continue by induction, constructing
neighborhoods Ki ⊂ Ki+1 ⊂ Ki+2 ⊂ · · · with union U and Li ⊂ Li+1 ⊂ · · · with
union V . Then U and V are open sets, and

(a, b) ∈ U × V ⊂W.

Thus W is open in the product topology, which completes the proof of 5.5.

Proof of Lemma 5.4. Let X0 ⊂ R∞ be a fixed n-plane, and let U ⊂ Grn be
the set of all n-planes Y which project onto X0 under the orthogonal projection
p : R∞ → X0. This set U is open since, for each finite k, the intersection

Uk = U ∩Grn(Rn+k)

is known to be an open set. Defining

h : U ×X0 → π−1(U)

as in Lemma 5.2, it follows from 5.2 that h|Uk×X0
is continuous for each k. Now

Lemma 5.5 implies that h itself is continuous.

As before, the identity h−1(Y, y) = (Y, py) implies that h−1 is continuous.
Thus h is a homeomorphism. This completes the proof that γn is locally trivial.
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The following two theorems assert that this bundle γn over Grn is a “universal”
Rn-bundle.

Theorem 5.6. Any Rn-bundle ξ over a paracompact base space admits a bundle
map ξ → γn.

Two bundle maps, f, g : ξ → γn are called bundle-homotopic if there exists
a one-parameter family of bundle maps

ht : ξ → γn, 0 ≤ t ≤ 1

with h0 = f , h1 = g, such that h is continuous as a function of both variables.
In other words the associated function

h : E(ξ)× [0, 1]→ E(γn)

must be continuous.

Theorem 5.7. Any two bundle maps from an Rn-bundle to γn are bundle-
homotopic.

5.3 Paracompact Spaces

Before beginning the proofs of Theorems 5.6 and 5.7, let us review the defini-
tion and the basic theorems concerning paracompactness. For further information
the reader is referred [Kel55] and [Dug66].

Definition. A topological space B is paracompact if B is a Hausdorff space
and if, for every open covering {Uα} of B, there exists an open covering {Vβ}
which

1) is a refinement of {Uα}: that is each Vβ is contained in some Uα, and

2) is locally finite: that is each point of B has a neighborhood which inter-
sects only finitely many of the Vβ .

Nearly all familiar topological spaces are paracompact. For example (see the
above references):
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Theorem (A. H. Stone). Every metric space is paracompact.

Theorem (Morita). If a regular topological space is the countable union of
compact subsets, then it is paracompact.

Corollary. The direct limit of a sequence K1 ⊂ K2 ⊂ K3 ⊂ · · · of compact
spaces is paracompact. In particular the infinite Grassmann space Grn is para-
compact.

For it follows from [Whi61, §18.3] that such a direct limit is regular. (The
reader should have no difficulty in supplying a proof.)

Theorem (Dieudonné). Every paracompact space is normal.

The proof of 5.6 will be based on the following.

Lemma 5.9. For any fiber bundle ξ over a paracompact space B, there exists
a locally finite covering of B by countably many open sets U1, U2, U3, . . . so that
ξ|Ui is trivial for each i.

Proof. Choose a locally finite open covering {Vα} so that each ξ|Vα is trivial;
and choose an open covering {Wα} with Wα ⊂ Vα for each α. (Compare [Kel55,
p. 171].) By Urysohn’s lemma (Compare [Mun00, §33]) we have continuous
functions λα : B −→ R which takes the value 1 on Wα and the value 0 outside
of Vα. For each non–vacuous finite subset S of the index set {α}, let U(S) ⊂ B

denote the set of all b ∈ B for which

Minα∈S λα(b) > Maxα ̸∈S λα(b).

Let Uk be the union of those sets U(S) for which S has precisely k elements.
Clearly each Uk is an open set, and

B = U1 ∪ U2 ∪ U3 ∪ · · · .

For each given b ∈ B, if precisely k of the numbers λα(B) are positive, then
b ∈ Uk. If α is any element of the set S, note that

U(S) ⊂ Vα .
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Since the covering {Vα} is locally finite, it follows that {Uk} is locally finite.
Furthermore, since each ξ|Vα

is trivial, it follows that each ξ|U(S) is trivial. But
the set Uk is equal to the disjoint union of its open subsets U(S). Therefore ξ|Uk

is also trivial.

The bundle map f : ξ −→ γn can now be constructed just as in the proof of
Lemma 5.3. Details will be left to the reader. This proves Theorem 5.6.

Proof of Theorem 5.7. Any bundle map f : ξ −→ γn determines a map

f̂ : E(ξ) −→ R∞

whose restriction to each fiber of ξ is linear and injective. Conversely, f̂ deter-
mines f by the identity

f(e) = (f̂(fiber through e), f̂(e)).

Let f, g : ξ −→ γn be any two bundle maps.
Case 1. Suppose that the vector f̂(e) ∈ R∞ is never equal to a negative

multiple of ĝ(e) for e ̸= 0, e ∈ E(ξ). Then the formula

ĥt(e) = (1− t)f̂(e) + tĝ(e), 0 ≤ t ≤ 1,

defines a homotopy between f̂ and ĝ. To prove that ĥ is continuous as a function
of both variables, it is only necessary to prove that the vector space operations in
R∞ (i.e., addition and multiplication by scalars) are continuous. But this follows
easily from Lemma 5.5. Evidently ĥt(e) ̸= 0 if e is a non–zero vector of E(ξ).
Hence we can define h : E(ξ)× [0, 1] −→ E(η) by

ht(e) = (ĥt(fiber through e), ĥt(e)).

To prove that h is continuous, it is sufficient to prove that the corresponding
function

h : B(ξ)× [0, 1] −→ Grn

on the base space is continuous. Let U be an open subset of B(ξ) with ξ|U trivial,
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and let s1, . . . , sn be nowhere dependent cross–sections of ξ|U . Then h|U×[0,1] can
be considered as the composition of

1) a continuous function B, t 7→ (ĥts1(B), . . . , ĥtsn(B)) from U × [0, 1] to the
“infinite Stiefel manifold” Vn(R∞) ⊂ R∞ × · · · × R∞, and

2) the canonical projection q : Vn(R∞) −→ Grn.

Using 5.5 it is seen that q is continuous. Therefore h is continuous; hence the
bundle–homotopy h between f and g is continuous.

General Case. Let f, g : ξ −→ γn be arbitrary bundle maps. A bundle map

d1 : γn −→ γn

is induced by the linear transformation R∞ −→ R∞ which carries the i–th basis
vector of R∞ to the (2i− 1)–th. Similarly d2 : γn −→ γn is induced by the linear
transformation which carries the i–th basis vector to the 2i–th. Now note that
three bundle–homotopies

f ∼ d1 ◦ f ∼ d2 ◦ g ∼ g

are given by three applications of Case 1. Hence f ∼ g.

5.4 Characteristic Classes of Real n-Plane Bundles

Using Theorems 5.6 and 5.7, it is possible to give a precise definition of the
concept of characteristic class. First observe the following.

Corollary 5.10. Any Rn–bundle ξ over a paracompact space B determines a
unique homotopy class of maps

fξ : B −→ Grn .

Proof. Let fξ : ξ −→ γn be any bundle map, and let fξ be the induced map of
base spaces.
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Now let Λ be a coefficient group or ring and let

c ∈ Hi(Grn; Λ)

be any cohomology class. Then ξ and c together determine a cohomology class

f
∗
ξc ∈ Hi(B; Λ).

This class will be denoted briefly by c(ξ).

Definition. c(ξ) is called the characteristic cohomology class of ξ deter-
mined by c.

Note that the correspondence ξ 7→ c(ξ) is natural with respect to bundle
maps. (Compare Axiom 2 in §4.) Conversely, given any correspondence

ξ 7→ c(ξ) ∈ Hi(B(ξ); Λ)

which is natural with respect to bundle maps, we have

c(ξ) = f
∗
ξc(γ

n).

Thus the above construction is the most general one. Briefly speaking: The
ring consisting of all characteristic cohomology classes for Rn–bundles
over paracompact base spaces with coefficient ring Λ is canonically
isomorphic to the cohomology ring H•(Grn; Λ).

These constructions emphasize the importance of computing the cohomology
of the space Grn. The next two sections will give one procedure for computing
this cohomology, at least modulo 2.

Remark 6. Using the “covering homotopy theorem” (compare [Dol95], [Hus94]),
Corollary 5.10 can be sharpened as follows: Two Rn–bundles ξ and η over
the paracompact space B are isomorphic if and only if the mapping fξ

of 5.10 is homotopic to fη.

Here are five problems for the reader.
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Problem 5-A. Show that the Grassmann manifold Grn(Rn+k) can be made into
a smooth manifold as follows: a function f : Grn(Rn+k) −→ R belongs to the
collection F of smooth real valued functions if and only if f ◦ q : Vn(Rn+k) −→ R
is smooth.

Problem 5-B. Show that the tangent bundle of Grn(Rn+k) is isomorphic to
Hom(γn(Rn+k), γ⊥); where γ⊥ denotes the orthogonal complement of γn(Rn+k)

in εn+k. Now consider a smooth manifold M ⊂ Rn+k. If g : M −→ Grn(Rn+k)

denotes the generalized Gauss map, show that

dg : TM −→ T
(
Grn(Rn+k)

)
gives rise to a cross–section of the bundle

Hom(τM ,Hom(τM , ν)) ∼= Hom(τM ⊗ τM , ν).

(The cross–section is called the second fundamental form of M .)

Problem 5-C. Show that Grn(Rm) is diffeomorphic to the smooth manifold
consisting of all m×m symmetric, idempotent matrices of trace n. Alternatively
show that the map

(x1, . . . , xn) 7→ x1 ∧ . . . ∧ xn

from Vn(Rm) to the exterior power Λn(Rm) gives rise to a smooth embedding of
Grn(Rm) in the projective space Gr1(Λ

n(Rm)) ∼= P(
m
n)−1. (Compare [Ped39, §7])

Problem 5-D. Show that Grn(Rn+k) has the following symmetry property.
Given any two n–planes X,Y ⊂ Rn+k there exists an orthogonal automorphism
of Rn+k which interchanges X and Y . [Whi61] defines the angle α(X,Y ) between
n–planes as the maximum over all unit vectors x ∈ X of the angle between x and
Y . Show that α is a metric for the topological space Grn(Rn+k) and show that

α(X,Y ) = α(Y ⊥, X⊥).

Problem 5-E. Let ξ be an Rn–bundle over B.

1) Show that there exists a vector bundle η over B with ξ ⊕ η trivial if and
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only if there exists a bundle map

ξ −→ γn(Rn+k)

for large k. If such a map exists, ξ will be called a bundle of finite type.

2) Now assume that B is normal. Show that ξ has finite type if and only if B
is covered by finitely many open sets U1, . . . , Ur with ξ|Ui

trivial.

3) If B is paracompact and has finite covering dimension, show (using the
argument of 5.3) that every ξ over B has finite type.

4) Using Stiefel–Whitney classes, show that the vector bundle γ1 over P∞ does
not have finite type.
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6. A Cell Structure for Grassmann

Manifolds

This section will describe a canonical cell subdivision, due to Ehresmann
[Ehr34], which makes the infinite Grassmann manifold Grn(R∞) into a CW-
complex. Each finite Grassmann manifold Grn(Rn+k) appears as a finite sub-
complex. This cell structure has been used by Pontrjagin [Pon47] and by Chern
[Che48] as a basis for the theory of characteristic classes. The reader should
consult these sources, as well as [Wu48] for further information. For a thorough
treatment of cell complexes in general, consult [LW69]. Grassmann manifolds
appear there on p. 17.

First recall some definitions. Let Dp denote the unit disk in Rp, consisting
of all vectors v with |v| ≤ 1. The interior of Dp is defined to be the subset
consisting of all v with |v| < 1. For the special case p = 0, both Dp and its
interior consist of a single point.

Any space homeomorphic to Dp is called a closed p-cell; and any space
homeomorphic to the interior of Dp is called an open p-cell. For example Rp is
an open p-cell.

Definition 6.1 (J. H. C. Whitehead, 1949). A CW-complex consists of a
Hausdorff space K, called the underlying space, together with a partition of K
into a collection {eα} of disjoint subsets, such that four conditions are satisfied:

1) Each eα is topologically an open cell of dimension n(α) ≥ 0. Furthermore
for each cell eα there exists a continuous map

f : Dn(α) −→ K
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which carries the interior of the disk Dn(α) homeomorphically onto ea. (This
f is called a characteristic map for the cell eα.)

2) Each point x which belongs to the closure eα, but not to eα itself, must lie
in a cell eβ of lower dimension.

If the complex is finite (i.e., if there are only finitely many ea) then these two
conditions suffice. However in general two further conditions are needed. A
subset of K is called a [finite] subcomplex if it is a closed set and is a union of
[finitely many] ea’s.

3) Closure finiteness. Each point of K is contained in a finite subcomplex.

4) Whitehead topology. K is topologized as the direct limit of its finite
subcomplexes. I.e., a subset of K is closed if and only if its intersection
with each finite subcomplex is closed.

Note that the closure eα of a cell of K need not be a cell. For example the
sphere Sn can be considered as a CW-complex with one 0-cell and one n-cell. In
this case the closure of the n-cell is equal to the entire sphere.

A theorem of Miyazaki [Miy52] asserts that every CW-complex is paracom-
pact. (Compare [Dug66, p. 419].)

The cell structure for the Grassmann manifold Grn(Rm) is obtained as follows.
Recall that Rm contains subspaces

R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rm;

where Rk consists of all vectors of the form v = (v1, . . . , vk, 0, . . . , 0). Any n-plane
X ⊂ Rm gives rise to a sequence of integers

0 ≤ dim(X ∩ R1) ≤ dim(X ∩ R2) ≤ · · · ≤ dim(X ∩ Rm) = n.

Two consecutive integers in this sequence differ by at most 1. This fact is proved
by inspecting the exact sequence

0 −→ X ∩ Rk−1 −→ X ∩ Rk k-th coordinate−−−−−−−−−−→ R.
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Thus the above sequence of integers contains precisely n “jumps”. By a Schubert
symbol σ = (σ1, . . . , σn) is meant a sequence of n integers satisfying

1 ≤ σ1 < σ2 < · · · < σn ≤ m.

For each Schubert symbol σ, let e(σ) ⊂ Grn(Rm) denote the set of all n-planes
X such that

dim(X ∩ Rσi) = i, dim(X ∩ Rσi−1) = i− 1

for i = 1, . . . , n. Evidently each X ∈ Grn(Rm) belongs to precisely one of the
sets e(σ). We will see presently that e(σ) is an open cell1 of dimension

d(σ) = (σ1 − 1) + (σ2 − 2) + · · ·+ (σn − n).

Let Hk ⊂ Rk denote the open half-space consisting of all x = (ξ1, . . . , ξk, 0, . . . , 0)

with ξk > 0. Note that an n-plane X belongs to e(σ) if and only if it possesses a
basis x1, . . . , xn so that

x1 ∈ Hσ1 , . . . , xn ∈ Hσn

for if X possesses such a basis, then the exact sequence above shows that

dim(X ∩ Rσi) > dim(X ∩ Rσi−1)

for i = 1, . . . , n, hence X ∈ e(σ). The converse is proved similarly. In terms of
matrices, the n-plane X belongs to e(σ) if and only if it can be described as the
row space of an n×m matrix [xij ] of the form


∗ . . . ∗10 . . . 000 . . . 000 . . . 0

∗ . . . ∗ ∗ ∗ . . . ∗10 . . . 000 . . . 0
...

...
...

...
...

∗ . . . ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗10 . . . 0


where the i-th row has σi-th entry positive (say equal to 1), and all subsequent

1The closure e(σ) is called a Schubert variety. (Compare [Sch].) In the notation of Chern
and Wu, the cell e(σ) is indexed not by the sequence σ = (σ1, . . . , σn) but rather by the modified
sequence (σ1 − 1, σ2 − 2, . . . , σn − n), which is more convenient to use for many purposes.
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entries zero.

Lemma 6.2. Each n-plane X ∈ e(σ) possesses a unique orthonormal basis
(x1, . . . , xn) which belongs to Hσ1 × · · · ×Hσn .

Proof. The vector x1 is required to lie in the 1-dimensional vector space X ∩Rσ1 ,
and to be a unit vector. This leaves only two possibilities for x1, and the condition
that the σ1-th coordinate be positive specifies one of these two. Now x2 is required
to be a unit vector in the 2 dimensional space X∩Rσ2 , and to be orthogonal to x1.
Again this leaves two possibilities, and the condition that the σ2-th coordinate
be positive specifies one of these two. Continuing by induction, it follows that
x3, x4, . . . , xn are also uniquely determined.

Definition. Let e′(σ) = V0
n(Rm) ∩ (Hσ1 × · · · × Hσn) denote the set of all or-

thonormal n-frames (x1, . . . , xn) such that each xi belongs to the open half-space
Hσi . Let e′(σ) denote the set of orthonormal frames (x1, . . . , xn) such that each
xi belongs to the closure Hσi .

Lemma 6.3. The set e′(σ) is topologically a closed cell of dimension
d(σ) = (σ1 − 1) + (σ2 − 2) + · · · + (σn − n), with interior e′(σ). Furthermore q

maps the interior e′(σ) homeomorphically onto e(σ).

Thus e(σ) is actually an open cell of dimension d(σ). Furthermore the map

q|e′(σ) : e′(σ) −→ Grn(Rm)

will serve as a characteristic map for this cell.

Proof. The proof of 6.3 will be by induction on n. For n = 1 the set e′(σ1)

consists of all vectors

x1 = (x11, x12, . . . , x1σ1
, 0, . . . , 0)

with
∑

x2
1i = 1, x1σ1 ≥ 0. Evidently e′(σ1) is a closed hemisphere of dimension

σ1 − 1, and therefore is homeomorphic to the disk Dσ1−1.
Given unit vectors u, v ∈ Rm with u ̸= −v, let T (u, v) denote the unique

rotation of Rm which carries u to v, and leaves everything orthogonal to u and
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v fixed. Thus T (u, u) is the identity map and T (v, u) = T (u, v)−1. Alternatively
T (u, v) can be defined by the formula

T (u, v) x = x− (u+ v) · x
1 + u · v

(u+ v) + 2(u · x)v

In fact the function T (u, v) defined in this way is linear in x, and has the correct
effect on the vectors u, v, and on all vectors orthogonal to u and v. It follows
from this formula that:

1) T (u, v) x is continuous as a function of three variables; and

2) if u, v ∈ Rk then T (u, v) x ≡ x (modulo Rk).

Let bi ∈ Hσi denote the vector with σi-th coordinate equal to 1, and all other
coordinates zero. Thus (b1, . . . , bn) ∈ e′(σ). For any n-frame (x1, . . . , xn) ∈ e′(σ)

consider the rotation

T = T (bn, xn) ◦ T (bn−1, xn−1) ◦ · · · ◦ T (b1, x1)

of Rm. This rotation carries the n vectors b1, . . . , bn to the vectors x1, . . . , xn

respectively. In fact the rotations T (b1, x1), . . . , T (bi−1, xi−1) leave bi fixed (since
bi · bj = bi · xj = 0 for i > j ); the rotation T (bi, xi) carries bi to xi; and the
rotations T (bi+1, xi+1), . . . , T (bn, xn) leave xi fixed.

Given an integer σn+1 > σn let D denote the set of all unit vectors u ∈ Hσn+1

with
b1 · u = · · · = bn · u = 0.

Evidently D is a closed hemisphere of dimension σn+1 − n − 1, and hence is
topologically a closed cell. We will construct a homeomorphism

f : e′(σ1, . . . , σn)×D −→ e′(σ1, . . . , σn+1).

In fact f is defined by the formula

f((x1, . . . , xn), u) = (x1, . . . , xn, Tu)

where the rotation T depends on x1, . . . , xn, as above. To prove that (x1, . . . , xn, Tu)
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actually belongs to e′(σ1, . . . , σn+1) we note that

xi · Tu = Tbi · Tu = bi · u = 0

for i ≤ n, and that
Tu · Tu = u · u = 1

where Tu ∈ Hσn+1 since Tu ≡ u (mod Rσn). Evidently f maps e′(σ1, . . . , σn)×D
continuously to e′(σ1, . . . , σn+1). Similarly the formula

u = T−1xn+1 = T (x1, b1) ◦ · · · ◦ T (xn, bn) xn+1 ∈ D

shows that f−1 is well defined and continuous.

Thus e′(σ1, . . . , σn+1) is homeomorphic to the product e′(σ1, . . . , σn) ×D It
follows by induction on n that each e′(σ) is a closed cell of dimension d(σ). A
similar induction shows that each e′(σ) is the interior of the cell e′(σ). In fact
the homeomorphism

f : e′(σ1, . . . , σn)×D −→ e′(σ1, . . . , σn+1)

carries the product e′(σ1, . . . , σn)× Interior D onto e′(σ1, . . . , σn+1).

Proof that the map
q|e′(σ) : e′(σ) −→ e(σ)

is a homeomorphism. According to 6.2, q carries e′(σ) in one-one fashion onto
e(σ). On the other hand, if (x1, . . . , xn) belongs to the boundary e′(σ) \ e′(σ),
then the n-plane X = q(x1, . . . , xn) does not belong to e(σ), for one of the vectors
xi must lie in the boundary Rσi−1 of the half-space Hσi . This implies that

dim(X ∩ Rσi−1) ≥ i,

and hence that X /∈ e(σ).

Now let A ⊂ e′(σ) be a relatively closed subset. Then A ∩ e′(σ) = A, where
the closure A ⊂ e′(σ) is compact, hence q(A) is closed. The preceding paragraph
implies that q(A) ∩ e(σ) = q(A), and it follows that q(A) ⊂ e(σ) is a relatively
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closed set. Thus q maps the cell e′(σ) homeomorphically onto e(σ).

Theorem 6.4. The
(
m
n

)
sets e(σ) form the cells of a CW-complex with underlying

space Grn(Rm). Similarly taking the direct limit as m → ∞, one obtains an
infinite CW-complex with underlying space Grn = Grn(R∞).

Proof. We must first show that each point in the boundary of a cell e(σ) belongs to
a cell e(τ) of lower dimension. Since e′(σ) is compact, the image qe′(σ) is equal to
e(σ). Hence every n-plane X in the boundary e(σ)−e(σ) has a basis (x1, . . . , xn)

belonging to e′(σ)− e′(σ) Evidently the vectors x1, . . . , xn are orthonormal, with
xi ∈ Rσi . It follows that dim(X ∩ Rσi) ≥ i for each i, thus the Schubert symbol
(τ1, . . . , τn) associated with X must satisfy

τ1 ≤ σ1, . . . , τn ≤ σn.

As above, one of the vectors xi must actually belong to Rσi−1; hence the corre-
sponding integer τi must be strictly less than σi. Therefore d(τ) < d(σ). Together
with 6.3, this completes the proof that Grn(Rm) is a finite CW-complex.

Similarly Grn(R∞) is a CW-complex. The closure finiteness condition is sat-
isfied since each X ∈ Grn(R∞) belongs to a finite subcomplex Grn(Rm). The
space Grn(R∞) has the direct limit topology by definition.

It is instructive to look at the special case n = 1.

Corollary 6.5. The infinite projective space P∞ = Gr1(R∞) is a CW-complex
having one r-cell e(r + 1) for each integer r ≥ 0. The closure e(r + 1) ⊂ P∞ is
equal to the finite projective space Pr.

The proof is straightforward.

Now let us count the number of r-cells in Grn(Rm) for arbitrary n. It is
convenient to introduce the language of partitions.
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Definition 6.6. A partition of an integer r ≥ 0 is an unordered sequence
i1i2 . . . is of positive integers with sum R. The number of partitions of r is
customarily denoted by p(r). Thus for r ≤ 10 one has the following table.

r 0 1 2 3 4 5 6 7 8 9 10
p(r) 1 1 2 3 5 7 11 15 22 30 42

Table 6.1: Partitions of r for r ≤ 10

For example the integer 4 has five partitions, namely: 1 1 1 1, 1 1 2, 2 2, 1 3,
and 4. The integer 0 has just one (vacuous) partition. (According to Hardy and
Ramanujan the function p(r) is asymptotic to exp(π

√
2r/3)/4r

√
3 as r → ∞.

For further information see [Ost56].)
To every Schubert symbol (σ1, . . . , σn) with d(σ) = r and σn ≤ m there cor-

responds a partition i1 . . . is of r, where i1, . . . , is denotes the sequence obtained
from σ1−1, . . . , σn−n by cancelling any zeros which may appear at the beginning
of this sequence. Clearly

1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ m− n

and s ≤ n. Thus

Corollary 6.7. The number of r-cells in Grn(Rm) is equal to the number of
partitions of r into at most n integers each of which is ≤ m− n.

In particular, if both n and m − n are ≥ r, then the number of r-cells in
Grn(Rm) is equal to p(r).

Note that this corollary remains true if m is allowed to take the value +∞.

Here are five problems for the reader.

Problem 6-A. Show that a CW-complex is finite if and only if its underlying
space is compact.

Problem 6-B. Show that the restriction homomorphism

i∗ : Hp(Grn(R∞)) −→ Hp(Grn(Rn+k))
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is an isomorphism for p < k. Any coefficient group may be used. (Compare the
description of cohomology for CW-complexes in Appendix A.)

Problem 6-C. Show that the correspondence X
f−→ R1⊕X defines an embed-

ding of the Grassmann manifold Grn(Rm) into Grn+1(R1⊕Rm) = Grn+1(Rm+1),
and that f is covered by a bundle map

ε1 ⊕ γn(Rm) −→ γn+1(Rm+1).

Show that f carries the r-cell of Grn(Rm) which corresponds to a given parti-
tion i1 . . . is of r onto the r-cell of Grn+1(Rm+1) which corresponds to the same
partition i1 . . . is.

Problem 6-D. Show that the number of distinct Stiefel-Whitney numbers wr1
1 . . .wrn

n [M ]

for an n-dimensional manifold is equal to p(n).

Problem 6-E. Show that the number of r-cells in Grn(Rn+k) is equal to the
number of r-cells in Grk(Rn+k) (or show that these two CW-complexes are ac-
tually isomorphic).
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7. The Cohomology Ring H•(Grn; Z/2)

Still assuming the existence of Stiefel-Whitney classes, this section will com-
pute the mod 2 cohomology of the infinite Grassmann manifold Grn = Grn(R∞),
and will also prove a uniqueness theorem for Stiefel-Whitney classes. Recall that
the canonical n-plane bundle over Grn is denoted by γn.

Theorem 7.1. The cohomology ring H∗(Grn; Z/2) is a polynomial algebra over
Z/2 freely generated by the Stiefel-Whitney classes w1(γ

n), . . . ,wn(γ
n).

To prove this result, we first show the following.

Lemma 7.2. There are no polynomial relations among the wi(γ
n).

Proof. Suppose that there is a relation of the form p(w1(γ
n), . . . ,wn(γ

n)) = 0,
where p is a polynomial in n variables with mod 2 coefficients. By theorem 5.6,
for any n-plane bundle ξ over a paracompact base space there exists a bundle
map g : ξ −→ γn. Hence

wi(ξ) = g∗(wi(γ
n))

where g is the map of base spaces induced by g. It follows that the cohomology
classes wi(ξ) must satisfy the corresponding relation

p(w1(ξ), . . . ,wn(ξ)) = g∗p(w1(γ
n), . . . ,wn(γ

n)) = 0.

Thus to prove 7.2 it will suffice to find some n-plane bundle ξ so that there are no
polynomial relations among the classes w1(ξ), . . . ,wn(ξ). Consider the canonical
line bundle γ1 over the infinite projective space P∞. Recall from lemma 4.3
that H∗(P∞; Z/2) is a polynomial algebra over Z/2 with a single generator a
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of dimension 1 , and recall that w(γ1) = 1 + a. Forming the n-fold Cartesian
product X = P∞ × · · · × P∞ it follows that H∗(X; Z/2) is a polynomial algebra
on n generators a1, . . . , an of dimension 1. (Compare A, theorem A.6; or [Spa81,
p. 247].) Here ai can be defined as the image π∗

i (a) induced by the projection
map πi : X −→ P to the i-th factor. Let ξ be the n-fold cartesian product

ξ = γ1 × · · · × γ1 ∼= (π∗
1γ

1)⊕ · · · ⊕ (π∗
nγ

1).

Then ξ is an n-plane bundle over X = P∞ × · · · × P∞, and the total Stiefel-
Whitney class

w(ξ) = w(γ1)× · · · × w(γ1) = π∗
1(w(γ

1)) . . . π∗
n(w(γ

1))

is equal to the n-fold product

(1 + a)× · · · × (1 + a) = (1 + a1)(1 + a2) . . . (1 + an)

In other words

w1(ξ) = a1 + a2 + · · ·+ an

w2(ξ) = a1a2 + a1a3 + · · ·+ a1an + · · ·+ an−1an

wn(ξ) = a1a2 . . . an

and in general wk(ξ) is the k-th elementary symmetric function of a1, . . . , an.
It is proved in textbooks on algebra, that the n elementary symmetric functions
in n indeterminates over a field do not satisfy any polynomial relations. (See
for example [Lan65, pp 132-134] or [Wae70, pp. 79, 176].) Thus the classes
w1(ξ), . . . ,wn(ξ) are algebraically independent over Z/2, and it follows as indi-
cated above that w1(γ

n), . . . ,wn(γ
n) are also algebraically independent.

Proof of 7.1. We have shown that H∗(Grn), with mod 2 coefficients, contains a
polynomial algebra over Z/2 freely generated by w1(γ

n), . . . , wn(γ
n). Using a

counting argument, we will show that this sub-algebra actually coincides with
H∗(Grn).
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Recall from 6.7 that the number of r-cells in the CW-complex Grn is equal to
the number of partitions of r into at most n integers. Hence the rank of Hr(Grn)

over Z/2 is at most equal to this number of partitions. (In fact, if Cr denotes
the group of mod 2 r-cochains for this CW-complex, and if Zr ⊃ Br denote the
corresponding cocycle and coboundary groups, then the number of r-cells equals

rank(Cr) ≥ rank(Zr) ≥ rank(Zr/Br) = rank(Hr).)

On the other hand the number of distinct monomials of the form

w1(γ
n)r1 . . .wn(γ

n)rn

in Hr(Grn) is also precisely equal to the number of partitions of r into at most n
integers. For to each sequence r1, . . . , rn of non-negative integers with

r1 + 2r2 + · · ·+ nrn = r

we can associate the partition of r which is obtained from the n-tuple

rn, rn + rn−1, . . . , rn + rn−1 + · · ·+ r1

by deleting any zeros which may occur; and conversely.

Since these monomials are known to be linearly independent mod 2, it follows
that the inequalities above must all actually be equalities: The module Hr(Grn)

over Z/2 has rank equal to the number of partitions of r into at most n integers,
and has a basis consisting of the various monomials w1(γ

n)r1 . . .wn(γ
n)rn of total

dimension r.

It follows incidentally that the natural homomorphism
g∗ : H∗(Grn) −→ H∗(P∞ × · · · × P∞) maps H∗(Grn) isomorphically onto the
algebra consisting of all polynomials in the indeterminates a1, . . . , an which are
invariant under all permutations of these n indeterminates.
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7.1 Uniqueness of Stiefel-Whitney Classes

At this point we have not yet shown that there exist Stiefel-Whitney classes
wi(ξ) satisfying the four axioms of §4. Before proving existence, we will prove
the following.

Theorem 7.3 (Uniqueness Theorem). There exists at most one correspondence
ξ −→ w(ξ) which assigns to each vector bundle over a paracompact base space
a sequence of cohomology classes satisfying the four axioms for Stiefel-Whitney
classes.

Proof. Suppose that there were two such, say ξ 7→ w(ξ) and ξ 7→ w̃(ξ) For the
canonical line bundle γ1

1 over P1 we have

w(γ1
1) = w̃(γ1

1) = 1 + a

by Axioms 1 and 4. Embedding γ1
1 in the line bundle γ1 over the infinite projective

space P∞, it follows that

w(γ1) = w̃(γ1) = 1 + a

by Axioms 1 and 2. Passing to the n-fold Cartesian product

ξ = γ1 × · · · × γ1 ∼= π∗
1γ

1 ⊕ · · · ⊕ π∗
nγ

1

it follows that
w(ξ) = w̃(ξ) = (1 + a1) . . . (1 + an)

by Axioms 2 and 3. Now using the existence of a bundle map ξ → γn, and the
fact that H∗(Grn) injects monomorphically into H∗(P∞ × · · · × P∞) it follows
that w(γn) = w̃(γn).

For any n-plane bundle η over a paracompact base space, choosing a bundle
map f : η −→ γn, it follows immediately that

w(η) = f∗ w(γn) = f∗w̃(γn) = w̃(η).
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Remark. Using essentially this same argument, it would not be difficult to prove
a corresponding uniqueness theorem for Stiefel-Whitney classes, working in the
much smaller category consisting of smooth vector bundles and smooth bundle
mappings, all of the base spaces being smooth paracompact manifolds. It would
be much more difficult, however, to prove such a result using only tangent bundles
of manifolds. Compare [BS75].

Here are three problems for the reader. The first two are based on 6-C.

Problem 7-A. Identify explicitly the cocycle in Cr(Grn) ∼= Hr(Grn) which
corresponds to the Stiefel-Whitney class wr(γ

n).

Problem 7-B. Show that the cohomology algebra H∗(Grn(Rn+k)) over Z/2 is
generated by the Stiefel-Whitney classes w1, . . . ,wn of yn and the dual classes
w1, . . . ,wk, subject only to the n+ k defining relations

(1 + w1 + · · ·+wn)(1 + w1 + · · ·+wk) = 1.

(Reference: [Bor53, pp. 190].)

Problem 7-C. Let ξm and ηn be vector bundles over a paracompact base space.
Show that the Stiefel-Whitney classes of the tensor product ξm ⊗ ηn (or of the
isomorphic bundle Hom(ξm, ηn) ) can be computed as follows. If the fiber di-
mensions m and n are both 1 , then

w1(ξ
1 ⊗ η1) = w1(ξ

1) + w1(η
1)

More generally there is a universal formula of the form

w(ξm ⊗ ηn) = pm,n (w1(ξ
m), . . . ,wm(ξm),w1(η

n), . . . ,wn(η
n))

where the polynomial pm,n in m+ n variables can be characterized as follows. If
σ1, . . . , σm are the elementary symmetric functions of indeterminates t1, . . . , tm,
and if σ′

1, . . . , σ
′
n are the elementary symmetric functions of t′1, . . . , t′n, then

pm,n(σ1, . . . , σm, σ′
1, . . . , σ

′
n) =

m∏
i=1

n∏
j=1

(1 + ti + t′j).
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[Hint: The cohomology of Grm×Grn can be computed by the Künneth Theorem
(Appendix A.6). The formula for w(ξm ⊗ ηn) can be verified first in the special
case when ξm and ηn are Whitney sums of line bundles.]
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We now proceed to prove the existence of Stiefel-Whitney classes by giving a
construction in terms of known operations. For any n-plane bundle ξ with total
space E, base space B and projection map π, we denote by E0 the set of all
non-zero elements of E, and by F0 the set of all non-zero elements of a typical
fiber F = π−1(b). Clearly F0 = F ∩ E0.

Using singular theory and one of several techniques (e.g. spectral sequences
or that of §10) we have that

Hi(F, F0; Z/2) =

0 for i ̸= n

Z/2 for i = n

and that

Hi(E,E0; Z/2) ∼=

0 for i < n

Hi−n(B; Z/2) for i ≥ n

(This can be seen intuitively, though not rigorously, as follows: The unit n-cell is
a deformation retract of Rn and the unit (n−1)-sphere is a deformation retract of
(Rn\{0}) = Rn

0 . For B paracompact, we know that we can put a Euclidean metric
on E. Then the subset E′ consisting of all vectors x ∈ E with x·x ≤ 1 is evidently
a deformation retract of E. Similarly the set E′′ consisting of vectors x ∈ E with
x · x = 1 is a deformation retract of E0. Hence H∗(E′, E′′) ∼= H∗(E,E0). Now
suppose that B is a cell complex, with a fine enough cell subdivision so that the
restriction of ξ to each cell ck is a trivial bundle. Then the inverse image of the
k-cell ck in E′ is a product cell of dimension n+k. Thus E′ can be obtained from
the subset E′′ by adjoining cells of dimension ≥ n, one (n+k)−cell corresponding
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to each k-cell of B. It follows that Hi(E′, E′′) = 0 for i < n. With a little faith,
it follows also that Hn+k(E′, E′′) ∼= Hk(B).)

Rigorously and more explicitly, the following statement will be proved in §10.
The coefficient group Z/2 is to be understood.

Theorem 8.1. The group Hi(E,E0) is zero for i < n, and Hn(E,E0) contains
a unique class u such that for each fiber F = π−1(b) the restriction

u|(F,F0) ∈ Hn(F, F0)

is the unique non-zero class in Hn(F, F0). Furthermore the correspondence
x 7→ x ⌣ u defines an isomorphism Hk(E) −→ Hk+n(E,E0) for every k. (We
call u the fundamental cohomology class.)

On the other hand the projection π : E −→ B certainly induces an isomor-

phism Hk(B) −→ Hk(E), since the zero cross-section embeds B as a deformation
retract of E with retraction mapping π.

Definition. The Thom isomorphism ϕ : Hk(B) −→ Hk+n(E,E0) is defined to
be the composition of the two isomorphisms

Hk(B)
π∗

−→ Hk(E)
⌣u−−→ Hk+n(E,E0).

Next we will make use of the Steenrod squaring operations in H∗(E,E0).
These operations can be characterized by four basic properties, as follows. (Com-
pare [SE62].) Again mod 2 coefficients are to be understood.

(1) For each pair X ⊃ Y of spaces and each pair n, i of non-negative integers
there is defined an additive homomorphism

Sqi : Hn(X,Y ) −→ Hn+i(X,Y ).

(This homomorphism is called “square upper i.”)

(2) Naturality. If f : (X,Y ) −→ (X ′, Y ′) then Sqi ◦f∗ = f∗ ◦ Sqi.
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(3) If a ∈ Hn(X,Y ), then Sq0(a) = a, Sqn(a) = a ⌣ a, and Sqi(a) = 0 for
i > n. (Thus the most interesting squaring operations are those for which
0 < i < n.)

(4) The Cartan formula. The identity

Sqk(a ⌣ b) =
∑

i+j=k

Sqi(a) ⌣ Sqj(b)

is valid whenever a ⌣ b is defined.

Using these squaring operations together with the Thom isomorphism ϕ, the
Stiefel-Whitney class wi(ξ) ∈ Hi(B) can now be defined by Thom’s identity

wi(ξ) = ϕ−1 Sqi ϕ(1).

In other words wi(ξ) is the unique cohomology class in Hi(B) such that
ϕ(wi(ξ)) = π∗ wi(ξ) ⌣ u is equal to Sqi ϕ(1) = Sqi(u).

For many purposes it is convenient to introduce the total squaring opera-
tion

Sq(a) = a+ Sq1(a) + Sq2(a) + · · ·+ Sqn(a)

for a ∈ Hn(X,Y ). Note that the Cartan formula can now be expressed by the
equation

Sq(a ⌣ b) = Sq(a) ⌣ Sq(b).

Similarly the corresponding equation for the Steenrod squares of a cross product
becomes simply

Sq(a× b) = (Sq(a))× (Sq(b)).

In terms of this total squaring operation, the total Stiefel-Whitney class of a
vector bundle is clearly determined by the formula

w(ξ) = ϕ−1 Sqϕ(1) = ϕ−1 Sq(u)
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8.1 Verification of the Axioms

With this definition, the four axioms for Stiefel-Whitney classes can be checked
as follows.

Axiom 1. Using properties (1) and (3) of the squaring operations, it is clear that
wi(ξ) ∈ Hi(B), with w0(ξ) = 1, and with wi(ξ) = 0 for i greater than the
fiber dimension n.

Axiom 2. Any bundle map f : ξ −→ ξ′ clearly induces a map g : (E,E0) −→ (E′, E′
0).

Furthermore if u′ denotes the fundamental cohomology class in Hn(E′, E′
0),

then g∗(u′) is equal to the class u ∈ Hn(E,E0) by the definition of u

(Theorem 8.1). It now follows easily that the Thom isomorphisms ϕ and
ϕ′ satisfy the naturality condition

g∗ ◦ ϕ′ = ϕ ◦ f∗.

Hence, using property (2), it follows that

f∗ wi(ξ
′) = wi(ξ),

as required.

Axiom 3. Let us first compute the Stiefel-Whitney classes of a Cartesian product
ξ′′ = ξ× ξ′, with projection map π× π′ : E × E′ −→ B ×B′. Consider the
fundamental classes

u ∈ Hm(E,E0), u′ ∈ Hn(E′, E′
0)

of ξ and ξ′. Since E0 is open in E and E′
0 is open in E′, the cross product

u× u′ ∈ Hm+n(E × E′, E × E′
0 ∪ E0 × E′)

is defined. (Compare Appendix A.) Note that the open subset
(E×E′

0)∪(E0×E′) in the total space E′′ = E×E′ is precisely equal to the
set E′′

0 of non-zero vectors in E′′. In fact we claim that u × u′ is precisely
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equal to the fundamental class u′′ ∈ Hm+n(E′′, E′′
0 ). In order to prove this,

it suffices to show that the restriction

u× u′|(F ′′,F ′′
0 )

is the non-zero cohomology class in Hm+n(F ′′, F ′′
0 ) for every fiber

F ′′ = F ×F ′ of ξ′′. But this restriction is evidently equal to the cross prod-
uct of u|(F,F0) and u′|(F ′,F ′

0)
, and hence is non-zero by A.6 in the Appendix.

It follows easily that the Thom isomorphisms for ξ, ξ′, and ξ′′ are related
by the identity

ϕ′′(a× b) = ϕ(a)× ϕ′(b).

In fact if a = π∗(a) ∈ H∗(E) and b = π′∗(b) ∈ H∗(E′), then this follows
from the equation

(a× b) ⌣ (u× u′) = (a ⌣ u)× (b ⌣ u′),

where there is no sign since we are working modulo 2.

The total Stiefel-Whitney class of ξ′′ can now be computed by the formula

ϕ′′(w(ξ′′)) = Sq(u′′) = Sq(u× u′) = Sq(u)× Sq(u′).

Setting the right side equal to

ϕ (w(ξ))× ϕ′ (w(ξ′)) = ϕ′′(w(ξ)× w(ξ′)) ,

and then applying (ϕ′′)−1 to both sides, we have proved that

w(ξ × ξ′) = w(ξ)× w(ξ′).

Now suppose that ξ and ξ′ are bundles over a common base space B. Lifting
both sides of this equation back to B by means of the diagonal embedding
B −→ B ×B, we obtain the required formula

w(ξ ⊕ ξ′) = w(ξ) ⌣ w(ξ′).
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Axiom 4. Let γ1
1 be as usual the twisted line bundle over the circle P1. Then the

space of vectors of length ≤ 1 in the total space E = E(γ1
1) is evidently a

Möbius band M , bounded by a circle
•
M . Since M is a deformation retract

of E, and
•
M a deformation retract of E0, we have

H∗(M,
•
M) ∼= H∗(E,E0).

On the other hand if we embed a 2-cell D2 in the projective plane P2, then
the closure of P2 \D2 is homeomorphic to M . Using the Excision Theorem
of cohomology theory, it follows that

H∗(M,
•
M) ∼= H∗(P2,D2).

Hence there are natural isomorphisms

Hi(E,E0) −→ Hi(M,
•
M)←− Hi(P2,D2) −→ Hi(P2)

for every dimension i ̸= 0. The fundamental cohomology class u ∈ H1(E,E0)

certainly cannot be zero. Hence it must correspond to the generator
a ∈ H1(P2) under the composite isomorphism. Hence Sq1(u) = u ⌣ u must
correspond to Sq1(a) = a ⌣ a. But a ⌣ a ̸= 0 by 4.3, so it follows that

w1(γ
1
1) = ϕ−1 Sq1(u)

must also be non-zero. This concludes the verification of the four axioms.

Problems

Problem 8-A. It follows from 7.1 that the cohomology class that the cohomology
class Sqk wm(ξ) can be expressed as a polynomial in w1(ξ), . . . ,wm+k(ξ). Prove
Wu’s explicit formula

Sqk(wm) = wk wm +

(
k −m

1

)
wk−1 wm+1 + · · ·+

(
k −m

k

)
w0 wm+k
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where
(
x
i

)
= x(x − 1) . . . (x − i + 1)/i!, as follows. If the formula is true for ξ,

show that it is true for ξ× γ1. Thus by induction it is true for γ1× · · · × γ1, and
hence for all ξ.

Problem 8-B. If w(ξ) ̸= 1, show that the smallest n > 0 with wn(ξ) ̸= 0 is
a power of 2. (Use the fact that

(
x
k

)
is odd whenever x is an odd multiple of

k = 2r.)
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9. Oriented Bundles and the Euler Class

Up to this point we have always used the coefficient group Z/2 for our coho-
mology. This of necessity means that we have overlooked much interesting struc-
ture. Now we will take a closer look, using the integers Z as coefficient group.
But in order to do this it will be necessary to impose the additional structure of
an orientation on our vector bundles. In particular we will need an orientation in
order to construct the fundamental cohomology class u ∈ Hn(E,E0) with integer
coefficients.

First consider the case of a single vector space.

Definition. An orientation of a real vector space V of dimension n > 0 is an
equivalence class of bases, where two (ordered) bases v1, . . . , vn and v′1, . . . , v

′
n

are said to be equivalent if and only if the matrix [aij ] defined by the equation
v′i =

∑
aijvj has positive determinant. Evidently every such vector space V

has precisely two distinct orientations. Note that the coordinate space Rn has a
canonical orientation, corresponding to its canonical ordered basis.

In algebraic topology, it is customary to specify the orientation of a simplex
by choosing some ordering of its vertices. Our concept of orientation is related as
follows. Let Σn be an n-simplex, linearly embedded in the n-dimensional vector
space V , with ordered vertices A0, A1, . . . , An. Then taking the vector from A0

to A1 as first basis vector, the vector from A1 to A2 as second, and so on, we
obtain a corresponding orientation for the vector space V .

Note that a choice of orientation for V corresponds to a choice of one of the
two possible generators for the singular homology group Hn(V, V0;Z). In fact let
∆n denote the standard n-simplex, with canonically ordered vertices. Choose
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some orientation preserving linear embedding

σ : ∆n −→ V

which maps the barycenter of ∆n to the zero vector (and hence maps the bouncary
of ∆n into V0). Then σ is a singular n-simplex representing an element in the
group of relative n-cycles Zn(V, V0;Z). The homology class of this n-cycle σ is
now the preferred generator µV for the homology group Hn(V, V0;Z).

Similarly the cohomology group Hn(V, V0;Z) associated with an oriented vec-
tor space V has a preferred generator which we denote by the symbol uV , deter-
mined by the equation ⟨uV , µV ⟩ = +1.

Now consider a vector bundle ξ of fiber dimension n > 0.

Definition. An orientation for ξ is a function which assigns an orientation to
each fiber F of ξ, subject to the following local compatibility condition. For every
point b0 in the base space there should exist a local coordinate system (N,h),
with b0 ∈ n and h : N × Rn −→ π−1(N), so that for each fiber F = π−1(b) over
N the homomorphism x 7→ h(b, x) from Rn to F is orientation preserving. (Or
equivalently there should exist sections s1, . . . , sn : N −→ π−1(N) so that the

basis s1(b), . . . , sn(b) determines the required orientation of π−1(b) for each b in
n.)

In terms of cohomology, this means that to each fiber F there is assigned a
preferred generator

uF ∈ Hn(F, F0;Z).

The local compatibility condition implies that for every point in the base space
there exists a neighborhood N and a cohomology class

u ∈ Hn(π−1(N), π−1(N)0;Z)

so that for every fiber F over N the restriction

u|(F,F0) ∈ Hn(F, F0;Z)

is equal to uF . The proof is straightforward.
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The following important result will be proved in §10 (Compare Theorem 8.1)

Theorem 9.1. Let ξ be an oriented n-plane bundle with total space E. Then
the cohomology group Hi(E,E0;Z) is zero for i < n, and Hn(E,E0;Z) contains
one and only one cohomology class u whose restriction

u|(F,F0) ∈ Hn(F, F0;Z)

is equal to the preferred generator uF for every fiber F of ξ. Furthermore the
correspondence y 7→ y ⌣ u maps Hk(E;Z) isomorphically onto Hk+n(E,E0;Z)
for every integer k.

In more technical language, this theorem can be summarized by saying that
H∗(E,E0;Z) is a free H∗(E;Z)-module on one generator u of degree n. (More
generally, any ring with unit could be used as coefficient group.)

It follows of course that Hk+n(E,E0;Z) is isomorphic to the cohomology group
Hk(B;Z) of the base space. In fact the Thom isomorphism

ϕ : Hk(B;Z) −→ Hk+n(E,E0;Z)

can be defined by the formula

ϕ(x) = (π∗x) ⌣ u,

just as in §8.

We are now ready to define an important new characteristic class. Given an
oriented n-plane bundle ξ, the inclusion (E, empty set) ⊂ (E,E0) gives rise to a
restriction homomorphism

H∗(E,E0;Z) −→ H∗(E;Z)

which we denote by y 7→ y|E . In particular, applying this homomorphism to the
fundamental class u ∈ Hn(E,E0;Z), we obtain a new cohomology class

u|E ∈ Hn(E;Z).
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But Hn(E;Z) is canonically isomorphic to the cohomology group Hn(B;Z) of the
base space.

Definition. The Euler class of an oriented n-plane bundle ξ is the cohomology
class

e(ξ) ∈ Hn(B;Z)

which corresponds to u|E under the canonical isomorphism
π∗ : Hn(B;Z) −→ Hn(E;Z).

For the motivation for the name “Euler class,” we refer the reader to Section
11.5. Here are some fundamental properties of the Euler class:

Property 9.2. (Naturality). If f : B −→ B′ is covered by an orientation
preserving bundle map ξ −→ ξ′, then e(ξ) = f∗ e(ξ′).

In particular, if ξ is a trivial n-plane bundle, n > 0, then e(ξ) = 0. For in this
case we can take ξ′ to be a bundle over a point.

Property 9.3. If the orientation of ξ is reversed, then the Euler class e(ξ) changes
sign.

The proofs are immediate.

Property 9.4. If the fiber dimension n is odd, then e(ξ) + e(ξ) = 0.

Because of this, we will usually assume that the fiber dimension is even when
making use of Euler classes.

First proof. Any odd dimensional vector bundle possesses an orientation revers-
ing automorphism (b, v) 7→ (b,−v). The required equation e(ξ) = − e(ξ) now
follows from 9.3.

Alternate proof. The Thom isomorphism ϕ(x) = π∗(x) ⌣ u evidently maps e(ξ)

to the cohomology class

π∗ e(ξ) ⌣ u = (u|E) ⌣ u = u ⌣ u.
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In other words
e(ξ) = ϕ−1(u ⌣ u).

But using the identity

a ⌣ b = (−1)(dim a)(dim b)b ⌣ a

we see that u ⌣ u is an element of order 2 whenever the dimension n is odd.

Property 9.5. The natural homomorphism Hn(B;Z) −→ Hn(B;Z/2) carries
the Euler class e(ξ) to the top Stiefel-Whitney class wn(ξ).

Proof. If we apply this homomorphism (induced by the coefficient surjection
Z −→ Z/2) to both sides of the equation e(ξ) = ϕ−1(u ⌣ u), then evidently
the integer cohomology class u maps to the mod 2 cohomology class u of §8, and
u ⌣ u maps to Sqn(u). Hence ϕ−1(u ⌣ u) maps to ϕ−1 Sqn(u) = wn(ξ)

Several important properties of the characteristic class wn(ξ) apply equally
well to e(ξ).

Property 9.6. The Euler class of a Whitney sum is given by
e(ξ ⊕ ξ′) = e(ξ) ⌣ e(ξ′). Similarly the Euler class of a cartesian product is given
by e(ξ × ξ′) = e(ξ)× e(ξ′).

Here we must specify that the direct sum F ⊕F ′ of two oriented vector spaces
is to be oriented by taking an oriented basis for F followed by an oriented basis
for F ′.

proof of 9.6. Let the fiber dimensions be m and n respectively. Taking account
of our sign conventions as specified in Appendix A, it is not difficult to check that
the fundamental cohomology class of the Cartesian product is given by

u(ξ × ξ′) = (−1)mnu(ξ)× u(ξ′).

(Compare the verification of Axiom 3 in §8. If we used the classical system of
sign conventions, as in [Spa81], then there would be no sign here.) Now apply
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the restriction homomorphism

Hm+n(E × E′, (E × E′)0) −→ Hm+n(E × E′) ≈ Hm+n(B ×B′)

to both sides. It follows easily that

e(ξ × ξ′) = (−1)mn e(ξ)× e(ξ′);

where the sign can be ignored since the right side of this equation is an element
of order two whenever m or n is odd.

Now suppose that B = B′. Pulling both sides of this equation back to
Hm+n(B;Z) by means of the diagonal embedding B −→ B × B, we obtain the
formula e(ξ ⊕ ξ′) = e(ξ′) ⌣ e(ξ′) for the Euler class of a Whitney sum.

Remark. Although this formula looks very much like the corresponding formula
w(ξ ⊕ ξ′) = w(ξ) ⌣ w(ξ′) for Stiefel-Whitney classes, there is one essential dif-
ference. The total Stiefel-Whitney class w(ξ) is a unit in the ring HΠ(B;Z/2),
hence it is easy to solve for w(ξ′) as a function of w(ξ) and w(ξ ⊕ ξ′). (Compare
4.1.) However the Euler class e(ξ) is certainly not a unit in the integral cohomol-
ogy ring of B, and in fact it may well be zero or a zero-divisor. So the equation
e(ξ ⊕ ξ′) = e(ξ) ⌣ e(ξ′) cannot usually be solved for e(ξ′) as a function of e(ξ)
and e(ξ ⊕ ξ′)

Here is an application of 9.6. Let η be a vector bundle for which 2 e(η) ̸= 0.
Then it follows that η cannot split as the Whitney sum of two oriented odd
dimensional vector bundles. As an example, let M be a smooth compact manifold.
Suppose that the tangent bundle τ of M is oriented, and that e(τ) ̸= 0. Then τ

cannot admit any odd dimensional sub vector bundle. For if this sub-bundle ξ

were orientable, then the Euler class e(τ) = e(ξ) ⌣ e(ξ⊥) would have to be an
element of order two in the free abelian group Hn(M ;Z). (Compare Appendix
A.) The case where ξ is not orientable can be handled by passing to a suitable
2-fold covering manifold of M . Details will be left to the reader.

Property 9.7. If the oriented vector bundle ξ possesses a nowhere zero cross-
section, then the Euler class e(ξ) must be zero.
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Proof. Let s : B −→ E0 be a cross-section, so that the composition

B
s−→ E0 ⊂ E

π−→ B

is the identity map of B. Then the corresponding composition

Hn(B)
π∗

−→ Hn(E) −→ Hn(E0)
s∗−→ Hn(B)

is the identity map of Hn(B). By definition the first homomorphism π∗ maps e(ξ)
to the restriction u|E . Hence the first two homomorphisms in this composition
map e(ξ) to the restriction (u|E)|E0

which is zero since the composition

Hn(E,E0) −→ Hn(E) −→ Hn(E0)

is zero. Applying s∗, it follows that e(ξ) = s∗(0) = 0.

[If the bundle ξ possesses a Euclidean metric, then an alternative proof can
be given as follows: Let ε be the trivial line bundle spanned by the cross-section
s of ξ. Then

e(ξ) = e(ε) ⌣ e(ε⊥)

by 9.6, where the class e(ε) is zero by 9.2]
To conclude this section we will describe some examples of bundles with non-

zero Euler class. (See also §11 and §15.)

Problem 9-A. Recall that γn denotes the canonical n-plane bundle over the
infinite Grassmann manifold Grn(R∞). Show that γn⊕γn is an orientable vector
bundle with w2n(γ

n ⊕ γn) ̸= 0, and hence e(γn ⊕ γn) ̸= 0. If n is odd, show that
2 e(γn ⊕ γn) = 0.

Problem 9-B. Now consider the complex Grassmann manifold Grn(C∞), con-
sisting of all complex sub vector spaces of complex dimension n in infinite complex
coordinate space. (Compare §14.) Since every complex n-plane can be thought
of as a real oriented 2n-plane, it follows that there is a canonical oriented 2n-
plane bundle ξ2n over Grn(C∞). Show that the restriction of ξ2n to the real
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sub-space Grn(R∞) is isomorphic to γn ⊕ γn, and hence that e(ξ2n) ̸= 0. (Re-
mark: The group H2n(Grn(C∞);Z) is actually free abelian, with e(ξ2n) as one of
its generators. See Lemma 14.3.

Problem 9-C. Let τ be the tangent bundle of the n-sphere, and let A ⊂ Sn×Sn

be the anti-diagonal, consisting of all pairs of antipodal unit vectors. Using
stereographic projection, show that the total space E = E(τ) is canonically
homeomorphic to Sn × Sn −A. Hence, using excision and homotopy, show that

H∗(E,E0) ≈ H∗(Sn×Sn, Sn×Sn− diagonal) ≈ H∗(Sn×Sn, A) ⊂ H∗(Sn×Sn)

(Compare §11.) Now suppose that n is even. Show that the Euler class
e(τ) = ϕ−1(u ⌣ u) is twice a generator of Hn(Sn;Z). As a corollary, show that
τ possesses no non-trivial sub vector bundles.
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10. The Thom Isomorphism Theorem

This section will first give a complete proof of the Thom isomorphism theorem
in the unoriented case (compare Theorem 8.1), and then describe the changes
needed for the oriented case (Theorem 9.1). For the first half of this section, the
coefficient field Z/2 is to be understood.

We begin by outlining some constructions which are described in more detail
in Appendix A. (See in particular A.6.) Let Rn

0 denote the set of non–zero vectors
in Rn. For n = 1 the cohomology group H1(R,R0) with mod 2 coefficients is cyclic
of order 2. Let e1 denote the non–zero element. Then for any topological space
B a cohomology isomorphism

Hj(B) −→ Hj+1(B × R, B × R0)

is defined by the correspondence

y 7→ y × e1,

using the cohomology cross product operation. This is proved by studying the
cohomology exact sequence of the triple (B × R, B × R0, B × R−), where R−

denotes the set of negative real numbers.

Now let B′ be an open subset of B. Then for each cohomology class
y ∈ Hj(B,B′) the cross product y × e1 is defined with

y × e1 ∈ Hj+1(B × R, B′ × R ∪B × R0).
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Using the Five Lemma1 it follows that the correspondence y 7→ y× e1 defines an
isomorphism

Hj(B,B′) −→ Hj+1(B × R, B′ × R ∪B × R0).

Therefore it follows inductively that the n-fold composition

y 7→ y × e1 7→ y × e1 × e1 7→ . . . 7→ y × e1 × . . .× e1

is also an isomorphism. (See Appendix A for further details.) Setting

en = e1 × . . .× e1 ∈ Hn(Rn,Rn
0 ),

this proves the following.

Lemma 10.1. For any topological space B and any n ≥ 1, a cohomology iso-
morphism

Hj(B) −→ Hj+n(B × Rn, B × Rn
0 )

is defined by the correspondence y 7→ y × en.

Now recall the statement of Thom’s theorem. Let ξ be an n-plane bundle
with projection π : E −→ B.

Theorem 10.2 (Thom isomorphism). There is one and only one cohomology
class u ∈ Hn(E,E0) with mod 2 coefficients whose restriction to Hn(F, F0) is
non–zero for every fiber F . Furthermore, the correspondence y 7→ y ⌣ u maps
the cohomology group Hj(E) isomorphically onto Hj+n(E,E0) for every integer
j.

In particular, taking j < 0, it follows that the cohomology of the pair (E,E0)

is trivial in dimensions less than n.

Proof. The proof will be divided into four cases.
Case 1. Suppose that ξ is a trivial vector bundle. Then we will identify E

with the product B×Rn. Thus the cohomology Hn(E,E0) = Hn(B×Rn, B×Rn
0 )

1See for example [Spa81, pp. 185]
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is canonically isomorphic to H0(B) by 10.1. To prove the existence and uniqueness
of u, it suffices to show that there is one and only one cohomology class s ∈ H0(B)

whose restriction to each point of B is non–zero. Evidently the identity element
1 ∈ H0(B) is the only class satisfying this condition. Therefore u exists and is
equal to 1× en.

Finally, since every cohomology class in Hj(B ×Rn) can be written uniquely
as a product y × 1 with y ∈ Hj(B), it follows from 10.1 that the correspondence

y × 1 7→ (y × 1) ⌣ u = (y × 1) ⌣ (1× en) = y × en

is an isomorphism. This completes the proof in Case 1.

Case 2. Suppose that B is the union of two open sets B′ and B′′, where the
assertion 10.2 is known to be true for the restrictions ξ

∣∣
B′ and ξ

∣∣
B′′ and also for

ξ
∣∣
B′∩B′′ . We introduce the abbreviation B∩ for B′ ∩ B′′, and the abbreviations

E′, E′′ and E∩ for the inverse images of B′, B′′ and B′ ∩B′′ for the total space.
The following Mayer–Vietoris sequence will be used:

. . . −→ Hi−1(E∩, E∩
0 ) −→ Hi(E,E0) −→ Hi(E′, E′

0)⊕H
i(E′′, E′′

0 ) −→ Hi(E∩, E∩
0 ) −→ . . . .

For the construction of this sequence, the reader is referred, for example, to
[Spa81, pp. 190, 239].

By hypothesis, there exist unique cohomology classes u′ ∈ Hn(E′, E′
0) and

u′′ ∈ Hn(E′′, E′′
0 ) whose restrictions to each fiber are non–zero. Applying the

uniqueness statement for ξ
∣∣
B′∩B′′ , we see that the classes u′ and u′′ have the

same image in Hn(E∩, E∩
0 ). Therefore they come from a common cohomology

class u in Hn(E,E0). This class u is uniquely defined, since Hn−1(E∩, E∩
0 ) = 0.

Now consider the Mayer–Vietoris sequence

. . . −→ Hj−1(E∩) −→ Hj(E) −→ Hj(E′)⊕Hj(E′′) −→ Hj(E∩) −→ . . .

where j+n = i. Mapping this sequence to the previous Mayer–Vietoris sequence
by the correspondence y 7→ y ⌣ u and applying the Five Lemma, it follows that

Hj(E)
∼=−→ Hj+n(E,E0).
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This completes the proof in Case 2.
Case 3. Suppose that B is covered by finitely many open sets B1, . . . , Bk

such that the bundle ξ
∣∣
Bi

is trivial for each Bi. We will prove by induction on k

that the assertion of 10.2 is true for the bundle ξ.
To start the induction, the assertion is certainly true when k = 1. If k > 1,

then we can assume by induction that the assertion is true for ξ
∣∣
B1∪...∪Bk−1

and
for ξ

∣∣
(B1∪...∪Bk−1)∩Bk

. Hence, by Case 2, it is true for ξ.
General Case. Let C be an arbitrary compact subset of the base space B.

Then evidently the bundle ξ
∣∣
C

satisfies the hypothesis of Case 3. Since the union
of any two compact sets is compact2 we can form the direct limit

lim−→Hj(C)

of homology groups as C varies over all compact subsets of B, and the corre-
sponding inverse limit lim←−Hj(C) of cohomology groups. We recall the following.

Lemma 10.3. The natural homomorphism

Hj(B) −→ lim←−Hj(C)

is an isomorphism, and similarly Hj(E,E0) maps isomorphically to
lim←−Hj(π−1(C), π−1(C)0).

Caution. These statements are only true since we are working with field co-
efficients. The corresponding statements with integer coefficients would definitely
be false.

Proof of 10.3. The corresponding homology statement, that lim−→Hj(C) maps iso-
morphically to Hj(B), is clearly true for arbitrary coefficients, since every singu-
lar chain on B is contained in some compact subset of B. Similarly, the group
lim−→Hj(π

−1(C), π−1(C)0) maps isomorphically to Hj(E,E0). But according to
A.1 in the Appendix, the cohomology Hj(B) with coefficients in the field Z/2

2Here we are implicitly assuming that the base space B is Hausdorff. This is not actually
necessary. The proof goes through perfectly well for non–Hausdorff spaces provided that one
substitutes “quasi–compact” (i.e., every open covering contains a finite covering) for “compact”
throughout.
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is canonically isomorphic to Hom(Hj(B),Z/2). Together with the easily verified
isomorphism

Hom(lim−→Hj(C),Z/2)
∼=−→ lim←−Hom(Hj(C),Z/2),

this proves 10.3.

In particular, the cohomology group Hn(E,E0) maps isomorphically to the
inverse limit of the groups Hn(π−1(C), π−1(C)0). But each of the latter groups
contains one and only one class uC whose restriction to each fiber is non–zero.
It follows immediately that Hn(E,E0) contains one and only one class u whose
restriction to each fiber is non–zero.

Now consider the homomorphism ⌣ u : Hj(E) −→ Hj+n(E,E0). Evidently,
for each compact subset C of B there is a commutative diagram

Hj(E) Hj+n(E,E0)

Hj(π−1(C)) Hj+n(π−1(C), π−1(C)0)

⌣u

Passing to the inverse limit, as C varies over all compact subsets, it follows that
⌣ u is itself an isomorphism. This completes the proof of 10.2. Hence we have
finally completed the proof of existence (and uniqueness) for Stiefel–Whitney
classes.

Now let us try to carry out analogous arguments with coefficients in an arbi-
trary ring Λ. (It is of course assumed that Λ is associative with 1.) Just as in
the argument above, the cohomology Hn(Rn,Rn

0 ; Λ) is a free Λ-module, with a
single generator en = e1 × . . .× e1. (See A.6 in the Appendix.)

Let ξ be an oriented n-plane bundle. Then for each fiber F of ξ we are given
a preferred generator

uF ∈ Hn(F, F0;Z).

(Compare §9.) Using the unique ring homomorphism Z −→ Λ, this gives rise
to a corresponding generator for Hn(F, F0; Λ) which will also be denoted by the
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symbol uF .

Theorem 10.4 (Thom Isomorphism). There is one and only one cohomology
class u ∈ Hn(E,E0; Λ) whose restriction to (F, F0) is equal to uF for every fiber
F . Furthermore the correspondence y 7→ y ⌣ u maps Hj(E; Λ) isomorphically
onto Hj+n(E,E0; Λ) for every integer j.

If the coefficient ring Λ is a field, then the proof is completely analogous to
the proof of 10.2. Details will be left to the reader. Similarly, if the base space
B is compact, then the proof is completely analogous to the proof of 10.2. (A
similar argument works for any bundle ξ of finite type. Compare Problem 5-E.)

The difficulty in extending to the general case is that Lemma 10.3 is not
available for cohomology with non–field coefficients. In fact the inverse limits
of 10.3 can be very badly behaved in general. However, the construction of the
fundamental class u does go through without too much difficulty. We will need
the following.

Lemma 10.5. The homology group Hn−1(E,E0;Z) is zero.

Assuming this for the present, it follows from A.1 in the Appendix that the co-
homology group Hn(E,E0;Z) is canonically isomorphic to Hom(Hn(E,E0;Z),Z).
Therefore, just as in the proof of 10.3, we see that Hn(E,E0;Z) is canonically
isomorphic to the inverse limit of the groups

Hn(π−1(C), π−1(C)0;Z)

as C varies over all compact subsets of the base space B. Since 10.4 has already
been proved for any vector bundle over a compact base space C, it follows that
there is a unique fundamental cohomology class u ∈ Hn(E,E0;Z).

Remark. It is important to note that the fundamental class in Hn(E,E0;Z)
corresponds to a fundamental class in Hn(E,E0; Λ) for any ring Λ, under the
unique ring homomorphism Z −→ Λ.

To prove that the cup product with u induces cohomology isomorphisms, we
will make use of the following constructions.
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Definition. A free chain complex over Z is a sequence of free Z-modules Kn

and homomorphisms

. . . −→ Kn
∂−→ Kn−1

∂−→ Kn−2 −→ . . .

with ∂ ◦ ∂ = 0. A chain mapping f : K −→ K ′ of degree d is a sequence of
homomorphisms Ki −→ K ′

i+d satisfying ∂′ ◦ f = (−1)d(f ◦ ∂).

Lemma 10.6. Let f : K −→ K ′ be a chain mapping, where K and K ′ are free
chain complexes over Z. If f induces a cohomology isomorphism

f∗ : H∗(K ′; Λ) −→ H∗(K; Λ)

for every coefficient field Λ, then f induces isomorphisms of homology and coho-
mology with arbitrary coefficients.

Proof. The mapping cone Kf is a free chain complex constructed as follows.
Let Kf

i = Ki−d−1⊕K ′
i with boundary homomorphism ∂f : Kf

i −→ Kf
i−1 defined

by
∂f (κ, κ′) = ((−1)d+1∂κ, f(κ) + ∂′κ′)

(Compare [Spa81, pp. 166].) Evidently Kf fits into a short exact sequence

0 −→ K ′ −→ Kf −→ K −→ 0

of chain mappings. Furthermore the boundary homomorphism

∂f : Hi−d−1(K) −→ Hi−1(K
′)

in the associated homology exact sequence is precisely equal to f∗. Thus the
homology H∗(K

f ) is zero if and only if f induces an isomorphism
H∗(K) −→ H∗(K

′) of integral homology.
In our case, f is known to induce a cohomology isomorphism

H∗(K ′; Λ) −→ H∗(K; Λ) for every coefficient field Λ. Using the cohomology
exact sequence, it follows that H∗(Kf ; Λ) = 0. But the cohomology Hn(Kf ; Λ)

is canonically isomorphic to HomΛ(Hn(K
f ⊗ Λ),Λ) by A.1 in the Appendix.
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Therefore, the homology vector space Hn(K
f ⊗ Λ) is zero. For otherwise there

would exist a non-trivial Λ-linear mapping from this space to the coefficient field
Λ.

In particular the rational homology Hn(K
f ⊗Q) is zero. Therefore, for every

cycle ζ ∈ Zn(K
f ) it follows that some integral multiple of ζ is a boundary. Hence

the integral homology Hn(K
f ) is a torsion group.

To prove that this torsion group Hn(K
f ) is zero, it suffices to prove that

every element of prime order is zero. Let ζ ∈ Zn(K
f ) be a cycle representing a

homology class of prime order p. Then

pζ = ∂κ

for some κ ∈ Kf
n+1. Thus κ is a cycle modulo p. Since the homology

Hn+1(K
f ⊗Z/p) is known to be zero, it follows that κ is a boundary mod p, say

κ = ∂κ′ + pκ′′.

Therefore pζ = ∂κ is equal to p∂κ′′, and hence ζ = ∂κ′′. Thus ζ represents the
trivial homology class, and we have proved that H∗(K

f ) = 0.
It now follows easily that Kf has trivial homology and cohomology with

arbitrary coefficients. (Compare [Spa81, pp. 167].) For example since Zn−1(K
f )

is free, the exact sequence

0 −→ Zn(K
f ) −→ Kf

n −→ Zn−1(K
f ) −→ 0

is split exact, and therefore remains exact when we tensor it with an arbitrary
additive group Λ. It follows easily that the sequence

. . . −→ Kf
n+1 ⊗ Λ −→ Kf

n ⊗ Λ −→ Kf
n−1 ⊗ Λ −→ . . .

is also exact, which proves that H∗(K
f ⊗ Λ) = 0. This completes the proof of

10.6.

The proof of 10.4 now proceeds as follows. We will make use of the cap
product operation. (For the definition and basic properties, see A.10.) While
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proving 10.4, we will simultaneously prove the following. The coefficient ring Z
is to be understood.

Corollary 10.7. The correspondence η 7→ u ∩ η defines an isomorphism from
the integral homology group Hn+i(E,E0) to Hi(E).

Proof. Choose a singular cocycle z ∈ Zn(E,E0) representing the fundamental
cohomology class u. Then the correspondence γ 7→ z ∩ γ from Cn+i(E,E0) to
Ci(E) satisfies the identity

∂(z ∩ γ) = (−1)nz ∩ (∂γ).

Therefore
z∩ : C∗(E,E0) −→ C∗(E)

is a chain mapping of degree −n. Using the identity

⟨c, z ∩ γ⟩ = ⟨c ⌣ z, γ⟩

we see that the induced cochain mapping

(z∩)# : C∗(E; Λ) −→ C∗(E,E0; Λ)

is given by c 7→ c ⌣ z. Here Λ can be any ring. If the coefficient ring Λ is a field,
then this cochain mapping induces a cohomology isomorphism by the portion of
10.4 that has already been proved. Thus we can apply 10.6, and concludes that
the homomorphisms

u∩ : Hi+n(E,E0; Λ) −→ Hi(E; Λ)

and
⌣ u : Hi(E; Λ) −→ Hi+n(E,E0; Λ)

are actually isomorphisms for arbitrary Λ. In particular, using the isomorphism
⌣ u : H0(E; Λ) −→ Hn(E,E0; Λ), the uniqueness of the fundamental cohomology
class u with coefficients in Λ can now be verified.

This completes the proof of 10.4 and 10.7 except for one step that has been
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skipped over. Namely, we must still prove that Hn−1(E,E0;Z) = 0 (Lemma 10.5).
First suppose that the base space B is compact. Then we have already ob-

served that Theorem 10.4 is true independently of 10.5. Similarly the proof of
10.7, in this special case, goes through without making use of 10.5. Thus we are
free to make use of 10.7 to conclude that

Hn−1(E,E0;Z)
∼=−→ H−1(E;Z) = 0.

The proof of 10.5 in the general case now follows immediately, using the homology
isomorphism

lim−→Hi(π
−1(C), π−1(C)0;Z)

∼=−→ Hi(E,E0;Z),

where C varies over all compact subsets of B. (Compare 10.3.) This completes
the proof.
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11. Computations in a Smooth Manifold

11.1 The Normal Bundle

Let M = Mn be a smooth manifold which is smoothly (and topologically)
embedded in a Riemannian manifold A = An+k. In order to study characteristic
classes of the normal bundle of M in A we will need the following geometrical
result.

Theorem 11.1 (Tubular neighborhood theorem). There exists an open neigh-
borhood of M in A which is diffeomorphic to the total space of the normal bundle
under a diffeomorphism which maps each point x of M to the zero normal vector
at x.

Such a neighborhood is called an open tubular neighborhood of M in A.
To simplify the presentation, we will carry out full details of the proof only

in the special case where M is compact. This special case will suffice for nearly
all of our applications. The proof in the general case is given, for example, in
[Lan62].

Let E denote the total space of the normal bundle νk. To any real number
ε > 0, we associate the open subset E(ε) ⊂ E consisting of all pairs (x, v) ∈ E

with |v| < ε. Here x denotes a point of M , and v a normal vector to M at x.
[Or more generally, to any smooth real valued function x 7→ ε(x) > 0, we can

associate the open set E(ε) consisting of all (x, v) ∈ E with |v| < ε(x). This
more general construction is essential in dealing with non-compact manifolds.]

We will make use of the exponential map

Exp : E(ε) −→ A
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of Riemannian geometry, which assigns to each (x, v) ∈ E with |v| sufficiently
small the endpoint γ(1) of the parametrized geodesic arc

γ : [0, 1] −→ A

of length |v| having initial point γ(0) equal to x and initial velocity vector
dγ/dt|t=0 equal to v. As an example, if the ambient Riemmannian manifold
A is Euclidean space, then γ is just a straight line segment, and the exponential
map is given by the formula Exp(x, v) = x+ v.

The usual existence, uniqueness, and smoothness theorems for differential
equations imply that Exp(x, v) is defined, and smooth as a function of (x, v),
throughout some neighborhood of the zero cross-section M × 0 ⊂ E. (See for
example [BC11].) It follows easily that Exp is defined and smooth on E(ε) for ε

sufficiently small.

Furthermore, applying the Inverse Function Theorem at any point (x, 0) on
the zero cross-section M × 0 ⊂ E, we see that some open neighborhood of (x, 0)
in E(ε) is mapped diffeomorphically onto an open subset of A.

Assertion. If ε is sufficiently small, then the entire open set E(ε) is mapped
diffeomorphically onto an open set Nε ⊂ A by the exponential map.

Proof, assuming that M is compact. Certainly the exponential map restricted to
E(ε) is a local diffeomorphism, for small ε, so it suffices to prove that it is one-
to-one. If this were false, then for each integer i > 0, taking ε = 1/i, there would
exist two distinct points

(xi, vi) ̸= (x′
i, v

′
i)

in the neighborhood E(1/i) for which

Exp(xi, vi) = Exp(x′
i, v

′
i).

Therefore, since M is compact, there would exist a convergent subsequence {xij}
so that say

lim (xij , vij ) = (x, 0),
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and simultaneously
lim (x′

ij , v
′
ij ) = (x′, 0).

Evidently the limit point x = Exp(x, 0) = limExp(xij , vij ) would be equal to the
limit point x′. But then the equation Exp(xij , vij ) = Exp(xij )

′, v′ij for large j

would contradict the statement that Exp is one-to-one throughout a neighbor-
hood of (x, 0).

Thus E(ε) is diffeomorphic to its image Nε for small ε. To complete the
proof of 11.1, we need only note that E(ε) is also diffeomorphic to E, under the
correspondence

(x, v) 7→
(
x,

v√
1− |v|2/ε(x)2

)

Now let us make the additional hypothesis that the submanifold M ⊂ A

is closed as a subset of the topological space A. Of course this hypothesis is
automatically satisfied if M is compact.

Corollary 11.2. If M is closed in A, then the cohomology ring H∗(E,E0; Λ)

associated with the normal bundle of M in A is canonically isomorphic to the
cohomology ring H∗(A,A−M ; Λ).

Here Λ can be any coefficient ring.

Proof. Since the tubular neighborhood Nε and the complement A−M are open
subsets with union A and intersection Nε −M , there is an excision isomorphism

H∗(A,A−M) −→ H∗(Nε, Nε −M).

(See for example [Spa81].) Therefore the embedding

Exp : (E(ε), E(ε)0) −→ (Nε, Nε −M) ⊂ (A,A−M)

induces an isomorphism

Exp∗ : H∗(A,A−M) −→ H∗(E(ε), E(ε)0).
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Composing with the excision isomorphism

H∗(E(ε), E(ε)0) ∼= H∗(E,E0)

we obtain an isomorphism which clearly does not depend on the particular choice
of ε.

Remark. This isomorphism H∗(A,A−M) −→ H∗(E,E0) does not even depend
on the particular choice of Riemannian metric for A. To make sense of this
statement, one must first choose a definition of “normal bundle” based on the
exact sequence

0 −→ τM −→ τA|M −→ νk −→ 0,

which is independent of the particular Riemannian metric on A. (Compare 3-B.)
Since any two Riemannian metrics µ0 and µ1 can be joined by a smooth one-
parameter family of Riemannian metrics (1 − t)µ0 + tµ1, it then follows easily
that the corresponding exponential maps are homotopic.

As an application of Corollary 11.2, the fundamental cohomology class
u ∈ Hk(E,E0;Z/2) corresponds to a canonical cohomology class which we denote
by the symbol

u′ ∈ Hk(A,A−M ;Z/2).

Similarly if the normal bundle νk is orientable, then any specific orientation for νk

determines a corresponding class u′ ∈ Hk(A,A−M ;Z) with integer coefficients.

Theorem 11.3. If M is embedded as a closed subset of A, then the composition
of the two restriction homomorphisms

Hk(A,A−M) −→ Hk(A) −→ Hk(M)

with mod 2 coefficients, maps the fundamental class u′ to the top Stiefel-Whitney
class wk(ν

k) of the normal bundle. Similarly, if νk is oriented, then the corre-
sponding composition with integer coefficients maps the integral fundamental
class u′ to the Euler class e(νk)

Proof. Let s : M −→ E denote the zero cross-section of νk, inducing a canonical
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isomorphism H∗(E) −→ H∗(M). First note that the composition

Hk(E,E0) −→ Hk(E)
s∗−→ Hk(M)

with mod 2 coefficients maps the fundamental class u to the Stiefel-Whitney class
wk(ν

k). (Compare Property 9.5.) In fact the image of s∗(u|E) under the Thom
isomorphism

ϕ : Hk(M) −→ H2k(E,E0)

is equal to
π∗s∗(u|E) ⌣ u = (u|E) ⌣ u = u ⌣ u = Sqk(u).

Therefore s ∗ (u|E) is equal to ϕ−1 Sqk(u) = wk(ν
k).

Now, replacing (E,E0) by the diffeomorphic pair (Nε, Nε−M), it follows that
the composition of the two restriction homomorphisms

Hk(Nε, Nε −M) −→ Hk(Nε) −→ Hk(M)

maps the class corresponding to u to wk(ν
k). Making use of the commutative

diagram

Hk(A,A−M) Hk(A)

Hk(Nϵ, Nϵ −M) Hk(m)

∼=

the conclusion follows. The proof in the oriented case is completely analogous.

Definition. The image of u′ in Hk(A) is called the dual cohomology class to the
submanifold M of codimension k. (Compare Problem 11-C.) If this dual class
u′|A is zero, it follows of course that the top Stiefel-Whitney class [or the Euler
class] of νk must also be zero. One special case is particularly noteworthy:

Corollary 11.4. If M = Mn is smoothly embedded as a closed subset of the
Euclidean space Rn+k, then wk(ν

k) = 0. In the oriented case e(νk) = 0.

For the dual class u′|Rn+k belongs to a cohomology group Hk(Rn+k) which is
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zero.

By the Whitney duality theorem 4.2, the class wk(ν
k) can be expressed as a

characteristic class wk(τM ) of the tangent bundle of M . Thus we can restate 11.4
as follows: If wk(τM ) ̸= 0, then M cannot be smoothly embedded as a closed
subset of Rn+k.

As an example, if n is a power of 2 , then the real projective space Pn cannot
be smoothly embedded in R2n−1. (Compare 4.8. According to [Whi44], every
smooth n-manifold whose topology has a countable basis can be smoothly embed-
ded in R2n. Presumably it can be embedded as a closed subset of R2n, although
Whitney does not prove this).

Remark 7. It is essential in 11.4 that M be a manifold without boundary,
embedded as a closed subset of Euclidean space. For example the open Möbius
band of Figure 2 can certainly be embedded in R3. But it cannot be embedded
as a closed subset, since the associated Stiefel Whitney class w1(τ) is non-zero.
Similarly it is essential that M be embedded (i.e., without self-intersections)
rather than simply immersed in Rn+k. For example a theorem of [Boy03] asserts
that the real projective plane P2 can be immersed in R3. (See [HC99].) But again
the dual Steifel-Whitney class w1(τ) is non-zero.

11.2 The Tangent Bundle

Let M be a Riemannian manifold. Then the product M ×M also has the
structure of a Riemannian manifold, the length of the tangent vector

(u, v) ∈ TxM ×TyM ∼= T(x,y)(M ×M)

being defined by
|(u, v)|2 = |u|2 + |v|2,

and the inner product of two such vectors being defined by

(u, v) · (u′, v′) = u · u′ + v · v′.

128



Section 11.2: The Tangent Bundle

Note that the diagonal mapping

x 7→ ∆(x) = (x, x)

embeds M smoothly as a closed subset of M ×M . (This diagonal embedding is
almost an isometry: it multiplies all lengths by

√
2.)

Lemma 11.5. The normal bundle νn associated with the diagonal embedding
of M in M ×M is canonically isomorphic to the tangent bundle of M .

Proof. Evidently a vector

(u, v) ∈ TxM ×TyM ∼= T(x,x)(M ×M)

is tangent to ∆(M) if and only if u = v, and normal to ∆(M) if and only if
u+ v = 0. Thus each tangent vector v ∈ TxM corresponds uniquely to a normal
vector (−v, v) ∈ T(x,x)(M ×M). This correspondence

(x, v) 7→ ((x, x), (−v, v))

maps the tangent manifold TM = E(τM ) diffeomorphically onto the total space
E(νn).

We will be particularly interested in Riemannian manifolds M for which the
tangent bundle τM is oriented.

Lemma 11.6. Any orientation for the tangent bundle τM gives rise to an orien-
tation for the underlying topological manifold M , and conversely any orientation
for M gives rise to an orientation for τM .

Proof. As defined in Appendix A, an orientation for a topological manifold
M is a function which assigns to each point x of M a preferred generator µx

for the infinite cyclic group Hn(M,M − x), using integer coefficients. These
preferred generators are required to “vary continuously” with x, in the sense that
µx corresponds to µy under the isomorphisms

Hn(M,M − x)←− Hn(M,M −N) −→ Hn(M,M − y),
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where N denotes a nicely embedded n-cell neighborhood of x and y is any point
of N .

Similarly, an orientation for the vector bundle τM can be specified by assigning
a preferred generator µ′

x to the infinite cyclic group Hn(TxM,TxM −0) for each
x. These generators µ′

x must vary continuously with x, for example in the sense
that µ′

x corresponds to µ′
y under the isomorphisms

Hn(TxM,TxM − 0) −→ Hn(TN,TN − (N × 0))←− Hn(TyM,TyM − 0)

where N denotes an n-cell neighborhood and y ∈ N . (Compare §9.)
But the homology group Hn(M,M − x) is canonically isomorphic to

Hn(TxM,TxM − 0) as one sees by applying Corollary 11.2 to the 0-dimensional
manifold x, embedded in M as a closed subset with normal bundle TxM . The
proof that µx varies continuously with x if and only if the corresponding gener-
ators µ′

x vary continuously with x is not difficult. In fact, since the problem is
purely local, it suffices to consider the special case where M is Euclidean space
with the standard metric. Details will be left to the reader.

Let us study homology and cohomology of M with coefficients in some fixed
commutative ring Λ. We will always assume either that M is oriented
or that Λ = Z/2. It follows from Corollary 11.2 that there is a fundamental
cohomology class

u′ ∈ Hn(M ×M,M ×M −∆(M))

with coefficients in Λ. By Lemma 11.13, the restriction of u′ to the diagonal
submanifold ∆(M) ∼= M is equal to the Euler class

e(νn) = e(τM )

with coefficient ring Λ, in the oriented case, or to the Stiefel-Whitney class
wn(τM ) in the mod 2 case.

This cohomology class u′ can be characterized more explicitly as follows. Note
that each cohomology group Hn(M,M −x) has a preferred generator ux, defined
by the condition

⟨ux, µx⟩ = 1.
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(In the mod 2 case, ux is the unique non-zero element of Hn(M,M − x).) Define
the canonical embedding

jx : (M,M − x) −→ (M ×M,M ×M −∆(M))

by setting jx(y) = (x, y).

Lemma 11.7. The class u′ ∈ Hn(M ×M,M ×M −∆(M)) is uniquely charac-
terized by the property that its image j∗x(u

′) is equal to the preferred generator
ux for every x ∈M .

Proof. By its construction (Theorem 10.4 and Corollary 11.2), the cohomology
class u′ can be uniquely characterized as follows. For any x and any small neigh-
borhood N of zero in the tangent space TxM , consider the embedding

(N,N − 0) −→ (M ×M,M ×M −∆(M))

defined by the exponential map

v 7→ (Exp(x,−v),Exp(x, v)).

Then the induced cohomology homomorphism must map u′ to the preferred gen-
erator for the module Hn(N,N − 0) ∼= Hn(TxM,TxM − 0)

Making use of the homotopy (v, t) 7→ (Exp(x,−tv),Exp(x, v)) for 0 ≤ t ≤ 1,
it follows that we can equally well use the embedding of (N,N − 0) in
(M ×M,M ×M −∆(M)) defined by

v 7→ (x,Exp(x, v)).

Since this is the composition of jx with the canonical embedding

Exp : (N,N − 0) −→ (M,M − x)

which was used to prove 11.6, the conclusion follows.
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11.3 The Diagonal Cohomology Class in Hn(M ×M)

We continue to assume either that M is oriented or that the coefficient ring
Λ is Z/2, so that the fundamental class

u′ ∈ Hn(M ×M,M ×M −∆(M))

is defined. Note that the restriction homomorphism

Hn(M ×M,M ×M −∆(M)) −→ Hn(M ×M)

maps u′ to a cohomology class u′|M×M which, by definition, is “dual” to the
diagonal submanifold of M ×M .

Definition. This cohomology class u′|M×M will be denoted briefly by u′′, and
called the diagonal cohomology class in Hn(M ×M).

We would like to characterize this diagonal cohomology class more explic-
itly. First, a preliminary lemma which expresses algebraically the fact that u′′ is
“concentrated” along the diagonal in M ×M .

Lemma 11.8. For any cohomology class a ∈ H∗(M), the product (a× 1) ⌣ u′′

is equal to (1× a) ⌣ u′′.

Proof. Let Nε be a tubular neighborhood of the diagonal submanifold ∆(M)

in M × M . Evidently ∆(M) is a deformation retract of Nε. Define the two
projection maps

p1, p2 : M ×M −→M

by p1(x, y) = x, p2(x, y) = y. Since p1 and p2 coincide on ∆(M), it follows
that the restriction p1|Nε is homotopic to p2|Nε . Therefore the two cohomology
classes p∗1(a) = a×1 and p∗2(a) = 1×a have the same image under the restriction
homomorphism Hi(M ×M) −→ Hi(Nε). Now, using the commutative diagram

Hi(M ×M) Hi(Nε)

Hi+n(M ×M,M ×M −∆(M)) Hi+n(Nε, Nε −∆(M))

⌣u′ ⌣u′|(Nε,Nε−∆(M))

∼=
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it follows that (a × 1) ⌣ u′ = (1 × a) ⌣ u′. Restricting to Hi+n(M ×M), the
conclusion follows.

We will make use of the slant product operation

Hp+q(X × Y )⊗Hq(Y ) −→ Hp(X)

with coefficients in Λ. In the special case where X and Y are finite complexes
and Λ is a field, so that

H∗(X × Y ) ∼= H∗(X)⊗H∗(Y )

this slant product can be defined quite easily as follows. Define a homomorphism

H∗(X)⊗H∗(Y )⊗H∗(Y ) −→ H∗(X)

by the formula a⊗ b⊗ β 7→ a⟨b, β⟩. Now, substituting
H∗(X × Y ) for H∗(X)⊗H∗(Y ), we have the required operation

H∗(X × Y )⊗H∗(Y ) −→ H∗(X)

which is denoted by p ⊗ β 7→ p/β. This operation satisfies and is characterized
by the identity

(a× b)/β = a⟨b, β⟩.

For each fixed β ∈ H∗(Y ), note that the homomorphism p 7→ p/β is left H∗(X)-
linear in the sense that ((a × 1) ⌣ p)/β = a ⌣ (p/β) for every a ∈ H∗(X) and
every p ∈ H∗(X × Y ).

For the definition of slant product in general, the reader is referred to [Spa81]
or [Dol95].

Lemma 11.9. Suppose that M is compact, so that the fundamental homology
class µ ∈ Hn(M) is defined. Then the diagonal cohomology class u′′ ∈ Hn(M×M)

and the fundamental homology class µ are related by the identity
u′′/µ = 1 ∈ H0(M).
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We are assuming field coefficients, although the proof would actually go
through with any coefficient ring, in the oriented case.

Proof. For any x ∈ M we will compute the image of u′′/µ under the restriction
homomorphism H0(M) −→ H0(x) ∼= Λ. We will make use of the commutative
diagram

Hn(M ×M) H0(M)

Hn(x×M) H0(x)

/µ

/µ

Note that the left hand vertical arrow maps the cohomology class u′′ to 1×i∗x(u′′),
where

iX : M −→M ×M

denotes the embedding y 7→ (x, y). Using the identity (a × b)/µ = a⟨b, µ⟩, it
follows that (u′′/µ)|x is equal to the Kronecker index ⟨ix(u′′), µ⟩ multiplied by
1 ∈ H0(x).

As constructed in Appendix A, the fundamental homology class µ is uniquely
characterized by the property that for each x ∈M the natural homomorphism

Hn(M) −→ Hn(M,M − x)

maps µ to the preferred generator µx. Making use of the mappings

M (M,M − x)

M ×M (M ×M,M ×M −∆(M))

⊂
ix jx

⊂

where jx also sends y to (x, y), it follows from this defining property of µ that the
Kronecker index ⟨i∗x(u′′), µ⟩ = ⟨j∗x(u′)|M , µ⟩ is equal to ⟨j∗x(u′), µx⟩. Since this
equals 1 by lemma 11.7, we have proved that

(u′′/µ)|x = 1 ∈ H0(x)

This is true for every x, so it clearly follows that u′′/µ is equal to the identity
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element of H0(M).

11.4 Poincaré Duality and the Diagonal Class

Let M be a compact smooth manifold. We will study the cohomology of M
with coefficients in a field Λ, continuing to assume either that M is oriented or
that Λ = Z/2.

Theorem 11.10 (Duality Theorem). To each basis b1, . . . , br for H∗(M) there
corresponds a dual basis b#1 , . . . , b

#
r for H∗(M), satisfying the identity

⟨bi ⌣ b#j , µ⟩ =

1 i = j,

0 i ̸= j

It follows as a corollary that the rank of the vector space Hk(M) is equal to
the rank of Hn−k(M). For if a basis element bi has dimension k then the dual
basis element b#i must have dimension n − k. In fact, it follows that the vector
space Hk(M) is isomorphic to the dual vector space HomΛ(H

k(M), Λ), using the
correspondence a 7→ ha where ha(b) = ⟨a ⌣ b, µ⟩. (For other formulations of
Poincaré duality, see 11-B and Appendix A, as well as [Spa81], [Dol95].)

While proving 11.10, we will simultaneuously give a precise description of the
cohomology class u′′ ∈ Hn(M ×M).

Theorem 11.11. With {bi} and {b#i } as above, the diagonal cohomology class
u′′ is equal to

r∑
i=1

(−1)dim bi bi × b#i .

Proof of 11.10 and 11.11. Using the Künneth formula,

H∗(M ×M) ∼= H∗(M)⊗H∗(M),

it follows easily that the diagonal class can be represented by a r-fold sum

u′′ = b1 × c1 + · · ·+ br × cr,
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where c1, . . . , cr are certain well-defined cohomology classes in H∗(M) with

dim bi + dim ci = n.

Let us apply the homomorphism /µ to both sides of the identity

(a× 1) ⌣ u′′ = (1× a) ⌣ u′′.

On the left side, using the left linearity of the slant product, we obtain

((a× 1) ⌣ u′′)/µ = a ⌣ (u′′/µ) = a.

On the right side, substituting
∑

bj × cj for u′′, we obtain∑
(−1)dim a dim bj (bj × (a ⌣ cj))/µ =

∑
(−1)dim a dim bj bj⟨a ⌣ cj , µ⟩.

Hence this last expression must be equal to a. Substituting bi for a, it follows
that the coefficient

(−1)dim a dim bj ⟨bi ⌣ cj , µ⟩

of bj must be +1 for i = j, and 0 for i ̸= j. Setting b#i = (−1)dim bici, the
conclusions follow easily.

11.5 Euler Class and Euler Characteristic

The Euler characteristic of a finite complex K is defined as the alternating
sum

χ(K) =
∑

(−1)k rankHk(K),

using field coefficients. A familiar theorem asserts that this equal to the alter-
nating sum ∑

(−1)k(number of k–cells),

and hence is independent of the particular coefficient field that is used. (Compare
[Dol95, pp. 105, 106].)

Corollary 11.12. If M is a smooth compact oriented manifold, then the Kro-
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necker index ⟨e(τM ), µ⟩, using rational or integer coefficients, is equal to the Euler
characteristic χ(M). Similarly, for a non–oriented manifold, the Stiefel–Whitney
number ⟨wn(τM ), µ⟩ = wn[M ] is congruent to χ(M) modulo 2.

Proof. By 11.3 and 11.15 the Euler class of the tangent bundle is given by

e(τM ) = ∆∗(u′′).

Using rational coefficients, we can substitute the formula

u′′ =
∑

(−1)dim bibi × b#i ,

thus obtaining
e(τM ) =

∑
(−1)dim bibi ∪ b#i .

Now applying the homomorphism ⟨, µ⟩ to both sides, we obtain the required
formula

⟨e(τM ), µ⟩ =
∑

(−1)dim bi = χ(M).

The mod 2 argument is completely analogous.

11.6 Wu’s Formula for Stiefel-Whitney Classes

Let wi = wi(τM ) be the i-th Stiefel-Whitney class of the tangent bundle of a
smooth manifold M , or equivalently the i-th Stiefel-Whitney class of the normal
bundle of the diagonal in M ×M . Applying Thom’s formula (p. 99)

Sqi(u) = (π∗ wi) ⌣ u

together with the isomorphism

H∗(E,E0) ∼= H∗(Nε, Nε −∆(M)) ∼= H∗(M ×M,M ×M −∆(M))

of 11.2, it follows easily that

Sqi(u′) = (wi×1) ⌣ u′.
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Therefore, restricting to H∗(M ×M), we obtain Sqi(u′′) = (wi×1) ⌣ u′′.
We will again make use of the fact that the slant product homomorphism

/β : H∗(X × Y )→ H∗(X)

is left H∗(X)-linear for any β ∈ H∗(Y ). In particular, the slant product

((wi×1) ⌣ u′′)/µ

is equal to
wi ⌣ (u′′/µ) = wi .

(Compare the proof of 11.11.) Since this is equal to Sqi(u′′)/µ, we have the
following.

Lemma 11.13. If M is compact and smooth, then the Stiefel-Whitney classes
of τM are given by the formula wi = Sqi(u′′)/µ.

As a corollary, if two manifolds M1 and M2 have the same homotopy type,
then their Stiefel-Whitney classes must correspond under the resulting isomor-
phism H∗(M1) ∼= H∗(M2). This follows since the class u′′ is determined by 11.11.

In fact, following Wu Wen-Tsün, one can work out an explicit recipe for
computing wi, given only the mod 2 cohomology ring H∗(M) and the action of
the Steenrod squares on H∗(M). Consider the additive homomorphism

x 7→ ⟨Sqk(x), µ⟩

from Hn−k(M) to Z/2. Using the Duality Theorem 11.10, there clearly exists
one and only one cohomology class

vk ∈ Hk(M)

which satisfies the identity

⟨vk ⌣ x,µ⟩ = ⟨Sqk(x), µ⟩

for every x. (In fact, if one considers M as the disjoint union of its connected
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components, then it is easy to check that vk satisfies the sharper condition

vk ⌣ x = Sqk(x) ∈ Hn(M)

for every x ∈ Hn−k(M). Of course the class vk is zero whenever k > n− k). We
define the total Wu class

v ∈ HΠ(M) = H0(M)⊕H1(M)⊕ . . .⊕Hn(M)

to be the formal sum
v = 1 + v1 + . . .+ vn.

Clearly v satisfies and is characterized by the identity

⟨v ⌣ x, µ⟩ = ⟨Sq(x), µ⟩,

which holds for every cohomology class x. Here Sq denotes the total squaring
operation Sq0 +Sq1 +Sq2 + . . ..

Theorem 11.14 (Wu). The total Stiefel-Whitney class w of τM is equal to Sq(v).
In other words

wk =
∑

i+j=k

Sqi(vj).

Proof. Choose a basis {bi} for the mod 2 cohomology H∗(M) and a dual basis
{b#i }, as in 11.10. Then for any cohomology class x in HΠ(M) the identity

x =
∑

bi⟨x ⌣ b#i , µ⟩

is easily verified. Applying this identity to the total Wu class v we obtain

v =
∑

bi⟨v ⌣ b#i , µ⟩ =
∑

bi⟨Sq(b#i ), µ⟩.

Therefore Sq(v) is equal to∑
Sq(bi)⟨Sq(b#i ), µ⟩ =

∑
(Sq(bi)× Sq(b#i ))/µ = Sq(u′′)/µ
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by 11.11. Hence Sq(v) = w as required.

Here is a concrete application to illustrate Wu’s theorem. Let M be a com-
pact manifold whose mod 2 cohomology ring is generated by a single element
a ∈ Hk(M), which k ≥ 1. Thus the cohomology H∗(M) has basis {1, a, a2, . . . , am}
and the dimension of M must be equal to km, for some integer m ≥ 1.

Corollary 11.15. With M as above, the total Stiefel-Whitney class w(τM ) is
equal to

(1 + a)m+1 = 1 +

(
m+ 1

1

)
a+ . . .+

(
m+ 1

m

)
am.

As an example, the hypothesis of 11.15 is certainly satisfied for the sphere Sk,
with m = 1 and w = (1+ a)2 = 1. It is also satisfied for the real projective space
Pm = Pm(R), with cohomology generator a in dimension k = 1. (Compare 4.5.)
We will see in §14 that it is satisfied for the complex projective space Pm(C), a 2m-
dimensional manifold with cohomology generator in dimension k = 2. Similarly, it
is satisfied for the quaternion projective m-space, a 4m-dimensional manifold with
cohomology generator in dimension k = 4. (See for example [Spa81].) Finally,
it is satisfied for the Cayley plane, a 16-dimensional manifold with cohomology
generator a ∈ H8(M), and with Stiefel-Whitney class w = (1 + a)3 + 1 + a+ a2.
(See Borel [Bor50].)

These are essentially the only examples which exist. For according to Adams[Ada60],
if a space X has mod 2 cohomology generated by a ∈ Hk(X) with k ≥ 1, and
if a2 ̸= 0, then k must be either 1, 2, 4 or 8. Furthermore, if a3 ̸= 0, then by
[Ade52] k must be 1, 2 or 4. Thus the manifolds described above give the only
possibly truncated polynomial rings on one generator over Z/2. (Compare the
discussion of related problems on page 54.)

Proof of 11.15. The action of the Steenrod squares on H∗(M) is evidently given
by

Sq(a) = a+ a2,

and hence
Sq(ai) = (a+ a2)i = ai(1 + a)i.
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It follows that the Kronecker index ⟨Sq(ai), µ⟩ is equal to the binomial coefficient(
i

m−i

)
. Applying the formula

⟨Sq(ai), µ⟩ = ⟨v ⌣ ai, µ⟩,

this implies that the coefficient of am−i in the total Wu class v must also be equal
to

(
i

m−i

)
. Hence

v =
∑(

i

m− i

)
am−i.

Substituting j for m−i, it will be more convenient to write this as v =
∑(

m−j
j

)
aj .

Therefore
w = Sq(v) =

∑(
m− j

j

)
Sq(aj).

Since we know how to compute Sq(aj), an explicit computation with binomial
coefficients should now complete the argument. For example, if m = 5, then

v =
∑(

5− j

j

)
aj = 1 + a2,

hence
w = Sq(1 + a2) = 1 + a2 + a4.

In general it is clear that the necessary computation, expressing w as a polynomial
function of a, depends only on m, being completely independent of the dimension
k of a. But this gives us a convenient shortcut. For when k = 1 we already know
that this computation must lead to the formula w = (1+ a)m+1 by Theorem 4.5.
Evidently an identical computation, applied to a generator a of higher dimension,
must lead to this same formula.

Problem 11-A. Prove Lemma 4.3 (that is, compute the mod 2 cohomology of
Pn) by induction on n, using the Duality Theorem 11.10 and the cell structure
of 6.5.

Problem 11-B. More Poincaré Duality. For M compact, using field coeffi-
cients, show that

u′′/ : Hn−k(M)→ Hk(M)
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is an isomorphism. Using the cap product operation of Appendix A, show that
the inverse isomorphism is given by

∩µ : Hk(M)→ Hn−k(M)

multiplied by the sign (−1)kn.

Problem 11-C. Let M = Mn and A = Ap be compact oriented manifolds with
smooth embedding i : M → A. Let k = p − n. Show that the Poincaré duality
isomorphism

∩µA : Hk(A)→ Hn(A)

maps the cohomology class u′|A “dual” to M to the homology class (−1)nki∗(µM ).
(We assume that the normal bundle νk is oriented so that τM ⊕ νk is orientation
preserving isomorphic to τA|M . The proof makes use of the commutative diagram

Hk(A,A−M)⊗Hp(A) Hk(A,A−M)⊗Hp(A,A−M) Hk(N,N −M)⊗Hp(N,N −M)

Hk(A)⊗Hp(A) Hn(A) Hn(N)

∼=

where N is a tubular neighborhood of M in A.)

Problem 11-D. Prove that all Stiefel-Whitney numbers of a 3-manifold are
zero.

Problem 11-E. Prove the following version of Wu’s formula. Let

Sq : HΠ(M)→ HΠ(M)

be the inverse of the ring automorphism Sq. Show that the dual Stiefel-Whitney
classes wi(τM ) are determined by the formula

⟨Sq(x), µ⟩ = ⟨w ⌣ x,µ⟩,

which holds for every cohomology class x. Show that wn = 0. If n is not a power
of 2, show that wn−1 = 0.
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Problem 11-F. Definining Steenrod operations Sqi : Hk(X) → Hk−i(X) on
mod 2 homology by the identity

⟨x, Sqi(β)⟩ = ⟨Sqi(x), β⟩,

show that
Sq(a ∩ β) = Sq(a) ∩ Sq(β),

and that
Sq(u′′/β) = Sq(u′′)/ Sq(β).

Prove the formulas Sq(µ) = w ∩ µ and Sq(µ) = v ∩ µ.
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12. Obstructions

In the original work of Stiefel and Whitney, characteristic classes were defined
as obstructions to the existence of certain fields of linearly independent vectors.
A careful exposition from this point of view is given in [Ste51, §25.6, 35 and 38].
The construction can be outlined roughly as follows.

Let ξ be an n-plane bundle with base space B. For each fiber F of ξ consider
the Stiefel manifold Vk(F ) consisting of all k-frames in F . Here by a k-frame we
mean simply a k-tuple (v1, . . . , vk) of linearly independent vectors of F ; where 1 ≤
k ≤ n. (Compare §5. Steenrod uses orthonormal k-frames, but this modification
does not affect the argument). These manifolds Vk(F ) can be considered as the
fibers of a new fiber bundle which we will denote by Vk(ξ) and call the associated
Stiefel manifold bundle over B. By definition, the total space of Vk(ξ) consists
of all pairs (x, (v1, . . . , vk)) where x is a point of B and (v1, . . . , vk) is a k-frame
in the fiber Fx over x. Note that a cross-section of this Stiefel manifold bundle is
nothing but a k-tuple of linearly independent cross-sections of the vector bundle
ξ.

Now suppose that the base space B is a CW-complex.1 As an example, if
the base space is a smooth paracompact manifold then according to J. H. C.
Whitehead it possesses a smooth triangulation, and hence can certainly be given
the structure of a CW-complex. (Compare [Mun00].)

Steenrod shows that the fiber Vk(F ) is (n− k− 1)-connected, so it is easy to
construct a cross-section of Vk(ξ) over the (n− k)-skeleton of B. There exists a
cross-section over the (n−k+1)-skeleton of B if and only if a certain well defined

1Steenrod considers only the case of a finite cell complex but it is useful, and not much more
difficult, to allow arbitrary CW-complexes.
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primary obstruction class in

Hn−k+1(B; {πn−k Vk(F )})

is zero. Here we are using cohomology with local coefficients. The nota-
tion {πn−k Vk(F )} is used to denote the system of local coefficients (= bundle
of abelian groups) which associates to each point x of B the coefficient group
πn−k Vk(Fx). (In the special case n − k = 0, π0X is defined to be the reduced
singular group H̃0(X;Z).)

Setting j = n− k + 1, we will use the notation

oj(ξ) ∈ Hj(B; {πj−1 Vn−j+1(F )})

for this primary obstruction class. If j is even, and less than n, then Steenrod
shows that the coefficient group πj−1 Vn−j+1(F ) is cyclic of order 2. Hence it is
canonically isomorphic to Z/2. If j is odd, or j = n, the group πj−1 Vn−j+1(F )

is infinite cyclic. However it is not canonically isomorphic to Z. The system of
local coefficients {πj−1 Vn−j+1(F )} is twisted in general.

In any case, there is certainly a unique non-trivial homomorphism h from
πj−1 Vn−j+1(F ) to Z/2. Hence we can reduce the coefficients modulo 2, obtaining
an induced cohomology class h∗oj(ξ) ∈ Hj(B;Z/2).

Theorem 12.1. This reduction modulo 2 of the obstruction class oj(ξ) is equal
to the Stiefel-Whitney class wj(ξ).

Proof. First consider the universal bundle γn over Grn = Grn(R∞). Since
H∗(Grn;Z/2) is a polynomial algebra on generators w1(γ

n), . . ., wn(γ
n), it follows

that
h∗oj(γ

n) = fj(w1(γ
n), . . . ,wn(γ

n))

for some polynomial fj in n variables. Since both the obstruction class and the
Stiefel-Whitney classes are natural with respect to bundle mappings (see [Ste51,
§35.7]), it follows that

h∗oj(ξ) = fj(w1(ξ), . . . ,wn(ξ))
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for any n-plane bundle ξ over a CW-complex.

Since fj(w1, . . . ,wn) is a cohomology class of dimension j ≤ n, the polynomial
fj can certainly be written uniquely as a sum

fj(w1, . . . ,wn) = f ′(w1, . . . ,wj−1) + λwj

where f ′ = f ′
j,n is a polynomial and λ = λj,n equals 0 or 1 .

To compute f ′, consider the n-plane bundle η = γj−1 ⊕ εn−j+1 over Grj−1,
where εn−j+1 is a trivial bundle. This bundle η admits n − j + 1 linearly inde-
pendent cross-sections, so the obstruction class

oj(η) ∈ Hj(B; {πj−1 Vn−j+1( F )})

must be zero. Therefore the mod 2 class

h∗oj(η) = f ′(w1(η), . . . ,wj−1(η)) + λwj(η)

= f ′(w1(γ
j−1), . . . ,wj−1(γ

j−1)) + 0

is equal to zero. Since the classes w1(γ
j−1), . . . ,wj−1(γ

j−1) are algebraically
independent, this proves that f ′ = 0. Thus

h∗oj(ξ) = λwj(ξ)

for any n-plane bundle ξ.

To prove that λ = λj,n is equal to 1 , first consider the case j = n. Let
ξ = γn

1 be the restriction of the universal bundle γn to the Grassmann manifold
Grn(Rn+1) of n-planes in (n + 1)-space. Identifying Grn(Rn+1) with the real
projective space Pn as in 5.1, this bundle γn

1 can be described as follows. Cor-
responding to each pair of antipodal points {u,−u} on the unit sphere Sn one
associates the fiber consisting of all vectors v in Rn+1 with u · v = 0

A cross-section of γn
1 which is non-zero except at a single point {u0,−u0} of

Pn is given by the formula {u,−u} 7→ u0 − (u0 · u)u.

Now choosing the point u0 in the middle of the n-dimensional cell of Pn

(compare §6.5), we have a cross-section of V1(γ
n
1 ) over the (n− 1)-skeleton, and
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v−u

u
v

Figure 9

the obstruction cocycle clearly assigns to the n-cell a generator of the cyclic group

πn−1 V1 F = πn−1(F − 0) ∼= Z.

Thus h∗on(γ
n
1 ) ̸= 0, so the coefficient λn,n must be equal to 1 .

The proof for j < n is completely analogous. One uses the vector bundle
γj
1 ⊕ εn−j over Grj(Rj+1) ∼= Pj , together with the description of the generator of

the group πj−1vn−j+1(Rn) which is given [Ste51, §25.6].

Remark. Closely related to the obstruction point of view is a curious description
of the Stiefel-Whitney classes of a manifold M which was conjectured by Stiefel
and first proved by Whitney. Choosing any smooth triangulation of M ,
the sum of all simplices in the first barycentric subdivision is a mod
2 cycle, representing the homology class w∩µ which is Poincaré dual
to the total Stiefel-Whitney class of τM . A proof of this result has recently
been published by [HT72].

If we are given the Stiefel-Whitney classes wj(ξ) of an n-plane bundle, to
what extent is it possible to reconstruct the obstruction classes oj(ξ)? If j = 2i

is even and less than n, then the coefficient group πj−1 Vn−j+1(F ) has order 2 ,
so we can write

o2i(ξ) = w2i(ξ) for 2i < n,
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Figure 10

without any danger of ambiguity. Furthermore, according to [Ste51, §38.8], the
class o2i+1(ξ) can be expressed as the image δ∗o2i(ξ) where δ∗ is a suitably defined
cohomology operation. Thus the obstruction classes oj(ξ) with j odd or
j < n are completely determined by the Stiefel-Whitney classes of ξ.

We will show that the highest obstruction class on(ξ) can be identified with the
Euler class e(ξ), provided that ξ is oriented. We will make use of two important
constructions in the proof.

12.1 The Gysin Sequence of a Vector Bundle

Let ξ be an n–plane bundle with projection map π : E −→ B. Restricting
π to the space E0 of non–zero vectors in E, we obtain an associated projection
map π0 : E0 −→ B.

Theorem 12.2. To any oriented n–plane bundle ξ there is associated an exact
sequence of the form

· · · −→ Hi(B)
⌣e−−→ Hi+n(B)

π∗
0−→ Hi+n(E0) −→ Hi+1(B)

⌣e−−→ · · · ,
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using integer coefficients.

Here the symbol ⌣ e stands for the homomorphism a 7→ a ⌣ e(ξ).

Proof. Starting with the cohomology exact sequence

. . . −→ Hj(E,E0) −→ Hj(E) −→ Hj(E0)
δ−→ Hj+1(E,E0) −→ . . .

of the pair (E,E0), use the isomorphism

⌣ u : Hj−n(E) −→ Hj(E,E0)

of §10, to substitute the isomorphic group Hj−n(E) in place of Hj(E,E0). Thus
we obtain an exact sequence of the form

. . . −→ Hj−n(E)
g−→ Hj(E) −→ Hj(E0) −→ Hj−n+1(E) −→ . . . ,

where
g(x) = (x ⌣ u)

∣∣
E
= x ⌣ (u

∣∣
E
).

Now substitute the isomorphic cohomology ring H∗(B) in place of H∗(E). Since
the cohomology class u

∣∣
E

in Hn(E) corresponds to the Euler class in Hn(B), this
yields the required exact sequence

· · · −→ Hj−n(B)
⌣e−−→ Hj(B) −→ Hj(E0) −→ Hj−n+1(B) −→ . . .

Similarly, for an unoriented bundle, there is a corresponding exact sequence
with mod 2 coefficients, using the Stiefel–Whitney class wn(ξ) in place of the
Euler class. (Compare the proof of 11.3) As an example, consider the twisted
line bundle γ1

n over the projective space Pn. Since the space E0(γ
1
n) can be

identified with Rn+1 − 0, it contains the unit sphere Sn as deformation retract.
Thus we obtain an exact sequence

· · · −→ Hj−1(Pn)
⌣w1−−−→ Hj(Pn) −→ Hj(Sn) −→ Hj(Pn) −→ · · ·
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with mod 2 coefficients, where w1 = w1(γ
1
n).

More generally, consider any 2–fold covering B̃ −→ B. That is assume that
each point of B has an open neighborhood U whose inverse image consists of
two disjoint open copies of U . Then we can construct a line bundle ξ over B

whose total space E is obtained from Ẽ × R by identifying each pair (x, t) with
(x′,−t), where x and x′ are the two distinct points of B̃ lying over one point of
B. Evidently the open subset E0 contains B̃ as deformation retract. Thus we
have proved the following.

Corollary 12.3. To any 2–fold B̃ −→ B there is associated an exact sequence
of the form

. . . −→ Hj−1(B)
⌣w1−−−→ Hj(B) −→ Hj(B̃) −→ Hj(B) −→ . . .

with mod 2 coefficients, where w1 = w1(ξ).

12.2 The Oriented Universal Bundle

Let G̃rn(Rn+k) denote the Grassmann manifold consisting of all oriented n

planes in (n + k)–space. Just as in §5, this can be topologized as a quotient
space of the Stiefel manifold Vn(Rn+k). Clearly G̃rn(Rn+k) is a 2–fold covering
space of the unoriented Grassmann manifold Grn(Rn+k). It is easy to check that
G̃rn(Rn+k) is a compact CW–complex of dimension nk. Passing to the direct
limit as k → ∞, we obtain an infinite CW–complex G̃rn = G̃rn(R∞). (The
notations BSO(n), respectively BO(n), are often used for these spaces G̃rn and
Grn.)

The universal bundle γn over Grn lifts to an oriented n–plane bundle over
G̃rn. We will denote this oriented universal bundle by the symbol γ̃n. It
is clear that for any oriented n–plane bundle ξ, each bundle map ξ −→ γn lifts
uniquely to an orientation preserving bundle map ξ −→ γ̃n.

The mod 2 cohomology of G̃rn can be computed as follows. (Compare §7.)

Theorem 12.4. The cohomology H∗(G̃rn;Z/2) is a polynomial algebra over Z/2,
freely generated by the Stiefel–Whitney classes w2(γ̃

n), . . ., wn(γ̃
n).
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In particular the group H1(G̃rn;Z/2) is zero. It follows that w1(γ̃
n) = 0, and

hence that w1(ξ) = 0 for any oriented vector bundle ξ over a para–compact base
space. (Compare Problem 12-A.)

Proof of 12.4. By 12.3 there is an exact sequence

. . . −→ Hj−1(Grn)
⌣c−−→ Hj(Grn)

p∗

−→ Hj(G̃rn) −→ . . . ,

where c is the first Stiefel–Whitney class of the line bundle associated with the
2–fold covering, and where p : G̃rn −→ Grn is the natural map. This class c

cannot be zero. For otherwise the sequence

0 −→ H0(Grn) −→ H0(G̃rn) −→ H0(Grn)
⌣c−−→ . . .

would imply that G̃rn had two components, contradicting the evident fact that
any oriented n–plane in R∞ can be deformed continuously to any other oriented
n–plane. Thus c = w1(γ

n), using §7.1, and a straightforward argument completes
the proof.

12.3 The Euler Class as an Obstruction

We have now assembled the preliminary constructions which we will need in
order to study the top obstruction class

on(ξ) ∈ Hn(B; {πn−1 V1(F )})

for an oriented n–plane bundle ξ. Using the orientations of the fibers F , it is
clear that each coefficient group

πn−1 V1(F ) ∼= πn−1(F − 0) ∼= Hn−1(F − 0;Z) ∼= Hn(F, F − 0;Z)

is canonically isomorphic to Z. Hence the following statement makes sense.

Theorem 12.5. If ξ is an oriented n–plane bundle over a CW–complex, then
on(ξ) is equal to the Euler class e(ξ).
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Proof. Using the projection map π0 : E0 −→ B, let us form the induced bundle
π∗
0ξ over E0. Clearly this induced bundle has a nowhere zero cross–section, hence

π∗
0on(ξ) = on(π

∗
0ξ) = 0.

Using the Gysin exact sequence

H0(B)
⌣e−−→ Hn(B)

π∗
0−→ Hn(E0)

with integer coefficients, it follows that

on(ξ) = λ ⌣ e(ξ)

for some λ ∈ H0(B). In particular this argument applies to the universal bundle
γ̃n over G̃rn. Using the Gysin sequence

H0(G̃rn)
⌣e−−→ Hn(G̃rn)

π∗
0−→ Hn(E0(γ̃

n)),

it follows that
on(γ̃

n) = λn e(γ̃
n)

for some integer λn. Therefore, by naturality,

on(ξ) = λn e(ξ)

for every oriented n–plane bundle ξ over a CW–complex.

Now reduce both sides of this equation modulo 2, obtaining

wn(γ̃
n) = λn wn(γ̃

n)

by 12.1 and 9.5. Since wn(γ̃
n) ̸= 0 by 12.4, this proves that the integer λn is odd.

If the dimension n is odd, then the Euler class itself has order 2 by Property
9.4, so we have proved that on(ξ) = e(ξ).

If the dimension n is even, we must prove that λn = +1. Let τ be the tangent
bundle of the n–sphere with n even. Then the Kronecker index ⟨e(τ), µ⟩ is equal
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to the Euler characteristic χ(Sn) = +2 by 11.12. The analogous formula

⟨on(ξ), µ⟩ = +2

is true by [Ste51, §39.6] or can be verified directly by inspecting the vector field
on Sn which is portrayed on Figure 10. Thus the coefficient λn must be equal to
+1.

Problem 12-A. Prove that a vector bundle ξ over a CW–complex is orientable
if and only if w1(ξ) = 0.

Problem 12-B. Using the Wu formula 11.14 and the fact that
π2 V2(R3) ∼= π2 SO(3) = 0 [Ste51, p. 116], prove Stiefel’s theorem that every
compact orientable 3–manifold is parallelizable.

Problem 12-C. Use Corollary 12.3 to give another proof that H∗(Pn;Z/2) is as
described in Lemma 4.3.

Problem 12-D. Show that G̃rn(Rn+k) is a smooth, compact, orientable mani-
fold of dimension nk. Show that the correspondence which maps the plane with
oriented basis b1, . . . , bn to b1∧ . . .∧bn/|b1∧ . . .∧bn| embeds G̃rn(Rn+k) smoothly
in the exterior power ΛnRn+k.
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plex Manifolds

It is often useful to consider vector bundles in which each fiber is a vector
space over the complex numbers. Let B be a topological space.

Definition. A complex vector bundle ω of complex dimension n over B

(or briefly a complex n-plane bundle) consists of a topological space E and
projection map π : E −→ B, together with the structure of a complex vector

space in each fibre π−1(b), subject to the following:

Condition 13.1 (local triviality). Each point of B must possess a neighbor-
hood U so that the inverse image π−1(U) is homeomorphic to U × Cn under a
homeomorphism which maps each fiber π−1(b) complex linearly onto b× Cn.

Here Cn stands for the coordinate space of n-tuples of complex numbers, and
b× Cn is made into a complex vector space by ignoring the b coordinate.

Just as in §3, we can form new complex vector bundles out of old ones by
forming Whitney sums or tensor products (over the complex numbers C) or by
forming induced vector bundles.

One method of constructing a complex n-plane bundle is to start with a
real 2n-plane bundle, attempting to give each fiber the additional structure of a
complex vector space.

Definition. A complex structure on a real 2n-plane bundle ξ is a continuous
mapping

J : E(ξ) −→ E(ξ)
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From the total space to itself which maps each fiber R-linearly into itself,and
which satisfies the identity J(J(v)) = −v for every vector v in E(ξ).

Given such a complex structure, we can make each fiber Fb(ξ) into a complex
vector space by setting

(x+ iy)v = xv + J(yv)

for every ocmplex number x + iy. The local triviality condition 13.1 is easily
verified, so that ξ becomes a complex vector bundle.

Conversely of course, given any complex n-plane bundle ω we can simply
forget about the complex structure and think of each fibre as a real vector space of
dimension 2n. Thus we obtain the underlying real 2n-plane bundle ωR.Note
that this real bundle ωR and the original complex bundle ω both have the same
total space, base space and the same projection map.

Perhaps the most important example of a complex vector bundle is provided
by the tangent bundle of a “complex manifold”. We will look at a special case
first.

Example 13.2. Let U be the open subset of coordinate space Cn. Then the
tangent bundle τU , with total space TU = U × Cn, has a cannonical complex
structure J0 defined by

J0(u, v) = (u, iv)

for every u ∈ U and v ∈ Cn.
Now consider a smooth mapping f : U −→ U ′, where U ′ ⊂ Cp is also an open

subset of complex coordinate space. We can ask whether the R-linear mapping
dfu : TuU −→ Tf(u)U

′ is actually complex linear for all u, so that

df ◦ J0 = J0 ◦ df

If the derivative is complex linear, one says that f satisfies the Cauchy-Riemann
equations, or that f is holomorphic or complex analytic. A standard the-
orem asserts that f can then be expressed locally as the sum of a convergent
complex power series.(Compare [Hor73] and [GR09].)

Let M be a smooth manifold of dimension 2n. A complex structure on the
tangent bundle of M is sometimes called an “almost complex structure” on M .
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Definition 13.3. A complex structure on the manifold M is a complex
structure J on the tangent bundle τM which satisfies the following extremely
stringent condition: Every point of M must possess an open neighborhood
which is diffeomorphic to an open subset of Cn under a diffeomorphism
h whose derivative is everywhere complex linear: dh ◦ J = J0 ◦ dh.

The pair (M,J) is then called a complex manifold of complex dimension
n. In practice, by abuse of notation, we will usually use the single symbol M for
a complex manifold.

Definition. A smooth mapping f : M −→ N between complex manifolds is
holomorphic if df is complex linear, df ◦ J = J ◦ df .

Remark 8. A fundamental theorem of [NN57] asserts that a smooth almost
complex structure J is actually a complex structure if and only if it satisfies a
certain system of quadratic first order partial differential equations. In terms of
the bracket product of vector fields, these equations can be written as

[Jv,Jw] = J[v,Jw] + J[Jv, w] + [v, w]

where v and w are arbitrary smooth vector fields on M .

The most classical (and often the most convenient) procedure for assigning a
complex structure to a smooth manifold is the following. One gives a collection
of diffeomorphisms hα : Uα −→ Vα where the Uα are open subsets of Cn and the
Vα are open sets covering the manifold. It is only necessary to verify that each
composition

h−1
β ◦ hα : h−1

α (Vα ∩ Vβ) −→ h−1
β (Vα ∩Bβ)

is holomorphic.
In conclusion here are some exercises for the reader.

Problem 13-A. Show that a complex structure J : E(ξ) −→ E(ξ) on a real
vector bundle automatically satisfies the complex local triviality condition 13.1.

Problem 13-B. If M is a complex manifold, show that TM is a complex man-
ifold. Similarly, if f : M −→ N is holomorphic, show that df : TM −→ TN is
holomorphic.
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Problem 13-C. If M is a compact complex manifold, show that every holomor-
phic map f : M −→ C is constant.

Problem 13-D. Show that the projective space Pn(C) , consisting of all complex
lines through the origin in Cn+1, can be given the structure of a complex manifold.
(Note that P1(C) can be identified with the complex line C thogether with a single
point at infinity.) More generally show the space Grk(Cn) of complex k planes
through the origin in Cn is a complex manifold of complex dimension k(n− k).

Problem 13-E. Let γ1
n denote the canonical complex line bundle over Pn(Cn).

Thus the total space E(γ1
n) consists of all pairs (L, v) where L is a complex

line throuigh the origin in C and v ∈ L. Show that γ1
n does not possess any

holomorphic cross-section, other than the zero cross-section. Show, however,
that the dual bundle HomC(γ

1
n,C) posses atleast n+1 holomorphic cross-sections

which are linearly independent over C.

Problem 13-F. If M is a complex n-manifold, then the real bundle HomR(τM ,R)
of tangent covetors does not possess any natural complex structure. Show how-
ever, that its “complexification”

HomR(τM ,R)⊗R C ∼= HomR(τM ,C)

is a complex 2n-plane bundle which splits canonically as a Whitney sum

HomC(τM ,C)⊕HomC(τM ,C)

Here HomC(TxM,C) denote the complex vectort space of conjugate linear map-
pings, h(λv) = λh(v). If U ⊂ Cn is an open set with coordinate functions
z1, . . . , zn : U −→ C, show that the local differentials dz1(u), . . .dzn(u) form a ba-

sis for HomC(TuU,C), and that dz1(u), . . . ,dzn(u) form a basis for HomC(TuU,C).
If f is a smooth (but not necessarily holomorphic) complex valued funci-

ton on U , it follows that df can be written uniquely as a linear combination
of dz1(u), . . .dzn(u),dz1(u), . . . ,dzn(u), with coefficients which are also smooth
complex valued functions on U . These coefficients are customarily denoted by

∂f

∂z1
, . . . ,

∂f

∂zn
,
∂f

∂z1
, . . . ,

∂f

∂zn
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respectively. Thus the total differential df can be expressed uniquely as a sum
∂f + ∂f where

∂f =
∑ ∂f

∂zj
dzj and ∂f =

∑ ∂f

∂zj
dzj .

The former is a section of HomC(τM ,C) and the latter is a section of HomC(τM ,C).
Setting zj = xj + iyj , show that

∂f

∂zj
=

1

2

(
∂f

∂xj
+

∂f

∂yj

)
.

Show the Cauchy-Riemann equations for f can be written as
∂f

∂zj
= 0, or briefly

∂f = 0.

Problem 13-G. Show that the complex vector space spanned by the differential
operators ∂/∂z1, . . . , ∂/∂zn at z is canonically isomorphic to the tangent space
TzU .
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14. Chern Classes

We will first prove the following statement.

Lemma 14.1. If ω is a complex vector bundle, then the underlying real vector
bundle ωR has a canonical preferred orientation.

Applying this lemma to the special case of a tangent bundle, it follows that
any complex manifold has a canonical preferred orientation. For we have
seen on Lemma 11.6 that every orientation for the tangent bundle of a manifold
gives rise to a unique orientation of the manifold.

Proof of 14.1. Let V be any finite dimensional complex vector space. Choosing
a basis a1, . . . , an for V over C, note that the vectors a1, ia1, a2, ia2, . . . , an, ian

form a real basis for the underlying real vector space VR. This ordered basis
determines the required orientation for VR. To show that this orientation does
not depend on the choice of complex basis, we need only note that the linear
group GLn(C) is connected. Hence we can pass from any given complex basis
to any other complex basis by a continuous deformation, which cannot alter the
induced orientation.

Now if ω is a complex vector bundle, then applying this construction to every
fiber of ω, we obtain the required orientation for ωR.

As an application of 14.1, for any complex n–plane bundle ω over the base
space B, note that the Euler class

e(ωR) ∈ H2n(B;Z)
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is well–defined. If ω′ is a complex m–plane bundle over the same base space B,
note that

e((ω ⊕ ω′)R) = e(ωR) e(ω
′
R).

For if a1, . . . , an is a basis for a fiber F for ω, and b1, . . . , bm is a basis for the
corresponding fiber F ′ of ω′, then the preferred orientation a1, ia1, . . . , an, ian

for FR followed by the preferred orientation b1, ib1, . . . , bm, ibm for F ′
R yields the

preferred orientation a1, ia1, . . . , ian, b1, ib1, . . . , ibm for (F ⊕F ′)R. Thus ωR⊕ω′
R

is isomorphic as an oriented bundle to (ω⊕ω′)R, and the conclusion follows.

14.1 Hermitian Metrics

Just as Euclidean metrics play an important role in the study of real vector
bundles, the analogous Hermitian metrics plays an important role for complex
vector bundles. By definition, a Hermitian metric on a complex vector bundle
ω is a Euclidean metric

v 7→ |v|2 ≥ 0

on the underlying real vector bundle (see §2.1), which satisfies the identity

|iv| = |v|.

Given such a Hermitian metric it is not difficult to show that there is one and
only one complex valued inner product

⟨v, w⟩ = 1

2

(
|v + w|2 − |v|2 − |w|2

)
+

1

2
i
(
|v + iw|2 − |v|2 − |iw|2

)
,

defined for v and w in the same fiber of ω, which

(1) is complex linear as a function of v for fixed w,

(2) is conjugate linear as a function of w for fixed v (that is ⟨v, λw⟩ = λ⟨v, w⟩),
and

(3) satisfies ⟨v, v⟩ = |v|2.
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The two vectors v and w are said to be orthogonal if this complex inner
product ⟨v, w⟩ is zero. The Hermitian identity

⟨w, v⟩ = ⟨v, w⟩

is easily verified, hence v is orthogonal to w if and only if w is orthogonal to v.
If this space B is paracompact, then every complex vector bundle over B

admits a Hermitian metric. (Compare Problem 2-C.)

14.2 Construction of Chern Classes

We will now give an inductive definition of characteristic classes for a complex
n-plane bundle ω. It is first necessary to construct a canonical (n−1)-plane bundle
ω0 over the deleted total space E0. (As in the real case, E0 = E0(ω) denotes the
set of all non-zero vectors in the total space E(ω) = E (ωR).) A point in E0 is
specified by a fiber F of ω together with a non-zero vector v in that fiber. First
suppose that a Hermitian metric has been specified on ω.Then the fiber of ω0

over v is by definition, the orthogonal complement of v in the vector
space F . This is a complex vector space of dimension n − 1, and these vector
spaces clearly can be considered as the fibers of a new vector bundle ω0 over E0.

Alternatively, without using a Hermitian metric, the fiber of ω0 over v can
be defined as the quotient vector space F/Cv where Cv is the 1-dimensional
subspace spanned by the vector v ̸= 0. In the presence of a Hermitian metric,
it is of course clear that this quotient space is canonically isomorphic to the
orthogonal complement of v in F .

Recall (Theorem 12.2) that any real oriented 2n-plane bundle possesses an
exact Gysin sequence

. . . −→ Hi−2n(B)
⌣e−−→ Hi(B)

π∗
0−→ Hi(E0) −→ Hi−2n+1(B) −→ . . .

with integer coefficients. For i < 2n − 1 the groups Hi−2n(B) and Hi−2n+1(B)

are zero, so it follows that π∗
0 : Hi(B) −→ Hi(E0) is an isomorphism.

Definition. The Chern classes ci(ω) ∈ H2i(B; Z) are defined as follows, by
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induction on the complex dimension n of ω. The top Chern class cn(ω) is
equal to the Euler class e(ωR). For i < n we set

ci(ω) = π∗
0
−1 ci(ω0).

This expression makes sense since π∗
0 : H2i(B) −→ H2i(E0) is an isomorphism for

i < n. Finally, for i > n the class ci(ω) is defined to be zero.

The formal sum c(ω) = 1+ c1(ω) + · · ·+cn(ω) in the ring HΠ(B; Z) is called
the total Chern class of ω. Clearly c(ω) is a unit, so that the inverse

c(ω)−1 = 1− c1(ω) + (c1(ω)
2 − c2(ω)) + . . .

is well-defined.

Lemma 14.2 (Naturality). If f : B −→ B′ is covered by a bundle map from
the complex n-plane bundle ω over B to the complex n-plane bundle ω′ over B′,
then c(ω) = f∗ c(ω′).

Proof by induction on n. The top Chern class is natural, cn(ω) = f∗ cn(ω
′), since

Euler classes are natural (Property 9.2). To prove the corresponding statement
for lower Chern classes, first note that the bundle map ω −→ ω′ gives rise to a
map

f0 : E0(ω) −→ E0(ω
′)

which clearly is covered by a bundle map ω0 −→ ω′
0 of (n − 1)-plane bundles.

Hence ci(ω0) = f∗
0 ci(ω

′
0) by the induction hypothesis. Using the commutative

diagram

E0(ω) E0(ω
′)

B B′

π0

f0

f

π′
0

and the identities ci(ω0) = π∗
0 ci(ω) and ci(ω

′
0) = π′

0
∗
ci(ω

′) where π′
0 is an iso-

morphism for i < n, it follows that ci(ω) = f∗ ci(ω
′), as required.
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Lemma 14.3. If εk is the trivial complex k-bundle over B = B(ω), then
c(ω ⊕ εk) = c(ω).

Proof. It is sufficient to consider the special case k = 1, since the general case
then follows by induction. Let ϕ = ω ⊕ ε1. Since the (n + 1)-plane bundle ϕ

has a non-zero cross-section, it follows by property 9.7 that the top Chern class
cn+1(ϕ) = e(ϕR) is zero, and hence equal to cn+1(ω). Let s : B −→ E0(ω⊕ε1) be
the obvious cross-section. Clearly s is covered by a bundle map ω −→ ϕ0, hence

s∗ ci(ϕ0) = ci(ω)

by 14.2. Substituting π∗
0 ci(ϕ) for ci(ϕ0), and using the formula s∗ ◦ π∗

0 = id, it
follows that ci(ϕ) = ci(ω), as required.

14.3 Complex Grassmann Manifolds

Still continuing our complex analogue of real vector bundle theory, we define
the complex Grassmann manifold Grn(Cn+k) to be the set of all complex
n-planes through the origin in the complex vector space Cn+k. Just as in the
real case, this set has a natural structure as smooth manifold. In fact Grn(Cn+k)

has a natural structure as complex analytic manifold of complex dimension nk.
Furthermore there is a canonical complex n-plane bundle which we denote by
γn = γn(Cn+k) over Grn(Cn+k). By definition, the total space of γn consists of
all pairs (X, v) where X is a complex n-plane through the origin in Cn+k and v

is a vector in X.

As an example, let us study the special case n = 1. The Grassmann man-
ifold Gr1(Ck+1) is also known as the complex projective space Pk(C). We will
investigate the cohomology ring H∗(Pk(C); Z). (Compare Problem 12-C)

Applying the Gysin sequence to the canonical line bundle γ1 = γ1(Ck+1) over
Pk(C), and using the fact that c1(γ

1) = e(γ1
R), we have

. . . −→ Hi+1(E0) −→ Hi(Pk(C)) ⌣c1−−−→ Hi+2(Pk(C))
π∗
0−→ Hi+2(E0) −→ . . .
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using integer coefficients. The space E0 = E0(γ
1(Ck+1)) is the set of all pairs

(line through the origin in Ck+1, non-zero vector in that line)

This can be identified with Ck+1 \ {0}, and hence has the same homotopy type
as the unit sphere S2k+1. Thus our Gysin sequence reduces to

0 −→ Hi(Pk(C)) ⌣c1−−−→ Hi+2(Pk(C)) −→ 0

for 0 ≤ i ≤ 2k − 2. Hence

H0(Pk(C)) ∼= H2(Pk(C)) ∼= . . . ∼= H2k(Pk(C)).

Since Pk(C) is clearly connected, it follows that each H2i(Pk(C)) is infinite cyclic
generated c1(γ

1)i for i ≤ k. Similarly

H1(Pk(C)) ∼= H3(Pk(C)) ∼= . . . ∼= H2k−1(Pk(C))

and using the portion

· · · −→ H−1(Pk(C)) −→ H1(Pk(C)) −→ H1(E0) −→ . . .

of the Gysin sequence, we see that these odd-dimensional groups are all zero.
That is:

Theorem 14.4. The cohomology ring H∗(Pk(C); Z) is a truncated polynomial
ring terminating in dimension 2k, and generated by the Chern class c1(γ1(Ck+1)).

Now let us let k tend to infinity. The canonical n-plane bundle γn(C∞) over
Grn(C∞) will be denoted briefly by γn. Using 14.4, it follows that H∗(Gr1(C∞))

is the polynomial ring generated by c1(γ
1). More generally we will show the

following.

Theorem 14.5. The cohomology ring H∗(Grn(C∞); Z) is the polynomial ring
over Z generated by the Chern classes c1(γ

n), . . . , cn(γ
n). There are no polyno-

mial relations between these n generators.
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Proof by induction on n. We may assume that n ≥ 2, since the Theorem has
already been established for n = 1. Consider the Gysin sequence

· · · −→ Hi(Grn)
⌣cn−−−→ Hi+2n(Grn)

π∗
0−→ Hi+2n(E0) −→ Hi+1(Grn) −→ . . .

associated with the bundle γn, using integer coefficients.

We will first show that the cohomology ring H∗(E0) can be identified with
H∗(Grn−1). In fact a canonical map f : E0 −→ Grn−1 is constructed as follows.
By definition, a point (X, v) in E0 consists of an n-plane X in C∞ together with
a non-zero vector v in X. Let f(X, v) = X ∩ v⊥ be the orthogonal complement
of v in X, using the standard Hermitian metric

⟨(v1, v2, . . . ), (w1, w2, . . . )⟩ =
∑

vjwj

on C∞. Then f(X, v) is a well defined (n− 1)-plane in C∞.

In order to show that f induces cohomology isomorphisms, it is convenient
to pass to the sub-bundle γn(CN ) ⊂ γn, consisting of complex n-planes in N -
space where N is large but finite. Let fN : E0(γ

n(CN )) −→ Grn−1(CN ) be the

corresponding restriction of f . For any (n−1)-plane Y in Grn−1(CN ) it is evident
that the inverse image

f−1
N (Y ) ⊂ E0(γ

n(CN ))

consists of all pairs (X, v) where v ∈ CN is a non-zero vector perpendicular to Y ,
and where X = Y +Cv is determined by v and Y . Thus fN can be identified
with the projection map

E0(ω
N−n+1) −→ Grn−1(CN )

where ωN−n+1 is the complex vector bundle whose fiber, over Y ∈
Grn−1(CN ), is the orthogonal complement of Y in CN .

Using the Gysin sequence of this new vector bundle, it follows that fN induces
cohomology isomorphisms in dimensions ≤ 2(N−n). Therefore, taking the direct
limit as N tends to infinity, f induces cohomology isomorphisms in all dimensions.

Thus we can insert Grn−1 in place of E0 in the Gysin sequence, obtaining a
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new exact sequence of the form

· · · −→ Hi(Grn) −→ Hi+2n(Grn)
λ−→ Hi+2n(Grn−1) −→ Hi+1(Grn) −→ . . .

with λ = f∗−1π∗
0 .

We must show that this homomorphism λ = f∗−1π∗
0 maps the Chern class

ci(γ
n) to ci(γ

n−1). This statement is clear for i = n, so we may assume that
i < n. By the definition of Chern classes, the image π∗

0 ci(γ
n) is equal to ci(γ

n
0 ).

But f : E0 −→ Grn−1 is clearly covered by a bundle map γn
0 7→ γn−1. Therefore

f∗ ci(γ
n−1) = ci(γ

n
0 ) by 14.2, and it follows that

λ ci(γ
n) = f∗−1π∗

0 ci(γ
n)

is equal to ci(γ
n−1) as asserted.

Now let us apply the induction hypothesis. Since H∗(Grn−1) is generated by
the Chern classes c1(γn−1), . . . , cn−1(γ

n−1), it follows that the homomorphism λ

is surjective, so our sequence reduces to

0 −→ Hi(Grn)
⌣cn−−−→ Hi+2n(Grn)

λ−→ Hi+2n(Grn−1) −→ 0.

Using this sequence, we will prove, by a subsidiary induction on i, that every el-
ement x of Hi+2n(Grn) can be expressed uniquely as a polynomial in the Chern
classes c1(γ

n), . . . , cn(γ
n). Certainly the image λ(x) can be expressed uniquely

as a polynomial p(c1(γn−1), . . . , cn−1(γ
n−1)) by our main induction hypothesis.

Therefore the element x−p(c1(γ
n), . . . , cn−1(γ

n)) belongs to the kernel of λ, and
hence can be expressed as a product y cn(γ

n) for some uniquely determined
y ∈ Hi(Grn). Now y can be expressed uniquely as a polynomial q(c1(γn), . . . , cn(γ

n))

by our subsidiary induction hypothesis, hence

x = p(c1(γ
n), . . . , cn−1(γ

n)) + cn(γ
n)q(c1(γ

n), . . . , cn(γ
n)).

The polynomials on the right are unique, since if x were also equal to

p′(c1(γ
n), . . . , cn−1(γ

n)) + cn(γ
n)q′(c1(γ

n), . . . , cn(γ
n))
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then applying λ we would see that p = p′, and dividing the difference by cn(γ
n)

we would see that q = q′.

Just as for real n-plane bundles (Theorem 5.6), we can prove:

Theorem 14.6. Every complex n-plane bundle over a paracompact base space
possesses a bundle map into the canonical complex n-plane bundle γn = γn(C∞)

over Grn = Grn(C∞).

In other words every complex n-plane bundle over the paracompact base B is
isomorphic to the induced bundle f∗(γn) for some f : B −→ Grn. In fact, just as
in the real case, one can actually prove the sharper statement that two induced
bundles f∗(γn) and g∗(γn) are isomorphic if and only if f is homotopic
to g. For this reason the bundle γn = γn(C∞) is called the universal complex
n-plane bundle, and its base space Grn(C∞) is called the classifying space
for complex n-plane bundles. [The notation BU(n) is often used in the literature
for this classifying space.]

14.4 The Product Theorem for Chern Classes

Consider two complex vector bundles ω and ϕ over a common paracompact
base space B. We want to prove the formula

c(ω ⊕ ϕ) = c(ω) c(ϕ) (14.7)

which expresses the total Chern class of a Whitney sum ω ⊕ ϕ in terms of the
total Chern classes of ω and ϕ. As a first step in this direction, we prove the
following.

Lemma 14.8. There exists one and only one polynomial

pm,n = pm,n(c1, . . . , cm; c′1, . . . , c
′
n)

with integer coefficients in m+ n indeterminates so that the identity

c(ω ⊕ ϕ) = pm,n(c1(ω), . . . , cm(ω); c1(ϕ), . . . , cn(ϕ))
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is valid for every complex m-plane bundle ω and every complex n-plane bundle
ϕ over a common paracompact base space B.

Proof. As a universal model for pairs of complex vector bundles over a common
base space we take the two vector bundles γm

1 and γn
2 over Grm×Grn constructed

as follows. Let γm
1 = π∗

1(γ
m) where π1 : Grm×Grn −→ Grm is the projection

map to the first factor. Similarly let yn2 = π∗
2(γ

n) where π2 is the projection map
to the second factor. Thus the Whitney sum γm

1 ⊕ γn
2 can be identified with the

cartesian product bundle γm × γn.

We will make use of the fact that the external cohomology cross product
operation

a, b 7→ a× b = π∗
1a ⌣ π∗

2b

induces an isomorphism

H∗(Grm)⊗H∗(Grn) −→ H∗(Grm×Grn)

of integral cohomology. In fact, for the case of finite CW-complexes K and L with
H∗(L) free abelian, the Künneth isomorphism H∗(K) ⊗ H∗(L)

∼=−→ H∗(K × L)

is established in Appendix A. The corresponding assertion for our infinite CW-
complexes’ Grm and Grn follows immediately, since each skeleton of Grm or Grn

is finite.

Therefore H∗(Grm×Grn) is a polynomial ring over Z on the algebraically
independent generators

π∗
1 ci(γ

m) = ci(γ
m
1 ), 1 ≤ i ≤ m

and
π∗
2 cj(γ

n) = cj(γ
n
2 ), 1 ≤ j ≤ n.

Hence the total Chern class of γm
1 ⊕γn

2 can be expressed uniquely as a polynomial

c(γm
1 ⊕ γn

2 ) = pm,n(c1(γ
m
1 ), . . . , cm(γm

1 ); c1(γ
n
2 ), . . . , cn(γ

n
2 )).

Now if ω is a complex m-plane bundle over B and ϕ is a complex n-plane
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bundle over B, we can choose maps f : B −→ Grm and g : B −→ Grn so that

f∗(γm) ∼= ω, g∗(γn) ∼= ϕ.

Defining the map h : B −→ Grm×Grn by h(b) = (f(b), g(b)), note that the
following diagram is commutative.

B

Grm Grm×Grn Grn

f gh

π1

π2

It follows that
h∗(γm

1 ) ∼= ω, h∗(γn
2 )
∼= ϕ

and hence

c(ω ⊕ ϕ) = h∗ c(γm
1 ⊕ γn

2 )

= pm,n(c1(ω), . . . , cm(ω); c1(ϕ), . . . , cn(ϕ))

as required.

To actually compute these polynomials pm,n we proceed by induction on m+n

as follows. Suppose inductively that c(γm−1
1 ⊕ γn

2 ) is equal to

(1 + c1(γ
m−1
1 ) + . . .+ cm−1(γ

m−1
1 ))(1 + c1(γ

n
2 ) + . . .+ cn(γ

n
2 )).

Consider the two vector bundles γm−1
1 ⊕ ε1 and γn

2 over Grm−1×Grn, where ε1

is a trivial line bundle. By 14.8 we have

c(γm−1
1 ⊕ ε1 ⊕ γn

2 ) = pm,n(c1(γ
m−1
1 ⊕ ε1), . . . , cm(γm−1

1 ⊕ ε1); c1(γ
n
2 ), . . . , cn(γ

n
2 ))

But according to 14.3 the ε1 summand can always be ignored, so we have the
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alternative formula

c(γm−1
1 ⊕ γn

2 ) = c(γm−1
1 ⊕ ε1 ⊕ γn

2 )

= pm,n(c1(γ
m−1
1 ), . . . , cm−1(γ

m−1
1 ), 0; c1(γ

n
2 ), . . . , cn(γ

n
2 )).

Comparing the induction hypothesis, and substituting indeterminates ci and c′j
for the algebraically independent elements ci(γ

m−1
1 ) and cj(γ

n
2 ), this yields

pm,n(c1, . . . , cm−1, 0; c
′
1, . . . , c

′
n) = (1 + c1 + . . .+ cm−1)(1 + c′1 + . . .+ c′n)

Introducing a new indeterminate cm, it follows that the congruence

pm,n(c1, . . . , cm; c′1, . . . , c
′
n) ≡ (1 + c1 + . . .+ cm)(1 + c′1 + . . .+ c′n) (mod cm)

is valid in the polynomial ring Z[c1, . . . , cm, c′1, . . . , c
′
n]. A similar inductive argu-

ment shows that these two polynomials are congruent modulo c′n. Since
Z[c1, . . . , cm, c′1, . . . , c

′
n] is a unique factorization domain, it follows that they are

congruent modulo the product cm c′n; that is

pm,n(c1, . . . , cm; c′1, . . . , c
′
n) = (1 + c1 + . . .+ cm)(1 + c′1 + . . .+ c′n) + u cm c′n

for some polynomial u. Here u must be zero dimensional, hence an integer,
since otherwise the whitney sum γm

1 ⊕ γn
2 would have non-zero Chern classes in

dimensions greater than 2(m+ n).
But the top Chern class cm+n(ω ⊕ ϕ) can be identified with the Euler class

e((ω ⊕ ϕ)R) = e(ωR ⊕ ϕR),

and hence is equal to the product cm(ω) cn(ϕ). (Compare 9.6 and the discussion
following 14.1.) Therefore the coefficient u must be zero, and we have proved the
product formula 14.7.
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14.5 Dual or Conjugate Bundles

If ω is a complex vector bundle, the conjugate bundle ω is defined to be
the complex vector bundle with the same underlying real vector bundle

ωR = ωR,

but with the “opposite” complex structure. Thus, the identity map
f : E(ω) −→ E(ω) is conjugate linear,

f(λe) = λf(e)

for every complex number λ and every e ∈ E(ω). Here λ is the complex conjugate
of λ. In particular, it follows that f(ie) = −if(e).

As an example, consider the tangent bundle τ1 of the complex manifold
P1(C).(Ignoring the complex structure, this is jut the tangent bundle of the 2-
sphere). This bundle τ1 is not isomorphic to its conjugate tangent bundle τ1.
For any isomorphism τ1 −→ τ1 would have to map each tangent plane of the 2-
sphere onto itself so as to reverse the complex structure (rotation by i). Clearly
any such map is obtained by reflection in some uniquely defined line in the plane.
But we have seen in 9.3 that the 2-sphere does not admit any continuous field of
tangent lines.

The chern class of a conjugate bundle can be computed as follows.

Lemma 14.9. The Chern class ck(ω) is equal to (−1)k ck(ω). Hence

c(ω) = 1− c1(ω) + c2(ω)− · · · ± cn(ω)

Proof. For any fiber F of ω, choose a basis v1, . . . , vn for F over C. Then the
basis v1, iv1, . . . , vn, ivn for the underlying real vector space FR determines the
preferred orientation for FR. Similarly the basis v1,−iv1, . . . , vn,−ivn determines
the preferred orientation for the conjugate vector space. Thus the two oriented
real vector bundles ωR and (ωR have the same orientation if n is even, but the
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opposite orientation if n is odd. It follows immediately that the top Chern class

cn(ω) = e(ωR)

is equal to (−1)n cn(ω). To compute ck(ω) for k < n, we recall the definition
ck(ω) = π∗−1

0 ck(ω0) where ω0 is a canonical (n− 1)-plane bundle over the space
E0 ⊂ E(ω). It is easy to check that the conjugate bundle (ω0) is canonically
isomorphic to (ω)0, so a straightforward induction shows that

ck(ω) = (−1)k ck(ω)

for all k

Closely related to the conjugate bundle ω is the dual bundle HomC(ω,C).
By definition this is the complex vector bundle over the same base space whose
typical fiber is equal to the dual HomC(F,C) of the corresponding fiber F of
ω. (compare the analogous discussion for the real vector bundles on p. 39) To
simplify the notation, we will usually omit the subscript C.

If the complex vector bundle ω possesses a Hermitian metric, not
that its dual bundle Hom(ω,C) is canonically isomorphic to the conju-
gate bundle ω. For if we are given a Hermitian inner product

⟨v1, v2⟩ ∈ C

on the typical fiber F , linear in the first variable and conjugate linear in the
second, then the correspondence

v2 7→ ⟨−, v2⟩

maps the conjugate vector space F isomorphically to the dual vector space
Hom(F,C).
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14.6 The Tangent Bundle of Complex Projective Space

As an application, consider the tangent bundle τn of the projective space
Pn(C)

Theorem 14.10. The total Chern class c(τn) is equal to (1 + a)n+1 where a is
a suitably chosen generator for the group H2(Pn(C);Z).

In fact we will see that a is the negative of the generator c1(γ
1) which was

used in 14.4.

Proof. Let γ1 = γ1(Cn+1) be the canonical line bundle over Pn(C), and let ωn

be its orthogonal complement, using the standard Hermitian metric on Cn+1, so
that the Whitney sum γ1 ⊕ ωn is a trivial complex (n + 1)-plane bundle over
Pn(C). We will show that the complex vector bundle

HomC(γ
1, ωn)

can be identified with the tangent bundle τn of Pn(C). In fact if L is a complex
line through the origin in Cn+1, and L⊥ is its orthogonal complement, then
the vector space Hom(L,L⊥) can be identified, complex analytically, with the
neighborhood of L in Pn(C) consisting of all lines L′ which can be considered
as graphs of linear maps from L to L⊥. (Compare pp. 64,78 as well as Lemma
4.4.) It follows easily that the tangent space of Pn(C) at L can be identified with
Hom(L,L⊥), and hence that τn ∼= Hom(γ1, ωn).

Now adding the trivial bundle ε1 ∼= Hom(γ1, γ1) to both sides of the equation
τn ∼= Hom(γ1, ωn) it follows that

τn ⊕ ε1 ∼= Hom(γ1, ωn ⊕ γ1)

∼= Hom(γ1, ε1 ⊕ . . .⊕ ε1).

Clearly this can be identified with the Whitney sum of n + 1 copies of the dual
bundle Hom(γ1, ε1) ∼= γ1. Thus the total Chern class c(γn) = c(τn⊕ ε1) is equal
to

c(γ1)n+1 = (1− c1(γ
1))n+1,
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using Lemma 14.9. Setting a = − c1(γ
1), the conclusion follows.

Remark. It follows that the top Chern class cn(τn) is equal to (n+1)an. There-
fore the Euler number

e[Pn(C)] = cn[Pn(C)]

= ⟨cn(τn), µ2n⟩

is equal to n + 1 multiplied by the sign ⟨an, µ2n⟩ = ±1. Here µ2n denotes the
fundamental homology class of Pn(C). Setting this Euler number equal to∑

(−1)i rankHi(Pn(C)) = n+ 1

by corollary 11.12, it follows that the sign ⟨an, µ2n⟩ is actually +1. Thus an is
precisely the generator of H2n(Pn(C);Z) which is compatible with the
preferred orientation.

Here are some exercises for the reader.

Problem 14-A. Use Lemma 14.9 to give another proof that the tangent bundle
of P1(C) is not isomorphic to its conjugate bundle.

Problem 14-B. Using Property 9.5, prove inductively that the coefficient homo-
morphism Hi(B;Z) −→ Hi(B;Z/2) maps the total Chern class c(ω) to the total
Stiefel-Whitney class w(ωR). In particular show that the odd Stiefel-Whitney
classes of ωR are zero.

Problem 14-C. Let Vn−q(Cn) denote the complex Stiefel manifold consisting
of all complex (n−q)-frames in Cn, where 0 ≤ q < n. According to [Ste51, §25.7]
this manifold is 2q-connected, and

π2q+1 Vn−q(Cn) ∼= Z

Given a complex n-plane bundle ω over a CW-complex B with typical fiber F ,
construct an associated bundle Vn−q(ω) over B with typical fiber Vn−q(F ). Show
that the primary obstruction to the existence of a cross-section of Vn−q(ω) is a
cohomology class in

H2q+2(B; {π2q+1 Vn−q(F )})
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which can be identified with the Chern class cq+1(ω).

Problem 14-D. In analogy with §6, construct a cell subdivision for the complex
Grassmann manifold Grn(C∞) with one cell of dimension 2k corresponding to
each partition of k into at most n integers. Show that the Chern class ck(γ

n)

corresponds to the cocycle which assigns ±1 to the Schubert cell indexed by the
partition 1, 1, . . . , 1 of k, and zero to all other cells. (Compare Problem 6-C.)

Problem 14-E. In analogy with the construction of Chern classes, show that it is
possible to define the Stiefel-Whitney classes of a real n-plane bundle inductively
by the formula wi(ξ) = π∗−1

0 wi(ξ0) for i < n. Here the top Stiefel-Whitney class
wn(ξ) must be constructed by the procedure of §9 (Property 9.5), as a mod 2

analogue of the Euler class. [In this approach there is some difficulty in showing
that wn−1(ξ0) belongs to the image of π∗

0 . It suffices to show that wn−1(ξ0)

restricts to zero in each fiber F0, or equivalently that the tangent bundle τ of
the (n − 1)− sphere satisfies wn−1(τ) = 0. Compare pp. 50. It is at this
point that mod 2 coefficients are essential, since e(τ) ̸= 0 in general.] Using this
construction of Stiefel-Whitney classes, verify the axioms of §4 without making
any use of Steenrod squares.
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15. Pontrjagin Classes

To obtain further information about real vector bundles we will need the
following construction. Let V be a real vector space. Then the tensor product
V ⊗ C = V ⊗R C of V with the complex numbers is a complex vector space
called the complexification of V . Applying this construction to each fiber F of
the real n-plane bundle ξ we obtain a complex n-plane bundle with typical fiber
F ⊗ C over the same base space. We denote this new bundle by ξ ⊗ C and call
it the complexification of the real vector bundle ξ.

Note that every element in the complex vector space F ⊗ C can be written
uniquely as a sum x+ iy with x, y ∈ F . Using this real direct sum decomposition

F ⊗ C = F ⊕ iF

it follows that the underlying real vector bundle (ξ ⊗ C)R is canonically
isomorphic to the Whitney sum ξ⊕ξ. Evidently the given complex structure
on ξ ⊗ C corresponds to the complex structure

J(x, y) = (−y, x)

on this Whitney sum ξ ⊕ ξ.

Lemma 15.1. The complexification ξ ⊗ C of a real vector bundle is always
isomorphic to its own conjugate bundle ξ ⊗ C.

For the correspondence f : x + iy 7→ x − iy, maps the total space E(ξ ⊗ C)
homeomorphically onto itself, and is R-linear in each fiber with
f(i(x+ iy)) = −if(x+ iy). ■
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Now consider the total Chern class

c(ξ ⊗ C) = 1 + c1(ξ ⊗ C) + c2(ξ ⊗ C) + · · ·+ cn(ξ ⊗ C)

of this compleixfied n-plane bundle. Setting this equal to

c(ξ ⊗ C) = 1− c1(ξ ⊗ C) + c2(ξ ⊗ C)− · · · ± cn(ξ ⊗ C)

by 14.9, we see that the odd Chern classes

c1(ξ ⊗ C), c3(ξ ⊗ C), · · ·

are all elements of order 2. (Compare Problem 15-D.)

Definition. Ignoring these elements of order 2, the i-th Pontrjagin class

pi(ξ) ∈ H4i(B;Z)

is defined to be the integral cohomology class (−1)i c2i(ξ⊗C). The sign (−1)i is
introduced here so as to avoid a sign in later formulas (Corollary 15.8, Example
15.6). Evidently pi(ξ) is zero for i > n/2. The total Pontrjagin class is defined
to be the unit

p(xi) = 1 + p1(ξ) + · · ·+ p⌊n/2⌋(ξ)

in the ring HΠ(B;Z). Here ⌊n/2⌋ denotes the largest integer less than or equal
to n/2.

Lemma 15.2. Pontrjagin classes are natural with respect to bundle maps. Fur-
thermore, if εk is a trivial k-plane bundle, then p(ξ ⊕ εk) = p(ε).

Proof. This follows immediately from 14.2 and 14.3.

In analogy with the other characteristic classes we have studied, we would
like the Pontrjagin classes to satisfy a product formula. There is some difficulty
however, since the odd Chern classes of ξ⊗C have been thrown away, so the best
we can do is the following.
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Theorem 15.3. The total Pontrjagin class p(ξ ⊕ η) of a Whitney sum is con-
gruent to p(ξ) p(η) modulo elements of order 2. In otherwords

2(p(ξ ⊕ η)− p(ξ) p(η)) = 0.

Proof. Since (ξ ⊕ η)⊗ C is clearly isomorphic to (ξ ⊗ C)⊕ (η ⊗ C) we have

ck((ξ ⊕ η)⊗ C) =
∑

i+j=k

ci(ξ ⊗ C) cj(η ⊗ C).

Ignoring the odd Chern classes, which are all elements of order 2, it follows that

c2k((ξ ⊕ η)⊗ C) =
∑

i+j=k

c2i(ξ ⊗ C) c2j(η ⊗ C)

modulo elements of order 2. Multiplying both sides of this congruence by
(−1)k = (−1)i(−1)j , it follows that

pk(ξ ⊕ η) =
∑

i+j=k

pi(ξ) pj(η),

as required.

Example 3. For the tangent bundle τn of the n-sphere, since the Whitney sum
τn⊕ν1 ∼= τn⊕ε1 is trivial, it follows by 15.2 that the total Pontrjagin class p(τn)
is equal to 1.

Thus the Pontrjagin classes of the tangent bundle of a sphere are uninteresting.
To obtain some interesting examples we will look at the complex projective spaces.
But first we must develop a further relationship betwen Pontrjagin classes and
Chern classes.

At this point, we have a situation which can be represented schematically by
Figure 11.

Starting with the real n-plane bundle ξ, we can first form the induced complex
n-plane bundle ξ ⊗ C. Then, forgetting the complex structure, we obtain the
underlying real 2n-plane bundle (ξ ⊗C)R with a canonical preferred orientation.
Finally, forgetting the orientation, this resulting real 2n-plane bundle can be
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real

oriented complex

Figure 11

identified simply with the Whitney sum ξ ⊕ ξ.

However, instead of starting at the top of the circle (i.e., with a real vector
bundle), we can equally well start somewhere else on the circle. After circum-
navigating the circle we will then obtain a new bundle of the same type (complex
or oriented) as the bundle we started with, but with twice the dimension of the
original bundle. Suppose for example that we start with a complex vector bundle.

Lemma 15.4. For any complex vector bundle ω, the complexification ωR⊗C of
the underlying real vector bundle is canonically isomorphic to the Whitney sum
ω ⊕ ω.

Proof. For any real vector space V , recall that V ⊗ C can be identified with the
direct sum V ⊕ V , made into a complex vector space by means of the complex
structure J(x, y) = (−y, x).

Now suppose that V = FR where F is the typical fiber of a complex vector

182



Chapter 15: Pontrjagin Classes

bundle. Then it is easy to verify that the correspondence

g : x 7→ (x,−ix)

from F to V ⊕ V is complex lienar, that is g(ix) = J(g(x)). Similarly the
correspondence from F to V ⊕ V is conjugate linear. Since every point (x, y) of
V ⊕ V ∼= FR ⊗ C can be written uniquely as the sum

g

(
x+ iy

2

)
+ h

(
x− iy

2

)
of an elemnt in g(F ) and an element in h(F ), it follows that FR⊗C is canonically
isomorphic, as complex vector space to F ⊕ F . This is true for each fiber F

of ω, so combining all of these isomorphisms it follows that ωR ⊗ C ∼= ω ⊕ ω as
asserted.

Corollary 15.5. For any complex n-plane bundle ω, the Chern classes ci(ω)

determine the Pontrjagin classes pk(ωR) by the formula

1− p1 +p2− · · · ± pn = (1− c1 +c2− · · · ± cn)(1 + c1 +c2 + · · ·+ cn)

Thus pk(ωR) is equal to

ck(ω)
2 − 2 ck−1(ω) ck+1(ω) + · · · ± 2 c1(ω) c2k−1(ω)∓ 2 c2k(ω)

Proof. This follows immediately, making use of 14.7 and Lemma 14.9.

Examples 15.6. Let τ be the tangent bundle of the complex projective space
Pn(C). Since the total Chern class c(τ) equals (1 + a)n+1 by Theorem 14.10, it
follows that the Pontrjagin classes pk(τR) are given by

(1− p1 + · · · ± pn) = (1− c1 + · · · ± cn)(1 + c1 + · · ·+ cn)

= (1− a)n+1(1 + a)n+1 = (1− a2)n+1.

Therefore the total Pontrjagin class 1 + p1 + · · ·+ pn is equal to (1 + a2)n+1. In
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other words
pk(Pn(C)) =

(
n+ 1

k

)
a2k

for 1 ≤ k ≤ n/2, where the higher Pontrjagin classes are zero since H4k(Pn(C)) for
k > n/2. Here we are using the abbreviation pk(M) for the tangential Pontrjagin
class pk(τ(M)R) of a complex manifold M . Thus

p(P1(C)) = 1

p(P2(C)) = 1 + 3a2

p(P3(C)) = 1 + 4a2

p(P4(C)) = 1 + 5a2 + 10a4

p(P5(C)) = 1 + 6a2 + 15a4

p(P6(C)) = 1 + 7a2 + 21a4 + 35a6,

and so on. From these examples we see that Pontrjagin classes can well be non-
zero.

Now suppose we start with an oriented n-plane bundle ξ. Complexifying and
then passing to the underlying real vector bundle, we obtain a 2n-plane bundle
(ξ ⊗ C)R with a preferred orientation by 14.1.

Lemma 15.7. The real 2n-plane bundle (ξ⊗C)R is isomorphic to ξ⊕ξ under an
isomorphism which either preserves or reverses orientation according as n(n−1)/2
is even or odd.

Proof. Let v1, · · · , vn be an ordered basis for a typical fiber F of ξ. Then the
vectors v1, iv1, · · · , vn, ivn form an ordered basis determining the preferred orien-
tation for (F ⊗C)R. Identifying this with the real direct sum F ⊕iF ∼= F ⊕F , the
basis v1, · · · , vn for F followed by the basis iv1, · · · , ivn for iF gives a different
ordered basis. Evidently the permutation which transforms one ordered basis to
the other has sign (−1)(n−1)+(n−2)+···+1 = (−1)n(n−1)/2.

Corollary 15.8. If ξ is an oriented 2k-plane bundle, then the Pontrjagin class
pk(ξ) is equal to the square of the Euler class e(ξ).
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For by definition pk(ξ) is equal to the (−1)k c2k(ξ ⊗C) = (= 1)k e((ξ ⊗C)R).
But, according to Lemma 15.7 and Property 9.6, the Euler class e((ξ ⊗ C)R) is
equal to e(ξ ⊕ ξ) = e(ξ)2 multiplied by the sign (−1)2k(2k−1)/2 = (−1)k.

15.1 The Cohomology of the Oriented Grassmann Mani-
fold

Recall that G̃rn = G̃rn(R∞) denotes the space of oriented real n–planes in R∞.
(The notation BSO(n) is often used for this classifying space.) We will study the
cohomology of G̃rn with coefficients in an integral domain Λ containing 1

2 . This
choice of coefficient domain has the effect of killing 2–torsion. The “universal”
example of such a domain Λ is the ring Z

[
1
2

]
. However our arguments will work

equally well with coefficients in the field of rational numbers Q, or in any field
of characteristic ̸= 2. The result will be only slightly more complicated than
the cases H∗(Grn(R∞);Z/2), H∗(G̃rn;Z/2) and H∗(Grn(C∞);Z) which we have
already computed.

Theorem 15.9. If Λ is an integral domain containing 1
2 , then the cohomology

ring H∗(G̃r2m+1; Λ) is a polynomial ring over Λ generated by the Pontrjagin
classes

p1(γ̃
2m+1), . . . ,pm(γ̃2m+1).

Similarly H∗(G̃r2m; Λ) is a polynomial ring over Λ generated by the Pontrjagin
classes p1(γ

2m), . . . ,pm−1(γ
2m) and the Euler class e(γ̃2m).

In other words for every value of n, even or odd, the ring H∗(G̃rn; Λ) is
generated by the characteristic classes p1, . . . ,p⌊n/2⌋ and e. These generators are
subject only to the relations:

e = 0 for n odd,

e2 = pn/2 for n even.

(Compare Property 9.4 and Corollary 15.8.) For the corresponding result with
integer coefficients, see problem 15-C.
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Proof by induction on n. For n = 1 the space G̃r1(RN ) is clearly homeomorphic
to the unit sphere SN−1, and hence has the cohomology of a point in dimensions
≤ N − 2. Passing to the direct limit as N → ∞, it follows that G̃r1 has the
cohomology of a point in all dimensions.

Suppose inductively that the Theorem has already been verified for G̃rn−1.
Just as in the complex case (Theorem 14.5), there is an exact sequence

· · · −→ Hi(G̃rn)
⌣e−−→ Hi+n(G̃rn)

λ−→ Hi+n(G̃rn−1) −→ Hi+1(G̃rn) −→ · · ·

where e stands for the Euler class e(γ̃n), and where the ring homomorphism
λ = f∗−1π∗

0 maps the Pontrjagin classes of γ̃n into those of γ̃n−1. The coefficient
ring Λ is to be understood.

Case 1. If n is even, then the argument is completely analogous to that in Theorem
14.5. This given exact sequence reduces to

0 −→ Hi(G̃rn)
⌣e−−→ Hi+n(G̃rn)

λ−→ Hi+n(G̃rn−1) −→ 0,

where the cohomology of G̃rn−1 is a polynomial ring generated by p1, . . . ,p(n/2)−1.
It follows easily that H∗(G̃rn) is a polynomial ring on the required genera-
tors p1, . . . ,p(n/2)−1, and e.

Case 2. Suppose that n is odd, say n = 2m + 1. Then the Euler class of γ̃n with
coefficients in Λ is zero, so the exact sequence reduces to

0 −→ Hj(G̃r2m+1)
λ−→ Hj(G̃r2m) −→ Hj−2m(G̃r2m+1) −→ 0.

Thus H∗(G̃r2m+1) can be considered as a sub–ring of H∗(G̃r2m).

It will be convenient to introduce the abbreviation A∗ for the polynomial
algebra Λ[p1, . . . ,pm] ⊂ H∗(G̃r2m). Then clearly

A∗ ⊂ λ(H∗(G̃r2m+1)),

and we must prove that equality holds. It follows of course that the in-
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equality
rankAj ≤ rankHj(G̃r2m+1) (15.1)

is satisfied for each dimension j. (Here the rank of a Λ–module means the
maximal number of elements linearly independent over Λ. Compare [ES52,
p. 52].)

Using the induction hypothesis we see easily that every element of Hj(G̃r2m)

can be written uniquely as a sum a + e a′ with a ∈ Aj and a′ ∈ Aj−2m.
(Here e denotes the Euler class γ̃2m, with e2 = pm.) This direct sum
decomposition Hj(G̃r2m) ∼= Aj ⊕Aj−2m implies that

rankHj(G̃r2m) = rankAj + rankAj−2m. (15.2)

On the other hand, using the exact sequence above we see that

rankHj(G̃r2m) = rankHj(G̃r2m+1) + rankHj−2m(G̃r2m+1). (15.3)

Combining (15.1), (15.2) and (15.3), it follows that

rankAj = rankHj(G̃r2m+1).

But this implies that Aj is actually equal to the image λ(Hj(G̃r2m+1)).
For otherwise λ(Hj(G̃r2m+1)) would contain a sum a+ e(γ̃2m)a′ with a′ ̸=
0. This new element could not satisfy any linear relation with the basis
elements of Aj , so strict inequality would have to hold in (15.1), yielding a
contradiction.

Problem 15-A. Using Problem 14-B, prove that the mod 2 reduction of the
Pontrjagin class pi(ξ) is equal to the square of the Stiefel–Whitney class w2i(ξ).

Problem 15-B. Show that H∗(Grn(R∞); Λ) is a polynomial ring over Λ gener-
ated by the Pontrjagin classes p1(γ

n), . . . ,p⌊n/2⌋(γ
n). [More generally, for any

2–fold covering space X̃ −→ X with covering transformation t : X̃ −→ X̃, show
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that H∗(X; Λ) can be identified with the fixed point set of the involution t∗ of
H∗(X̃; Λ).]

Problem 15-C. Compute the cohomology of the cochain complex
H∗(Gr2m+1(R∞);Z/2) with respect to the differential operator Sq1. [That is
compute ker(Sq1)/Im(Sq1). It is convenient to express this cohomology ring as
the tensor product of a polynomial ring generated by w1, and the polynomial
rings generated by w2i and Sq1(w2i) for 1 ≤ i ≤ m.] Using the Bockstein exact
sequence

· · · −→ Hj(−;Z) 2−→ Hj(−;Z) ρ−→ Hj(−;Z/2) β−→ Hj+1(−;Z) −→ · · · ,

where ρ ◦ β = Sq1 (compare [ES52, p. 2]), prove that H∗(Gr2m+1(R∞);Z) splits
additively as the direct sum of the polynomial ring Z[p1, . . . ,pm] and the image
of β. Prove the analogous statements for Gr2m(R∞) and G̃rn(R∞).

Problem 15-D. Using the preceding, prove that the odd Chern classes of ξ⊗C
are given by

c2i(ξ ⊗ C) = β(w2i(ξ) w2i+1(ξ)).

Similarly, for an oriented (2k + 1)–plane bundle ξ, prove that e(ξ) = β w2k(ξ).
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bers

In analogy with the Stiefel-Whitney numbers of a compact manifold, intro-
duced in §4.4, this section will introduce the Chern numbers of a compact com-
plex manifold, and the Pontrjagin numbers of a complex oriented manifold. All
manifolds are to be smooth.

16.1 Partitions

Recall from definition 6.6 in §6, that a partition of a non-negative integer
k is an unordered sequence I = i1, . . . , ir of positive integers with sum k. If
I = i1, . . . , ir is a partition of k and J = j1, . . . , js is a partition of ℓ, then the
juxtaposition

IJ = i1, . . . , ir, j1, . . . , js

is a partition of k + ℓ. This composition operation is associative, commutative,
and has as identity element the vacuous partition of zero which we denote by the
empty symbol . (In more technical language, the set of all partitions of
all non-negative integers can be regarded as a free commutative monoid on the
generators 1, 2, 3, . . . .)

A partial ordering among partitions is defined as follows. A refinement of a
partition i1, . . . , ir will mean any partition which can be written as a juxtaposition
I1, . . . , Ir where each Ij is a partition of ij . If j1, . . . , js is a refinement of i1, . . . , ir
then it follows of course that s ≥ r.
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16.2 Chern Numbers

Let Kn be a compact complex manifold of complex dimension n. Then for
each partition I = i1, . . . , ir of n, the I–th Chern number

ci[K
n] = ci1 · · · cir [Kn]

is defined to be the integer

⟨ci1(τn) . . . cir (τn), µ2n⟩.

Here τn denotes the tangent bundle of K2n, and µ2n denotes the fundamental
homology class determined by the preferred orientation. We adopt the convention
that cI [K

n] is zero if I is a partition of some integer other than n.

As an example, for the complex projective space Pn(C), since ci(τn) =
(
n+1
i

)
ai

and ⟨an, µ2n⟩ = +1 by Theorem 14.10, we have the formula

ci1 · · · cir [Pn(C)] =
(
n+ 1

i1

)
· · ·

(
n+ 1

ir

)
for any partition i1, . . . , ir of n.

A complex 1–dimensional manifold K1 has just one Chern number, namely
the Euler characteristic c1[K

1]. For a complex 2–manifold there are two Chern
numbers, namely c1 c1[K

2] and the Euler characteristic c2[K
2]. In general, a

complex n–manifold has p(n) Chern numbers, where p(n) is the number of distinct
partitions of n. (Compare p. 88.) We will see in 16.7 that these p(n) Chern
numbers are linearly independent; that is there is no linear relation between
them which is satisfied for all complex n–manifolds.

There is another way of thinking about Chern classes which is important
for many purposes. Note that the cohomology group H2n(Grn(C∞);Z) is free
abelian of rank p(n). The products ci1(γ

n) . . . cir (γ
n), where i1, . . . , ir ranges

over all partitions of n, form a basis for this group. For any complex manifold
Kn the tangent bundle τn is “classified” by a map

f : Kn −→ Grn(C∞)
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with f∗(γn) ∼= τn. Using this classifying map f , the fundamental homology
class µ2n of Kn gives rise to a homology class f∗(µ2n) in the free abelian group
H2n(Grn(C∞);Z) of rank p(n). To identify this homology class f∗(µ2n), we only
need to compute the p(n) Kronecker indices

⟨ci1(γn) . . . cir (γ
n), f∗(µ2n)⟩,

since the products ci1(γ
n) . . . cir (γ

n) range over a basis for the corresponding
cohomology group. But each such Kronecker index is equal to the Chern number

⟨f∗(ci1(γ
n) . . . cir (γ

n)), µ2n⟩ = ci1 · · · cir [Kn].

We see from this approach that it is not necessary to use the basis {ci1(γn) . . . cir (γ
n)}

for H2n(Grn(C∞);Z). Any other basis would serve equally well. Later we will
make use of a quite different basis for this group.

16.3 Pontrjagin Numbers

Now consider a smooth, compact, oriented manifold M4n. For each partition
I = i1, . . . , ir of n, the I–th Pontrjagin number pI [M

4n] = pi1 · · · pir [M
4n] is

defined to be the integer

⟨pi1(τ
4n) · · · pir (τ

4n), µ4n⟩.

Here τ4n denotes the tangent bundle and µ4n the fundamental homology class.

As an example, the complex projective space P2n(C), with its complex struc-
ture forgotten, is a compact oriented manifold of real dimension 4n. The Pontr-
jagin numbers of this manifold are given by the formula

pi1 · · · pir [P
2n(C)] =

(
2n+ 1

i1

)
· · ·

(
2n+ 1

ir

)
,

as one easily verifies using 15.6.

If we reverse the orientation of a manifold M4n, note that its Pontrjagin
classes remain unchanged, but its fundamental homology class µ4n changes sign.
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Hence each Pontrjagin number

pi1 · · · pir [M
4n] = ⟨p1 · · · pir , µ4n⟩

also changes sign. Thus if some Pontrjagin number pi1 · · · pir [M
4n] is non–

zero, then it follows that M4n cannot possess any orientation reversing
diffeomorphism.

As an example, the complex projective space P2n(C) does not possess any
orientation reversing diffeomorphism. (On the other hand, P2n+1(C) does have
an orientation reversing diffeomorphism, arising from complex conjugation.)

This behavior of Pontrjagin numbers is in contrast to the behaviour of the
Euler number e[M2n] which is invariant under change of orientation. In fact
the manifold S2n, with e[S2n] ̸= 0, certainly does admit an orientation reserving
diffeomorphism.

Furthermore, if some Pontrjagin number pi1 · · · pir [M
4n] is non–zero then,

proceeding as in Lemma 14.9, we see that M4n cannot be the boundary of
any smooth, compact, oriented (4n + 1)–dimensional manifold with boundary.
(Compare §17.) For example, the projective space P2n(C) cannot be an oriented
boundary. In fact the disjoint union P2n(C)+· · ·+P2n(C) of any number of copies
of P2n(C) cannot be an oriented boundary, since the I–th Pontrjagin number of
such a k–fold union is clearly just k times the I–th Pontrjagin number of P2n(C)
itself. Again this argument does not work for P2n(C). (In fact P2n+1(C) is the
total space of a circle–bundle over a quaternion projective space, and hence is
the boundary of an associated disk–bundle.)

Again the corresponding statement for Euler numbers is also false. Thus
e[S2n] ̸= 0 even though S2n clearly bounds an oriented manifold. All of these
remarks are due to Pontrjagin.

16.4 Symmetric Functions

The following classical algebraic techniques will enable us to define and manip-
ulate certain useful linear combinations of Chern numbers or Pontrjagin numbers.

Let t1, . . . , tn be indeterminates. A polynomial function f(t1, . . . , tn), say
with integer coefficients, is called a symmetric function if it is invariant under
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all permutations of t1, . . . , tn. Thus the symmetric functions form a sub-ring

S ⊂ Z[t1, . . . , tn]

A familiar and fundamental theorem asserts that S itself is also a poly- nomial
ring on n algebraically independent generators

S = Z[σ1, . . . , σn]

where σk = σk(t1, . . . , tn) denotes the k-th elementary symmetric function,
uniquely characterized by the fact that σk is a homogeneous polynomial of degree
k in t1, . . . , tn with

1 + σ1 + σ2 + . . .+ σn = (1 + t1)(1 + t2) . . . (1 + tn).

(Compare with the proof of Lemma 7.2.)
If we make Z[t1, . . . , tn] into a graded ring by assigning each ti the degree 1,

then of course the symmetric functions form a graded subring S∗ = Z[σ1, . . . , σn],
where each σk has degree k. Thus a basis for the additive group Sk, consisting
of homogeneous symmetric polynomials of degree k in t1, . . . , tn, is given by the
set of monomials

σi1 . . . σir

where i1, . . . , ir ranges over all partitions of k into integers ≤ n.
A different and quite useful basis can be constructed as follows. Define two

monomials in t1, . . . , tn to be equivalent if some permutation of t1, . . . , tn trans-
forms one into the other. Define

∑
ta1
1 . . . tar

r to be the summation of all mono-
mials in t1, . . . , tn which are equivalent to ta1

1 . . . tar
r . As an example, using this

notation we can write σk =
∑

t1t2 . . . tk.

Lemma 16.1. An additive basis for δk, the group of homogeneous symmetric
polynomials of degree k in t1, . . . , tn, is given by the polynomials

∑
ta1
1 . . . tar

r .
Here a1, . . . , ar ranges over all partitions of k with length r ≤ n.

Proof. The proof is not difficult.

Now for any partition I = i1, . . . , ir of k, define a polynomial sI in k variables
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as follows. Choose n ≥ k so that the elementary symmetric functions σ1, . . . , σk

of t1, . . . , tn are algebraically independent, and let sI = si1,...,ir be the unique
polynomial satisfying

sI(σ1, . . . , σk) =
∑

ti11 . . . tirr

This polynomial does not depend on n, as one easily verifies by introducing
additional variables tn+1 = . . . = tn′ = 0. In fact, even if n < k the corresponding
identity

sI(σ1, . . . , σn, 0, . . . , 0) =
∑

ti11 . . . tirr

remains valid, as one verifies by a similar argument.

If n ≥ k, then evidently the p(k) polynomials sI(σ1, . . . , σk) are linearly in-
dependent, and form a basis for Sk. The first twelve such polynomials are given
by

s( ) = 1,

s1(σ1) = σ1,

s2(σ1, σ2) = σ2
1 −2σ2,

s1,1(σ1, σ2) = + σ2,

s3(σ1, σ2, σ3) = σ2
1 −3σ1σ2 + 3σ3,

s1,2(σ1, σ2, σ3) = σ1σ2 − 3σ3,

s1,1,1(σ1, σ2, σ3) = + σ3,

s3 = σ4
1 −4σ2

1σ2 + 2σ2
2 +4σ1σ3 − 4σ4,

s1,3 = + σ2
1σ2 − 2σ2

2 − σ1σ3 + 4σ4,

s2,2 = + σ2
2 −2σ1σ3 + 2σ4,

s1,1,2 = + σ1σ3 + 4σ4,

s1,1,1,1 = + σ4.
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For further information see Problem 16-A, as well as [Wae70, Chapter 26, the
exercises]and [Mac01] .

The application of these ideas to Chern classes or Pontrjagin classes is very
similar to the application to Stiefel-Whitney classes in §7. Thus if a complex
n-plane bundle ω splits as a Whitney sum η1 ⊕ . . .⊕ ηn of line bundles, then the
formula

1 + c1(ω) + . . .+ cn(ω) = (1 + c1(η1)) . . . (1 + c1(ηn))

shows that the Chern class ck(ω) can be identified with the k-th elementary
symmetric function σk(c1(η1), . . . , c1(ηn)). The “universal” example of a Whitney
sum of line bundles is provided by the n-fold cartesian product γ1× . . .×γ1 over
the product P∞(C) × . . . × P∞(C) of complex projective spaces. Note that the
cohomology ring of this product is a polynomial ring Z[a1, . . . , an] where each ai

has degree 2, and where

c(γ1 × . . .× γ1) = (1 + a1) . . . (1 + an)

Since the elementary symmetric functions are algebraically independent, it follows
that the cohomology H∗(Grn(C∞);Z) of the classifying space maps isomorphi-
cally to the ring

S∗ ⊂ Z[a1, . . . , an]

of symmetric polynomials. (This is a theorem of [Bor53], Compare with the proof
of Lemma 7.2) Thus our new basis for S∗ gives rise to a new basis

{sI(c1, . . . , ck)}

for the cohomology H2k(Grn(C∞);Z).

16.5 A Product Formula

Let ω be a complex n–plane bundle with base space B and with total Chern
class c = 1+c1 + . . .+cn. For any k ≥ 0 and any partition I of k the cohomology
class

sI(c1, . . . , ck) ∈ H2k(B;Z)
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will be denoted briefly by the symbol sI(c) or sI(c(ω)).

Lemma 16.2 (Thom). The characteristic class sI(c(ω ⊕ ω′)) of a Whitney sum
is equal to ∑

JK=I

sJ(c(ω))sK(c(ω′)),

to be summed over all partitions J and K with juxtaposition JK equal to I.

As an example, since the single element partition of k can be expressed as a
juxtaposition only in two trivial ways, we obtain the following.

Corollary 16.3. The characteristic class sk(c(ω⊕ω′)) of a Whitney sum is equal
to sk(c(ω)) + sk(c(ω

′)).

Proof of 16.2. Consider a polynomial ring Z[t1, . . . , t2n] in 2n indeterminates,
and let ωk [respectively σ′

k] be the k–th elementary symmetric function of the
indeterminates t1, . . . , tn [respecitvely tn+1, . . . , t2n]. Then defining

σ′′
k =

k∑
i=0

σiσ
′
k−i,

it is clear that σ′′
k is equal to the k–th elementary symmetric function of t1, . . . , t2n.

We will verify the identity

sI(σ
′′
1 , . . . , σ

′′
k ) =

∑
JK=I

sJ(σ1, σ2, . . .)sK(σ′
1, σ

′
2, . . .)

for any partition I = i1, . . . , ir of k. Since the classes ω1, . . . , ωk, ω
′
1, . . . , ω

′
k are

algebraically independent (assuming as we may that k ≤ n), this identity together
with the product theorem for Chern classes will clearly complete the proof.

By definition, the element

sI(ω
′′
1 , . . . , ω

′′
k ) ∈ Z[t1, . . . , t2m]

is equal to the sum of all monomials which can be written in the form ti1α1
. . . tirαr

,
with α1, . . . , αr distinct numbers between 1 and 2n. For each such monomial
let J [respectively K] be the partition formed by those exponents iq such that
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1 ≤ αq ≤ n [respectively n+ 1 ≤ αq ≤ 2n]. The sum of all terms corresponding
to a given decomposition JK = I is clearly equal to

sJ(σ1, σ2, . . .)sK(σ′
1, σ

′
2, . . .).

Since every such decomposition occurs, this completes the proof.

Now consider a compact complex manifold Kn of complex dimension n. For
each partition I of n the notation sI(c)[K

n], or briefly sI [K
n], will stand for the

characteristic number
⟨sI(c(τn)), µ2n⟩ ∈ Z.

This characteristic number is of course equal to a suitable linear combination of
Chern numbers.

Corollary 16.4. The characteristic number sI [Km×Ln] of a product of complex
manifolds is equal to ∑

I1I2=I

sI1 [K
m]sI2 [L

n],

to be summed over all partitions I1 of m and I2 of n with juxtaposition I1I2

equal to I.

Proof. For the tangent bundle of Km × Ln splits as a Whitney sum

τ × τ ′ ∼= (π∗
1τ)⊕ (π∗

2τ
′)

where π1 and π2 are the projection maps onto the two factors. Hence the char-
acteristic number

⟨sI(τ × τ ′), µ2n × µ′
2n⟩

is equal to ∑
I1I2=I

⟨sI1(τ), µ2m⟩⟨sI2(τ ′), µ′
2n⟩.

There are no signs in this formula, since these classes are all even dimensional.

As a special case, we clearly have the following.
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Corollary 16.5. For any product Km×Ln of complex manifolds of dimensions
m,n ̸= 0, the characteristic number sm+n[K

m × Ln] is zero.

This corollary suggests the importance of the characteristic number sm[Km].
Here is an example to show that this characteristic number is not always zero.

Examples 16.6. For the complex projective space Pn(C), since c(τ) = (1+a)n+1

it follows that ck(τ) is equal to the k–th elementary symmetric function of n+1

copies of a. Therefore sk(c1, . . . , ck) is equal to the sum of n + 1 copies of ak,
that is

sk = (n+ 1)ak.

Taking k = n, it follows that

sn[Pn(C)] = n+ 1 ̸= 0.

Thus Pn(C) cannot be expressed non–trivially as a product of complex manifolds.

Completely analogous formulas are true for Pontrjagin classes and Pontrjagin
numbers. If ξ is a real vector bundle over B, then for any partition I of n the
characteristic classes

sI(p1(ξ), . . . ,pn(ξ)) ∈ H4n(B;Z)

is denoted briefly by sI(p(ξ)). The congruence

sI(p(ξ ⊕ ξ′)) =
∑

JK=I

sJ(p(ξ))sK(p(ξ′))

modulo elements of order 2 clearly follows from the proof of 16.2. Hence there is
a corresponding equality

sI(p)[M ×N ] =
∑

JK=I

sJ(p)[M ]sK(p)[N ]

for characterisitc numbers. In particular, these characteristic numbers of M ×N

are zero unless the dimensions of M and N are divisible by 4.
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16.6 Linear Independence of Chern Numbers and of Pon-
trjagin Numbers

The following basic result shows that there are no linear relations between
Chern numbers.

Theorem 16.7 (Thom). Let K1, . . . ,Kn be complex manifolds with
sk(c)[K

k] ̸= 0. Then the p(n)× p(n) matrix[
ci1 . . . cir [K

j1 × . . .×Kjs ]
]
,

of Chern numbers, where i1, . . . , ir and j1, . . . , js range over all partitions of n,
is non-singular.

For example, by 16.6, we can take Kr = Pr(C). Similarly:

Theorem 16.8 (Thom). If M4, . . . ,M4n are oriented manifolds with sk(p)[M
4k] ̸=

0, then the p(n)× p(n) matrix

[pi1 · · · pir [M
4j1 × . . .×M4js ]]

of Pontrjagin numbers is non-singular.

Again we can take the complex projective space P2k(C), with p(τP2k(C)) =

(1 + a2)2k+1 and hence
sk(p)[P2k(C)] = 2k + 1

as a suitable manifold M4k.
Here is an example. For complex dimension 2 taking Kn = Pn(C) we obtain

the matrix [
c1 c1[K

1 ×K1] = 8 c1 c1[K
2] = 9

c2[K
1 ×K1] = 4 c2[K

2] = 3

]
of Chern numbers, with determinant −12. Evidently the direct approach of
simply computing the matrix will not help much in the general case.

proof of 16.7. In place of the Chern numbers themselves, we may use the linear
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combinations sI(c). As an immediate generalization of 16.4 we have

sI [K
j1 × . . .×Kjq ] =

∑
I1...Iq=I

sI1 [K
j1 ] . . . sIq [K

jq ], .

to be summed over all partitions I1 of j1, I2 of j2, . . ., and Iq of jq with juxtaposi-
tion I1 . . . Iq equal to I. Thus the characteristic number sI [K

j1 × . . .×Kjq ]

is zero unless the partition I = i1, . . . , ir is a refinement of j1, . . . , jq, In
particular it is zero unless r ≥ q. Thus if the partitions i1, . . . , ir and j1, . . . , jq

are arranged in a suitably chosen order, then the matrix[
si1,...,ir [K

j1 × . . .×Kjq ]
]

will be triangular, with zeros everywhere above the diagonal. Each diagonal entry
si1,...,ir [K

i1 × . . .×Ki] is clearly equal to the product

si1 [K
i1 ] . . . sir [K

ii] ̸= 0

Hence the matrix is non-singular. The proof of 16.8 is completely analogous.

Here are some problems for the reader.

Problem 16-A. Substituting −ti for x in the identity

(x+ t1) . . . (x+ tn) = xn + σ1x
n−1 + . . .+ σn

and then summing over i, prove Newton’s formula

sn − σ1sn−1 + σ2sn−2 − · · · ∓ σn−1s1 ± nσn = 0.

This formula can be used inductively to compute the polynomial sn(σ1, . . . , σn).
Alternatively, taking the logarithm of both sides of the identity

(1 + t1) . . . (1 + tn) = 1 + (σ1 + . . .+ σn),
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prove Girard’s formula

(−1)k sk
k

=
∑

i1+2i2+...+kik=k

(−1)i1+...+ii
(i1 + . . .+ ik − 1)!

i1! . . . ik!
σi1
1 . . . σik

k .

Problem 16-B. The Chern character ch(ω) of a complex n-plane bundle ω

is defined to be the formal sum

n+
∞∑
k=1

sk(c(ω))

k!
∈ HΠ(B;Q).

Show that this Chern character is characterized by additivity

ch(ω ⊕ ω′) = ch(ω) + ch(ω′),

together with the property that ch(η1) is equal to the formal power series exp(c1(η1))
for any line bundle η1. Show that the Chern character is also multiplicative:

ch(ω ⊗ ω′) = ch(ω) ch(ω′).

(As in Problem 7-C, it suffices to consider first the case of two line bundles.)

Problem 16-C. If 2i1, . . . , 2ir is a partition of 2k into even integers, show that
the 4k-dimensional characteristic class s2i1,...,2ir (c(ω)) of a complex vector bundle
is equal to the characteristic class si1,...,ir (p(ωR)) of its underlying real vector
bundle. As examples, show that the 4k-dimensional class s2,...,2(c(ω)) is equal
to pk(ωR), and show that the characteristic number s2n(c)[K

2n] of a complex
2n-manifold is equal to sn(p)[K

2n]

Problem 16-D. If the complex manifold Kn is complex analytically embedded
in Kn+1 with dual cohomology class u ∈ H2(Kn+1,Z), show that the total tan-
gential Chern class c(Kn) is equal to the restriction to Kn of c(Kn+1)/(1 + u).
For any cohomology class x ∈ H2n(Kn+1;Z) show that the Kronecker index
⟨x | Kn, µ2n⟩ is equal to ⟨xu, µ2n+2⟩. (Compare page 127 as well as Problem
11-C.) Using these constructions, compute c(Kn) for a non-singular algebraic hy-
persurface Kn of degree d in Pn+1(C), and prove that the characteristic number
sn[K

n] is equal to d(n + 2 − dn). (An algebraic hypersurfacealgebraic hyper-
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surface of degree d is the set of zeroes of a homogeneous polynomial of degree
d.)

Problem 16-E. Similarly, if Hm,n is a non-singular hypersurface of degree (1, 1)

in the product Pm(C)×Pn(C) of complex projective spaces, with m,n ≥ 2, prove
that the characteristic number sm+n−1[Hm,n] is equal to −(m+n)!/m!n!. Using
disjoint unions of hypersurfaces, prove that for each dimension n there exists a
complex manifold Kn with sn[K

n] = p if n+1 is a power of the prime p, or with
sn[K

n] = 1 if n + 1 is not a prime power. (A theorem of Milnor and Novikov
asserts that these manifolds K1,K2,K3, . . . freely generate the ring consisting
of all “cobordism classes” of manifolds with a complex structure on the stable
tangent bundle τ ⊕ εk. Compare [Sto68].)

Problem 16-F. Develop a corresponding calculus of mod 2 characteristic num-
bers sI(w1, . . . ,wn)[M

n], where I ranges over partitions of n. Using real algebraic
hypersurfaces of degree (1, 1) in a product of real projective spaces, prove that
there exists a manifold Y n with sn(w)[Y

n] ̸= 0 whenever n + 1 is not a power
of 2 . For n odd show that Y n is orientable. As in Problem 4-E, let Nn be the
Z/2 vector space consisting of cobordism classes of unoriented n-manifolds. Show
that the products Y i1 × . . .× Y ir , where i1, . . . , ir ranges over all partitions of n
into integers not of the form 2k− 1, are linearly independent in Nn. ( A theorem
of Thom asserts that these products actually form a basis for πn, so that the
cobordism algebra N∗ is a polynomial algebra freely generated by the manifolds
Y 2, Y 4, Y 5, Y 6, Y 8, . . ..
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17. The Oriented Cobordism Ring Ω∗

In the next two sections we will define and study the Thom cobordism ring
Ω∗. This section contains the basic definition and some preliminary results. For
a fuller treatment of cobordism theory, the reader is referred to [Sto68].

17.1 Smooth Manifolds-with-Boundary

Let us first give a precise definition of this concept, which has already been
used briefly in §4 and §16. As a universal model for manifolds–with–boundary,
we take the closed half–space Hn, consisting of all points (x1, . . . , xn) in the
Euclidean space Rn with x1 ≥ 0. A subset X ⊂ RA is called a smooth n–
dimensional manifold–with–boundary if, for each point x ∈ X, there exists
a smooth mapping

h : U −→ RA

which maps some relatively open set U ⊂ Hn homeomorphically onto a neigh-
borhood of x in X, and for which the matrix of first derivatives [∂hα/∂uj ] has
rank n everywhere. (Compare page 14.)

A point x of X is called an interior point if there exists a local parameteri-
zation h : U −→ RA of X about x such that U is an open subset of Rn (rather
than Hn). Evidently the set of interior points forms a smooth n–dimensional
manifold which is open as a subset of X. The non–interior points form a smooth
(n − 1)–dimensional manifold, called the boundary ∂X, which is closed as a
subset of X.

The tangent bundle τn of a smooth manifold–with–boundary X is a smooth
n–plane bundle over X. The definition is completely analogous to that of §1. This
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n–plane bundle has some additional structure that can be described as follows. If
x is a boundary point of X, then the fibre TxX contains an (n− 1)–dimensional
subspace Tx(∂X) consisting of vectors which are tangent to the boundary. This
hyperplane Tx(∂X) separates the tangent space TxX into two open subsets,
consisting respectively of vectors which point “into” or “out of” X. By definition
a vector v ∈ TxX with v ̸∈ Tx(∂X), points into X if v is the velocity vector
(dp/dt)t=0 of a smooth path

p : [0, ϵ) −→ X

with p(0) = x. Similarly v points out of X if v is the velocity vector at t = 0 of
a path p : (−ϵ, 0] −→ X with p(0) = x.

Now suppose that the tangent bundle τn of X is an oriented n–plane bundle.
Then the tangent bundle τn−1 of ∂X has an induced orientation as follows.
Choose an oriented basis v1, . . . , vn for TxX at any boundary point x so that
v1 points out of X and v2, . . . , vn are tangent to ∂X. Then the ordered basis
v2, . . . , vn determines the required orientation for Tx(∂X).

[In the special case of a 1–dimensional manifold–with–boundary, this con-
struction must be modified as follows. An “orientation” of a point x of the 0–
dimensional manifold ∂X is just a choice of sign +1 or −1. In fact we assign x

the orientation +1 or −1 according as the positive direction in TxX points out
of or into X.]

We will need the following statement.

Theorem 17.1 (Collar Neighborhood Theorem). If X is a smooth paracompact
manifold–with–boundary, then there exists an open neighborhood of ∂X in X

which is diffeomorphic to the product ∂X × [0, 1).

Proof. The proof is similar to that of Theorem 11.1. (Just as for 11.1, we will
actually need this assertion only in the special case where ∂X is compact.) Details
will be left to the reader.
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17.2 Oriented Cobordism

If M is a smooth oriented manifold, then the notation −M will be used for
the same manifodl with opposite orientation. The symbol + will be used for the
disjoint union (also called topological sum) of smooth manifolds.

Definition. Two smooth compact oriented n-dimensional manifolds M and M ′

are said to be oriented cobordant, or to belong to the same oriented cobor-
dism class, if there exists a smooth, compact, oriented manifold-with-boundary
X so that ∂X with its induced orientation is diffeomorphic to M +(−M ′) under
an orientation preserving diffeomorphism.

Lemma 17.2. This relation of oriented cobordism is reflexive, symmetric, and
transitive.

Indeed, the disjoint union M+(−M) is certainly diffeomorphic to the bound-
ary of [0, 1] × M under an orientation preserving diffeomorphism. Further-
more, if M + (−M ′) ∼= ∂X, then clearly M ′ + (−M) ∼= ∂(−X). Finally, if
M + (−M ′) ∼= ∂X and M ′ + (−M ′′) ∼= ∂Y , then using 17.1 the smoothness
structures and the orientations of X and Y can be pieced together along with com-
mon boundary M ′ so as to yield a new smooth oriented manifold-with-boundary
bounded by M + (−M ′′). Details will be left to the reader.■

Now the set Ωn consisting of all oriented cobordism classes of n-dimensional
manifolds clearly forms an abelian group, using the disjoint union + as compo-
sition operation. The zero element of this group is the cobordism class of the
vacuous manifold.

Furthermore the cartesian product operation Mm
1 ,Mn

2 7→ Mm
1 ×Mn

2 gives
rise to an associative, bilinear product operation

Ωm × Ωn → Ωm+n.

Thus the sequence
Ω∗ = (Ω0,Ω1,Ω2, · · · )

of oriented cobordism groups has the structure of a graded ring. This
ring possesses a 2-sided identity element 1 ∈ Ω0. Furthermore, it is easily verified
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that Mm
1 ×Mn

2 is isomorphic as oriented manifold to (−1)mnMn
2 ×Mm

1 . Thus
this oriented cobordism ring is commutative in the graded sense.

Pontrjagin numbers provide a basic tool for studying these cobordism groups.
As already pointed out in §16, we have the following statement.

Lemma 17.3 (Pontrjagin). If M4k is the boundary of a smooth, compact, ori-
ented (4k+1)-dimensional manifold with-boundary, then every Pontrjagin num-
ber pi1 · · · pir [M

4k] is zero.

Since the identity pI [M1 + M2] = pI [M1] + pI [M2] is clearly satisfied, this
proves the following.

Corollary 17.4. For any partition I = i1, · · · , ir of k, the correspondence
M4k 7→ pI [M

4k] gives rise to a homomorphism from the cobordism group Σ4k to
Z.

Now by 16.8 we obtain the following.

Corollary 17.5. The products P2i1(C) × · · · × P2ir (C), where i1, · · · , ir ranges
over all partitions of k, represent linearly independent elements of the cobordism
group Ω4k. Hence Ω4k has rank greater than or equal to p(k), the number of
partitions of k.

Following Thom, we will prove in §18 that the rank is precisely p(k),

To conclude this section, we list without proof the actual structures of the
first few oriented cobordism groups. (Compare [Wal60, p. 309].)
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Ω0
∼= Z. In fact a compact oriented 0-manifold is just a finite set of signed

points, nd the sum of the signs is a complete cobordism invariant.
Ω1 = 0, since every compact 1-manifold clearly bounds.
Ω2 = 0, since a compact oriented 2-manifold bounds.
Ω3 = 0. In contrast to the lower dimensional cases, this assertion, first

announced by [Rok51], is non-trivial. To our knowledge it has
never been proven directly.

Ω4
∼= Z, generated by the complex projective plane P2(C).

Ω5
∼= Z/2, generated by the manifold Y 5 of Problem 16-F.

Ω6 = 0.

Ω7 = 0.

Ω8
∼= Z⊕ Z, generated by P4(C) and P2(C)× P2(C)

Ω9
∼= (Z/2)⊕ (Z/2), generated by Y 9 and the product Y 5 × P2(C).

Ω10
∼= Z/2, generated by Y 5 × Y 5.

Ω11
∼= Z/2, generated by Y 11.

As manifold Y 5 (respectively Y 9, Y 11) we may take the non-singular hyper-
surface of degree (1, 1) in the product P2 × P4 (respectively P2 × P8 or P4 × P8)
of real projective spaces. Using products of the generators listed above, it is easy
to show that all of the higher cobordism groups are non-zero.
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18. Thom Spaces and Transitivity

This section will describe some of the constructions that are needed to actually
compute cobordism groups. We will develop the theory far enough to compute
the structure of the ring Ω∗ modulo torsion.

18.1 The Thom Space of a Euclidean Vector Bundle

Let ξ be a k–plane bundle with a Euclidean metric, and let A ⊂ E(ξ) be
the subset of the total space consisting of all vectors v with |v| ≥ 1. Then the
identification space E(ξ)/A in which A is pinched to a point will be called the
Thom space Th(ξ). Thus Th(ξ) has a preferred base point, denoted by t0, and
the complement Th(ξ)− t0 consists of all vectors v ∈ E(ξ) with |v| < 1.

Remark. If the base space of ξ is compact, then Th(ξ) can be identified with
the single point (Alexandroff) compactification of E(ξ). In fact the correspon-
dence v 7→ v/

√
1− |v|2 maps E(ξ)−A diffeomorphically onto E(ξ), inducing the

required homeomorphism Th(ξ) −→ E(ξ) ∪ {∞}.

The following two lemmas describe the topology of Th(ξ).

Lemma 18.1. If the base space B is a CW–complex, then the Thom space Th(ξ)
is a (k − 1)–connected CW–complex, having (in addition to the base point t0)
one (n+ k)–cell corresponding to each n–cell of B.

In particular, if B is a finite complex, then Th(ξ) is a finite complex.

Proof. For each open n–cell eα of B, the inverse image π−1(eα) ∩ (E − A) is an
open cell of dimension n+ k; these open cells are mutually disjoint and cover the
set E −A ∼= Th−t0. Note that there are no cells in dimension 1 through k − 1.
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Let Dn be the closed unit ball in Rn and let f : Dn −→ B be a characteristic
map (Definition 6.1) for the cell eα. Then the induced Euclidean vector bundle
f∗(ξ) is trivial by the covering homotopy theorem [Ste51, §11.6], so the vectors
of length ≤ 1 in E(f∗(ξ)) form a topological product Dn ×Dk. The composition

Dn × Dk ⊂ E(f∗(ξ)) −→ E(ξ) −→ Th(ξ)

now forms the required characteristic map for the image of π−1(eα) in the Thom
space Th(ξ). Further details will be left to the reader.

We will need to compute (or at least to estimate) the homotopy groups of
such a Thom space Th(ξ). As a first step, here is a description of the homology.

Lemma 18.2. If ξ is an oriented k–plane bundle over B, then each integral
homology group Hk+i(Th(ξ), t0) is canonically isomorphic to Hi(B).

Proof. Evidently the base space B is embedded as the zero cross–section of the
space E−A ∼= Th−t0. Let Th0 = E0/A be the complement of the zero section in
the Thom space Th. Then evidently Th0 is contractible, so by the exact sequence
of the triple (Th,Th0, t0) it follows that

Hn(Th, t0) ∼= Hn(Th,Th0).

But an easy excision argument shows that

Hn(Th, t0) ∼= Hn(E,E0).

Together with the Thom isomorphism

Hn(E,E0) ∼= Hn−k(B)

of Corollary 10.7, this completes the proof.

18.2 Homotopy Groups Modulo Ab<∞

In order to relate homology groups to homotopy groups, we use some results of
[Ser53]. Let Ab<∞ denote the class of all finite abelian groups. A homo-
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morphism h : A −→ B between abelian groups is called a Ab<∞–isomorphism
if both the kernel h−1(0) and the cokernel B/h(A) belong to Ab<∞.

Theorem 18.3. Let X be a finite complex which is (k − 1)–connected, k ≥ 2.
Then the Hurewicz homomorphism

πr(X) −→ Hr(X;Z)

is a Ab<∞–isomorphism for r < 2k − 1.

Proof. This Theorem will be established by assembling several results of Serre.
First note that the Theorem is true for the special case of a sphere Sn, n ≥ k, for
the homotopy groups πr(S

n) are finite for r < 2n − 1, r ̸= n. (See for example
[Spa81, pp. 515-516].)

Next note that it is true for any finite bouquet of spheres. In fact if the
Theorem is true for two (k − 1)–connected complexes X and Y then, using the
Künneth theorem, it is certainly true for the product X × Y . Hence, applying
the relative Hurewicz theorem to the pair (X × Y,X ∨ Y ), we see that

πr(X ∨ Y ) ∼= πr(X × Y ) ∼= πr(X)⊕ πr(Y ) for r < 2k − 1,

and it follows that the theorem is true for X ∨ Y also.

Finally, consider an arbitrary (k − 1)–connected finite complex X. Since the
homotopy groups πr(X) are finitely generated [Spa81, pp. 509], we can choose
a finite basis for the torsion free part of πr(X) for each r < 2k. Represent each
basis element by a base point preserving map Sri −→ X, and combine these
maps to form a single map

f : Sr1 ∨ . . . ∨ Srp −→ X.

Since the Theorem has already been established for this bouquet of spheres, we
see easily that f induces a Ab<∞–isomorphism of homotopy groups in dimension
less than 2k− 1, and a Ab<∞–surjection in dimension 2k− 1. Therefore, by the
generalized Whitehead theorem [Spa81, pp. 512], it follows that f also induces a
Ab<∞–isomorphism of homology groups in dimensions less than 2k − 1. Thus,

211



Chapter 18: Thom Spaces and Transitivity

since the Theorem is true for the bouquet of spheres, it must also be true for
X.

Alternative Proof. The corresponding statement for cohomotopy groups and co-
homology groups is proved in [Ser53], hence the present Theorem follows by
Spanier-Whitehead duality [SW55].

Corollary 18.4. If Th is the Thom space of an oriented k–plane bundle over
the finite complex B, then there is a Ab<∞–isomorphism

πn+k(T ) −→ Hn(B;Z)

for all dimensions n < k − 1.

Proof. This follows immediately from Lemma 18.2 and 18.3.

Now we must show how to apply this corollary to the computation of cobor-
dism groups.

18.3 Regular Values and Transversality

Let M and N be smooth manifolds of dimensions m and n respectively, and
let f : M −→ N be a smooth map. A point y ∈ N is called a regular value
of f , or equivalently the map f is said to be transverse to y, if for each point
x ∈ f−1(y) the induced map

(df)x : TxM −→ TyN

of tangent spaces is surjective. [More generally, we say that f has y as regular
value throughout some subset X ⊂ M if this condition is satisfied for every
x ∈ f−1(y) ∩X.] If M is compact, note that the set of regular value is an open
subset of N .

Of course if the dimension m is less than n, then the condition can only be
satisfied vacuously: the point y ∈ N is a regular value of f if and only if f−1(y)

is vacuous. However, if m ≥ n, then the set f−1(y) may well be non–vacuous.
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If y is a regular value, note that the inverse image f−1(y) is a (possi-
bly vacuous) smooth manifold of dimension m−n. This statement follows
easily from the Implicit Function Theorem. See for example [Gra57, p. 138].

The following extremely useful theorem is due to Arthur B. Brown and (in a
sharper version) to Arthur Sand.

Theorem (Brown). Let f : W −→ Rn be a smooth (i.e., infinitely differentiable)
mapping, where W is an open subset of Rm. Then the set of regular values of f
is everywhere dense in Rn.

Proofs may be found, for example, in [New67], [Sar42],[Ste99] and [MW97].

It follows easily that for any smooth map f : M −→ N , assuming only that
there is a countable basis for the topology of M , the set of regular values is a
countable intersection of dense open sets, and hence is everywhere dense in N .

Now suppose that we are given a smooth submanifold Y ⊂ N of dimension
n − k. A smooth map f : M −→ N is said to be transverse to Y , if for every
x ∈ f−1(Y ) the composition

TxM
(df)x−−−→ TyN −→ (TyN)/(TyY )

from the tangent space at x to the normal space at f(x) = y is surjective. [More
generally, if f is tranverse to Y throughout some subset of X of M if this
condition is satisfied for every x ∈ X ∩ f−1(Y ).]

If f is transverse to Y , then using the Implicit Function Theo-
rem one verifies that the inverse image f−1(Y ) is a (possibly vacuous)
smooth manifold of dimension m− k.

If νk is the normal bundle of Y in N , then it is not difficult to show that
the bundle over f−1(Y ) induced from νk by f can be identified with the normal
bundle of f−1(Y ) in M . In particular, if νk is an oriented vector bundle,
and if M is an oriented manifold, then it follows that f−1(Y ) is an
oriented manifold.

In order to actually construct such transversal mappings, we proceed in two
steps, starting with the theorem of Brown and Sard. Consider again an open set
W ⊂ Rm and consider a smooth map f : W −→ Rk. Suppose that f has the
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origin as a regular value throughout some relatively closed subset X ⊂ W . Let
K be a compact subset of W .

Lemma 18.5. There exists a smooth map g : W −→ Rk which coincides with f

outside of a compact set, and which has the origin as a regular value throughout
X ∪ K. In fact, given ε > 0, we can choose g uniformly close to f so that
|f(x)− g(x)| < ε for all x.

Proof. Using a smooth partition of unity, construct a smooth map λ : W −→
[0, 1] which takes the value 1 on a neighborhood of K and vanishes outside of a
larger compact set K ′ ⊂W . If y is any regular value of f , with |y| < ε, then the
function g defined by

g(x) = f(x)− λ(x)y

will certainly:

(a) have 0 as a regular value throughout K,

(b) coincide with f outside K ′, and

(c) satisfy |g(x)− f(x)| < ε.

In fact, by Brown’s theorem, y can be chosen arbitrarily close to the origin
0. If y is chosen sufficiently close to 0, we claim that g also has 0 as regular
value throughout the intersection K ′ ∩X. For by choosing |y| small, we not only
guarantee that g will be uniformly close to f , but also that the partial derivatives
∂gi/∂xj will be uniformly close to the derivatives ∂fi/∂xj . Therefore, since f has
0 as regular value throughout the compact set K ′ ∩X, it will follow easily that
g also has 0 as regular value throughout K ′ ∩X. (See Problem 18-A.) Together
with (a) and (b) this implies that g has 0 as regular value throughout the union
X ∪K, as required.

Now let ξ be a smooth oriented k–plane bundle. The base space B of ξ is
smoothly embedded as the zero cross–section in the total space E(ξ), and hence
in the Thom space Th = Th(ξ).

Given any continuous map f from the sphere Sm to the Thom space Th,
we would like to first approximate f by a “smooth” map. This does not quite
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make sense, since Th is not a manifold. However Th−t0, the complement of
the base point, certainly does have the structure of a smooth manifold, and it is
not difficult to approximate f by a homotopic map f0 which coincides with f on
f−1(t0) = f−1

0 (t0) and is smooth throughout the complement f−1
0 (Th−t0). The

necessary techniques are described, for example, in [Ste51, §6.7].

Theorem 18.6. Every continuous map f : Sm −→ Th(ξ) is homotopic to a
map g which is smooth throughout g−1(Th−t0), and is transverse to the zero
cross–section B. The oriented cobordism class of the resulting smooth (m− k)–
dimensional manifold g−1(B) depends only on the homotopy class of g. Hence
the correspondence

g 7→ g−1(B)

gives rise to a homomorphism from the homotopy group πm(Th, t0) to the ori-
ented cobordism group Ωm−k.

Proof. As noted above, we can first approximate f by a map f0 which is smooth
throughout f−1

0 (Th−t0). Choose a covering of the compact set f−1
0 (B) by open

subsets W1, . . . ,Wr of f−1(Th−t0) which are small enough so that each image

f0(Wi) ⊂ Th−t0 ⊂ E(ξ)

is contained in some product coordinate patch

π−1(Ui) ∼= Ui × Rk

for the vector bundle ξ. Here Ui denotes an open subset of B which is small
enough so that the bundle ξ

∣∣
Ui

is trivial.
Choose compact sets Ki ⊂ Wi so that f−1

0 (B) is contained in the interior of
K1 ∪ . . . ∪ Kr. Then we will modify f0 within one open set Wi after another,
constructing mapping f1, f2, . . . , fr satisfying following three conditions.

(1) Each fi is smooth throughout f−1
i (Th−t0) = f−1

0 (Th−t0), and coinciding
with fi−1 outside of a compact subset of Wi.

(2) Each fi is transverse to B throughout the set K1 ∪K2 ∪ . . . ∪Ki.
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(3) The projection π(fi(x)) ∈ B is equal to π(f0(x)) for all x ∈ f−1
0 (Th−t0).

Furthermore we will choose each fi “close” to fi−1 in a sense to be made
precise later. To begin the construction, we assume inductively that a map fi−1

has been chosen so as to satisfy (1), (2) and (3). It follows from Condition (3)
that fi−1 must map the open set Wi into the product coordinate patch π−1(U).
Using the product structure

π−1(Ui) ∼= Ui × Rk,

let ρi : π
−1(Ui) −→ Rk be the projection map to the second factor. We want to

choose a new map x 7→ fi(x) for x ∈Wi. The first coordinate π(fi(x)) is already
determined by (3), so we need only choose the second coordinate ρi(fi(x)).

Since fi−1 satisfies Condition (2), it follows easily that the composition
x 7→ ρi(fi−1(x)) has the origin of Rk as a regular value throughout the relatively
closed subset (K1 ∪ . . . ∪ Ki−1) ∩ Wi of Wi. Hence, by Lemma 18.5, we can
approximate this composition by a map from Wi to Rk which

(a) agrees with ρi ◦ fi−1 outside of a compact subset of Wi, and

(b) has the origin as regular value throughout (K1 ∪ . . . ∪Ki) ∩Wi.

Taking this approximating map to be ρi ◦ fi, we have evidently, in view of
Conditions (1) and (3), defined fi(x) for all x. Furthermore, it is clear that this
new map fi will satisfy Condition (2).

Thus, proceeding by induction, we can construct maps f1, f2, . . . , fr, all sat-
isfying the Conditions (1), (2), (3). Let g = fr. Clearly g is transverse to B

throughout the compact set K1 ∪ . . . ∪Kr. If we can guarantee that the entire
inverse image g−1(B) is contained in K1 ∪ . . . ∪Kr, then we will be sure that g

is transverse to B everywhere, as required.
For each t ∈ Th−t0 ∼= E − A let 0 ≤ |t| < 1 denote the Euclidean norm, so

that |t| = 0 if and only if t ∈ B. It is convenient to set |t0| = 1. Since K1∪. . .∪Kr

is a neighborhood of f−1
0 (B) in the compact space Sm, there exists a constant

c > 0 so that
|f0(x)| ≥ c
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for all x ̸∈ K1 ∪ . . . ∪Kr. Suppose that each fi is chosen so close to fi−1 that

|fi(x)− fi−1(x)| < c/r

for all x. Then evidently
|g(x)− f0(x)| < c.

Therefore |g(x)| ̸= 0 for x ̸∈ K1 ∪ . . . ∪Kr, and the entire inverse image g−1(B)

must be contained in K1 ∪ . . . ∪Kr. Hence g is transverse to B everywhere, and
the inverse image g−1(B) is a smooth, compact, oriented (m − k)–dimensional
manifold. This proves the first part of 18.6.

Next consider two homotopic maps g and g′ from Sm to Th, both being
smooth on the inverse image of Th−t0 and both being transverse to B. Then it
is not difficult to construct a homotopy

h0 : Sm × [0, 1] −→ Th

which is smooth throughout h−1
0 (Th−t0), and which satisfies

h0(x, t) = g(x) for t ∈ [0, 1],

h0(x, t) = g′(x) for t ∈ [2, 3].

Proceeding as above, we can then construct a new map h : Sm × [0, 3] −→ Th

which coincides with h0 except on a compact subset of Sm × (0, 3), and which
is transverse to B. The construction is inductive, making sure each stage that
transversality throughout the set Sm× [0, 1]∪Sm× [2, 3] is not lost. The inverse
image h−1(B) under this new homotopy will then provide the required oriented
cobordism between g−1(B) and g′

−1
(B). Thus the oriented cobordism class

of g−1(B) depends only on the homotopy class of B.

Since the composition operations in the homotopy group πm(Th, t0) clearly
corresponds to the disjoint union operation for the manifolds g−1(B), it follows
that this correspondence g 7→ g−1(B) gives rise to a well defined homomorphism
from πm(Th, t0) to the cobordism group Ωm−k.
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18.4 The Main Theorem

In place of the smooth oriented k–plane bundle of Theorem 18.6, let us sub-
stitute the universal oriented k–plane bundle γ̃k over G̃rk(R∞). The following
result lies at the heart of Thom’s theory.

Theorem (Thom). For k > n + 1 the homotopy group πn+k(Th(γ̃
k), t0) of the

universal Thom space is canonically isomorphic to the oriented cobordism group
Ωn. Similarly the homotopy group πn+k(Th(γ

k), t0) associated with the unori-
ented universal bundle is canonically isomorphic to the unoriented cobordism
group Nn.

Remark. Thom uses the notations MSO(k) and MO(k) for these two universal
Thom spaces. These correspond to the standard notations BSO(k) and BO(k)

for the associated universal base spaces.

To simplify our discussion, we will not prove all of Thom’s theorem, but only
the following partial statement. Let γ̃k

p = γ̃k(Rk+p) be the bundle of oriented
k–planes in (k + p)–space.

Lemma 18.7. If k ≥ n and p ≥ n, then the homomorphism

πn+k(Th(γ̃
k
p)) −→ Ωn

of Theorem 18.6 is surjective.

Proof. Let Mn be an arbitrary smooth, compact, oriented n–dimensional man-
ifold. Then, by a theorem of [Whi44], Mn can be embedded in the Euclidean
space Rn+k. Proceeding as in Theorem 11.1, we can choose a neighborhood U

of Mn in Rn+k which is diffeomorphic to the total space E(νk) of the normal
bundle. Using the Gauss map, we have

U ∼= E(νk) −→ E(γ̃k
n) ⊂ E(γ̃k

p),

and composing with the canonical map E(γ̃k
p) −→ Th(γ̃k

p), we obtain a map
g : U −→ Th(γ̃k

p) which is transverse to the zero cross–section B, and satisfies
g−1(B) = Mn.

218



Section 18.4: The Main Theorem

Now extend g to the one–point compactification Rn+k ∪ {∞} ∼= Sn+k by
mapping Sn+k −U to the base point t0. The resulting map ĝ : Sn+k −→ Th(γ̃k

p)

clearly gives rise, under the construction of Theorem 18.6, to the cobordism class
of Mn.

We are now ready to prove our main result.

Theorem 18.8 (Thom). The oriented cobordism group Ωn is finite for n ̸≡ 0

(mod 4), and is a finitely generated group with rank equal to p(r), the number
of partitions of r, when n = 4r.

Proof. By Lemma 18.7 the group Ωn is a homomorphic image of πn+k(Th(γ̃
k
p))

for k and p large, and by Corollary 18.4 this latter group is Ab<∞–isomorphic to
Hn(G̃rk(Rk+p);Z). But using Theorem 15.9, the group Hn(G̃rk(Rk+p);Z) is finite
for n ̸≡ 0 (mod 4), and is finitely generated of rank p(r) for n = 4r. Therefore
Ωn is finite for n ̸≡ 0 (mod 4), and Ω4r is finitely generated with

rank(Ω4r) ≤ p(r).

Since rank(Ω4r) ≥ p(r) by Corollary 17.5, the conclusion follows.

If we kill torsion by tensoring the cobordism ring Ω∗ with the rational numbers
Q, then evidently the products

P2i1(C)× . . .× P2ir (C),

where i1, . . . , ir ranges over all partitions of k, will be linearly independent, and
hence will form a basis for the vector space Ω4k ⊗Q. (Compare Corollary 17.5.)
This proves the following.

Corollary 18.9. The tensor product Ω∗⊗Q is a polynomial algebra over Q with
independent generators P2(C), P4(C), P6(C), . . ..

Another immediate consequence is the following.

Corollary 18.10. Let Mn be smooth, compact and oriented. Then some positive
multiple Mn + . . .+Mn is an oriented boundary if and only if every Pontrjagin
number pI [M

n] is zero.
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Proof. For otherwise there would be too many linearly independent elements in
Ωn.

[Wal60] has proved the following much sharper statement. The manifold
Mn itself is an oriented boundary if and only if all Pontrjagin numbers
and all Stiefel–Whitney numbers of Mn are zero. Thus the cobordism
group Ωn is always the direct sum of a number of copies of Z/2 and (if n ≡ 0

mod 4) a number of copies of Z.
We conclude with a problem for the reader.

Problem 18-A. As in the proof of Lemma 18.5, suppose that f has the origin
as regular value throughout a compact set K ′′ ⊂W ⊂ Rm. If g is uniformly close
to f and the derivatives ∂gi/∂xj are uniformly close to the ∂fi/∂xj , show that g
has the origin as regular value throughout K ′′.
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19. Multiplicative Sequences and the

Signature Theorem

The material in this chapter is due to [Hir66].

Let Λ be a fixed commutative ring with unit (usually the ring of rational
numbers). The symbol

A∗ = (A0, A1, A2, · · · )

will stand for a graded Λ-algebra with unit which is commutative in the classical
sense (xy = yx regardless of the degrees of x and y). In the main application,
An will be the cohomology group H4n(B; Λ).

To each such A∗ we associate the commutative ring AΠ consisting of all formal
sums a0 + a1 + a2 + · · · with ai ∈ Ai. (Compare p. 46) We will be particularly
interested in the group consisting of all elements of the form

a = 1 + a1 + a2 + · · ·

in AΠ. The product of two such units is evidently given by the formula

(1 + a1 + a2 + · · · )(1 + b1 + b2 + · · · ) = 1 + (a1 + b1) + (a2 + a1b1 + b2) + · · ·

Now consider a sequence of polynomials

K1(x1),K2(x1, x2),K3(x1, x2, x3), · · ·
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with coefficients in Λ such that, if the variable xi is the assigned degree i, then

each Kn(x1, · · · , xn) is homogeneous of degree n. (19.1)

Given AΠ as above, and an element a ∈ AΠ with leading term 1, define a new
element K(a) ∈ AΠ, also with leading term 1, by the formula

K(a) = 1 +K1(a1) +K2(a1, a2) + · · ·

Definition. The Kn form a multiplicative sequence of polynomials if the
identity

K(ab) = K(a)K(b) (19.2)

is satisfied for all such Λ-algebras A∗ and for all a, b ∈ AΠ with leading term 1.

Example 1. Given any constant λ ∈ Λ the polynomials

Kn(x1, · · · , xn) = λnxn

form a multiplicative sequence, with

K(1 + a1 + a2 + · · · ) = 1 + λa1 + λ2a2 + · · · .

The cases λ = 1 (so that K(a) = a) and λ = −1 (compare Lemma 14.9) are of
particular interest.

Example 2. The identity K(a) = a−1 defines a multiplicative sequence with

K1(x1) = − x1

K2(x1, x2) = x2
1 − x2

K3(x1, x2, x3) = − x3
1 + 2x1x2 − x3

K4(x1, x2, x3, x4) = x4
1 − 3x2

1x2 + 2x1x3 − x2
2 − x4

and in general

Kn =
∑

i1+2i2+···+nin=n

(i1 + · · ·+ in)!

i1! · · · in!
(−x1)

i1 · · · (−xn)
in
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These polynomials can be used to describe the relations between the Pontrjagin
classes (or the Chern classes, or the Stiefel-Whitney classes) of two vector bundles
with trivial Whitney sum. Compare 4.1.

Example 3. The polynomials K2n+1 = 0 and

K2n(x1, · · · , x2n) = x2
n − 2xn−1xn+1 + · · · ∓ 2x1x2n−1 ± 2xn

form a multiplicative sequence which can be used to describe the relationship
between the Chern classes of a complex vector bundle ω and the Pontrjagin
classes of the underlying real bundle ωR. Compare Corollary 15.5.

The following theorem gives a simple classification of all possible multiplica-
tive sequences. Let A∗ be the graded polynomial ring Λ[t] where t is an indeter-
minate of degree 1. Then an element of AΠ with leading term 1 can be thought
of as a formal power series

f(t) = 1 + λ1t+ λ2t
2 + λ3t

3 + · · ·

with coefficients in Λ. In particular 1 + t is such an element.

Lemma 19.1 (Hirzebruch). Given a formal power series f(t) = 1+λ1t+λ2t
2+· · ·

with coefficients in Λ, there is one and only one multiplicative sequence {Kn} with
coefficients in Λ satisfying the condition

K(1 + t) = f(t),

or equivalently satisfying the condition that the coefficient of xn
1 in each polyno-

mial Kn(x1, · · · , xn) is equal to λn.

Definition. {Kn} is called the multiplicative sequence belonging to the power
series f(t).

Example. The three multiplicative sequneces mentioned above belong to the
power series 1 + λt, 1− t+ t2 − t3 + · · · , and 1 + t2 respectively.

Remark. If the multiplicative sequence {Kn} belongs to the power series f(t),
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then for any A∗ and any a1 ∈ A1 the identity

K(1 + a1) = f(a1)

is satisfied. Of course this identity would no longer be true if something of degree
̸= 1 were substituted in place of a1.

Proof of uniqueness. Choosing any positive integer n, let A∗ be the polynomial
ring Λ[t1, · · · , tn] where the ti are algebraically independent of degree 1, and let

σ = (1 + t1) · · · (1 + tn) ∈ AΠ

Then
K(σ) = K(1 + t1) · · ·K(1 + tn) = f(t1) · · · f(tn).

Taking the homogeneous part of degree n, it follows that Kn(σ1, · · · , σn) is com-
pletely determined by the power series f(t). Since the elementary symmetric
functions σ1, · · · , σn are algebraically independent, this proves the uniqueness of
each Kn.

Proof of existence. For any partition I = i1, · · · , ir of n, it will be convenient to
use the abbreviation λI for the product λi1 · · ·λir . With this convention, let us
define the polynomial Kn by the formula

Kn(σ1, σ2, · · · , σn)
∑

λIsI(σ1, · · · , σn),

to be summed over all partitions I of n. Here sI stands for the polynomial of
Lemma 16.1, with sI(σ1, · · · , σn) =

∑
ti11 · · · tirr .

Just as in Lemma 16.2, we have the identity

sI(ab) =
∑

HJ=I

sH(a)sJ(b),

to be summed over all partitions H and J with juxtaposition HJ equal to I.
Therefore

K(ab) =
∑
I

λIsI(ab)
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is equal to ∑
I

λI

∑
HJ=I

sH(a)sJ(b) =
∑
H,J

λHsH(a)λjsJ(b)

Evidently this equals K(a)K(b) as required.

Now consider some multiplicative sequence of polynomials {Kn(x1, · · · , xn)}
with rational coefficients. Let Mm be a smooth, compact, oriented m-dimensional
manifold.

Definition. The K-genus K[Mm] is zero if the dimension m is not divisible by
4, and is equal to the rational number

Kn[M
4n] = ⟨Kn(p1, · · · ,pn), µ4n⟩

if m = 4n, where pi denotes the i-th Pontrjagin class of the tangent bundle.
Thus K[Mm] is a certain rational linear combination of the Pontrjagin numbers
of Mm.

Lemma 19.2. For any multiplicative sequence {Kn}, with rational coefficients,
the correspondence M 7→ K[M ] defines a ring homomorphism from the cobordism
ring Ω∗ to the rational numbers Q.

Equivalently, this correspoondence gives rise to an algebra homomorphism
from Ω∗ ⊗Q to Q.

Proof. It is clear that the correspondence is additive, and that the K-genus of a
boundary is zero. For a product manifold M ×M ′, with total Pontrjagin class
congruent to p×p′ modulo elements of order 2, we have
K(p×p′) = K(p)×K(p′), hence

⟨K(p×p′), µ× µ′⟩ = (−1)mm′
⟨K(p), µ⟩⟨K(p′), µ′⟩.

Since the sign in this formula is certainly +1 when the dimensions m,m′ are
divisible by 4, this proves that

K[M ×M ′] = K[M ]K[M ′]
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as required.

We will use this construction to compute an important homotopy type invari-
ant of M .

Definition. The signature σ of a compact, oriented manifold Mm is defined to
be zero if the dimension is not a multiple of 4, and as follows for m = 4k. Choose
a basis a1, · · · , ar for H2k(M4k;Q) so that the symmetric matrix

[⟨ai ⌣ aj , µ⟩]

is diagonal. Then σ(M4k) is the number of positive diagonal entries minus the
number of negative ones. (In other words σ is the signature of the rational
quadratic form a 7→ ⟨a ⌣ a, µ⟩.)

Alternatively, this number σ is often called the “index” of M , particularly in
older literature.

Lemma 19.3 (Thom). The signature function has the following three properties:

1. σ(M +M ′) = σ(M) + σ(M ′),

2. σ(M ×M ′) = σ(M)σ(M ′),

3. if M is an oriented boundary, then σ(M) = 0.

In fact, Assertion (1) is trivial, (2) can be proved using the Künneth isomor-
phism H∗(M×M ′;Q) ∼= H∗(M ;Q)⊗H∗(M ′;Q), and (3) can be proved using the
Poincaré duality theorem for manifolds with boundary. Details may be found in
[Hir66, §8], or in [Sto68, pp. 220-222]. ■

It follows immediately from properties (1) and (3) that the signature of a
manifold can be expressed as a linear function of its Pontrjagin numbers. More
precisely, according to Hirzebruch, one has the following.

Theorem 19.4 (Signature Theorem). Let {Lk(p1, · · · ,pk)} be the multiplicative
sequence of polynomials belonging to the power series

√
t

tanh
√
t
= 1 +

1

3
t− 1

45
t2 + · · ·+ (−1)k−122kBkt

k

(2k)!
· · ·
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Then the signature σ(M4k) of any smooth compact oriented manifold M4k is
equal to the L-genus L[M4k].

Here Bk denotes the k-th Bernoulli number (compare Appendix B), with

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, · · · .

The first four L-polynomials are

L1 =
1

3
p1

L2 =
1

45
(7 p2−p21)

L3 =
1

945
(62 p3−13 p2 p1 +2p31)

L4 =
1

14175
(381 p4−71 p3 p1−19 p22 +22p2 p

2
1−3 p41).

Proof of the Signature Theorem. Since the correspondences M 7→ σ(M) and
M 7→ L[M ] both give rise to algebra homomorphisms from Ω∗⊗Q to Q, it suffices
to check this theorem on a set of generators for the algebra Ω∗ ⊗ Q. According
to Corollary 18.9, the complex projective space P2k(C) provide such a set of
generators.

To compute the signature of P2k(C), we need only note that H2k(P2k(C);Q)

is generated by a single element ak with

⟨ak ⌣ ak, µ⟩ = 1.

(Compare Theorem 14.4 and 14.10.) Hence the signature σ(P2k(C)) is +1.

To compute Lk[P2k(C)], we recall from example 15.6 that the tangential Pon-
trjagin class p of P2k(C) is equal to (1+a2)2k+1. Since the multiplicative sequence
{Lk} belongs to the power series f(t) =

√
t/ tanh

√
t, it follows that

L(1 + a2 + 0 + · · · ) =
√
a2

tanh
√
a2

,
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and hence that

L(p) =

(
a

tanh a

)2k+1

.

Thus the L-genus ⟨L(p), µ⟩ is equal to the coefficient of a2k in this power series.

Replacing a by the complex variable z, the coefficient of z2k in the Taylor
expansion of (z/ tanh z)2k+1 can be computed by dividing by 2πiz2k+1 and then
integrating around the origin. In fact the substitution u = tanh z, with

dz =
du

1− u2
= (1 + u2 + u4 + · · · )du,

shows that

1

2πi

∮
dz

(tanh z)2k+1
=

1

2πi

∮
(1 + u2 + u4 + · · · )

u2k+1
du

is equal to +1. Hence L[P2k(C)] is equal to +1 = σ(P2k(C)), and it follows that
L[M ] = σ(M) for all M .

A more direct proof of the signature theorem has been given by [AS68, §6],
as an application of the “Atiyah-Singer Index Theorem” for elliptic differential
operators.

Corollary 19.5. The L-genus of any manifold is an integer.

For the signature σ is always an integer. ■

It follows, for example, that the Pontrjagin number p1[M
4] is divisble by 3,

and the number 7 p2[M
8]− p21[M

8] is divisible by 45.

Corollary 19.6. The L-genus L[M ] depends only on the oriented homotopy
type of M .

For σ(M) is clearly invariant under any orientation preserving homotopy
equivalence. ■

According to [Kah72], the L-genus and its rational multiples are the only
rational linear combinations of Pontrjagin numbers which are oriented homotopy
type invariants.
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19.1 Multiplicative Characteristic Classes

For the remainder of this section we will very briefly describe another appli-
cation of multiplicative sequences. Let Λ be an integral domain containing 1/2,
and let {Kn} be a multiplicative sequence with coefficients in Λ. Setting

kn(ξ) = Kn(p1(ξ), . . . ,pn(ξ))

for any real vector bundle ξ, we clearly obtain a sequence of “characteristic classes”

kn(ξ) ∈ H4n(B; Λ)

which are natural with respect to bundle maps, and satisfy the product formula

kn(ξ ⊕ η) =
∑

i+j=n

ki(ξ)kj(η).

Here it is understood that k0(ξ) = 1. [Setting k(ξ) =
∑

ki(ξ), we can of course
write this product formula briefly as k(ξ ⊕ η) = k(ξ)k(η).]

Conversely, given a sequence of characteristic classes kn(ξ) satisfying these
properties, it is not difficult to show that kn(ξ) = Kn(p1(ξ), . . . ,pn(ξ)) for some
uniquely defined multiplicative sequence {Kn}. (Compare Theorem 15.9 and
Problem 15-B.) It does not matter whether or not the bundles ξ are required to
be oriented or orientable.

The precise multiplicative sequence corresponding to a sequence {kn(ξ)} of
characteristic classes can be identified as follows. Let γ1 be the canonical complex
line bundle over P∞(C), and recall that

p1(γ
1
R) = a2 ∈ H4(P∞(C);Z).

( Compare Theorem 14.4, Theorem 14.10 and Corollary 15.5.) Defining a formal
power series f(t) by setting f(a2) equal to k(γ1

R) =
∑

kn(γ
1
R), it clearly follows

that {Kn} is the multiplicative sequence belonging to this power series f(t).

To illustrate these ideas, let us consider the case Λ = Z/l where l is a fixed
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odd prime. Let
Pk : Hi(X;Z/l) −→ Hi+4rk(X;Z/l)

denote the Steenrod reduced l–th power operation, where r = 1
2 (l−1). (Compare

[SE62].) Following [Wu48], and in analogy with Thom’s definition of Stiefel–
Whitney classes (§8), we define a new characteristic class

qn(ξ) ∈ H4rn(B;Z/l)

by the identity qn(ξ) = ϕ−1Pnϕ(1) for any oriented vector bundle ξ. Just as in
§8, it is easy to check that the qn are natural, and satisfy a product formula.
Hence

qn(ξ) = Krn(p1(ξ), . . . ,prn(ξ))

for some uniquely determined multiplicative sequence {Kn} with mod l coeffi-
cients.

To identify this multiplicative sequence, we need only consider the particular
vector bundle ξ = γ1

R over the infinite complex projective space P∞(C). The
space E0 of non–zero vectors in E = E(γ1

R) has the homology of a point. Hence
there are natural ring isomorphisms

H∗(E,E0) ∼= H∗(E,point) ∼= H∗(P∞(C), point).

The fundamental cohomology class u ∈ H2(E,E0) corresponds to the class

e(γ1
R) = c1(γ

1) = −a ∈ H2(P2(C)).

(See Theorem 14.10.) Therefore the element P1(u) = ul (see [SE62, p. 76])
corresponds to (−a)l, and it follows that

q1(γ
1
R) = (−a)l−1 = a2r.

Since the higher Pk(u) are zero for dimensional reasons, this shows that the
formal power series f(a2) =

∑
qk(γ

1
R) is equal to 1 + a2r, which proves the

following.
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Theorem 19.7 (Wu). If l = 2r+1 is an odd prime, then the mod l characteristic
class

qn(ξ) = ϕ−1Pnϕ(1)

is equal to Krn(p1(ξ), . . . ,prn(ξ)) where {Ki} is the multiplicative sequence be-
longing to the power series f(t) = 1 + tr.

As examples, for l = 3 it follows that qn(ξ) is equal to the Pontrjagin
class pn(ξ) reduced modulo 3, and for l = 5 it follows that qn(ξ) is equal to
p2n−2 pn−1 pn+1 +− . . .± 2 p2n reduced modulo 5.

Just as in the mod 2 case, it can be shown that qi(τn), for the tangent bundle
τn of a compact oriented manifold, is a homotopy type invariant. (Compare
Theorem 11.14.) In fact

qi = vi + P1vi−1 + P2vi−2 + . . .

where the Wu class vi is characterized by the identity

⟨Pix, µ⟩ = ⟨x ⌣ vi, µ⟩

for all x ∈ Hn−4ri(Mn;Z/l). In particular, it follows that Pontrjagin classes
modulo 3 are homotopy type invariants. Proofs will be left to the reader.

These characteristic classes qi(ξ) generalize to play an important rule in the
theory of fibrations with a homotopy sphere as fiber. Compare [Mil68], [Sta68],
[May06].

We conclude with three problems for the reader, all taken from [Hir53].

Problem 19-A. Let {Tn} be the multiplicative sequence of polynomials be-
longing to the power series f(t) = t/(1 − e−t). Then the Todd genus T [M ]

of a complex n–dimensional manifold is defined to be the characteristic number
⟨Tn(c1, . . . , cn), µ2n⟩. Prove that T [Pn(C)] = +1, and prove that {Tn} is the only
multiplicative sequence with this property.

Problem 19-B. If {Kn} is the multiplicative sequence belonging to
f(t) = 1 + λ1t + λ2t

2 + . . ., let us indicate the dependence on the coefficients
λi by setting Kn(x1, . . . , xn) = kn(λ1, . . . , λn, x1, . . . , xn) where kn is a polyno-
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mial with integer coefficients. By considering the case where λ1, . . . , λn are the
elementary symmetric functions in n indeterminates, prove the symmetry prop-
erty kn(x1, . . . , xn, λ1, . . . , λn) = kn(λ1, . . . , λn, x1, . . . , xn). In particular, prove
that the coefficient of xi1 . . . xir in the polynomial Kn(x1, . . . , xn) is equal to
si1,...,ir (λ1, . . . , λn).

Problem 19-C. Using Cauchy’s identity

f(t)
d(t/f(t))

dt
= 1− t

d log f(t)

dt
= 1 +

∑
(−1)jsj(λ1, . . . , λj)t

j ,

prove that the coefficient of pn in the L–polynomial Ln(p1, . . . ,pn) is equal to
22k(22k−1 − 1)Bk/(2k)! ̸= 0. (Compare Appendix B.)
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20. Combinatorial Pontrjagin Classes

For any triangulated manifold Mn, [Tho58] has defined classes ℓi ∈ H4i(Mn;Q)

which are combinatorial (i.e., piecewise linear) invariants. (See also [V A57].) In
the case of a smooth manifold, suitably triangulated, these coincide with the
Hirzebruch classes Li(p1, . . . ,pi) of the tangent bundle τn.

Now recall (Problem 19-C) that the coefficient of pi in the polynomial Li(p1, . . . ,pi)

is non–zero. Hence it follows by induction that the equations ℓi = Li(p1, . . . ,pi)

can be uniquely solved for the Pontrjagin classes pi as polynomial functions of
ℓ1, . . . , ℓi. For example

p1 = 3ℓ1,

p2 =
45ℓ2 + 9ℓ21

7
,

and so on. Thus it follows that the rational Pontrjagin classes
pi(τ

n) ∈ H4i(Mn;Q) are piecewise linear invariants. This section contains
an exposition of these results.

In 1965 [Nov66] proved the much sharper statement that rational Pontrjagin
classes are topological invariants. (Compare the Epilogue) We will not try to
discuss this sharper theorem.

20.1 The Differentiable Case

In order to motivate the combinatorial definition, we will first give a new in-
terpretation for the classes Li(p1, . . . , pi) of a smooth n–manifold. The restriction
4i < (n− 1)/2 will be needed at first.
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Chapter 20: Combinatorial Pontrjagin Classes

Let Mn be a smooth, compact n–dimensional manifold, and let
f : Mn −→ Sn−4i be a smooth (i.e., infinitely differentiable) map.

Lemma 20.1. There exists a dense open subset of Sn−4i consisting of points
y such that the inverse image f−1(y) is a smooth 4i–dimensional manifold with
trivial normal bundle in Mn.

Proof. By the theorem of Brown and Sard (Section 18), the set of regular values
of f is everywhere dense in Sn−4i. This set is open since it is the complement
of the continuous image of a compact subset of Mn. For every regular value y,
the inverse image f−1(y) is smooth, compact, and has normal bundle which is
trivial, since it is induced from the normal bundle of y in Sn−4i.

Now suppose that Mn is an oriented manifold. Then the orientations of
Mn and Sn−4i determines an orientation for f−1(y), using the Whitney sum
decomposition τ4i(f−1(y))⊕ νn−4i = τn

∣∣
f−1(y)

.
Let u and µn denote the standard generators of Hk(Sk;Z) and Hn(Mn;Z)

respectively, and let τn denote the tangent bundle of Mn. The class
Li(p1(τ

n), . . . , pi(τ
n)) ∈ H4i(Mn;Q) will be briefly written as Li(τ

n).

Lemma 20.2. For every smooth map f : Mn −→ Sn−4i and every regular value
y, the Kronecker index

⟨Li(τ
n) ⌣ f∗(u), µn⟩

is equal to the signature σ of the manifold M4i = f−1(y). In the case
4i < (n− 1)/2, the class Li(τ

n) is completely characterized by these identities.

Proof. Let τ4i be the tangent bundle of M4i, and j : M4i −→ Mn the inclusion
map. Then j is covered by a bundle map τ4i ⊕ νn−4i −→ τn. Since the normal
bundle νn−4i is trivial, this means that Li(τ

4i) is equal to j∗Li(τ
n). Hence the

signature
σ(M4i) = ⟨Li(τ

4i), µ4i⟩ = ⟨j∗Li(τ
n), µ4i⟩

is equal to ⟨Li(τ
n), j∗(µ4i)⟩.

Now consider the cohomology class f∗(u) ∈ Hn−4i(Mn;Z). Using the com-
mutative diagram
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Hn−4i(Sn−4i, Sn−4i − y) Hn−4i(Sn−4i)

Hn−4i(Mn,Mn −M4i) Hn−4i(Mn)

∼=

we see easily that f∗(u) can be identified with the “dual cohomology class” (p.
127) to the submanifold M4i ⊂Mn.

We will make use of the Poincaré duality isomorphism a 7→ a ∩ µn from
Hn−4i(Mn) to H4i(M

n), defined by means of the cap product operation. (See
Appendix A.10.) According to Problem 11-C, this isomorphism maps the dual
cohomology class f∗(u) to the homology class j∗(µ4i). Hence the signature
⟨Li(τ

n), j∗(µ4i)⟩ is equal to

⟨Li(τ
n), f∗(u) ∩ µn⟩ = ⟨Li(τ

n) ⌣ f∗(u), µn⟩.

This proves the first half of Lemma 20.2.
To prove the second half, we will make use of a theorem of [Ser53, p. 289]

concerning the Borsuk–Spanier cohomology groups. If n < 2k − 1, then the set
of all homotopy classes of maps f : Mn −→ Sk forms an abelian group, denoted
by πk(Mn) and called the k–th cohomotopy group of Mn. Serre shows that
the correspondence f 7→ f∗(u) induces a Ab<∞–isomorphism

πk(Mn) −→ Hk(Mn;Z).

(Compare §18.2. This result is the Spanier–Whitehead dual of Theorem 18.3.)
In particular, the images f∗(u) generate a subgroup of finite index in Hk(Mn;Z).
Now substitute k = n− 4i, so that the dimensional restriction n < 2k − 1 takes
the form 4i < (n− 1)/2. If this restriction is satisfied, then by Poincaré duality
(Theorem 11.10), the rational cohomology group Li(τ

n) is completely determined
by the set of all Kronecker indices ⟨Li(τ

n) ⌣ f∗(u), µn⟩.

Remark. As a method for computing Li(τ
n), Theorem 20.2 is probably hope-

less. However the statement that ⟨Li(τ
n) ⌣ f∗(u), µn⟩ is an integer for every

(f) ∈ πn−4i(Mn) could conceivably prove useful in computing cohomotopy groups.

235



Chapter 20: Combinatorial Pontrjagin Classes

As an example, for the complex projective space Pm(C), the class L(τ2m) is equal
to (

a

tanh(a)

)m+1

= 1 +
m+ 1

3
a2 +

5m2 + 3m− 2

90
a4 + . . . .

Thus if m ̸≡ 2 (mod 3) it follows that the image of the homomorphism

π2m−4(Pm(C)) −→ H2m−4(Pm(C))

is divisible by 3, while if m ≡ 0 (mod 3) the image of

π2m−8(Pm(C)) −→ H2m−8(Pm(C))

is divisible by 9, and so on.

20.2 The Combinatorial Case

The following will be a convenient class of objects to work with. Let K be a
locally finite simplicial complex.

Definition. K is an n-dimensional rational homology manifold if for each
point x of K the local homology group

Hi(K,K − x;Q)

is zero for i ̸= n and isomorphic to Q for i = n.

This is equivalent to the requirement that the star boundary of every simplex
of K has the rational homology of an (n− 1)-sphere. If K is a compact rational
homology n-manifold, then it is easy to check that each component of K is a
“simple n-circuit.” (See [ES52, p. 106].) In particular, each (n− 1)-simplex of K
is incident to precisely two n-simplexes. Such a complex K is said to be oriented
if it is possible to assign an orientation to each n-simplex so that the sum of all
n-simplexes forms an n-dimensional cycle. By definition, this cycle represents
the fundamental homology class µ ∈ Hn(K;Z).

Such oriented rational homology manifolds satisfy the Ponicaré duality theo-
rem with rational coefficients. See for example [Bor+60].
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Similarly one can define the concept of an n-dimensional homology manifold-
with-boundary. In this case the boundary ∂K is a homology (n − 1)-manifold,
and the orientation determines and is determined by a relative homology class
µ ∈ Hn(K, ∂K;Z).

We recall some standard definitions. Let K be a simplicial complex. By a
(rectilinear) subdivision of K is meant a simplicial complex K ′ together with
a homeomorphism s : K ′ −→ K which is simplexwise linear, i.e., maps each
simplex of K ′ linearly into a simplex of K. A map f : K −→ L between simplicial
complexes is called piecewise linear if there exists a subdivision s : K ′ −→ K

so that the composition f ◦ s is simplexwise linear.

A map K −→ L is said to be simplicial if it is simplexwise linear and maps
each vertex of K to a vertex of L. If K is compact, then given any piecewise linear
map f : K −→ L is said to be simplicial if it is simplexwise linear and maps exch
vertex of K to a vertex of L. If K is compact, then given any piecewise linear
map f : K −→ L it can be shown that there exist subdivisions s : K ′ −→ K and

t : L′ −→ L so that the composition t−1 ◦ f ◦ s : K ′ −→ L′ is simplicial. See for
example [RS12, p. 17].

Let Σr denote the boundary of the standard (r+1)-simplex. Our key lemma
will be the following.

Lemma 20.3. Let Kn be a compact rational homology n-manifold, and let
f : Kn −→ Σr be a piecewise linear map, with n − r = 4i. Then for almost

all y ∈ Σr the inverse image f−1(y) is a compact rational homology 4i-manifold.
Given orientations for Kn and Σr, there is an induced orientation for f−1(y).
Furthermore the signature σ(f−1(y)) of this oriented homology manifold is inde-
pendent of y for almost all y.

Here “almost all y” can be taken to mean “except for y belonging to some
lower dimensional subcomplex.”

It will be convenient to introduce the abbreviated notation of σ(f) for this
common value σ(f−1(y)). [There is perhaps an analogy between this definition
of σ(f) and such classical homotopy invariants as the “degree” and the “Hopf
invariant” of a mapping.]
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Lemma 20.4. The integer σ(f) depends only on the homotopy class of f . Fur-
thermore, if 4i < (n−1)/2 so that the cohomotopy group πr(Kn) is defined, then
the correspondence (f) 7→ σ(f) defines a homomorphism πr(Kn) to Z.

The proof of 20.3 and 20.4 will be based on the following.

Lemma 20.5. If f : K −→ L is a simplicial mapping, and if y belongs to the

interior U of a simplex ∆ of L, then f−1(U) is homeomorphic to U × f−1(y).

The corresponding assertion for the entire closed simplex would of course be
false.

Proof. Let A0, · · · , Ar be the vertices of ∆, and set y = t0A0 + · · ·+ trAr, where
the ti are positive real numbers with sum 1. Evidently any point x ∈ f−1(U) can
be expressed uniquely as a sum

x = s0A
′
0 + · · ·+ srA

′
r

where each A′
i is a boundary point of the smallest simplex of K containing x

and where f(A′
i) = Ai. Note that f(x) = s0A0 + · · · + srAr. The required

homeomorphism f−1(U) −→ U × f−1(y) is now defined by the formula
x 7→ (f(x), t0A

′
0 + · · ·+ trA

′
r).

It follows incidentally that f−1(y) is homeomorphic to f−1(y′) for all y and
y′ in U .

Proof of 20.3. Subdivide Kn and Σr so that f is simplicial. This is possible since
Kn is compact. Assume that y belongs to the interior U of a top dimensional
simplex ∆r of the subdivided Σr. Then by 20.5, U × f−1(y) has the local ratio-
nal homology groups of an n-manifold. Since U has the local homology groups
H∗(U,U \X) of an r-manifold, it follows easily that f−1(y) has the local rational
homology groups of a manifold of dimension n− r = 4i.

This set f−1(y) can be given the structure of a simplicial complex. In fact,
taking further subdivisions, so that y is a vertex of the subdivided Σr, it follows
that f−1(y) is a subcomplex of the correspondingly subdvided Kn.
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Given orientations for U and U × f−1(y), it is not difficult to construct an
induced orientation for f−1(y), using for example the homology cross product op-
eration. Hence the signature σ(f−1(y)) is defined. We noted above that f−1(y′)

is homeomorphic to f−1(y) for all y′ ∈ U . Hence the integer valued function
σ(f−1(y)) is certainly independent of y for y ∈ U .

Suppose that f and g are homotopic piecewise linear maps from Kn to Σr.
Choosing a piecewise linear homotopy

h : Kn × [0, 1] −→ Σr,

then subdividing so that h is simplicial and choosing y ∈ U as above, a simi-
lar argument shows that h−1(y) is a rational homology manifold-with-boundary,
bounded by the disjoint union g−1(y) + (−f−1(y)). Since the signature of a
boundary is zero, this proves that

σ(f−1(y)) = σ(g−1(y))

for almost all y.

Now suppose that we are given two different points y1 and y2 of Σr, each
of which satisfies the condition that the function y 7→ σ(f−1(y)) is constant
throughout a neighborhood of yi. Choosing a piecewise linear homeomorphism
u : Σr −→ Σr, homotopic to the identity, with u(y1) = y2, it follows that u ◦ f is
homotopic to f , and hence that

σ(f−1u−1(z)) = σ(f−1(z))

for almost all z. Choosing z close to y2, so that u−1(z) is close to y1, this implies
that

σ(f−1(y1)) = σ(f−1(y2)),

as required.

Proof of 20.4. It follows immediately from the argument above that σ(f) depends
only on the homotopy class of f . To show that this correspondence (f) 7→ σ(f)

is additive, first recall the construction of the group operation in πr(Kn). Given
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two maps f, g : Kn −→ Σr we can form the map (f, g) : x 7→ (f(x), g(x)) from
Kn to Σr × Σr. If n < 2r, this can be deformed into the subcomplex

Σr ∧ Σr = (Σr × {point}) ∪ ({point} × Σr) ⊂ Σr × Σr,

and if n < 2r − 1, the resulting map Kn −→ Σr ∧ Σr is unique up to homotopy.
(The hypothesis that (f, g) maps Kn into Σr∧Σr is equivalent to the hypotheasis
that for every x ∈ Kn, either f(x) or g(x) is the base point.) Now mapping Σr∧Σr

to Σr by the “folding map,” which is the identity on each copy of Σr, we obtain
a composite map h : Kn −→ Σr, representing the required sum (f) + (g).

If f and g are chosen within their homotopy classes so that for all x either
f(x) or g(x) is the basepoint, note that h(x) is defined simply by

h(x) = f(x) if f(x) ̸= base point ,

h(x) = g(x) if f(x) = base point .

Hence h−1(y) is the disjoint union of f−1(y) and g−1(y), for y ̸= base point, and
it follows immediately that σ(h) = σ(f) + σ(g).

We can now prove one of the main results of this section. We continue to
assume that the finite simplicial complex Kn is an oriented rational homology
manifold.

Theorem 20.6. For 4i < (n− 1)/2, there is one and only one cohomology class

ℓi ∈ H4i(Kn;Q)

which satisfies the identity

⟨ℓi ⌣ f∗(u), µn⟩ = σ(f)

for every map f : Kn −→ Σn−4i.

Clearly this class ℓi = ℓi(K
n) is invariant under piecewise linear homomor-

phism.
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Proof. As already noted, the homomorphism

πn−4i(Kn) −→ Hn−4i(Kn;Z)

defined by (f) 7→ f∗(u) is a Ab<∞-isomorphism. (Compare proof of Lemma
20.2) It follows easily that there is one and only one homomorphism

σ′ : Hn−4i(Kn;Z) −→ Q

which makes the following diagram commutative.

πn−4i(Kn) Hn−4i(Kn,Z)

Z ⊂ Q

σ σ′

Now, by Poincaré duality, we have

σ′(x) = ⟨ℓi ⌣ x,µn⟩

for some uniquely defined rational homology class ℓi.

Let us compare the combinatorial and differentiable definitions. We will need
some basic results of J. H. C. Whitehead. Let M = Mn be a smooth manifold.
By a smooth triangulation of M is meant a homeomorphism t : K −→ M

where K is a simplicial complex, such that the restriction of t to each closed
simplex of K is smooth and of maximal rank everywhere.

Theorem (Theorem of Whitehead). Every smooth paracompact manifold pos-
sesses a smooth triangulation. In fact, if M is a smooth paracompact manifold-
with-boundary, then every smooth triangulation K0 −→ ∂M can be extended to
a smooth triangulation K −→M , where K is a simplicial complex containing K0

as a subcomplex. Finally, if t1 : K1 −→ M and t2 : K2 −→ M are two different

smooth triangulations of M , then the homeomorphism t−1
2 ◦ t1 : K1 −→ K2 is

homotopic to a piecewise linear homeomoprhism from K1 to K2.
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Thus the smooth manifold M determines a simplicial complex K which is
unique up to piecewise linear homeomorphism. For the proofs we refer to [Whi61],
[Mun00].

Now consider the characteristic cohomology class ℓi(K). Using the isomor-
phism t∗ : H4i(M) −→ H4i(K) we obtain a corresponding class

t∗−1ℓi(K) ∈ H4i(M),

still assuming that 4i < (n − 1)/2. This class does not depend on the choice of
smooth triangulation. For if t1 : K1 −→M is another smooth triangulation, then

t−1
1 ◦ t is homotopic to a piecewise linear homeomorphism, hence

t∗−1ℓi(K) = t∗−1
1 ℓi(K1).

This well defined rational cohomology class will be denoted briefly by ℓi(M).

Theorem 20.7. The class ℓi(M
n), defined for a smooth manifold by a combi-

natorial procedure, is equal to the Hirzebruch class Li(p1, · · · , pi) of the tangent
bundle of Mn.

Proof. Let f : Mn −→ Sr be a smooth map. We will construct a diagram

Kn Mn

Lr Sr

g

t

f

s

commutative up to homotopy, where g is piecewise linear and t, s are smooth
triangulations, so that

σ(f−1(y)) = σ(g−1(z))

for y belonging to a non-vacuous open set in Sr and for z belonging to a non-
vacuous open set in Lr. Together with 20.2 and 20.6, this will complete the
proof.

Let y0 ∈ Sr be a regular value of f . If B is a sufficiently small ball around y0,
then it is not difficult to show that the inverse image f−1(B) is diffeomorphic to
f−1(y0) × B under a diffeomorphism which preserves the projection map to B.
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Choose smooth triangulations

t1 : K1 −→ f−1(y0)

and
t2 : K2 −→ B.

Then the smooth triangulation

t1 × t2 : K1 ×K1 −→ f−1(y0)×B ⊂Mn

restricts to a smooth triangulation

K1 × ∂K2 −→ f−1(y0)× ∂B

of the boundary which, by Whitehead’s theorem, extends to a smooth triangula-
tion

K3 −→Mn − interior(f−1(y0)×B)

of the complementary domain. Setting Kn = K1 ×K2 ∪K3 (and subdividing if
necessary), we thus obtain a smooth triangulation t : Kn −→ Mn. Similarly t2

can be extended to a smooth triangulation s : Lr −→ Sr.
Now the projection map K1×K2 −→ K2 ⊂ Lr can be extended to a piecewise

linear map g : Kn −→ Lr, in such a manner that the complement of K1 × K2

maps to the complement of K2. It is then easy to check that the composition
s ◦ g is homotopic to f ◦ t. Furthermore

f−1(y) ∼= g−1(z)

for every y ∈ B and every z ∈ K2, so that the signature σ(f−1(y)) is certainly
equal to σ(g−1(z)).

So far, the condition 4i < (n−1)/2 has been imposed. However, given Kn, one
can always form the product space Kn×Σm with m large. The class ℓi(Kn) can
then be defined as the class induced from ℓi(K

n × Σm) by the natural inclusion
map. It is not hard to show that this new class is well defined, and has the
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expected properties. In particular the Kronecker index ⟨ℓi(K4i), µ4i⟩ is always
equal to the signature σ(K4i).

Another extension which can easily be made is to homology manifolds-with-
boundary. It is only necessary to substitute the relative cohomotopy groups
πn−4i(Kn, ∂Kn) and the Lefschetz duality theorem in the above discussion.

20.3 Applications

We will first discuss an example which was discovered independently by [Tho56,
p, 81], [Tam57], and [Shi57]. Two lemmas will be needed.

Lemma 20.8. Let ξ be a smooth vector bundle with projection map π : E −→ B.
Then the tangential Pontrjagin class p(E) = p(τE) of the total space is equal to
π∗(p(ξ) p(τB)), up to 2-torsion.

Proof. Choosing a Riemannian metric on E, the tangent bundle τE clearly splits
as the Whitney sum of the bundle of vectors tangent to the fiber and the bundle
of vectors normal to the fiber. Since these are isomorphic to π∗(ξ) and π∗(τB)

respectively, the conclusion follows.

Let u ∈ H4(S4) denote the standard cohomology generator.

Lemma 20.9. There exists an oriented 4-plane bundle ξ4 over S4 with
p1(ξ

4) = −2u and with e(ξ4) = u.

Proof. Let H denote the non-commutative field of quaternions. (The letter H
honors William Rowan Hamilton.) Then we can form the projective space Pm(H)

of quaternion lines through the origin in Hm+1. This is a smooth 4m-dimensional
manifold. There is a canonical “quaternion line bundle” γ over Pm(H) whose total
space E(γ) is the set of all pairs (L, v) consisting of a quaternion 1-dimensional
subspace L ⊂ Hm+1 and a vector v ∈ L. The space of unit vectors in E(γ) can
be identified with the unit sphere S4m+3 ⊂ Hm+1.

Using the natural inclusion mappings R ⊂ C ⊂ H, it follows that there is
an underlying complex 2-plane bundle, which we denote by γC, and an under-
lying real 4-plane bundle γR, all over the same base space Pm(H). From the

244



Section 20.3: Applications

Gysin sequence of γR, we see that the cohomology ring H∗(Pm(H)) with integer
coefficients is a truncated polynomial ring, generated by the Euler or Chern class

e(γR) = c2(γC) ∈ H4(Pm(H))

Denoting this cohomology generator briefly by u ∈ H4(Pm(H)), it follows that
the total Chern class is given by

c(γC) = 1 + u,

hence the total Pontrjagin class is

p(γR) = (1− u)2 = 1− 2u+ u2,

by 15.5. Now specializing to the quaternion projective line P1(H) ∼= S4, we have

p1(γR) = −2u, e(γR) = u

as required.

For any even integer k, it follows that there exists a bundle ξ over S4 with
p1(ξ) = ku. One can simply take ξ = f∗(γR) where f : S4 −→ S4 is a map of
degree −k/2. This is a best possible result, since p1(ξ) cannot be an odd multiple
of u by Problem 15-A.

(For vector bundles over the sphere S4m the corresponding best possible result
is that the Pontrjagin class pm(ξ) can be any multiple of
(2m − 1)!GCD(m + 1, 2)u. The proof of this statement is based on the Bott
periodicity theorem. Compare [Bot70]

Example 1. Let ξn be a smooth n-plane bundle over the sphere s4. For con-
venience, we assume that n ≥ 5. Choosing a Euclidean metric, let E′ ⊂ E(ξn)

be the set of vectors of length ≤ 1, and let ∂E′ be the set of vectors of length
precisely 1.

Using the remarks above, we see that p1(ξn) = ku where k can be an arbitrary
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even integer. Hence
p1(E(ξn)) = kπ∗(u)

by 20.8. Since ∂E′ has trivial normal bundle in E(ξn), it follows that

p1(∂E
′) = ku′

where u′ϵH4(∂E′) is the standard generator which corresponds to u under the
homomorphism

H4(S4) −→ H4(∂E′)

from the Gysin sequence of ξn.
Since the Pontrjagin class p1 of the smooth manifold ∂E′ is a combinatorial

invariant, it follows that the even integer |k| is also a combinatorial invariant.
Thus as k varies we obtain infinitely many smooth manifolds ∂E′ of
fixed dimension n+ 3 ≥ 8 which are combinatorially distinct.

On the other hand, according to [JW54], these manifolds ∂E′ for fixed n fall
into a finite number (namely 13) of distinct homotopy types. Thus for any
fixed dimension ≥ 8 there must exist two smooth simply-connected
manifolds which have the same homotopy type but are not piecewise
linearly homeomorphic. (The dimension 8 can easily be improved to 7.)

Using Novikov’s theorem that rational Pontrjagin classes are topological in-
variants, it follows of course that these manifolds are not even homeomorphic.

A quite different example of manifolds which have the same homotopy type
but are not homeomorphic involves the study of the fundamental group, for
example of a 3-dimensional lens space. (See [Bro60] and [Cha73])

The next example is due to [Tho58]. (See also [Mil56] and [Shi57].) We must
first sharpen 20.9

Lemma 20.10. Given integers k, l satisfying k ≡ 2l (mod 4), there exists an
oriented 4-plane bundle ξ over S4 with p1(ξ) = ku, e(ξ) = lu

(These integers k and l actually determine the isomorphism class of the bundle
ξ, since the homotopy group π4(G̃r4) ∼= π3(SO4) is isomorphic to Z⊕ Z.)

Proof. Recall that the space of oriented 4-planes in R∞ is denoted by G̃r4. For
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every homotopy class (f) in the homotopy group π4(G̃r4) we can form the coho-
mology class

p1(f
∗ỹ4) = f∗ p1(ỹ

4)

in the group H4(S4) with integer coefficients by pulling the universal bundle γ̃4

back to the 4-sphere and then taking its Pontrjagin class. This correspondence
(f) 7→ p1(f

∗γ̃4) from π4(G̃r4) to H4(S4) ∼= Z is an additive homomorphism, as
one sees by noting that

⟨p1(f∗γ̃4), µ4⟩ = ⟨p1(γ̃4), f∗(µ4)⟩

where the Hurewicz homomorphism

(f) 7→ f∗(µ4)

is well known to be a homomorphism. Similarly the Euler class gives rise to an
additive homomorphism

(f) 7→ e(f∗γ̃4)

from π4(G̃r4) to H4(S4) ∼= Z.

Now the tangent bundle of S4 is isomorphic to f∗
1 ỹ

4, and the bundle γR of
20.9 is isomorphic to f∗

2 γ̃
4 for suitable maps f1, f2 : S4 −→ G̃r4. Thus

p1(f
∗
1 γ̃

4) = 0, e(f∗
1 γ̃

4) = 2u

p1(f
∗
2 γ̃

4) = −2u, e(f∗
2 γ̃

4) = u

Taking a suitable linear combination (f) of (f1) and (f2), we can now clearly
obtain

p1(f
∗γ̃4) = ku, e(f∗γ̃4) = lu

for any integers k and l satisfying k ≡ 2l (mod 4).

Example 2. For any integer k ≡ 2 (mod 4), there exists by 20.10 an oriented
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4-plane bundle ξ over S4 with

p1(ξ) = ku, e(ξ) = u.

Using the Gysin sequence of ξ, it follows easily that the space ∂E′ of unit vectors
in E(ξ) has the homotopy type of the sphere S7. In fact this manifold ∂E′ is
actually homeomorphic to the 7-sphere. As a smooth manifold, it can be obtained
by identifying the boundaries of two copies of the unit 7-disk by a suitable (but
possibly exotic) diffeomorphism between their boundary 6-spheres. This fact is
proved directly in [Mil56], and is also a consequence of the Generalized Poincaré
Hypothesis as proved by [Sma59]. Now starting with a smooth triangulation of
the 6-sphere and then extending to smooth triangulations of the two 7-disks, it
follows easily that the manifold ∂E′ is even combinatorially equivalent to
the 7-sphere.

Consider the Thom space Th = Th(ξ). Evidently Th can be identified with
the manifold obtained from E′ by adjoining a cone over ∂E′. Choosing a smooth
triangulation of E′, since ∂E′ is a combinatorial sphere, it follows that Th =

Th(ξ) can be triangulated as a piecewise linear manifold. That is it can
be triangulated so that every point of Th has a neighborhood piecewise linearly
homeomorphic to R8.

According to 18.1 or 18.2, the homology groups of Th are infinite cyclic in
dimensions 0, 4, 8, and zero otherwise. Thus the signature σ(Th) must be ±1,
and choosing the orientation correctly we may assume that σ(Th) = +1.

By 20.8 the tangential Pontrjagin class p1(E
′) is k times a cohomology gen-

erator. Hence p1(Th) is k times a generator, and the Pontrjagin number p21[Th]

must be equal to k2. Using the signature theorem

σ(Th) =
7

45
p2[Th]−

1

45
p21[Th],

it follows that the other Pontrjagin number is given by

p2[Th] =
45 + k2

7
.
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Here k can be any integer congruent to 2 modulo 4. But if k ≡ ±2 (mod 7) this
is not an integer. (For example if k = 6, then p2[Th] is not an integer.) Since the
Pontrjagin numbers of a smooth manifold must be integers, we have proved the
following assertion.

For k ≡ ±2 (mod 7), the triangulated 8-dimensional manifold Th =

Th(ξ) possesses no smoothness structure which is compatible with the
given triangulation.

As a corollary, it follows that the smooth 7-dimensional manifold ∂E′

(which is homeomorphic to S7) is not diffeomorphic to S7. For otherwise
Th could clearly be given a compatible smoothness structure.

We conclude with a problem for the reader.

Problem 20-A. Let τ be the tangent bundle of the quaternion projective space
Pm(H). (See the proof of Lemma 20.9.) Using the isomorphism τ ∼= HomH(γ, γ

⊥)

of real vector bundles show that

τ ⊕HomH(γ, γ) ∼= HomH(γ,Hm+1),

and hence that p(τ) =
(1 + u)2m+2

1 + 4u
. (Compare [Szc64] as well as Section 14.10)
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21. Epilogue

We will give a very brief survey of some of the major developments in char-
acteristic classes in the years since these notes were originally written. For other
developments the reader should consult [Hus94],[ASH72] and [Ati18].

21.1 Non-Differentiable Manifolds

The theory of real vector bundles is ideally suited to the study of smooth
manifolds, just as the theory of complex vector bundles is suited to complex
manifolds. If we are given some different category of manifolds, then it is useful
to look for an appropriate corresponding type of bundle. Consider for example
the category of all piecewise linear manifolds and piecewise linear mappings. An
appropriate type of bundle for this category can be described as follows. Let B

be a locally finite simplicial complex.

Definition. A piecewise linear Rn-bundle over B consists of a simplicial
complex E and a piecewise linear map p : E −→ B satisfying the following local
triviality condition. Each point of B must possess an open neighborhood U so
that p−1(U) is piecewise linearly homeomorphic to U × Rn under a homeomor-
phism which is compatible with the projection map to U . (Here the open subset
U has the structure of a simplicial complex by Runge’s theorem. See [AH35].)

The piecewise linear tangent bundle of a piecewise linear n-manifold M

can be constructed as follows. According to B. Mazur (unfortunately unpub-
lished) there exists a neighborhood E of the diagonal in M × M so that the
projection (x, y) 7→ x from E to M constitutes a piecewise linear Rn-bundle.
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Furthermore this bundle is unique up to isomorphism. (For the analogous the-
orem in the topological category see [Kis64]. Without using Mazur’s theorem,
one could base this discussion on the slightly more esoteric notion of a piecewise
linear microbundle. See [MW97].)

Piecewise linear Rn bundles over B are classified by mappings of the base
space B into certain “universal base space” or “classifying space,” which is called
B(PLn). Thus the theory of characteristic classes for piecewise linear manifolds
coincides with the computation of H∗ B(PLn).

Passing to the direct limit as n −→∞, there is a canonical map

BO −→ B(PL).

Here BO denotes the stable Grassmann manifold lim−→BOn = lim−→Grn(R∞). Ac-
cording to [Hir59] and Mazur, the relative homotopy group

πk(B(PL),BO)

is isomorphic to the group Γk−1 consisting of all oriented diffeomorphism classes
of twisted (k − 1)-spheres (i.e., smooth manifolds obtained by pasting together
the boundaries of two closed (k − 1)-disks). This group is trivial for k ≤ 7

and is finite for all values of k. See [KM63] and [Cer68]. It follows that the
rational cohomology H∗(B(PL);Q) is isomorphic to H∗(BO;Q)), being
a polynomial algebra generated by the Pontrjagin classes. (Compare
Section 20.) Note however that with integral coefficients, the map

H∗(B(PL))/torsion −→ H∗(BO)/torsion

is not an e pimorphism. (Compare the integrality condtions in Example 2 of
Section 20.) For the cohomology of B(PL) with other coefficients, see [Wil66]
and [BMM73].

A fundamental theorem of [Hir59],[Mun64] and [Mun68] asserts that a piece-
wise linear manifold M possesses a compatible smoothness structure if and only
if the classifying map

M −→ B(PL)
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for its stable tangent bundle lifts to BO (compare [MW97]), or equivalently if
and only if each of a sequence of obstructions lying in the groups Hk(M ; Γk−1)

is zero.

The theory of topological Rn-bundles and topological tangent bundles is com-
pletely analogous. In this case the classifying space is denoted by B(Topn). There
is a canonical map

B(PLn) −→ B(Topn).

In the limit as n −→ ∞, an amazing theorem due to [KS69] asserts that the
relative homotopy group

πk(B(Top),B(PL))

is zero for k ̸= 4 and cyclic of order 2 for k = 4. Further they show that
a topological manifold M of dimension ≥ 5 can be triangualted as a piecewise
linear manifold if and only if the classifying map

M −→ B(Top)

for its stable tangent bundle lifts to B(PL), or if and only if a single topological
characteristic class in the group

H4(M ;Z/2)

is zero.

It follows incidentally that the ring H∗(B(Top); Λ) of topological characteristic
classes is isomorphic to H∗(B(PL); Λ) for any ring Λ containing 1/2. This of
course implies Novikov’s theorem that rational Pontrjagin classes are topological
invariants.

An even broader category of “manifolds” is provided by the class of all Poincaré
complexes: that is, CW-complexes M which satisfy the Poincaré duality the-
orem (with arbitrary local coefficients in the non-simply connected case) with
respect to some fundamental homology class µ ∈ Hn(M ;Z).

In order to study such objects, we must introduce a very different type of
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“bundle.” A continuous map p : E −→ B is said to be a fibration over B

or to satisfy the covering homotopy property if for any space X and any
map f : X −→ E any homotopy of p ◦ f can be covered by a homotopy of f .

(Compare [Hur55], [Dol63].) Such a fibration is k-spherical if each fiber p−1(b)

has the homotopy type of a k-sphere.

According to [Spi64], any simply connected Poincaré complex M admits an
essentially unique spherical fibration E −→ M with the property that the top
homology class in the associated Thom space Th belongs to the image of the
Hurewicz homomorphism

πn+k+1(Th) −→ Hn+k+1(Th;Z).

More precisely this fibration, called the Spivak normal bundle of M , is unique
up to stable fiber homotopy equivalence (which we will not define).

According to [Sta63], such spherical fibrations over M are classified, up to
stable fiber homotopy equivalence, by maps into a classifying space B(F). There
are maps

BO −→ B(PL) −→ B(Top) −→ B(F),

canonically defined up to homotopy. According to [Bro68], a simply connected
Poincaré complex M of formal dimension n ≥ 5 has the homotopy type of a closed
piecewise linear manifold M ′ if and only if the classifying map M −→ B(F) lifts
to B(PL). (The uniqueness problem for M ′, studied first by [Nov67] in the
differentiable case, is much more complicated.)

The homotopy group πi(B(F)) is isomorphci to the stable (i−1)-stem πN−i+1(S
N )

for i ≥ 2 and hence is always finite. The cohomology of this classifying space
B(F) has been studied by [Mil70], [May06], and others.

The computations of H∗(B(PL)) and H∗(B(F)) involve machinery quite dif-
fereent from that developed in these notes. Rather than working out these groups
from particular characteristic classes, the approaches analyze the homotopy type
in terms of associated fibrations or in terms of additional internal structure.
[Sul06] for example shows that, “at odd primes,” BO has the homotopy type of
the fiber of B(PL) −→ B(F). [BV06], [May06], and [Seg74] have shown that the
stable classifying space B(PL), B(Top), and B(F) all have the homotopy types of
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infinite loop spaces, so not just the Steenrod algebra but also its homology ana-
logue the Dyer-Lashof algebra can be brought to bear. Although the Wu classes
of Section 19 and their Bocksteins play an important role ([Mil68],[Sta68]), other
classes appear whose interpretation in terms of fiber space structure or geometry
is far from clear [Rav72].

21.2 Smooth Manifolds with Additional Structure

Instead of looking at non-differentiable manifolds, we can look at smooth
manifolds which are provided with some additional structure. For example we
can require that the “structural group” of the tangent bundle of our n-manifold
(see [Ste51] or [Hus94]) should be some specified subgroup of the general linear
group GLn(R) (or equivalently of the orthogonal group O(n)). One important
example is provided by the unitary group U(n) ⊂ O(2n). This leads to the study
of almost complex manifolds and the closely related complex manifolds (Section
13). Other examples are provided by the special unitary group SU(n) ⊂ O(2n)

and the compact symplectic group Sp(n) ⊂ O(4n). Similarly one can “restrict”
the tangent bundle to the 2–fold covering Spin(n) −→ SO(n). For a discussion
of the cobordism theories associated with these various reductions, see [Sto68].

A different line of development is based on the definition of characteristic
classes by means of differential forms. (See Appendix C.) These are particularly
well adapted to the study of manifolds with some additional geometric structure,
such as a foliation or a Riemannian metric. The vanishing of these classes in
certain situations gives rise to new charac-. teristic classes, first studied from
different points of view by [CS71] and [GV73]. Some of these classes depend,
for example, on the conformal structure of a Riemannian manifold. Some of the
corresponding characteristic numbers can take on arbitrary real values ([Bot72],
[Bau], and [Thu72]), showing the great richness of such structures. At this writ-
ing, this branch of the theory of characteristic classes is undergoing very rapid
and vigorous development. A contemporary survey is given by [BH72a].

255



Chapter 21: Epilogue

21.3 Generalized Cohomology Theories

So far we have discussed characteristic classes using ordinary cohomology
theory, but using various exotic types of bundles. A quite different generalization
arises if we use ordinary vector bundles, but generalize the cohomology. By
definition, a generalized cohomology theory is a functor
(X,A) 7→ H∗(X,A) from pairs of spaces to graded additive groups which satisfies
the first six Eilenberg-Steenrod axioms, but fails to satisfy the dimension axiom
(the axiom that Hk(point) = 0 for k ̸= 0). Compare [Dye69]. The first and
most important example of such a generalized cohomology theory is provided by
K–theory.

Definition. For any compact space X the additive group K0(X) is defined by
means of a presentation by generators and relations as follows. There is to be
one generator [ξ] for each isomorphism class of complex vector bundles ξ over X

and one relation
[ξ ⊕ η] = [ξ] + [η]

for each pair of complex vector bundles. For m > 0 the group K−m(X) can be
defined as the kernel of the natural surjection

K0(Sm ×X) −→ K0((base point)×X).

The tensor product operation for complex vector bundles gives rise to a product
operation

K−m(X)⊗K−n(Y ) −→ K−m−n(X × Y ).

The Bott periodicity theorem now asserts that the product with a standard
generator in the group K−2(point) ∼= Z yields an isomorphism

K−m(X)
∼=−→ K−m−2(X).

(This is closely related to the statement that the classifying space BU has the
homotopy type of its own 2nd loop space.)

The ring KO∗(X) is defined similarly, using real vector bundles in place of
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complex vector bundles. In this case there is a periodicity theorem

KO−m(X)
∼=−→ KO−m−8(X).

An illustrations of the powers of these methods, we refer the reader to [Ati18],[Ada60],[Ada62],
[Ada65],[Ada66] and [ASH72].

Similarly one can define the concept of a generalized homology theory. One
important example is provided by the stable homotopy groups

πs
n(X) = lim−→πn+k(Σ

kX),

where ΣkX denotes the k–fold suspension of X. Another is provided by the
oriented bordism groups Ωn(X). (Compare [CF66].) By definition two maps

f1 : M1 −→ X, f2 : M2 −→ X

from smooth, compact, oriented n–manifolds to X are called bordant if there
exists a smooth, compact, oriented manifold–with–boundary N with
∂N = M1+(−M2), and map N −→ X extending f1 and f2. The bordism classes
of such maps form a group Ωn(X). Note that Ωn(point) is just the cobordism
group Ωn of Section 17. Each such generalized homology theory is associated
with a corresponding generalized cohomology theory. See [Whi62].

In order to study characteristic classes with values in a generalized cohomology
theory such as K∗(B), one must first compute K∗ of the appropriate classifying
space. In the case of complex K–theory, [AH72] establish an isomorphism between
K∗(BG) for a compact lie group G and the completion of the representation ring
of G. (See [And64] for the corresponding KO–theory results.)

Just as the orientation of a manifold using the classical homology theory
H∗(−;Z) plays an important role in studying homology of manifolds, so the
analogous K–theory orientations play a basic role in studying the K–theory of
manifolds. (Compare [Tho65].) For example [Sul06] has proved the amazing
result that a PL–bundle is more or less the same thing as a spherical fibration
together with a KO–orientation.

For any K–oriented bundle one can use the approach of Section 8 and Sec-
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tion 19 to define K–theory characteristic classes, using appropriate K–theory
operations in place of the Steenrod operations. This idea was initially suggested
by [Bot62], and was developed more extensively by [Ada65].

As a typical illustration of the usefulness of these classes, consider the work
of [ABP67] on spin cobordism. Suppose that one is given an oriented simply
connected manifold M with w2(M) = 0. In order to test whether M bounds
an oriented manifold–with–boundary with w2 = 0 one must check, not only that
the Stiefel–Whitney numbers (and Pontrjagin numbers) are zero, but also that
all KO–characteristic numbers are zero.

If the cohomology theory is the one corresponding to complex bordism, [CF66]
have introduced Chern–type classes. The algebra in this situation turns out to be
particularly manageable so that rapid progress has been made by several people,
notably [Nov67] (cf. [Ada67]).
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A. Singular Homology and Cohomol-

ogy

This appendix will give brief proofs of a number of theorems concerning sin-
gular cohomology theory which are needed in the text. To fix our notations and
our sign conventions, we will start with basic definitions. Nevertheless we will
assume some familiarity with homology and cohomology theory. In particular
we will assume that the reader is acquainted with those fundamental properties
which are summarised in the [ES52] axioms.

Since these lectures were first given, several texts have appeared which present
cohomology theory at the level we need, notably [HW67], [Spa81] and [Dol95].

A.1 Basic Definitions

The standard n-simplex is the convex set ∆n ⊂ Rn+1 consisting of all
(n+ 1)–tuples (t0, . . . , tn) of real numbers with

ti ≥ 0, t0 + t1 + . . .+ tn = 1.

Any continuous map from ∆n to a topological space X is called a singular n–
simplex in X. The i-th face of a singular n-simplex σ : ∆n −→ X is the singular
(n− 1)–simplex

σ ◦ ϕi : ∆
n−1 −→ X

where the linear imbedding ϕi : ∆
n−1 −→ ∆n is defined by

ϕi(t0, . . . , ti−1, ti+1, . . . , tn) = (t0, . . . , ti−1, 0, ti+1, . . . , tn).
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For each n ≥ 0 the singular chain group Cn(X; Λ) with coefficients in a
commutative ring Λ is the free Λ–module having one generator [σ] for each
singular n–simplex σ in X. For n < 0, the group Cn(X; Λ) is defined to be zero.
The boundary homomorphism

∂ : Cn(X; Λ) −→ Cn−1(X; Λ)

is defined by

∂[σ] = [σ ◦ ϕ0]− [σ ◦ ϕ1] + . . .+ (−1)n[σ ◦ ϕn].

The identity ∂ ◦ ∂ = 0 is easily verified. Hence we can define the n–th singular
homology group Hn(X; Λ) to be the quotient module Zn(X; Λ)/Bn(X; Λ)1,
where Zn(X; Λ) is the kernel of ∂ : Cn(X; Λ) −→ Cn−1(X; Λ) and Bn(X; Λ) is
the image of ∂ : Cn+1(X; Λ) −→ Cn(X; Λ). Here and elsewhere the word “group”
is used, although “left Λ-module” is really meant.

The cochain group Cn(X; Λ) is defined to be the dual module
HomΛ(Cn(X; Λ),Λ) consisting of all Λ–linear maps from Cn(X; Λ) to Λ. The
value of a cochain c on a chain γ will be denoted by ⟨c, γ⟩ ∈ Λ. The coboundary
of a cochain c ∈ Cn(X; Λ) is defined to be the cochain δc ∈ Cn+1(X; Λ) whose
value on each (n+ 1)–chain α is determined by the identity

⟨δc, α⟩+ (−1)n⟨c, ∂α⟩ = 0.

Thus we obtain corresponding modules

Hn(X; Λ) = Zn(X; Λ)/Bn(X; Λ) = (ker δ)/δ Cn−1(X; Λ)

which are called the singular cohomology groups of X2.

Remark. The choice of sign in this formula is based upon the following con-
vention. Whenever two symbols of dimension m and n are permuted, the sign

1Editor’s note: The elements of Zn(X; Λ) are called cycles and the elements of Bn(X; Λ)
are called boundaries. In this language we say homology is cycles modded out by boundaries.

2Editor’s note: The elements of Zn(X; Λ) are called cocycles and the elements of Bn(X; Λ)
are called coboundaries. In this language cohomology is cocycles modded out by coboundaries.
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(−1)mn will be introduced. Here the operators ∂ and δ are considered to have
dimension ±1. Thus our sign conventions are the same as those of [Mac75] and
[Dol95], but different from those of [ES52] and [Spa81].

In some contexts, notably in obstruction theory, it is important to consider
cohomology with coefficients in an arbitrary Λ–module. However in this appendix
we consider only cohomology with coefficients in the ring Λ itself.

A.2 Editor’s notes: Relative (co)homology

Definition (Relative Homology). Let (X,A) be a pair of topological spaces. This
means there is an inclusion A

ι−→ X. Then there is an induced map by post
composition ι∗ : Cn(A; Λ) −→ Cn(X; Λ). Identifying Cn(A; Λ) as a submodule
of Cn(X,Λ), we define

Cn(X,A; Λ) = Cn(X,Λ)/Cn(A; Λ)

as the relative relative chain group of (X,A). We have an induced map

∂ : Cn+1(X,A; Λ) −→ Cn(X,A; Λ).

We define the relative homology

Hn(X,A; Λ) = Zn(X,A; Λ)/Bn(X,A; Λ)

where Zn(X,A; Λ) = ker(∂ : Cn(X,A; Λ) −→ Cn−1(X,A; Λ)) are the relative

cycles and Bn(X,A; Λ) = ∂(Cn+1(X,A; Λ)) are the relative boundaries.

We can define relative cohomology similarly, see [Hat02, p. 199] for details.

Theorem (Long exact homology of (co)homology). For a triple of CW-complexes
(X,A,B), i.e. B ⊂ A ⊂ X, there exists a long exact sequence

· · · −→ Hn(A,B; Λ) −→ Hn(X,B; Λ) −→ Hn(X,A; Λ)
∂−→ Hn−1(A,B; Λ) −→ · · ·

263



Chapter A: Singular Homology and Cohomology

and one of cohomology

· · · −→ Hn(X,A; Λ) −→ Hn(X,B; Λ) −→ Hn(A,B; Λ)
δ−→ Hn+1(X,A; Λ) −→ · · · .

Specializing to B = ∅, we get what is known as the long exact sequence
of a pair (X,A).

Explicitly, let [α] ∈ Hn(X,A; Λ) be the class of a relative cycle. Then

∂[α] = [∂α] ∈ Hn−1(A,B).

Similarly for [α] ∈ Hn(A,B; Λ),

δ[α] = [δα] ∈ Hn+1(X,A; Λ).

For proof and more details, see [Hat02, p. 113, 199].

Theorem (Excision). For a pair of CW-complexes (X,A), we have a natural
isomorphism

Hn(X,A; Λ) ∼= Hn(X/A,A/A; Λ)

This is called the excision isomorphism. The same statement with cohomology
also holds.

For proof, see [Hat02, p. 119].
This is equivalent to saying this: if A,B ⊂ X are CW-complexes and

A ∪B = X, then
Hn(X,A) ∼= Hn(B,A ∩B).

This is also called the excision isomorphism.

A.3 The Relationship between Homology and Cohomology

Henceforth we will assume that Λ is a principal ideal domain (for example
the integers or a field). In order to simplify notation we will omit reference
to Λ whenever possible, writing Hn X in place of Hn(X; Λ) for example. The
abbreviated notation H∗ X will often be used to denote the entire sequence of
groups (H0 X,H1 X,H2 X, . . .).
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Theorem A.1. Suppose that Hn−1 X is zero or is a free Λ–module. Then Hn X

is canonically isomorphic to the module HomΛ(Hn X,Λ) consisting of all Λ–linear
maps from Hn X to Λ. There is a corresponding assertion for pairs (X,A).

(Compare [Mac75, p. 77] or [Spa81, p. 243].) Note that the hypothesis is
always satisfied if Λ happens to be a field.

Proof. Given elements x ∈ Hn X and ξ ∈ Hn X define the Kronecker index
⟨x, ξ⟩ ∈ Λ as follows. Choose a representative cocycle z ∈ ZnX for x and a
representative cycle ζ ∈ ZnX for ξ; and set ⟨x, ξ⟩ equal to ⟨z, ξ⟩ ∈ Λ. The reader
should verify that this does not depend on the choice of z and ζ. Now define a
homomorphism

k : Hn X −→ HomΛ(Hn X,Λ)

by the identity k(x)(ξ) = ⟨x, ξ⟩.

Proof that the homomorphism k is onto. First note that the submodule
ZnX ⊂ CnX is a direct summand. This follows from the fact that the quotient
module

CnX/ZnX ∼= Bn−1X ⊂ Cn−1X

is a submodule of a free module, and hence is free. (See for example [Kap18].)
Therefore any homomorphism ZnX −→ Λ can be extended over CnX.

Let f be an arbitrary element of HomΛ(Hn X,Λ). The composition

ZnX −→ Hn X
f−→ Λ

extends to a homomorphism F : CnX −→ Λ. Since F vanishes on boundaries, it
follows that δF = 0. Let x ∈ Hn X denote the cohomology class of the cocycle
F . Then for any ξ ∈ Hn X with representative ζ ∈ ZnX, we have

⟨x, ξ⟩ = F (ζ) = f(ξ).

Thus k(x) = f , which proves that k is onto.

Proof that k has kernel zero: Let z0 ∈ ZnX be such that ⟨z0, ζ⟩ = 0 for all
cycles ζ ∈ ZnX. We must prove that z0 is a coboundary.
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Since z0 annihilates cycles, it follows that the composition
z0∂

−1 : Bn−1X −→ Λ is well–defined. The quotient

Zn−1X/Bn−1X = Hn−1 X

is assumed to be free, so it follows that Bn−1X is a direct summand of Zn−1X,
and hence of Cn−1X. Therefore the homomorphism z0∂

−1 can be extended over
Cn−1X. Let

f : Cn−1X −→ Λ

be such an extension; then

⟨δf, [σ]⟩ = ±⟨f, ∂[σ]⟩ = ±z0∂−1(∂[σ]) = ±⟨z0, [σ]⟩.

Thus ±z0 is equal to the coboundary of f , as required.

A.4 Homology of a CW-Complex

Let K be the underlying space of a CW-complex (compare Definition 6.1),
and let Kn ⊂ K denote the n-skeleton, the union of all cells of dimension < n.

Lemma A.2. The relative homology group Hi(K
n,Kn−1) with coefficients in Λ

is zero for i ̸= n and is a free module for i = n with one generator for each n-cell
of K.

It follows by Theorem A.1 that the cohomology group Hi(Kn,Kn−1) is also
zero for i ̸= n.

Proof. We assume that the reader is familiar with the basic fact that the homol-
ogy group Hi(Rn,Rn − 0) is zero for i ̸= n, and is isomorphic to Λ when i = n.
(See for example [Dol95, p. 56] and compare Theorem A.5 below.)

Since the unit disk Dn is a deformation retract of Rn and the unit sphere
Sn−1 is a deformation retract of Rn − 0, the group Hi(Rn,Rn − 0) is isomorphic
to Hi(D

n, Sn−1), which is computed in [ES52, p. 45] or [Spa81, p. 45].
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Let S denote a discrete set which consists of one point sE from each open
n-cell E of K. Then it is not difficult to see that Kn−1 is a deformation retract
of Kn−S. Using the exact sequence of the triple (Kn,Kn−S,Kn−1), it follows
that

Hi(K
n,Kn−1) ∼= Hi(K

n,Kn − S).

By excision this last group is isomorphic to Hi(
⊔

E,
⊔
(E − sE)), where

⊔
E

denotes the disjoint union of all n-cells of K. But the homology of such a disjoint
union of open subsets of Kn is clearly the direct sum of the homology groups
Hi(E,E − sE) ∼= Hi(Rn,Rn − 0), and this last group is free on one generator for
i = n and is zero otherwise.

Corollary A.3. The group Hi K
n is zero for i > n and is isomorphic to Hi K

for i < n. Similar statements hold for cohomology.

Proof for homology. Certainly Hi K
0 = 0 for i > 0. Using the exact sequence

Hi K
n−1 → Hi K

n → Hi(K
n,Kn−1)

it follows by induction on n that Hi K
n = 0 for i > n. If i < n, a similar sequence

shows that Hi K
n ∼= Hi K

n+1, and hence inductively that

Hi K
n ∼= Hi K

n+1 ∼= Hi K
n+2 ∼= · · · .

If K is of finite dimension, this completes the proof. For the general case, it is
necessary to appeal to the theorem that Hi K is isomorphic to the direct limit as
r → ∞ of Hi K

r. This is true since every singular simplex of K is contained in
a compact subset, and hence is contained in some Kr. (Compare
[Whi61, Section 5(D)].)

Proof for cohomology. It follows similarly that the relative group Hi(K,Kn), be-
ing isomorphic to Hi(K

n+1,Kn), is zero for i ≤ n. Therefore Hi(K,Kn) = 0 for
i ≤ n by Theorem A.1 and using the cohomology exact sequence of this pair we
see that Hi(K)

∼=−→ Hi(Kn) for i < n. The proof that Hi(Kn) = 0 for i > n is
completely analogous to the corresponding proof for homology.
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Definition. The free module Hn(K
n,Kn−1) will be called the n-th chain group

of the CW-complex K and will be denoted by CCW
n K = CCW

n (K; Λ). Similarly
the module

Hn(Kn,Kn−1) ∼= HomΛ(C
CW
n K,Λ)

will be called the n-th cochain group, and will be denoted by Cn
CWK.

A “boundary” homomorphism ∂n : CCW
n+1K → CCW

n K is obtained by using the
homology exact sequence of the triple (Kn+1,Kn,Kn−1). Similarly
δn : Cn

CWK → Cn+1
CW K is defined.

Theorem A.4. The homology group ZCW
n K/BCW

n K of the chain complex CCW
• K

is canonically isomorphic to Hn K. Similarly the group Zn
CWK/Bn

CWK obtained
from the cochain complex C•

CWK is canonically isomorphic to Hn K.

Proof. Consider the following commutative diagram

0

CCW
n+1K Hn(K

n,Kn−2) Hn(K
n+1,Kn−2) 0

CCW
n K

CCW
n−1K.

The horizontal line is a portion of the homology exact sequence of the triple
(Kn+1,Kn,Kn−2), and the vertical line is a portion of the exact sequence of
(Kn,Kn−1,Kn−2). Evidently it follows from this diagram that

ZCW
n
∼= Hn(K

n,Kn−2)

and
ZCW
n /BCW

n
∼= Hn(K

n+1,Kn−2).

But using Corollary A.3 one sees that

Hn(K
n+1,Kn−2) ∼= Hn K

n+1 ∼= Hn K.
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The proof for cohomology is completely analogous.

A.5 Cup Products

Given cochains c ∈ CmX and c′ ∈ CnX, the product3 cc′ = c ⌣ c′ ∈ Cm+nX

is defined as follows. Let σ : ∆m+n −→ X be a singular simplex. By the front
m-face of σ is meant the composition σ ◦ αm : ∆m −→ X where

am(t0, · · · , tm) = (t0, · · · , tm, 0, · · · 0).

Similarly the back n-face of σ is the composition σ ◦ βn where

βn(tm, tm+1, · · · tm+n) = (0, · · · 0, tm, tm+1, · · · tm+n).

Now define cc′ = c ⌣ c′ by the identity

⟨cc′, [σ]⟩ = (−1)mn⟨c, [σ ◦ am]⟩ · ⟨c′, [σ ◦ βn]⟩ ∈ Λ.

The product operation is bilinear and associative, but is not commutative. The
constant cocycle 1 ∈ C0X serves as identity element. The formula

δ(cc′) = (δc)c′ + (−1)mc(δc′)

is easily verified. This implies that there is a corresponding product operation
Hm X ⊗ Hn X −→ Hm+n X of cohomology classes. On the cohomology level
the product operation does commute, up to sign. (See for example [Spa81, p.
252].) In fact, for a ∈ Hm X, b ∈ Hn X, one has ba = (−1)mnab. In dealing with
graded groups, this property is called commutativity. Thus we say briefly that
the cohomology H∗ X = (H0 X,H1 X,H2 X, · · · ) is commutative as a graded
ring.

Now suppose that one is given a pair of spaces X ⊃ A. If the cochain c belongs
to the subset Cm(X,A) ⊂ CmX (that is if c[σ] = 0 for every σ : ∆m −→ A ⊂ X)
and if c′ ∈ CnX, then clearly cc′ belongs to Cm+n(X,A). This gives rise to a

3Editor’s note: In this text, this is what we will always mean by the cup product.
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product operation

Hm(X,A)⊗Hn X −→ Hm+n(X,A).

More generally consider two subsets A,B ⊂ X which satisfy the following:

Hypothesis. Both A and B are relatively open when considered as subsets of
A ∪B.

Then one can define a product operation

Hm(X,A)⊗Hn(X,B) −→ Hm+n(X,A ∪B)

as follows.4 Let
Ĉi(X;A,B) ⊂ CiX

denote the intersection of the submodules Ci(X,A) and Ci(X,B) of CiX. Given
cochains c ∈ Cm(X,A) and c′ ∈ Cn(X,B), the product cc′ clearly belongs to the
intersection

Ĉm+n(X;A,B) = Cm+n(X,A) ∩ Cm+n(X,B).

Evidently there is a short exact sequence of cochain complexs

0 −→ C∗(X,A ∪B) −→ Ĉ∗(X;A,B) −→ Ĉ∗(A ∪B;A,B) −→ 0,

But the right hand cochain complex is acyclic5, by [ES52, p. 197] or [Spa81, p.
252]. Hence the inclusion

C∗(X,A ∪B) −→ Ĉ∗(X;A,B)

induces isomorphisms of cohomology groups. Therefore one obtains a cup product
operation with values in the required cohomology group Hm+n(X,A ∪B).

4The difficulty here is caused by the fact that

Ci(X,A) ∩ Ci(X,B) ̸= Ci(X,A ∪B)

since a singular simplex in X may lie in A ∪B without lying either in A or B.
5Editor’s note: By acyclic we mean that the corresponding cohomology groups are 0.
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A.6 Cohomology of Product Spaces

Let Rn
0 denote the complement of the origin in Rn. For any space X, we will

prove that
Hm X ∼= Hm+n(X × Rn, X × Rn

0 ).

This isomorphism can best be described by introducing the cohomology cross
product operation. Suppose that one is given cohomology classes

a ∈ Hm(X,A), b ∈ Hn(Y,B)

where A is an open subset of X and B is an open subset of Y . (If B is vacuous
then A need not be open, and conversely.) Using the projection maps

p1 : (X × Y,A× Y ) −→ (X,A)

p2 : (X × Y,X ×B) −→ (Y,B)

the cross product (or external product) a × b is defined to be cohomology
class

(p∗1a)(p
∗
2b) ∈ Hm+n(X × Y, (A× Y ) ∪ (X ×B)).

It will sometimes be convenient to use the abbreviation (X,A) × (Y,B) for
the pair (X × Y, (A× Y ) ∪ (X ×B)). As an example of this notation, note that
the pair (Rn,Rn

0 ) can be described as the n-fold product (R,R0)× · · · (R,R0).

We will choose a specific generator en for the free module Hn(Rn,Rn
0 ), as

follows. Note that R0 = R − 0 can be expressed as a disjoint union R− ⊔ R+.
Let e ∈ H1(R,R0) correspond to the identity 1 ∈ H0 R+ under the excision and
coboundary isomorphisms

H0 R+

∼=←− H0(R0,R−)
δ−→ H1(R,R0),

where δ arises from the exact sequence of the triple (R,R0,R−). Finally let
en ∈ Hn(Rn,Rn

0 ) denote the n-fold cross product e× · · · × e.

Theorem A.5. For any pair (X,A) with A open in X, the correspondence
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a 7→ a× en defines an isomorphism

Hm(X,A) −→ Hm+n((X,A)× (Rn,Rn
0 ))

Proof. First note that it is sufficient to consider the case n = 1. The general case
will then follow by induction, using the associative law

a× en = (a× en−1)× e.

Case 1. Suppose that n = 1 and that A is vacuous. For fixed a ∈ Hm X, one
has the diagram

H0 R+ H0(R0,R−) H1(R,R0)

Hm X ∼= Hm(X × R+) Hm(X × R0, X × R−) Hm+1(X × R, X × R0)

a× a×

δ

a×

i∗ δ′

which commutes up to sign. The homomorphism i∗ is an excision isomor-
phism, while δ′ is taken from the cohomology exact sequence of the triple
(X × R, X × R0, X × R−). It is an isomorphism since both X × R and X × R−

contain the set X × (constant) as deformation retract.
Following the diagram around, we see that a× e ∈ Hm+1(X × R, X × R0) is

the image of a ∈ Hm X under a sequence of isomorphisms. This proves Case 1.
Case 2. Suppose that n = 1 but that A is non-vacuous. Let z ∈ Z1(R,R0)

be a cocycle which represents the cohomology class e. Consider the following
commutative diagram

0 Cm(X,A) CmX CmA 0

0 Ĉm+1(X × R;X × R0, A× R) Cm+1(X × R, X × R0) Cm+1(A× R, A× R0) 0.

×z ×z ×z

A straightforward argument shows that the horizontal sequences are exact.
Furthermore all of these homomorphisms commute with the coboundary opera-
tion:

δ(a× z) = (δa)× z.
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Hence there is a corresponding commutative diagram of cohomology groups

. . . Hm(X,A) Hm X Hm A . . .

. . . Hm+1((X,A)× (R,R0)) Hm+1(X × R, X × R0) Hm+1(A× R, A× R0) . . . .

δ

×e ×e ×e

δ

δ δ

(See for example [Spa81, p. 182].) By Case 1, the two right hand vertical
arrows are isomorphisms. Hence, by the Five Lemma, the left hand vertical arrow
is an isomorphism also.

Thus we have proved Theorem A.5 for the special case n = 1. As remarked
at the beginning of the proof, this implies that the Theorem holds for all n.

Now consider two spaces X and Y . The cross product operation gives rise to
a homomorphism

× :
⊕

i+j=n

Hi X ⊗Hj Y −→ Hn(X × Y ).

We would like to prove that × is an isomorphism, but this is not true in
complete generality. It is false for example if X and Y are real projective planes
(using integer coefficients), or if X and Y are infinite discrete speaces (using
arbitrary coefficients).

Theorem A.6. Let X and Y be CW-complexes such that each Hi X is a torsion
free Λ-module 6 and such that Y has only finitely many cells in each dimension.
Then the direct sum

⊕
i+j=n

Hi X ⊗Hj Y maps isomorphically onto Hn(X × Y ).

A similar result can be proved for pairs (X,A) and (Y,B). Results of this
type are known as “Künneth Theorems”, since the prototype was proved by H.
Künneth in 1923. For a sharper version, see [Spa81, p. 247].

Proof. First suppose that Y is finite CW-complex. Then A.6 will be proved by
induction on the number of cells of Y . Certainly it is true if Y consists of a single
point.

6Of course this hypothesis is automatically satisfied if Λ is a field. The assumption that X
is a CW-complex is not actually necessary, but will serve to simplify the proof.
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Let E be an open cell of highest dimension and let Y1 = Y − E. Assume
inductively that

×′ =
⊕

i+j=n

Hi X ⊗Hj Y1 −→ Hn(X × Y1)

is an isomorphism. Consider the following diagram, which commutes up to sign

. . .
⊕

Hi X ⊗Hj Y
⊕

Hi X ⊗Hj Y1 Hi X ⊗Hj+1(Y, Y1) . . .

. . . Hn(X,Y ) Hn(X × Y1) Hn+1(X × Y,X × Y1) . . . .

× ×
′ ×

′′

Here the top line is obtained from the exact sequence of the pair (Y, Y −1) by
tensoring with Hi X, and then forming the direct sum over all i, j with i+ j = n.
The remains an exact sequence since Hi X is torsion free. (Compare [Mac75, p.
152], [CE56, p. 133].)

We have assumed that ×′ is an isomorphism. Using Theorem A.5 together
with the isomorphisms

Hj(Y, Y1)←− Hj(Y, Y − point)←− Hj(E,E − point)

and

Hn(X×Y,X×Y1)←− Hn(X×Y,X×(Y −point)) −→ Hn(X×E,X×(E−point))

we see that ×′′ is also an isomorphism. Therefore, by the Five Lemma, × is an
isomorphism. This completes the proof, providing that Y is finite. (We have not
yet used the hypothesis that X is a CW-complex.)

If Y is infinite but each skeleton Y r is finite, then the above argument applies
to X × Y r. But it follows easily from Corollary A.3 that the inclusions

Y r −→ Y, X × Y r −→ X × Y

induce isomorphism of cohomology in dimension of less than r. Thus A.6 is true
for n < r. Since r can be arbitrarily large this completes the proof.
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A.7 Homology of Manifolds

We will now prove some preliminary results which will be needed to construct
the fundamental homology class of a manifold, and to prove the Poincaré Duality
Theorem. (Compare Section 11.10.)

Let M be a fixed n–dimensional manifold, not necessarily compact. We will
first study the groups Hi(M,M −K) where K denotes a compact subset of M .
If K ⊂ L ⊂M , then the natural homomorphism

Hi(M,M − L) −→ Hi(M,M −K)

will be denoted by ρK . The image ρK(α) will be thought of as the “restriction”
of α to K.

Lemma A.7. The groups Hi(M,M −K) are zero for i > n. A homology class
α ∈ Hn(M,M −K) is zero if and only if the restriction

ρK(α) ∈ Hn(M,M − x)

is zero for each x ∈ K.

Proof. The proof will be divided into six steps.

Case 1. Suppose that M = Rn and that K is a compact convex subset.

Let x be a point of K, and let S be a large (n − 1)–sphere with center x.
Then S is a deformation retract of both Rn − x and of Rn −K. From this one
sees that

Hi(Rn,Rn −K)
∼=−→ Hi(Rn,Rn − x)

for all i, which completes the proof in Case 1.

Case 2. Suppose that K = K1 ∪K2 where the lemma is known to be true
for K1,K2, and for K1 ∩K2.

We will make use of the relative Mayer–Vietoris sequence

. . . −→ Hi+1(M,M−(K1∩K2))
δ−→ Hi(M,M−K)

s−→ Hi(M,M−K1)⊕Hi(M,M−K2) −→ . . .
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where the homomorphism s is defined by

s(α) = ρK1(α)⊕ ρK2(α).

(See for example [ES52, p. 42] or [Spa81, p. 187].) Assuming the existence of
such a sequence, the proof in Case 2 can be easily completed. Details will be left
to the reader.

Here is a brief construction of the sequence. Let Uj denote the open set
M −Kj . In analogy with the discussion on Section A.5, let Ĉi(M ;U1, U2) denote
the quotient CiM/(CiU1 +CiU2) where CiU1 +CiU2 ⊂ Ci(U1 ∪U2) denotes the
free module generated by all singular i–simplexes which lie either in U1 or in U2.
Then the natural homomorphism

Ĉ•(M ;U1, U2) −→ C•(M,U1 ∪ U2)

induces isomorphisms of homology groups. (Compare the argument in Section
A.5.) Now the commutative diagram

Ci(M,U1)

Ci(M,U1 ∩ U2) Ĉi(M ;U1, U2)

Ci(M,U2)

gives rise to a short exact sequence

0 −→ Ci(M,U1 ∩U2)
sum−−→ Ci(M,U1)⊕Ci(M,U2)

difference−−−−−−→ Ĉi(M ;U1, U2) −→ 0

The associated long exact sequence of homology groups is the required relative
Mayer–Vietoris sequence.

Case 3. K ⊂ Rn is a finite union K1 ∪ . . . ∪Kr of compact, convex sets.
Then the lemma can be proved by induction on r, making use of Case 1 and

2.
Case 4. K is an arbitrary compact subset of Rn.
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Given α ∈ Hi(Rn,Rn − K) choose a compact neighborhood N of K and a
class α′ ∈ Hi(Rn,Rn − N) so that ρK(α′) = α. This is possible since we can
choose a chain γ ∈ CiRn whose image modulo Rn −K is a cycle representing α.
Then the boundary of γ is “supported” by a compact set disjoint from K. We
need only choose N small enough to be disjoint from this support.

Cover K by finitely many closed balls B1, . . . , Br such that Bi ⊂ N and
Bi ∩K ̸= ∅. If i > n then ρB1∪...∪Br

α′ = 0 by Case 3, hence α = 0. If i = n and
ρx(α) = 0 for each x ∈ K, then clearly ρx(α

′) = 0 for each x ∈ B1 ∪ . . . ∪ Br.
(Compare Case 1.) Hence again ρB1∪...∪Br

(α′) = 0 and therefore α = 0.

Case 5. K ⊂M is small enough so as to have a neighborhood homeomorphic
to Rn.

Since H∗(M,M −K) ∼= H∗(U,U −K), by excision, the assertion in this case
follows from Case 4.

Case 6. K ⊂M is arbitrary.

Then K = K1∪ . . .∪Kr where each Kj is “small” as in Case 5. The proof now
proceeds by induction on r, using Case 2. This completes the proof of A.7.

A.8 The Fundamental Homology Class of a Manifold

We will now use the infinite cyclic group Z as coefficient domain. For each
x ∈M , recall that

Hi(M,M − x;Z) ∼= Hi(Rn,Rn − 0;Z)

is infinite cyclic for i = n and is zero for i ̸= n.

Definition. A local orientation µx for M at x is a choice of one of the two
possible generators for Hn(M,M − x;Z).

Note that such a µx determines local orientations µy for all points y in a small
neighborhood of x. To be precise, if B is a ball around x (in terms of some local
coordinate system), then for each y ∈ B the isomorphisms

H•(M,M − x)
ρx←− H•(M,M −B)

ρy−→ H•(M,M − y)
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determines a local orientation µy.

Definition. An orientation for M is a function which assigns to each x ∈ M

a local orientation µx which “varies continuously” with x, in the following sense:
For each x there should exist a compact neighborhood N and a class
µN ∈ Hn(M,M −N) so that ρy(µN ) = µy for each y ∈ N .

The pair consisting of manifold and orientation is called an oriented mani-
fold.

Theorem A.8. For any oriented manifold M and any compact K ⊂ M , there
is one and only one class µK ∈ Hn(M,M −K) which satisfies ρx(µK) = µx for
each x ∈ K.

In particular, if M is itself compact, then there is one and only one µM ∈
Hn M with the required property. This class µ = µM is called the fundamental
homology class of M .

Proof of A.8. The uniqueness of µK follows immediately from Lemma A.7. The
existence proof will be divided into three steps.

Case 1. If K is contained in a sufficiently small neighborhood of some given
point, then the existence of µK follows from the definition of orientation.

Case 2. Suppose that K = K1 ∪ K2 where µK1
and µK2

exist. As in A.7
there is an exact sequence

. . .→ 0→ Hn(M,M−K)
s−→ Hn(M,M−K1)⊕Hn(M,M−K2)

t−→ Hn(M,M−K1∩K2)→ . . .

where

s(α) = ρK1
(α)⊕ ρK2

(α),

t(β ⊕ γ) = ρK1∩K2(β)− ρK1∩K2(γ).

Now t(µK1
⊕ µK2

) = 0, by the uniqueness theorem applied to K1 ∩ K2, hence
µK1
⊕ µK2

= s(α) for some unique α ∈ Hn(M,M −K). This α is the required
µK .

Case 3. K arbitrary. Then K = K1 ∪ . . . ∪Kr where the µKi
exist by Case

1. The class µK is now constructed by induction on r.
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Remark 9. For any coefficient domain Λ, the unique homomorphism Z −→ Λ

gives rise to a class in Hn(M,M −K; Λ) which will also be denoted by µK . The
case Λ = Z/2 is particularly important, since the mod 2 homology class

µK ∈ Hn(M,M −K;Z/2)

can be constructed directly for an arbitrary manifold, without making any as-
sumption of orientability.

Remark 10. Similar considerations apply to an oriented manifold–with–boundary
M . For each compact subset K ⊂M , there exists a unique class
µK ∈ Hn(M, (M − K) ∪ ∂M) with the property that ρx(µK) = µx for each
x ∈ K ∩ (M − ∂M). In particular, if M is compact, then there is a unique fun-
damental homology class µM ∈ Hn(M,∂M) with the required property. It can
be shown that the natural homomorphism

∂ : Hn(M,∂M) −→ Hn−1(∂M)

maps µM to the fundamental homology class of ∂M . (Compare [Spa81, p. 304].)

A.9 Cohomology with Compact Support

A cochain c ∈ CiM is said to have compact support if there exists a com-
pact set K ⊂M so that c belongs to the submodule Ci(M,M −K) ⊂ CiM . In
other words c must annihilate every singular simplex in M−K. The cochains with
compact support form a submodule which will be denoted by Ci

cM ⊂ CiM . The
cohomology groups of this complex C•

cM will be denoted by Hi
c M . A straight-

forward argument [Spa81, p. 162] shows that Hi
c M is isomorphic to the direct

limit of the groups Hi(M,M −K) as K varies over the directed set consisting of
all compact subsets of M . If M is compact, note that Hi

c M
∼= Hi M .

If M is oriented, then there is an important homomorphism

Hn
c M −→ Λ

which will be denoted by a 7→ a[M ], and called integration over M . When M
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is compact, this can be defined by

a[M ] = ⟨a, µM ⟩ ∈ Λ.

In the general case it is necessary to choose some representative
a′ ∈ Hn(M,M −K) for a, and then to define

a[M ] = ⟨a′, µK⟩.

The reader should verify that this definition does not depend on the choice of K
and a′.

A.10 The Cap Product Operation

For any space X and any coefficient domain, there is a bilinear pairing oper-
ation

∩ : CiX ⊗ CnX −→ Cn−iX

which can be characterized as follows. For each cochain b ∈ CiX and each chain
ξ ∈ CnX the cap product b ∩ ξ is the unique element of Cn−iX such that

⟨a, b ∩ ξ⟩ = ⟨ab, ξ⟩ (1)

for all a ∈ Cn−iX. More explicitly, for each generator [σ] of CnX, the cap
product b ∩ [σ] can be defined as the product of the ring element
(−1)i(n−i)⟨b, [back i-face of σ]⟩ with the singular simplex [front (n− i)-face of σ].

Combining the identity (1) with the standard properties of cup products, one
can derive the following rules:

(bc) ∩ ξ = b ∩ (c ∩ ξ) (2)

1 ∩ ξ = ξ (3)

∂(b ∩ ξ) = (δb) ∩ ξ + (−1)dim bb ∩ ∂ξ. (4)
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From (4) it follows that there is a corresponding operation

Hi X ⊗Hn X −→ Hn−i X

which will also be denoted by ∩.
In terms of this operation we can now state the duality theorem for compact

manifolds, using any coefficient domain.

Theorem (Poincaré Duality). If M is compact and oriented, then Hi M is iso-
morphic to Hn−i M under the correspondence a 7→ a ∩ µM .

For a non-orientable manifold the duality theorem is still true, but only if one
uses the coefficient domain Z/2.

Proof. The proof will involve a more general situation. First observe that for any
pair (X,A), the cap product gives rise to a pairing

Ci(X,A)⊗ Cn(X,A) −→ Cn−iX

and hence to a pairing

∩ : Hi(X,A)⊗Hn(X,A) −→ Hn−i X.

(In even greater generality one can define

∩ : Hi(X,A)⊗Hn(X,A ∪B) −→ Hn−i(X,B)

if A and B are open in A ∪ B.) Now let M be oriented but not necessarily
compact. Define the duality map

D : Hi
c M −→ Hn−i M

as follows. For any a ∈ Hi
c M = lim

−→
Hi(M,M − K) choose a representative

a′ ∈ Hi(M,M −K) and set

D(a) = a′ ∩ µK .
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This is well defined since, for K ⊂ L, the diagram

Hi(M,M −K) Hi(M,M − L)

Hn−i M

∩µK

∩µL

is clearly commutative. In the special case where M is compact, note that
D(a) = a ∩ µM . Assuming the Theorem below, this proves Poincaré duality.

Theorem A.9 (Duality theorem). The homomorphism D maps Hi
c M isomor-

phically onto Hn−i M .

If M is compact, then this implies that ∩µM maps Hi M isomorphically onto
Hn−i M , as previously asserted.

Proof. The proof will be divided into five cases.

Case 1. Suppose that M = Rn.

Given any ball B we clearly have Hn(Rn,Rn − B) ∼= Λ with generator
µB . (Compare Theorem A.8, Case 1.) Hence Hn(Rn,Rn − B) ∼= Λ by
Theorem A.1, with a generator a such that ⟨a, µB⟩ = 1. Now the identity

⟨1a, µB⟩ = ⟨1, a ∩ µB⟩

shows that a ∩ µB is a generator of H0 Rn ∼= Λ. Thus ∩µB maps
H•(Rn,Rn − B) isomorphically to H•(Rn), and passing to the direct limit
as B becomes larger it follows that the homomorphism D maps H•

c(Rn)

isomorphically onto H•(Rn).

Case 2. Suppose that M = U ∪ V where the theorem is true for the open subsets
U, V and U ∩ V .

We will construct a commutative diagram

. . . Hi
c(U ∩ V ) Hi

c U ⊕Hi
c V Hi

c M . . .

. . . Hn−i(U ∩ V ) Hn−i U ⊕Hn−i V Hn−i M . . .

δ

D D D

δ

∂ δ
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where the bottom line is a Mayer-Vietoris sequence [ES52, p. 37]. The
construction of the bottom sequence is similar to that in the proof of
Lemma A.7. To construct the top exact sequence, note that for each com-
pact K ⊂ U and L ⊂ V there is a relative Mayer-Vietoris sequence

. . . Hi(M,M −K ∩ L) Hi(M,M −K)⊕Hi(M,M − L) Hi(M,M −K ∪ L) . . . ,δ

as in the proof of Lemma A.7. By excision this can be rewritten as

. . . Hi(U ∩ V,U ∩ V −K ∩ L) Hi(U,U −K)⊕Hi(V, V − L) Hi(M,M −K ∪ L) . . . ,δ

Now passing to the direct limit as K and L become larger we obtain the
required sequence.

Applying the Five Lemma to the resulting diagram, this completes the proof
in Case 2.

Case 3. M is the union of a nested family of open sets Uα, where the duality theorem
is true for each Ua.

Then Hi
c M = lim

−→
Hi

c Uα and Hn−i M = lim
−→

Hn−i Uα. (Both assertions
follow easily from the fact that every compact subset of M is contained in
some Ua.) Since the direct limit of isomorphisms is an isomorphism, this
completes the proof in Case 3.

Case 4. M is an open subset of Rn.

If M is convex, then it is homeomorphic to Rn, so the statement follows from
Case 1. More generally choose convex open sets V1, V2, V3, . . . with union
M . Using Case 2 inductively, the theorem is true for each V1∪V2∪ . . .∪Vk.
Passing to the direct limit as k −→∞, it is true for M .

Case 5. M is arbitrary.

Cover M by open sets Va, each diffeomorphic to an open subset of Rn,
and choose a well ordering of the index set. (If M has a countable basis,
then we can use the positive integers as index set.) Now a straightforward
transfinite induction, using Cases 2,3, and 4, shows that the theorem is true
for each partial union

⋃
α<β Vα. Hence, by Case 3, it is true for M .
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Here are two concluding problems for the reader.

Problem A-1. For an oriented manifold-with-boundary construct the duality
isomorphism

Hi
c M −→ Hn−i(M,∂M).

Alternatively, defining Hi
c(M,∂M) = lim

−→
Hi(M, (M − K) ∪ ∂M), construct the

isomorphism
Hi

c(M,∂M) −→ Hn−i M.

Problem A-2 (Alexander duality). Let K be a compact subset of the sphere
Sn which is a retract of some neighborhood. (This hypothesis is needed since we
are using singular, rather than Čech, cohomology.) Show that Hi K is isomorphic
to the direct limit lim

−→
Hi U as U ranges over all neighborhoods of K. Show that

Hi(Sn,K) is isomorphic to

lim
−→

Hi(Sn, U) ∼= Hi
c(S

n −K) ∼= Hn−i(S
n −K).

Finally, given x ∈ K and y ∈ Sn −K, show that

Hi−1(K,x) ∼= Hn−i(S
n −K, y).
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B. Bernoulli Numbers

Since the appearance of Hirzebruch’s signature theorem and his generalized
Riemann–Roch theorem, it has become useful for topologists to know something
about Bernoulli numbers and their number theoretic properties. This appendix
will describe some of these properties.

The Bernoulli numbers B1, B2, . . . can be defined as the coefficients that
appear in the power series

x

tanhx
=

x coshx

sinhx
= 1 +

B1

2!
(2x)2 − B2

4!
(2x)4 +

B3

6!
(2x)6 −+ . . .

(convergent for |x| < π), or equivalently in the expansion

z

ez − 1
= 1− z

2
+

B1

2!
z2 − B2

4!
z4 +

B3

6!
z6 −+ . . . .

These two series are related by the easily verified identity

x

tanhx
=

2x

e2x − 1
+ x.

With this notation one has

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
, B5 =

5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
,

and so on. (The reader should beware since other conflicting notations are also
in common usage.) These numbers were first introduced by Jakob Bernoulli,
the oldest of that famous family of mathematicians, in a work published posthu-
mously in 1713. They can be computed for example by actually dividing the
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appropriate power series, or by a procedure based on the proof of Lemma B.1
below.

Many related classical power series expansions can be derived from these. For
example the identity

1

sinh 2x
=

1

tanhx
− 1

tanh 2x

leads to the series

u

sinhu
= 1− (22 − 2)

B1

2!
u2 + (24 − 2)

B2

4!
u4 −+ . . .

(compare Problem 19-C), and the identity

tanhx =
2

tanh 2x
− 1

tanhx

leads to the series

tanhx = 22(22 − 1)
B1

2!
x− 24(24 − 1)

B2

4!
x3 +− . . . .

Closely related, by means of the equation tanh iy = i tan y, is the series

tan y = 22(22 − 1)
B1

2!
y + 24(24 − 1)

B2

4!
y3 + . . . .

This last can be used to prove an interesting number theoretic property.

Lemma B.1. For each n the number 22n(22n − 1)Bn/2n is a positive integer.

Proof. For the above Taylor expansion shows that 22n(22n− 1)Bn/2n is equal to
the (2n− 1)–st derivative of tan y at the origin. But the identity

d tanm y

dy
= m(tanm−1 y + tanm+1 y)

together with a straightforward induction shows that the (2n − 1)–st derivative
of tan y equals

an0 + an1 tan
2 y + . . .+ ann tan

2n y

where the coefficients an0, an1, . . . , ann are positive integers. In particular the
value an0 at the origin is a positive integer.
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Lemma B.2 (Lipschitz–Sylvester). For any integer k, the expression k2n(k2n −
1)Bn/2n is an integer.

Proof. Consider the function f(x) = 1+ex+e2x+. . .+e(k−1)x = (ekx−1)/(ex−1).
Note that f(0) = k, and that the derivatives of f at zero are all integers. Now
consider the logarithmic derivative

f ′(x)/f(x) =
d

dx
(log(ekx − 1)− log(ex − 1)) =

kekx

ekx − 1
− ex

ex − 1
.

Using the Taylor expansion

ex

ex − 1
=

1

x

−x
e−x − 1

=
1

x

(
1 +

x

2
+

B1

2!
x2 − B2

4!
x4 +− . . .

)
,

we obtain

f ′(x)

f(x)
=

k − 1

2
+ (k2 − 1)

B1

2!
x− (k4 − 1)

B2

4!
x3 +− . . . .

Therefore the (2n− 1)–st derivative of f ′(x)/f(x) at the origin is equal to
±(k2n− 1)Bn/2n. A straightforward induction shows that this derivative can be
expressed as a polynomial in f(x), f ′(x), . . ., f (2n)(x) with integer coefficients,
divided by (f(x))2n. Setting x = 0, this yields

(k2n − 1)Bn

2n
=

integer

k2n
,

as required.

The following two theorems give more precise number theoretic information.
The first was proved independently by T. Clausen and K. G. C von Staudt in
1840.

Theorem B.3. The rational number (−1)nBn is congruent mod Z to
∑

(1/p), to
be summed over all primes p such that p−1 divides 2n. Hence the denominator of
Bn, expressed as a fraction in lowest terms, is equal to the product of all primes
p with (p− 1) | 2n.

Proof. Thus the denominator of Bn is always square free and divisible by 6. It is
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divisible by a prime p > 3 if and only if n is a multiple of (p− 1)/2. For a proof
the reader is referred to [Har+08, Section 7.10] or [BS66, p. 384]

The next result was proved by von Staudt in 1845.

Theorem B.4. A prime divides the denominator of Bn/n (expressed as a frac-
tion in lowest terms) if and only if it divides the denominator of Bn.

It is now easy to compute the denominator of Bn/n explicitly. For any prime
p with (p−1) | 2n, let pµ be the highest power of p dividing n. Then clearly pµ+1

is the highest power of p dividing the denominator of Bn/n. As an example, for
n = 14 since the primes 2, 3, 5, 29 are the only ones satisfying (p − 1) | 2n, it
follows that the denominator of B14/14 is equal to 22 · 3 · 5 · 29.

Remark. This computation is of interest to homotopy theorists, in view of the
theorem that the image of the stable J–homomorphism

J : π4n−1 SON −→ π4n−1+N (SN )

is a cyclic group of order equal to the denominator of Bn/4n. (Compare [KM63],
[Ada65] and [Mah70].)

Proof of B.4. Let p be an arbitrary prime. If p divides the denominator of Bn,
then it certainly divides the denominator of Bn/n. If p does not divide the
denominator of Bn, then 2n ̸≡ 0 (mod p− 1) by B.3. Choose a primitive root k

modulo p, that is, choose k so that kr ≡ 1 (mod p) if and only if r is a multiple
of p− 1. Then

k2n ̸≡ 1 (mod p),

hence the integer k2n(k2n − 1)/2 is relatively prime to p. Therefore Bn/n, being
equal to the integer k2n(k2n−1)Bn/2n divided by k2n(k2n−1)/2, has denominator
prime to p.

The numerator of the fraction Bn/n is much more difficult to compute. For
small values of n it can be tabulated as follows.

n ≤ 5 6 7 8 9 10 11 12
numerator

(
Bn

n

)
1 691 1 3617 43867 174611 77683 236364091
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Remark. This numerator is of interest to differential topologists in view of the
theorem that the group consisting of all diffeomorphism classes of exotic (4n−1)–
spheres which bound parallelizable manifolds is a cyclic group of order

22n−2(22n−1 − 1)× numerator

(
4Bn

n

)
for n ≥ 2. (See [KM63].) It of interest in number theory since Kummer, in 1850,
proved Fermat’s last theorem for any prime exponent p which does not divide
the numerator of any Bn/n. (See [BS66].) Such primes are called “regular”. The
smallest irregular prime is 37, which divides the numerator 7709321041217 of
B16. If two integers m and n satisfy m ≡ n ̸≡ 0 (mod (p− 1)/2) for some prime
p, then Kummer showed that p divides the numerator of

(−1)mBm

m
− (−1)nBn

n
.

Therefore, in order to test a given prime p for regularity, it suffices to examine
the numerators of those Bn with 1 ≤ n < (p− 1)/2.

The numerator of Bn/n is non–trivial for n ≥ 8, and grows very rapidly with
n. To see this, recall the famous formula

1 +
1

22n
+

1

32n
+

1

42n
+ . . . =

Bn(2π)
2n

2(2n)!

of Euler. (See Problem B-4 below.) Using Stirling’s formula

1 <
m!

mme−m
√
2πm

< e1/12m

(see [AB15]), this implies that

Bn >
2(2n)!

(2π)2n
> 4

(
n

πe

)2n√
πn

289



Chapter B: Bernoulli Numbers

(where all three expressions are asymptotically equal as n→∞). Therefore

numerator

(
Bn

n

)
>

Bn

n
>

4√
e

(
n

πe

)2n− 1
2

> 1

for all n > πe = 8.539 . . ..
For further information concerning Bernoulli numbers, the reader is referred

to [Nie23] or [BS66].

We conclude with some exercises.

Problem B-1 (J. F. Adams). If all prime factors of n have the form 6k + 1,
show that the denominator of Bn/n is equal to 6.

Problem B-2 (J. F. Adams). Given constants N > log2(4n) show that the
greatest common divisor of the integers

2N (22n − 1), 3N (32n − 1), 4N (42n − 1), . . .

is equal to the denominator of Bn/4n.

Problem B-3. Let D =
d

dt
denote the differentiation operator f(t) 7→ f ′(t)

applied to any polynomial f(t). Show that the operator

eD = 1 +D +
1

2!
D2 + . . .

maps f(t) to f(t+ 1), and show that the operator

D

eD − 1
= 1− 1

2
D +

B1

2!
D2 −+ . . .

maps f(t) to a polynomial

g(t) = f(t)− 1

2
f ′(t) +

B1

2!
f ′′(t)− B2

4!
f ′′′(t) +− . . .

which satisfies the difference equation

g(t+ 1)− g(t) = f ′(t).
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In this way prove the Euler–Maclaurin summation formula

f ′(0) + f ′(1) + . . .+ f ′(k − 1) = g(k)− g(0).

Problem B-4. Taking f(t) = tm/m!, the corresponding polynomial

g(t) =
tm

m!
− 1

2

tm−1

(m− 1)!
+

B1

2!

tm−2

(m− 2)!
+− . . .

may be called the m–th “Bernoulli polynomial” pm(t). Show that these Bernoulli
polynomials can be characterized inductively, starting with p0(t) = 1, by the
property that each pm(t), m ≥ 1, is an indefinite integral of pm−1(t) and satisfies∫ 1

0
pm(t)dt = 0. Compute the integral

∫ 1

0

pm(t)e−2πiktdt = − 1

(2πik)m

inductively, for k ̸= 0, m ≥ 1, using integration by parts, and hence establish the
uniformly convergent Fourier series expansion

pm(t) = −
∑
k ̸=0

e2πikt

(2πik)m

for m ≥ 2, 0 ≤ t ≤ 1. Evaluating at t = 0, prove Euler’s formula

Bn

(2n)!
= 2

∞∑
k=1

1

(2πk)2n
.
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C. Connections, Curvature and Char-

acteristic Classes

This appendix will outline the Chern-Weil description of Characteristic classes
with real or complex coefficients in terms of curvature forms. (Compare [Che48] or
[BC65, Section 2].) We will assume that the reader is familiar with the rudiements
of exterior differential calculus and de Rham cohomology, as developed for exam-
ple in [War13]. However our sign conventions, as described in Appendix A, are
different from those of Warner and other authors. We will return to this point
later.

We begin with the case of a complex vector bundle. Let ζ be a smooth
complex n-plane bundle with smooth base space M , and let

τ∗C = HomR(τ,C)

be the complexified dual tangent bundle of M . Then the (complex) tensor prod-
uct τ∗C ⊗ ζ is also a complex vector bundle over M . The vector space of smooth
sections of this bundle will be denoted by C∞(τ∗C ⊗ ζ).

Definition. A connection on ζ is a C-linear mapping

∇ : C∞(ζ)→ C∞(τ∗C ⊗ ζ)

which satisifies the Leibniz formula

∇(fs) = df ⊗ s+ f∇(s)
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for every s ∈ C∞(ζ) and every f ∈ C∞(M,C). The image ∇(s) is called the
covariant derivative of s.

The basic properties of connections can be outlined as follows. First note that
the correspondence s 7→ ∇(s) decreases supports. That is, if the section
s vanishes throughout an open subset U ⊂M then ∇(s) vanishes throughout U

also. For given x ∈ U we can choose a smooth function f which vanishes outside
U and is identically 1 near x. The identity

df ⊗ s+ f∇(s) = ∇(fs) = 0,

evaluated at x, shows that ∇(s) vanishes at x.

Remark. A linear mapping L : C∞(ζ) → C∞(η) which decreases supports is
also called a local operator, since the value of L(s) at x depends only on the
values of s at points in an arbitrarily small neighborhood of x. (A theorem of
[Pee59] asserts that every local operator is a differential operator, that is it
can be expressed locally as a finite linear combination of partial derivatives, with
coefficients in C∞(η).)

Since a connection ∇ is a local operator, it makes sense to talk about the
restriction of ∇ to an open subset of M . If a collection of open sets Ua covers M ,
then a global connection is uniquely determined by its restrictions to the various
Uα.

If the open set U is small enough so that ζ|U is trivial, then the collection
of all possible connections on ζ|U can be described as follows. Choose a basis
s1, . . . , sn for the sections of ζ|U , so that every section can be written uniquely
as a sum f1s1 + . . .+ fnsn, where the fi are smooth complex valued functions.

Lemma C.1. A connection ∇ on the trivial bundle ζ|U is uniquely determined
by ∇(s1), . . . ,∇(sn), which can be completely arbitrary smooth sections of the
bundle τ∗C ⊗ ζ|U . Each of the sections ∇(si) can be written uniquely as a sum∑

ωij ⊗ sj where [ωij ] can be an arbitrary n× n matrix of C∞ complex 1-forms
on U .

Proof. We adopt the convention that
∑

always stands for the summation over
all indices which appear twice.
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In fact, given ∇(s1), . . . ,∇(sn) we can define ∇ for an arbitrary section by
the formula

∇(f1s1 + . . .+ fnsn) =
∑

dfi ⊗ si + fi∇(si)).

Details will be left to the reader.

As an example, there is one and only one connection such that the covariant
derivatives ∇(s1), . . . ,∇(sn) are all zero; or in other words so that the connection
matrix [ωij ] is zero. It is given by ∇(

∑
fisi) =

∑
dfi⊗ si. This particular “flat”

connection depends of course on the choice of basis {si}.
The collection of all connections on ζ does not have any natural vector space

structure. Note however that if ∇1 and ∇2 are two connections on ζ, and g is a
smooth complex valued function on M , then the linear combination
g∇1 + (1− g)∇2 is again a well defined connection on ζ.

Lemma C.2. Every smooth complex vector bundle with paracompact base space
possesses a connection.

Proof. Choose open sets Ua covering the base space with ζ|Ua trivial, and choose
a smooth partition of unity {λα} with supp(λα) ⊂ Uα. Each restriction ζ|Ua

possesses a connection ∇a by Lemma 1. The linear combination
∑

λa∇a is now
a well defined global connection.

Next let us consider the case of an induced vector bundle. Given a smooth
map g : M ′ → M we can form the induced vector bundle ζ ′ = g∗ζ. Note that
there is a canonical C∞(M,C)-linear mapping

g∗ : C∞(ζ)→ C∞(ζ
′
).

Also, any 1-form on M pulls back to a 1-form on M ′, so there is a canonical
C∞(M,C)-linear mapping

g∗ : C∞(τ∗C(M)⊗ ζ)→ C∞(τ∗C(M
′))⊗ ζ ′)

Lemma C.3. To each connection ∇ on ζ there corresponds one and only one
connection ∇′ = g∗∇ on the induced bundle ζ ′ so that the following diagram is
commutative
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C∞(ζ) C∞(τ∗C(M)⊗ ζ)

C∞(ζ ′) C∞(τ∗C(M
′)⊗ ζ ′).

∇

∇′

Proof. For example, given sections s1, . . . , sn over an open subset U of M with
∇(si) =

∑
ωij ⊗ sj we can form the lifted 1-forms ω′

ij and the lifted sections s′i
over g−1(U). If such a connection ∇′ exists, then evidently

∇′(s′i) =
∑

ω′
ij ⊗ s′j

Further details will be left to the reader.

Given a connection ∇ on ζ, let us try to construct something like a connec-
tion on the bundle τ∗C ⊗ ζ. We will make use of ∇ together with the exterior
differentiation operator d : C∞(τ∗C)→ C∞(Λ2τ∗C).

Lemma C.4. Given ∇ there is one and only one C-linear mapping

∇̂ : C∞(τ∗C ⊗ ζ)→ C∞(Λ2τ∗C ⊗ ζ)

which satisfies the Leibniz formula

∇̂(θ ⊗ s) = dθ ⊗ s− θ ∧∇(s)

for every 1-form θ and every section s ∈ C∞(ζ). Furthermore ∇̂ satisfies the
identity

∇̂(f(θ ⊗ s)) = df ∧ (θ ⊗ s) + f∇̂(θ ⊗ s).

Proof. In terms of a local basis s1, . . . , sn for the sections, we must have

∇̂(θ1 ⊗ s1 + . . .+ θn ⊗ sn) =
∑

(dθi ⊗ si − θi ∧∇(si)).

Taking this formula as definition of ∇̂, the required identities are easily verified.
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Now let us consider the composition K = ∇̂ ◦∇ of the two C-linear mappings

C∞(ζ)
∇−→ C∞(τ∗C ⊗ ζ)

∇̂−→ C∞(Λ2τ∗C ⊗ ζ)

Lemma C.5. The value of the section K(s) = ∇̂(∇(s)) at x depends only on
s(x), not on the values of s at other points of M . Hence the correspondence

s(x) 7→ K(s)(x)

defines a smooth section of the complex vector bundle Hom(ζ,Λ2τ∗C ⊗ ζ)

Definition. This section K = K∇ of the vector bundle
Hom(ζ,Λ2τ∗C ⊗ ζ) ∼= Λ2τ∗C ⊗ Hom(ζ, ζ) is called the curvature tensor of the
connection ∇.

Proof. Clearly K is a local operator. The computation

∇̂(∇(fs)) = ∇̂(df ⊗ s+ f∇(s)) = 0− df ∧∇(s) + df ∧∇(s) + f∇̂(∇(s))

shows that the composition ∇̂ ◦ ∇ = K is actually C∞(M,C)-linear:

K(fs) = fK(s).

Now if s(x) = s′(x) then, in terms of a local basis s1, . . . , sn for sections we have

s′ − s = f1s1 + . . .+ fnsn

near x, where f1(x) = . . . = fn(x) = 0. Hence

K(s′)−K(s) =
∑

fiK(si)

vanishes at x. This completes the proof.

In terms of a basis s1, . . . , sn for the sections of ζ|U , with ∇(si) =
∑

ωij ⊗ sj ,
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note the explicit formula

K(si) = ∇̂
(∑

ωij ⊗ sj

)
=

∑
Ωij ⊗ sj

where we have set
Ωij = dωij −

∑
ωiα ∧ ωαj .

Thus K can be described locally by the n × n matrix Ω = [Ωij ] of 2-forms
in much the same way that ∇ is described locally by the matrix ω = [ωij ] of
1-forms. In matrix notation, we have

Ω = dω − ω ∧ ω.

A fundamental theorem, which we will not prove, asserts that the curvature
tensor K is zero if and only if, in the neighborhood of each point of M there
exists a basis s1, . . . , sn for the sections of ζ so that ∇(s1) = . . . = ∇(sn) = 0.
(Compare [BC11] or [KN63].) In fact if M is simply connected and K = 0, then
there exist global sections s1, . . . , sn with ∇(s1) = . . . = ∇(sn) = 0. It follows in
that case of course that ζ is a trivial bundle. If the tensor K = K∇ is zero, then
the connection ∇ is called flat.

Remark. Using Steenrod’s terminology, a bundle with flat connection can be
described as a bundle with discrete structural group. To see this consider two
different local bases, say s1, . . . , sn ∈ C∞(ζ|U ) and s′1, . . . , s

′
n ∈ C∞(ζ|V ), both

of which have covariant derivatives zero. Over the intersection U ∩ V we can set
s′i =

∑
aijsj . The equation ∇(s′i) =

∑
daij ⊗ sj = 0 shows that the transition

functions aij are locally constant. Hence the associated mapping

[aij ] : U ∩ V → GL(n,C)

is continuous, even if the linear group GL(n,C) is provided with the discrete
topology.

Starting with the curvature tensor K, we can construct characteristic classes
as follows. Let Mn(C) be the algebra consisting of all n× n complex matrices.
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Definition. An invariant polynomial on Mn(C) is a function

P : Mn(C)→ C

which can be expressed as a complex polynomial in the entries of the matrix, and
satisfies

P (XY ) = P (Y X),

or equivalently
P (TXT−1) = P (X)

for every non-singular matrix T .

(The first identity evidently follows from the second when Y is non-singular,
and the general case follows by continuity, since every singular matrix can be
approximated by non-singular matrices.)

Examples. The trace function [Xij ]→
∑

Xii, and the determinant function
are well known examples of invariant polynomials on Mn(C)

If P is an invariant polynomial, then an exterior form P (K) on the base
space M is defined as follows. Choosing a local basis s1, . . . , sn for the sections
near x, we have K(si) =

∑
Ωij ⊗ sj . The matrix Ω = [Ωij ] has entries in

the commutative algebra over C consisting of the exterior forms of even degree.
It makes perfect sense therefore to evaluate the complex polynomial P at Ω,
thus obtaining an algebra element. The resulting algebra element P (Ω) does
not depend on the choice of basis s1, . . . , sn, since a change of basis will replace
the matrix Ω by one of the form TΩT−1 where T is a non-singular matrix of
functions. Since P (TΩT−1) = P (Ω), these various local differential forms P (Ω)

are uniquely defined. They piece together to yield a global differential form which
we denote by P (K)

Remark 1. If P is a homogeneous polynomial of degree r, then of course
P (K) is an exterior form of degree 2r. In general, P will be a sum of ho-
mogeneous polynomials of various degrees, and correspondingly P (K) will be
a sum of exterior forms of various even degrees. We will use the notation
P (K) ∈ C∞(Λ⊕τ∗C) =

⊕
C∞(Λrτ∗C).

Remark 2. 2. More generally, in place of an invariant polynomial, one can
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equally well use an invariant formal power series of the form

P = P0 + P1 + P2 + . . .

where each Pr is an invariant homogeneous polynomial of degree r. Then P (K)

is still well defined, since Pr(K) = 0 for 2r > dim(M). (A notable example of an
invariant formal power series is the Chern character ch(A) = trace(eA/2πi).

Lemma (Fundamental Lemma). For any invariant polynomial (or invariant for-
mal power series) P , the exterior form P (K) is closed, that is dP (K) = 0.

Proof. Given any invariant polynomial or formal power series P (A) = P ([Aij ]),
where Aij stand for indeterminates, we can form the matrix[

∂P

∂Aij

]
of formal first derivatives. It will be convenient to denote the transpose of this
matrix by the symbol P ′(A).

Now let Ω = [Ωij ] be the curvature matrix with respect to some basis for ζ
∣∣
U

.
Evidently the exterior derivative dP (Ω) is equal to the expression

∑ ∂P

∂Ωij
dΩij .

In matrix notation, we can write this

dP (Ω) = trace(P ′(Ω)dΩ). (C.1)

The matrix dΩ of 3–forms can be computed by taking the exterior derivative of
the matrix equation

dΩ = dω − ω ∧ ω,

and then substituting this equation back into the result. This yields the Bianchi
identity

dΩ = ω ∧ Ω− Ω ∧ ω. (C.2)

We will need the following remark. For any invariant polynomial or
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power series P , the transposed matrix of first derivatives P ′(A) com-
mutes with A. To prove this statement, let Eji denote the matrix with entry 1

in the (j, i)–th place and zeros elsewhere. Differentiating the equation

P ((I + tEji)A) = P (A(I + tEji))

with respect to t and then setting t = 0, we obtain

∑
Aiα

∂P

∂Ajα
=

∑ ∂P

∂Aαi
Aαj .

Thus the matrix A commutes with the transpose of [∂P/∂Aij ], as asserted.
Substituting Ω for the matrix of indeterminates A, it follows that

Ω ∧ P ′(Ω) = P ′(Ω) ∧ Ω. (C.3)

It will be convenient to use the notation X for the product matrix P ′(Ω) ∧ ω.
Now substituting the Bianchi identity (C.2) into (C.1) and using (C.3) we obtain

dP (Ω) = trace(X ∧ Ω− Ω ∧X)

=
∑

(Xij ∧ Ωji − Ωji ∧Xij).

Since each Xij commutes with the 2–form Ωji, this sum is zero, which proves the
Fundamental Lemma.

Thus the exterior form P (K) is closed, or in other words is a de Rham cocy-
cle, representing an element which we denote by (P (K)) in the total de Rham
cohomology ring H⊕(M ;C) =

⊕
Hi(M ;C).

Corollary C.6. The cohomology class (P (K)) = (P (K∇)) is independent of the
connection ∇.

Proof. Let ∇0 and ∇1 be two different connections on ζ. Mapping M ×R to M

by the projection (x, t) 7→ x, we can form the induced bundle ζ ′ over M ×R, the
induced connections ∇′

0 and ∇′
1, and the linear combination

∇ = t∇′
1 + (1− t)∇′

2.
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Thus P (K∇) is a de Rham cocycle on M × R.
Now consider the map iε : x 7→ (x, ε) from M to M × R, where ε equals 0 or

1. Evidently the induced connection (iε)
∗∇ on (iε)

∗ζ ′ can be identified with the
connection ∇ε on ζ. Therefore

(iε)
∗(P (K∇)) = (P (K∇ε

)).

But the mapping i0 is homotopic to i1 hence the cohomology class (P (K∇0)) is
equal to (P (K∇1)).

Thus P determines a characteristic cohomology class in H∗(M ;C) de-
pending only on the isomorphism class of the vector bundle ζ. If a map g :

M ′ −→M induces a bundle ζ ′ = g∗ζ, with induced connection ∇′, then clearly

P (K∇′) = g∗P (K∇).

Thus these characteristic classes are well behaved with respect to in-
duced bundles.

But we already know from Section 14 that any characteristic class for complex
vector bundles can be expressed as a polynomial in the Chern classes. Thus we
are left with the following two questions: What invariant polynomials exist; and
how can their associated characteristic classes be expressed explicitly in terms of
Chern classes?

The first answer can easily be answered as follows. For any square matrix A,
let σk(A) denote the k–th elementary symmetric function of the eigenvalues of
A, so that

det(I + tA) = 1 + tσ1(A) + . . .+ tnσn(A).

Lemma C.7. Any invariant polynomial on Mn(C) can be expressed as a poly-
nomial function of σ1, . . . , σn.

Proof. Given A ∈Mn(C) we can choose B so that BAB−1 is an upper triangular
matrix; in fact, we could actually put A in Jordan canonical form. Replacing B

by diag(ϵ, ϵ2, . . . , ϵn)B, we can then make the off diagonal entries arbitrarily close
to zero. By continuity it follows that P (A) depends only on the diagonal entries
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of BAB−1, or in other words on the eigenvalues of A. Since P (A) must certainly
be a symmetric function of these eigenvalues, the classical theory of symmetric
functions completes the proof.

We will see later that the characteristic class (σr(K)) is equal to a complex
multiple of the Chern class cr(ζ).

Leaving this for a moment, let us look at the corresponding theory for real
vector bundles. The concepts of a connection

∇ : C∞(ξ) −→ C∞(τ∗ ⊗ ξ)

on a real vector bundle ξ, and of its curvature tensor

K ∈ C∞(Hom(ξ,Λ2τ∗ ⊗ ξ)) ∼= C∞(Λ2τ ⊗Hom(ξ, ξ)),

are defined just as above, simply substituting the real numbers for the complex
numbers throughout. Any invariant polynomial P on the matrix algebra Mn(R)
gives rise to a characteristic cohomology class (P (K)) ∈ H∗(M ;R).

The most classical and familiar example of a connection is provided by the
Levi-Civita connection on the tangent or dual tangent bundle of a Riemannian
manifold. We will next give an outline of this theory.

First consider a real vector bundle ξ over M which is provided with a Eu-
clidean metric. Thus if s and s′ are smooth sections of ξ, then the inner product
⟨s, s′⟩ is a smooth real valued function over M .

Definition. A connection ∇ on ξ is compatible with the metric if the identity

d⟨s, s′⟩ = ⟨∇s, s′⟩+ ⟨s,∇s′⟩

is valid for all sections s and s′.

Here it is understood that the inner products on the right are defined by the
requirement that

⟨θ ⊗ s, s′⟩ = ⟨s, θ ⊗ s′⟩ = ⟨s, s′⟩θ

for all θ ∈ C∞(τ∗) for all s, s′ ∈ C∞(ξ). Unfortunately this notation can be
confusing in some situations. It is safer in general to make use of the following.
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Lemma C.8. Let s1, . . . , sn be an orthonormal basis for the sections of ξ
∣∣
U

, so
that ⟨si, sj⟩ = δij . Then a connection ∇ on ξ

∣∣
U

is compatible with the metric if
and only if the associated connection matrix [ωij ] (defined by∇(si) =

∑
ωij⊗sj)

is skew–symmetric.

Proof. For if ∇ is compatible, then

0 = d⟨si, sj⟩ = ⟨∇si, sj⟩+ ⟨si,∇sj⟩

= ⟨
∑

ωik ⊗ sk, sj⟩+ ⟨si,
∑

ωjk ⊗ sk⟩ = ωij + ωji.

The converse will be left to the reader.

Remark. The appearance of skew–symmetric matrices at this point is of course
bound up with the fact that the Lie algebra of the orthogonal group O(n) is equal
to the Lie subalgebra of Mn(R) consisting of all skew–symmetric matrices.

Definition. A connection ∇ on τ∗ is symmetric (or torsion free) if the compo-
sition

C∞(τ∗)
∇−→ C∞(τ∗ ⊗ τ∗)

∧−→ C∞(Λ2τ∗)

is equal to the exterior derivative d.

In terms of local coordinates x1, . . . x
n, setting

∇(dxk) =
∑

Γk
ijdx

i ⊗ dxj

this requires that the image
∑

Γk
ijdx

i∧dxj must be equal to the exterior deriva-
tive d(dxk) = 0. Hence the Christoffel symbols Γk

ij must be symmetric in i, j.
More generally, the following is easily verified.

Assertion. A connection∇ on τ∗ is symmetric if and only if the second covariant
derivative

∇(df) ∈ C∞(τ∗ ⊗ τ∗)

of an arbitrary smooth function f is a symmetric tensor. That is, in terms of a
local basis θ1, . . . , θn for the sections of τ∗, one must have ∇(df) =

∑
aijθi⊗ θj

with aij = aji.
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Lemma C.9. The dual tangent bundle τ∗ of a Riemannian manifold possesses
one and only one symmetric connection which is compatible with its metric.

This prefered connection ∇ is called the Riemannian connection or the
Levi–Civita connection.

Proof. Let θ1, . . . , θn be an orthonormal basis for the sections of τ∗
∣∣
U

. We will
show that there is one and only one skew–symmetric matrix [ωkj ] of 1–forms such
that

dθk =
∑

ωkj ∧ θj .

Defining a connection ∇ on U by the requirement that

∇(θk) =
∑

ωkj ⊗ θj

it evidently follows that ∇ is the unique symmetric connection for τ∗
∣∣
U

which
is compatible with the metric. Since these local connections are unique, they
agree on intersections U ∩ U ′ and so piece together to yield the required global
connection.

We will need the following combinatorial remark. Any n×n×n array of real
valued functions Aijk can be written uniquely as the sum of an array Bijk

which is symmetric in i, j and an array Cijk which is skew–symmetric
in j, k. In fact, existence can be proved by inspecting the explicit formulas

Bijk =
1

2
(Aijk +Ajik −Akij −Akji +Ajki +Aikj)

Cijk =
1

2
(Aijk −Ajik +Akij +Akji −Ajki −Aikj)

and uniqueness is clear since if an array Dijk were both symmetric in i, j and
skew in j, k then the equalities

D123 = D213 = −D231 = −D321 = D312 = D132 = −D123

would show that the typical entry D123 is zero.
Now choosing functions Aijk so that dθk =

∑
Aijkθi ∧ θj and setting

Aijk = Bijk + Cijk as above, it follows that dθk =
∑

Cijkθi ∧ θj . In fact, the
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1–forms
ωkj =

∑
Cijkθi

evidently constitute the unique skew–symmetric matrix with dθk =
∑

ωkj ∧ θj .
This proves Lemma C.9.

Let us specialize to the case of a 2–dimensional oriented Riemannian mani-
fold. With respect to an oriented local orthonormal basis θ1, θ2 for 1–forms, the
connection and curvature matrices take the form[

0 ω12

−ω12 0

]
and

[
0 Ω12

−Ω12 0

]
,

with dω12 = Ω12. The identity[
cos t sin t

− sin t cos t

][
0 Ω12

−Ω12 0

][
cos t − sin t

sin t cos t

]
=

[
0 Ω12

−Ω12 0

]

shows that the exterior 2–form Ω12 is independent of the choice of
oriented local basis. Hence it gives rise to a well defined global 2–form.

Definition. This form Ω12 is called the Gauss–Bonnet 2–form on the oriented
surface. Denoting the oriented area 2–form −θ1∧θ2 briefly by the symbol dA, we
can set Ω12 = KdA, where K is a scalar function called the Gaussian curvature.

Since both Ω12 and dA change sign if we reverse the orientation of M , it
follows that K is independent of orientation.

Note on signs. The above choice of sign for dA may look strange to the
reader. It can be justified as follows. In conformity with [Mac75], and as described
in Appendix A, we introduce the sign of (−1)mn whenever an object of dimension
m is permuted with an adjacent object of dimension n. Thus if In denotes
the unit cube with ordered coordinates t1, . . . , tn and canonical orientation class
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µ ∈ Hn(I
n, ∂In), we set

⟨dt1 ∧ . . . ∧ dtn, µ⟩ =
〈
dt1 ∧ . . . ∧ dtn,

∫ 1

t1=0

· · ·
∫ 1

tn=0

〉
= (−1)n+(n−1)+...+1

∫ 1

t1=0

dt1 . . .

∫ 1

tn=0

dtn = (−1)n(n+1)/2.

In other words the “oriented volume n–form” on In is, by definition, set equal
to (−1)n(n+1)/2dt1 ∧ . . . ∧ dtn. This choice of signs leads to a version of Stokes’
theorem,

⟨dϕ, µ⟩+ (−1)dimϕ⟨ϕ, ∂µ⟩ = 0,

which is compatible with Appendix A. Readers who prefer to use the classical
sign conventions in [Spa81], [War13] and [BC65] can forget about these signs, but
should replace K by −K wherever it occurs in our characteristic formulas.

To give some reality to this rather abstract definition, let us carry out a
more explicit computation. In some neighborhood U of an arbitrary point on a
Riemannian 2–manifold, one can introduce geodesic coordinates x, y so that
the metric quadratic differential in C∞(τ∗ ⊗ τ∗|U ) takes the form

dx⊗ dx+ g(x, y)2dy ⊗ dy.

Then setting
θ1 = dx, θ2 = gdy

we obtain an orthonormal basis for the 1–forms over U . The equations

dθ1 = ω12 ∧ θ2

dθ2 = −ω12 ∧ θ1

have unique solution ω12 = gxdy, where subscript x stands for the partial deriva-
tive. It follows that

Ω12 = gxxdx ∧ dy = (−gxx/g)dA.
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Thus the Gaussian curvature is given by

K = −gxx/g.

As an example, taking latitude and longitude as coordinates on the unit sphere,
we have g(x, y) = cos(x), and therefore K = 1.

Theorem (Gauss-Bonnet). For any closed oriented Riemannian 2–manifold, the
integral

∫∫
Ω12 =

∫∫
KdA is equal to 2π e[M ].

Proof. More generally, consider any oriented 2–plane bundle ξ with Euclidean
metric. Then ξ has a canonical complex structure J which rotates each vector
through an angle of π/2 in the “counter–clockwise” direction. In terms of an
oriented local orthonormal basis s1, s2 for sections, we have Js1(x) = s2(x).
Choosing any compatible connection on ξ, we have

∇s1 = ω12 ⊗ s2

∇s2 = −ω12 ⊗ s1.

Evidently ∇ gives rise to a connection on the resulting complex line bundle ζ,
where

∇s1 = ω12 ⊗ is1 = iω12 ⊗ s1

and consequently ∇(is1) = i∇s1 = −ω12 ⊗ s1. Thus the connection matrix of
this complex connection is the 1 × 1 matrix [iω12] and the curvature matrix is
[iΩ12]. Applying the invariant polynomial σ1 = trace, we obtain a closed 2–form

trace[iΩ12] = iΩ12

which represents some characteristic cohomology class in H2(M ;C). But the
only characteristic class in H2(−;C) for complex line bundles ζ is the Chern class
c1(ζ) = e(ζR) (and its multiples). Therefore

(iΩ12) = α c1(ζ) = α e(ζ)

for some complex constant α.
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To evaluate this constant α, it is only necessary to calculate both sides ex-
plicitly for one particular case. Suppose for example that ξ is the dual tangent
bundle τ∗ of a closed oriented 2–dimensional Riemannian manifold M . Since
(iΩ12) = α e(τ∗), it follows that∫∫

iΩ12 = α e[M ]

or in other words
i

∫∫
KdA = α e[M ].

Evaluating both sides for the unit 2–sphere, we see that α = 2πi. This completes
the proof.

Theorem. Let ζ be a complex vector bundle with connection ∇. Then the
cohomology class (σr(K∇)) is equal to (2πi)r cr(ζ).

Proof. In the case of a complex line bundle, the argument above shows that

(σ1(K)) = α c1(ζ) = 2πi c1(ζ).

Define the invariant polynomial c by

c(A) = det(I +A/2πi)

=
∑ σk(A)

(2πi)k

Thus, for a complex line bundle the coycle

c(K) = 1 + σ1(K)/2πi

represents the cohomology class c(ζ) = 1 + c1(ζ). Now consider any bundle ζ

which splits as a Whitney sum ζ1 ⊕ . . . ⊕ ζn of line bundles. Choosing connec-
tions ∇1, . . . ,∇n on the ζj , there is evidently a “Whitney sum” connection on ζ.
Choosing a local section sj for ζj near x, we can consider s1, . . . , sn as sections
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of ζ. The corresponding local curvature matrix is diagonal:

Ω = diag(Ω1, . . . ,Ωn),

and hence
c(Ω) = c(Ω1) . . . c(Ωn).

It follows that the corresponding global exterior forms have the same property

c(K) = c(K1) . . . c(Kn).

But the right side of this equation represents the total Chern classes

c(ζ1) . . . c(ζn) = c(ζ).

Thus the equality c(ζ) = (c(K)) is true for any bundle ζ which is a Whitney sum
of line bundles.

The general case now follows by a standard argument. (Compare [Hir53,
Section 4.2] or the uniqueness proof for Stiefel–Whitney classes in Section 7.) If
γ1 denotes the universal line bundle over Pm(C) with m large, then the n–fold
cross product of copies of γ1 satisfies

c(γ1 × . . .× γ1) = (c(K(γ1 × . . .× γ1))).

Since the cohomology of the base space Grn(C∞) of the universal bundle γn maps
monomorphically into the cohomology of Pm(C) × . . . × Pm(C) in dimensions
≤ 2m, it follows that

c(γn) = (c(K(γn))).

Therefore c(ζ) = (c(K(ζ))) for an arbitrary bundle ζ.

Corollary C.10. For any real vector bundle ξ the de Rham cocycle σ2k(K)

represents the cohomology class (2π)2k pk(ξ) in H4k(M ;R) while σ2k+1(K) is a
coboundary.

Proof. In other words the total Pontrjagin class 1+p1(ξ)+p2(ξ)+. . . in H⊕(M ;R)
corresponds to the invariant polynomial p(A) = det(I + A/2π). This follows
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immediately from the Theorem together with thedefinition of Pontrjagin classes.

Remark. Here is a direct proof that σ2k+1(K) is a coboundary. Choose a Eu-
clidean metric on ξ, and choose a compatible connection ∇. Then the connection
matrix with respect to a local orthonormal basis for sections is skew symmet-
ric, and it follows easily that the associated curvature matrix Ω is skew also,
Ωt = −Ω. Therefore

σm(Ω) = σm(Ωt) = (−1)mσm(Ω).

Thus σm(K∇) is zero as a cocycle for m odd. For an arbitrary (non–metric)
connection ∇′; it follows that σm(K∇′) is a coboundary.

Corollary C.11. If a real [or complex] vector bundle possesses a flat connection
then all of its Pontrjagin [or Chern] classes with rational coefficients are zero.

Proof. The proof is clear.

Remark. If the homology H∗(M ;Z) with integer coefficients is finitely gener-
ated, then it also follows that the Pontrjagin [or Chern] classes with integer
coefficients are torsion elements. These torsion elements are not zero in general.
[BH72b] have recently constructed a real [or complex] vector bundle with discrete
structural group whose Pontrjagin [or Chern] classes in H∗(B;Z) are non–torsion
elements which satisfy no polynomial relations. Of course the homology H∗(B;Z)
cannot be finitely generated.

One piece of information is conspicuously absent in the above discussion. We
do not have any expression for the Euler class of an oriented 2n–plane bundle in
terms of curvature (except for a very special construction in the case n = 1). This
is not just an accident. We will see later by an example that there cannot be any
formula for the Euler class in terms of the curvature of an arbitrary connection.
The situation changes, however, if the connection is required to be compatible
with a Euclidean metric on ξ.

The following classical construction will be needed.
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Lemma C.12. There exists one and up to sign only one polynomial with integer
coefficients which assigns, to each 2n × 2n skew–symmetric matrix A over a
commutative ring, a ring element Pf(A) whose square is the determinant of A.
Furthermore

Pf(BABt) = Pf(A) det(B)

for any 2n× 2n matrix B.

We will specify the sign by requiring that Pf(diag(S, . . . , S)) = +1, where S

denotes the 2 × 2 matrix

[
0 1

−1 0

]
. The resulting polynomial Pf is called the

Pfaffian. As examples,

Pf

[
0 a

−a 0

]
= a,

and the Pfaffin of a 4× 4 skew matrix [aij ] equals a12a34 − a13a24 + a14a23.

Proof. To prove1 Lemma C.12, we will work in the ring
Λ = Z[A12, . . . , A(2n−12),n, B11, . . . , B2n,2n] in which all of the above diagonal
entries of the skew matrix A = [Aij ] and all of the entries of B = [Bij ] are
distinct indeterminates. Over the quotient field of Λ, it is not difficult to find
a matrix X so that XAXt = diag(S, . . . , S). Hence the polynomial det(A) ∈ Λ

is equal to a square det(A)−2 in the quotient field of Λ. Since Λ is a unique
factorization domain, this implies that det(A) is a square already within Λ.

Similarly, the identity det(BABt) = det(A) det(B)2 implies that

Pf(BABt) = ±Pf(A) det(B),

and specialising to B = I we see that the sign must be +1.

Now let ξ be an oriented 2n–plane bundle with Euclidean metric. Choos-
ing an oriented orthonormal basis for the sections of ξ throughout a coordinate
neighborhood U , the curvature matrix Ω = [Ωij ] is skew–symmetric, so

Pf(Ω) ∈ C∞(Λ2nτ∗|U )
1For details, see [Bou98, chapter 9, p. 82]
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is defined. Choosing a different oriented basis for the sections over U , this exterior
form will be replaced by Pf(XΩX−1) where the matrix X is orthogonal
(X−1 = Xt) and orientation preserving (detX = 1). Hence the Pfaffian is
unchanged. Thus we can piece these local forms together to obtain a global
2n–form

Pf(K) ∈ C∞(Λ2nτ∗).

(As an example, for n = 2 we recover the statement that the Gauss–Bonnet 2–
form Ω12 = Pf(K) is globally well defined.) Just as in the previous case, one
can verify that the matrix of formal partial derivatives [∂Pf(A)/∂Aij ] commutes
with A, and hence that

dPf(K) = 0.

Thus Pf(K) represents a characteristic cohomology class in H2n(M ;R). Passing
to a bundle γ̃ which is universal in dimensions ≤ 4n, since the square of Pf(K(γ̃))

represents the cohomology class

det(K(γ̃)) = (2π)2n pn(γ̃),

we see that
(Pf(K(γ̃))) = ±(2π)n e(γ̃)

and hence that (Pf(K(ξ))) = ±(2π)n e(ξ) for any oriented 2n–plane bundle ξ.
In fact, the sign is +1, as can be verified by evaluating both sides for a Whitney
sum of 2–plane bundles. Thus we have proved the following.

Theorem (Generalized Gauss–Bonnet Theorem). For any oriented 2n–plane
bundle ξ with Euclidean metric and any compatible connection, the exterior
2n–form Pf(K/2π) represents the Euler class e(ξ).

Remark. This theorem helps to illustrate the general Chern–Weil result that
for any compact Lie group G with Lie algebra g, the cohomology H⊕(BG;R)
of the classifying space is isomorphic to the algebra consisting of all polynomial
functions g −→ R which are invariant under the adjoint action of G. This general
assertion fails for non–compact groups such as SL(2n,R).

As an example, suppose that τ∗ is the dual tangent bundle of the unit sphere
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S2n, with the Levi–Civita connection. Choosing an oriented, orthonormal basis
θ1, . . . , θn for the sections of τ∗

∣∣
U

, computation shows that

−Ωij = θi ∧ θj .

(This equation expresses the fact that the “sectional curvature” of the unit sphere
is identically equal to +1.) Furthermore

(−1)nPf(Ω) = Pf [θi ∧ θj ] = (1 · 3 · 5 · 7 · . . . · (2n− 1))θ1 ∧ . . . ∧ θ2n.

Integrating over S2n, this yields∫
Pf(K) = (1 · 3 · 5 · . . . · (2n− 1)) volume(S2n).

Setting this expression equal to (2π)n e[S2n] = 2(2π)n, we obtain a novel proof
for the identity:

volume(S2n) =
2(2π)n

1 · 3 · 5 · . . . · (2n− 1)
.

To conclude this appendix, we will show that the Euler class cannot be de-
termined by the curvature tensor of an arbitrary (non–metric) connection. In
fact we will describe an example of an oriented vector bundle with flat
connection such that the Euler class with real coefficients is non–zero.
(Compare [Mil58] and [Woo71]) Suppose that we are given a homomorphism from
the fundamental group Π = π1(M) to the special linear group SL(n,R). Then Π

acts on the universal group covering M̃ and hence acts diagonally on the product
M̃ × Rn. It is not hard to see that the natural mapping

(M̃ × Rn)/Π −→ M̃/Π ∼= M

is the projection map of an n–plane bundle ξ with flat connection (or equivalently,
with discrete structural group). We will divise such an example with e(ξ) ̸= 0.

Let M be a compact Riemann surface of genus g > 1. Then the universal
covering M̃ is conformally diffeomorphic to the complex upper half plane H. (See
for example [Spr01].) Every element in the group Π of covering transformations
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corresponds to a fractional linear transformation of H of the form

z 7→ az + b

cz + d
,

where the matrix [
a b

c d

]
∈ SL(2,R)

is well defined up to sign. Thus we have constructed a homomorphism h from Π

to the quotient group

PSL(2,R) = SL(2,R)/{±I}.

We will show that h lifts to a homomorphism Π −→ SL(2,R) which induces the
required 2–plane bundle over M . The group PSL(2,R) operates naturally on the
real projective line P1(R) which can be identified with the boundary R ∪ ∞ of
H. Hence h induces a bundle η over M with fiber P1(R) and projection map

(M̃ × P1(R))/Π −→ M̃/Π ∼= M.

We will think of η as a bundle whose structural group is the group PSL(2,R)
with the discrete topology. This induces bundle η can be identified with
the tangent circle bundle of M . In fact, every non–zero tangent vector v

at a point z of H is tangent to a unique oriented circle segment (or vertical line
segment) which leads from z to a point f(z, v) on the boundary R ∪ ∞, and
which crosses this boundary orthogonally. (See Figure 12.) The mapping f is
invariant under the action of Π (that is, f(σz,Dσz(v)) = σf(z, v) for σ ∈ Π), and
therefore induces the required isomorphism from the bundle of tangent directions
on M to the (R ∪ ∞)–bundle η. (Notation as on p. 18.) It follows that the
Euler number,Euler characteristic or Euler number e(η)[M ] is equal to
2− 2g ̸= 0.

Let E0 be the total space of η, and E be the total space of the associated
topological 2–disk bundle. Since e(η) is divisible by 2, it follows that w2(η) = 0.
Hence, from the exact sequence of the pair (E,E0) it follows that the fundamental
class u ∈ H2(E,E0;Z/2) lifts back to a cohomology class a ∈ H1(E0;Z/2) whose
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restriction to each fiber is non–zero. Let E −→ E0 be the 2–fold covering space
associated with this cohomology class a. Then the composition Ê0 −→ E0 −→M

constitutes a new circle bundle η̂ over M . Using for example the obstruction
definition, we see that e(η̂) = 1

2 e(η). Thus the Euler number of η̂ is 1− g ̸= 0.
The structural group of this new bundle η̂ is evidently the 2–fold covering

group SL(2,R) of PSL(2,R), acting on the 2–fold covering of P1(R). (This is
clear since PSL(2,R) actually has the same homotopy type as the space P1(R)
upon which it acts.) But η has discrete structural group, so η̂ does also. Hence η̂

is induced by a suitable homomorphism Π −→ SL(2,R). The associated 2–plane
bundle evidently has a flat connection, and has Euler number 1− g ̸= 0.
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Euclidean metric, 36, 43, 47, 59, 97, 111,

245, 303, 311
Euclidean vector bundle, 30
Euclidean vector space, 30
Euler characterist or Euler number, 25
Euler characteristic, 136, 154, 176, 190, 192
Euler class e, 108, 127, 130, 150, 161, 164,

184, 244, 311, 313
exponential map, 123, 131
exterior derivative, 296
exterior form, 299
exterior power, 39, 78, 154

fibration, 231, 254, 257
fibre bundle, 24
fibre space Fb, 23
foliation, 255
formal power series, 223, 226
frame, 63, 84, 145
functor, 40

— continuous, 40
fundamental class

— cohomology, 98, 109, 114, 126, 130
— homology, 57, 133, 190, 236, 253,

275
fundemental class

— cohomology, 105

Gauss map, 63, 78

— generalized, 68
Gauss-Bonnet 2-form Ω12, 306, 313
Gauss-Bonnet theorem

— classical, 308
— generalized, 313

generalized cohomology theory, 256
generalized homology theory, 257
geodesic coordinates, 307
Girard’s formula, 201
Gram-Schmidt process, 31, 37, 64, 67
Grassmannian manifold

— Grn(C∞), 111
— Grn(R∞), 111
— complex, 158, 169, 177
— oriented G̃r, 151
— oriented G̃rn, 218, 246
— real, 185

Gysin sequence, 149, 163, 165, 186, 245,
246, 248

half-space, 83, 203
Hermitian metric, 162, 167, 174
Hirzebruch, F., 46, 221, 226, 233, 242
holomorphic, 156
Hom, 39, 43, 51, 53, 66, 78, 95, 174, 249
homology, 261
homology manifold, 236
homotopy class, 77
homotopy group, 253
homotopy groups, 210, 215, 288
homotopy type, 226, 228, 231, 246
homtopy groups, 246
Hurewicz homomorphism, 211, 247, 254

immersion, 38, 56, 61
implicit function theorem, 213
index, 226
index theorem, 228
induced bundle, 33, 155
inner product, 30
invariant polynomial, 299
inverse function theorem, 14, 124
inverse limit, 116
isometry, 32
isomorphic (vector bundles), 24, 27, 43, 46

J-homomorphism, 288
Jacobian dfx, 17, 38
jet, 32

K-genus, 225
K–theory, 256
Kronecker index, 57, 153, 234, 265
Künneth isomorphism, 226
Künneth theorem, 96, 135, 170, 211, 273

L-genus, 227, 233
Leibniz formula, 293, 296
lens space, 246
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linear group GLn
— complex, 161
— real, 24, 42

local coefficients, 146
local coordinate system, 14, 23
local operator, 294
local parametization, 14, 203
local triviality, 23, 155, 157, 251
long line, 32

Möbius band, 26, 102, 128
mapping cone, 119
Mayer-Vietoris sequence, 275
microbundle, 252
MO(k),MSO(k), 218
multiplicative characteristic class, 229
multiplicative sequence, 222, 226, 229

n-frame, 63, 84, 145
n-plane, 64, 69
n-plane bundle, 24, 45
naturality, 45
Newton’s formula, 200
normal bundle, 25, 31, 37, 49, 123, 129,

213, 218, 234

obstruction, 145, 176, 253
oriented bundle, 106, 117, 162, 184
oriented cobordism, 203, 215, 218
oriented manifold, 63, 129, 191, 204, 236,

257
oriented simplex, 105
oriented vector space, 105
orthogonal complement ξ⊥, 36, 43, 51, 78,

163, 175
orthogonal group, 30, 255

pairing, 30
paracompact, 32, 36, 70, 73, 79, 82, 241,

295
parallelizable, 25, 28, 32, 55, 154
parametization, 14
partition, 88, 93, 177, 189, 206, 219, 224
partition of unity, 32, 214
Pfafian, 312
piecewise linear, 237, 239, 251
piecewise linear bundle, 251
piecewise linear manifold, 248, 251, 254
Poincaré duality, 135, 138, 141, 236, 241,

253
Poincaré Hypothesis, 248
Poincaré complexes, 253
Poincaré duality, 226
Pontrjagin class pi, 180, 201, 223, 225, 244,

311
Pontrjagin number, 189, 191, 198, 206, 219,

225, 228, 248, 258
Pontrjagin, L., 9, 59, 191, 206
power series, 48, 223, 226, 285, 300
product formulas, 45, 109, 169, 180, 196,

229

projection map, 23
projective module, 44
projective space

— complex Pn(C), 140, 158, 165, 173,
175, 198, 206, 219, 227, 236

— quaternion Pn(H), 192
— quaternionic Pn(H), 244, 249
— real Pn, 20, 25, 50, 56, 63, 78, 87,

102, 128, 147, 150, 184, 190, 195

quadratic function, 29
quaternions H, 29, 55, 244, 249
quotient bundle, 43

R,Rn,RA,R∞,Rn
0 , 13, 70, 271, 275

rank, 14, 93, 187, 219
real vector bundle, 24
refinement, 189, 200
regular value, 212, 220, 234, 242
representation ring, 257
restriction, 33, 275
Riemann surface, 314
Riemannian manifold, 30, 38, 43, 123, 129,

303
Riemannian metric, 30, 255, 303
ring of smooth functions C∞(M,R), 19
Rn-bundle, 24, 47, 51

— topological, 253

Sard’s theorem, 213, 234
Schubert cell, Schubert variety, 83, 177
Schubert symbol σ, 83
second fundamental form, 43, 78
Serre, J.P., 210, 235
sign conventions, 262, 306
signature σ, 226
signature σ, 234, 237, 248
signature theorem, 226
simplex ∆n, 105, 261

— oriented, 105
simplicial complex, 236, 238, 251
simplicial map, 237
singular cohomology, 262
singular homology, 262
singular homology and cohomology, 45
skeleton, 266
slant product, 133, 138
smooth function, 13, 16, 17, 42, 78
smooth manifold, 13, 14, 20, 21, 33, 61, 78,

145
— with boundary, 59, 192, 203, 257

smooth path, 15
smooth vector bundle, 24, 34, 42
smoothness structure, 20, 249, 252
sphere bundle, 49
spinor group, 255
Spivak normal bundle, 254
stable homotopy groups, 257
Steenrod reduced powers, 230
Steenrod squares, 98, 137, 188
Stiefel manifold, 64, 76, 145, 152, 176
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Stiefel, E., 9, 46, 55
Stiefel-Whitney class wi, 45, 61, 91, 127,

137, 146, 176, 187
— axioms, 45, 100
— dual, 56, 95, 142
— existence, 97
— total, 47
— uniqueness, 94

Stiefel-Whitney number, 58, 89, 142, 202,
220, 258

Stokes’ theorem, 307
structural group, 24, 30, 42, 255, 298, 314
sub-bundle, 36, 61, 112
subdivision, 237, 238
submanifold, 37
submersion, 43
symmetric function, 95, 192, 224, 302
symmetric functions, 232
symplectic group, 255

tangent bundle τM , 24, 33, 35, 37, 49, 78,
95, 129, 203, 251, 253

— complex, 157, 175, 293
tangent manifold TM , 16, 51
tangent space TxM , 13, 15, 38, 204, 213
tangent vector, 15, 19
tensor product ⊗, 39, 41, 95, 155, 179, 293
Thom isomorphism, 98, 107, 108, 113, 127,

212
Thom space, 209, 214, 254
Thom, R., 60, 98, 196, 203, 226, 233
Todd genus, 231
topological manifold, 65, 253
total space E(ξ), 23, 123

trace, 299, 308
transversality, 212
triangulation, 145, 148, 241, 248, 253
trivial bundle εn, 23, 27, 31, 46, 53
tubular neighborhood, 123, 132, 142, 218

underlying real bundle ωR, 156, 173, 181,
223

unitary group, 255
universal bundle, 69, 73

— complex, 169
— oriented, 151, 218

vector bundle, 23
— Euclidean, 30
— complex, 155, 293
— dual, 41, 43
— smooth, 24, 34, 42

vector field, 26, 61, 145, 147, 154
vector space, 13, 39

— dual, 18, 39
— oriented, 105

velocity vector, 15

Whitehead theorems, 211, 241
Whiteney duality theorem, 128
Whitney duality theorem, 49, 56, 222
Whitney product theorem, 45, 53
Whitney sum, 36, 109, 155, 169, 181, 195,

309
Whitney, H., 9, 46, 57
Wu class, 230
Wu’s formula, 102, 139, 154
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The theory of characteristic classes provides a meeting ground for
the various disciplines of differential topology, differential and
algebraic geometry, cohomology, and fiber bundle theory. As
such, it is a fundamental and an essential tool in the study of
differentiable manifolds.

In this volume, the authors provide a thorough introduction to
characteristic classes, with detailed studies of Stiefel-Whitney
classes, Chern classes, Pontrjagin classes, and the Euler class.
Three appendices cover the basics of cohomology theory and the
differential forms approach to characteristic classes, and provide
an account of Bernoulli numbers.

Based on lecture notes of John Milnor, which first appeared at
Princeton University in 1957 and have been widely studied by
graduate students of topology ever since.
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