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This thesis consists of two parts, both concerned with 

eneions of the S-catepgory, but with different purposes, The 

pet part is devoted to extending the duality theorem and the 

ond. one introduces a system of invariants for the stable homo-- 

y type of a CW-complex, A common notion connects them: that 

a spectrum, 

A brief description of each part is given below. 

PART I 

In [12], Spanier and Whitehead proved a duality theorem 

eh brought a formal justification, at Least in the stable 

se, for some isolated phenomena, previously observed, of pairs 

ual results (for instance, the theorems of Hurewicz and Hopf), 

duality theorem may be stated by saying that, if X,Y are sub 

Qlyheara of the sphere 3°, then {x,y} - {s? - x,8° - x} (for the 
unition of the S~group {A,B}, see 40). Part I is concerned 

h the extension of this theorem to more general spaces than 

ite polyhedra, A simple counter example, however, shows that 

© can be no isomorphism as the one above for all compact sub-— 
2 

ets X,Y of 8P, In fact, let XC 8S” be @ circle and let Y¥< 8” 

  

©. the compact space obtained from the closure of the graph of 

  (Sin (1/x), 0 <x 3 2n, py connecting the origin (0,0) to the 

int (27,0) with a Simple are that touches no other point of 

Shat Closure. Then iX,¥| = 0, On the other hana, {8° - X, s* . x5  



    

2 

have the same homotopy type as a pair of points, so 

x, 8° ~X}= Z. 

The situation here is similar to the one met in the 

    

    

  

   
    

   
   
    

  

    

   

    

    

    

exander auality isomorphism H2(X)z H (Ss? . X), x < 3? 
p-q--L 

sed: the cohomology group Ho (xX) 4a taken in the sense of Cech 

ne homology group H -q- (8 ~ X) 18 the singular one. Thus, 
Pp 

order to extend the above duality isomorphism from polyhedra 

‘pitrary closed subsets of the sphere, a distinction seems 

ary, in some way, between "Cech homotopy theory" and "“sin- 

yy homotopy theory", This distinction is introduced here, at 

Level of S-theory, and it leads, in fact, to the desired ex- 

ton. No attempt is made to develop these theories in the 

1 of homotopy theory. Part of the results obtained in the 

e level still hold for the non-stable one, but the whole 

atus of the matter is unsatisfactory, especially in the Cech 

‘where the restriction necessary for the definition of the 

motopy groups is a serious handicap. 

In ordinary S—-theory, the isomorphism {X, 9?-y}~ {y, 9°-x} 

is for arbitrary compact subsets X,Y of s°. This is also 

ved in Part I. 

| An attempt to determine the most general class of spaces 

which a dual can be found and a duality theorem can be proved, 

As to the notion of a spectrum and that of a space represented 

bya spectrum. The spectra considered here are sequences of fi- 

ite CW-complexes and provide the Link between polyhedra and ar- 

bitrary Spaces. They are of 2 kinds: direct spectra and inverse 

Spectra. The prototype of the former is an increasing sequence 

  
 



  

    
   
    

    

    
    

      

     

    

    
   
    

   

4te subcomplexes of a CW-complex and of the latter is a 

,e of nerves of finite coverings of a compact space, each 

sm refining the preceding one. The general theory of spectra 

neir maps is treated in section 1, Section 2 proves a dual- 

eorem for spectra. This is a straightforward generalization 

Spanier-Whitehead duality theorem. i1t 16 used as a tool in 

8, in order to prove duality theorems for spaces. 

“Sections 3 and 4 study, respectively, the singular and the     

g-categories. The former is based on approximating a space 

3 of finite polyhedra into it and the latter uses the dual 

od of mapping the space into polyhedra, The most important 

ge are the respective equivalence theorems, analogous to the 

ehead equivalence theorem. In the singular theory this 

rem is stated in terms of the singular homology (or S—homo- 

groups and, in the Cech theory, the Cech cohomology (or 

motopy) groups are used. 

“Sections 5 and 6 are concerned with the representation of 

by a spectrum, A space is representable by a spectrum if 

be approximated (by one of the methods described above) by 

table sequence of polyhedra, Such spaces are those with 

ple Singular homology (representable by direct spectra) and 

ompact Spaces with countable Cech cohomology (representable 

nverse Spectra), The short section 7 looks at the mixed case 

Maps of a space represented by an inverse spectrum into a space 

presented by a direct spectrum. 

Section 8 proves that every space U with bounded and 

able singular homology has a p-—dual - a compact metric space  



   

   

     
   

  

   
    

   

    

   

   

     

    

   

     

‘the duality isomorphism holds in the form {x,y}, {v,u}, 

are p-dual to U,V, where the subscript e¢ denotes the Cech 

p and the subscript s stands for the singular S~group. Con- 

_every finite dimensional compact space X with countable 

ohomology has a p-dual - a finite dimensional countable CW- 

x U - and the same isomorphism holds as above. Moreover, 

7 are finite dimensional CW-complexes and X,Y¥ are their 

etive p-duals, the isomorphism {X,V4<~ {Y,U} holas for 

, S-groups. 

PART ITI 

MN. M. Postnikov introduced in [7] the so called Postnikov 

ante and showed that, together with the homotopy groups, 

erm a complete system of invariants for the homotopy type 

complex Xk, <A very convenient description of these invar- 

was given by J. F. Adams fi]. Adams' description requires 

imum amount of machinery and improves a previous treatment 

, CG, Whitehead fav]. Briefly, it goes as follows: 

_ Given X and n 2 2, construct a complex Xn) with the 

owing two properties: 

(1) ROX), XP = (x 
(ny) 

(2) on p(Kn)) = 0 for all r 2 n. 

7 ~The complex Kin) is constructed simply by attaching cells 

dimension = n+L to X in order to kill the homotopy groups 

4 3 Zn, From standard obstruction theory, it is easily 

‘Shat X(,) 18 determined, up to a natural homotopy equivalence, 

and n, so that the cohomology groups H(X 4) 34), for instance,  



   
    

   
   

   
   
    

     

   
     

        

   
    

   

nly on X and n. Consider the inclusion n-map (Kp yPCX, 

ny obstruction of this map is a cohomology class 

rl (Kays g(X)). This 18 the Postnikov k-invariant of 

iension ntl. The sequence of invariants «9(X) ,k4(X), o 

y with the homotopy groups T 4 (X), TT g(X),... characterize 

homotopy equivalence. In other words, they suffice to 

: p to an equivalence, the objects in the category whose 

GW-complexes X,Y,... and whose "maps" X.-»¥Y are homo- 

aes of continuous functions X—sY, 

fonsider now the following problem: First say that 2 

;X have the same stable homotopy type if, for some m, 
  

ape sions g™x, s"y have the same homotopy type. The prob- 

characterize the stable homotopy type of a OCW-complex 

f algebraic invariants, Of course, if such invariants 

hey must be stable under suspension, since the problem 

change if Sk, S¥ are substituted for X, Y. The most 

nt framework for this problem is the 5-category of 

r and Whitehead, whose objects are spaces X, Y, etc. and 

aps X—»Y are equivalence classes (under suspension) of 

lasses S"X—-»S"Y, In the S-category, the problem be- 

ind invariants that suffice to classify spaces up to an 

(that is, S-equivalence). 

Of course, the natural approach to this problem would be 

to imitate the procedure sketched above for the introduc- 

he Postnikov invariants. But this does not work in the 

Ory s due to the impossibility of constructing a CW-~complex 

. preassignea sequence of stable homotopy groups and, in 

  

 



   
    
    

  

   
   
   

   

    

  

   
    
    

  

    

    

   

     

of constructing a space Xen) with only finitely many 

9 stable homotopy groups. In order to have an object 

: role of Xin) in the definition of the Postnikov in- 

the S-category will be enlarged. This is done here in 

rent ways, one leading to the category of direct 8-spec- 

ther to the category of inverse S-spectra, These two 

5 are related by the duality theorem of Spanier and 

Hence, their theorles are parallel, and it suffices 

‘direct S-spectra in this summary. 

n the ordinary S-theory, an object may be considered as 

e (X,9X,8°X,...) consisting of a complex and its consec- 

pensions, In the enlarged category, an object (i.e., a 

pectrum) 18 a sequence ‘X = (X,,X,,...) where X,,, has 

1g to do with X, but 1s not necessarily equal to it. A 

ed treatment of direct S-spectra may be obtained if one 

that BX, X41] and that Sx, agrees with Xe up to 

“BA, (This definition 1s not adopted in the text, only 

t is not possible, in general, to find for every such 

epectrum a dual inverse S-spectrum, with similar prop- 

Maps f:¥-->Q are defined by means of a double limit~ 

88 and homotopy theory, including obstructions, 18 de- 

n this category. The basic property is that arbitrary 

y" groups (denoted by day ®)) are realized. Given a 

mn £ and an integer n, it is possible to construct another 

m Xen) Satisfying conditions similar to (1) and (2) stated 

beginning of this summary, and to define the Postnikov 

ts en (E ye*2( HZ (ED). The invariants k™*+(X )  



 
 

  

 
 

  
 
     

The S-category of spaces is included in the category of 

a 60 that, in particular, the stable Posatnikov invariants 

 
 

ed for a space and they solve the problem of character. 

 
 

stable homotopy type proposed above, 
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Preliminaries and Notations 
  

suspension SX of a topological space X is the quotient 

product X XI (I = {0,1]) by the equivalence relation 

fies all the points of the form (x,0), xeX, to a aingle 

4 all the pointe of the form (x,1), xeX, to another 

he points Kyo X ex are called poles. 

X,¥ be topological spaces. ([X,¥] will denote the set 

y classes [f]:X-»>Y of continuous functions f:X—»yY, 

on map 3: |[X,¥]—»[SX,S¥] 18 defined by setting 

where e(x,t) = (f(x),t), for [tje [X,Y]. Consider the 

of sets, under the suspension maps: 

(x,x]-&s [sx, sv]-S. [s*x, s*y]_s ... 

{s*x, s*y] is an abelian group and 8: (sx, s"y]—> 

Y] is a homomorphism. Therefore, the direct Limit   m (s"x, 8"y] of the above system is an abelian group, 

~group. The elements gqX,Yjare called S-maps. Thus, 

X—>Y is the equivalence class f = if") &X,Yjor a con- 

tion ct, sky another function g':8"X—ss"¥ 

alent to f' af and only if, for some n = k,m, the 

s atKos and S°""pt are homotopic. S-maps f:X—-——>Y, 

ay be composed, giving rise to an S-map go f:X-—>Z, 

Sition yields a pairing: 

ix,2} @ {x,v}——>{x, z}, 

9  
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_ o f, and it is defined as follows: take k so 

and g are poth represented by continuous functions 

and et: Sy —ss"z. Then, set go f = jgt o £") ¢{X, 2}. 

of X—>Y induces, for each space 2, a homomorphism 

x,2%, where f'(g) = g of. Similarly, an S-map 

s, for each space X, a homomorphism Ey EX i—> K, 2) 

y(t) =gof, The category whose objects are topo- 

g and whose maps are S-maps is called the S-category. 

gan {gomorphism in this category, that is, the sus- 

orphisms 8: [s"x,3"y]——» [s**4x, s**+y] anauce, in the 

omorphism 8: {X,Y}—» {sx, sy}. | 

conn ¥ denote the connectivity of Y, that is, the 

  

eger 1 such thet m,(¥) = 0 for all § = 4, Then, if 

omplex ané dim X = 2.conn Y, the suspension map 

SX sy] is a 1-1 correspondence [13]. Since. conn SY = 

nd dim SX = 1 + dim X, it follows that, whenever X is 

ensional CW-complex, the limit group iX,¥ 4 = 

] 46 attained by (4.¢e., isomorphic to) all the groups 

ith sufficiently large k. In fact, it suffices to 

X+4 (or k = aimX + 2, 1f Y 18 not empty). 

are isomorphisms S:H,(X) = H+ (8%), 3:H9*? (ax) x 

ced homology and cohomology) such that, for every con- 

etion g:X-->¥, the diagrams below are commutative: 

et ye) ud(y) > w(x) 

8 8 Sg 

(Sg) * 
Sx) ai (sr) wd? (sy) U8), w(x) 
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ty 
Oe H H,(%) q(%) 

gk gk 

" Eye " Hoa (8 x) te ete Hota (8 Y) 

   
    

    
   

  

    

   
   

  

   
   

    

   

   

e.a CW-complex and AC” X a subcomplex. Denote by 

obtained by identifying A to a single point. Gon- 

Lowing sequence of 5~maps; 

A aa X > K/A > SA 

one is the inclusion 5~map, the second one is the 

». collapsing function and the third one is the 5. 

ontinuous function f:X/A—>SA defined as follows: 

notion A—»>A extends to a continuous function 

A denotes the cone over A. (Any 2 such extensions 

relative to A.) Compose this extension with the 

  

¢tion TA»SA, Such composite sends A into a point, 

es the function f:X/A——>BA, 

ry Space Y, the above sequence induces, by composi- 

t sequences [13]: 

- {X/a, x) ———> |X, ¥)-~—> {a,j > ix/a, sy) —_> sae 

\Y, Aj ——» jy, x) > 1X, X/Aj ——>j¥, 94; ——> ... 

referred to as the exact sequence of (X,A;Y) and 

Quence of (Y;X,A) respectively.  
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nere gP will be taken with a fixed triangulation 

adron of gP will mean a subcomplex of some recti- 

4on of this triangulation. A p-dual of a subpoly- 
  

g.a subpolyhedron x” of SP which is an §~deforma~ 

3? ~ X (that is, the inclusion S-map x* cgP x 

ence). Every subpolyhedron X of SP has a p-dual; 

yal, then xx are also p-dual, and BX, x", as well 

p#1)-dval (cf., [12],93). The duality theorem of 

tehead states that if X,x” ana Y,Y” are pairs of 

edra of gP there is an isomorphism Dix, ¥4 = 

yeral naturality properties (for details, see [12]). 

Anite CW—-complexes X Xx ana 5~equivalences 

0 —~>X, where Xx)" are p-dual subpolyhedra of 

  

, Ex are said to form a weak p-duality between 

paces are said to be weakly p-dual. If y,y* 

i duality between ne where ‘ :¥—>¥) 

then an isomorphism De ix Xb x iy*,x*% can be de- 

fxn} | iy," xi tn an obvious way, and has 

iar to the latter. The former is called the weak 
  

phism, It should be remarked that every finite CW- 

weak p-dual for sufficiently large p. In fact, 

W-complex is of the same homotopy type as some 

Clal complex, [15] which can be embedded in 8 for 

dual of this simplicial complex will be a weak 

original CW-complex. 

imension of a compact space will always be taken in 

covering dimension (as in [8], page 206), 
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1, Spectra and their Maps   

‘spectrum A= (U,,9,), or simply U= (U,) is a 

.) of topological spaces, together with 5-maps 

fhe notation qy = Vani? oes O 0, :U,—>U,, will be 

1o that 4, 4s short for qi. | 

1) A topological space U yields a direct 

,) with each U, = U and G,:U,C Uy, (identity 

enerally, a direct spectrum is obtained by choosing 

ULC... of subspaces of U and setting q, = in- 

‘opological spaces will be identified with direct 

e°firet example. 

vee spectrum X= (X,,Y,), or simply X= (X,), 18 

yeee+) Of topological spaces, together with S-maps 

gain Y, is an abbreviation for yin where, for 

es the composite S—map Yo ree O to 

8; 2) A topological space K gives rise to an in- 

<n x, % = (X,,U,) where all x, = X and Uy Xa, 

t X be a space and (a, ,% ) @ sequence of open L?*’* 

Buch that, for each i, O54, refines a,. Let x, 

re. of @,, with the weak topology, and let 

e the (unique) S-class of some "projection" of Koy 

monow on called the projection S-map). The collection 
  

forms an inverse spectruu. 

Logical Spaces will always be considered as inverse 
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A subspectrum of a (direct or inverse) spectrum 
{ 

= (W,,9,) 18 a spectrum US = (Wi,@1) of the same species, 

oh that, for each 1, WiC W, and 0) ie the restriction of O,- 
1. 

this case, one writes Wer, 

A spectrum Al = (Wy) is called finite dimensional if 
  

re exists an integer p 2 0 such that all entries Wy have di- 

gion = p. 

The suspension of a spectrum US = (Ww, ,9,) is the spectrum 

(dW, ,90,). 

A spectrum UT = (W,,6,) 18 sala to be of bounded order if 
re exists an integer p 20 such that all the S—maps 8, can be 

A spectrum JA! = (W,) is called cellular if all the en- 
a a neemtre emanate 

es W, are finite CW-complexes. 

Lemma (1.1). A cellular spectrum of dimension © p hag 

Proof. This follows immediately from the fact that 

Sp, aimy £ p ampry {x,x¥} x [s?t@x, oP ty]. 
The group of maps {U, Uy of a space U into a direct spec-— 

me Us (V,,U,) 48 defined as the direct limit 

, (U,V = Lag (U,V 
respect to the homomorphisms VyyilUV4§ i, V1, induced 

he Taps Wy. Thus, a map f:U—> 1) is represented by (1.¢., is 

fquivalence class of) some S~map £,:U—V,. Another S-—map 

~>V,. represents the same map f:U--»> 1 ar and only if there 
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An S-map £:W—sU induces a homomorphism £,:1w, Uj —> fu}, 

   
     

ed as the direct limit of the homomorphisms 3 WV} —> 

Hence, the group tu, U | is, for fixed VU, a contravariant 

ir Us (U,,9,), We (Vs,U,) are direct spectra, the S~map 

duces, for each i, a homomorphism 

4 
$5 {Uy 0 ftw. 

The group of maps iu, Ut of the direct spectrum th into 

OUD iv,,U} with respect to the homomorphisms 0, ; 

i U, Ut = lim }u,,U } = am (itm UsV 4s). 
<—- qa 1, 

A map r:l[—» VY is, therefore, the same as a sequence 

or ty, eos) Of maps fy: o> which are compatible in the 

  ‘that the diagram below is commutative for each 1: 

  

For instance, let UC. The inclusion map ce: UL CU 1s 

Ned ag ¢ = (f.f ) where, for each i, f,:U,—> VU is 
‘ne    



resented by the inclusion 5-map U,c_ V,. In particular, if 

.U, f 18 the identity mp. The notation f:4LC U will 

aye mean that f is the inclusion map of 4A santo VU. 

tr IL reduces to a space U (in the sense of Example 1)) 

2 the group TU reduces to fuji as defined before. If 

only reduces to a space V, the group SL Ut is defined by a 

gle inverse Limits 

20h Ub = Uv) = vim iu,,Vi. 
Eis 

oth iL ,U reduce to spaces U,V, the group aU Ur reduces to 

ordinary 8-—group {U,V}. Therefore, the S-category is natu- 

AY embedded in the category of direct spectra. 

For every relative integer r, the "indexed" group{ iu we 

efined just as for spaces, that is, UU5 , = is iL i} if 

2 Q, and. LULU r = (hs Puy if r =o, 

Special groups of maps are the homotopy groups Z(t) 

My, 
ot spectrum (I. If r = 0, é plc) = 98 sky = ,iimjs »U, § 

4 24 ? g +47 
Sr) = U8" { = dam, ju, 8°. 

The description of the category of direct spectra is com~ 

and the cohomotopy groups SPU) =U 8} of a 
  

  

ed now with the definition of the composite h = go t:b—» 14) 

wo maps f:(l—»1T, g:\*—>W of direct spectra 1A = (U,), 

Wy) ana Ty = (W,J- The map h is given by the sequence 

hi,...) where, for each 1, h,:U,—> iS 4s defined as follows: 

Map f,:U,->1) 18 represented, for some J, by an S~map 

U-~V,. Corrésponding to the index j, there is a map 

ys Set then hy = g, 0 fy Vy It is easy to see 
tthe choice of the representative Tas 4s immaterial and that  



    

     

    

     

     

   
    

     

    

L? 

9. various hy so defined are compatible, and thus yield a map 

1 ell 
7 A map cif —s is called an equivalence if it has a 

gided inverse, that is, a map g:\’—s%l such that go ft: LCi 
fog bev. 

Maps r:Uj—U, eV induce, by composition, homo- 

phisme eff u, ue —> Vu 6, Wm, vf — vy wh, with re- 

+ to which the group “U,07 

2 

J 
” 
i is a covariant functor of UU” ana 

travariant functor of U, This functor is stable under sus-— 
\ A % : 6 hy uw A 

gion, that 1s, (U,Uy & isis). 

Composition in the category of direct spectra defines 

efore & pairing: 

iw w}e (uv] Uw] 
eg @t-sgof, re(U,y, gel VU, Wy. 

Maps of inverse spectra are defined similarly: the group 
  

trum % into the inverse spectrum Qe (Y,,W,) can be defined 

he inverse limit: 

VEO) = aim {Kx} 
a with respect to the homomorphisms Vay? RE Lag >| X44, 

ed by the Smaps ¥,- A map t:{— 4 4s, therefore, a se- 

Se f= (f,,f,,-.-) of maps f,:k—sy, that are compatible, 

  
 



  

18 

   

     

       

    
     

     

       
      

      
     

           

    

   

  

n the sense that fy = ¥ ° Poe’ Composition of maps is defined 

analogy with direct spectra, so the inverse spectre form a cat-    
ory, whose groups of maps are stable under suspension. This 

   
tegory also includes the S-category, spaces being identified     th inverse spectra in the manner of Example 2). In fact, if 

inverse spectra ¥,9 reduce to spaces X,¥ then the group 

mh reduces to the ordinary S-group fx,¥}. Gomposition of    
ps in the category of inverse spectra defines a pairing: 

¢ % “ye ty ry Sy) ) (9.9) @ YX,Up — (%9)- 
C. ) 

Just as for direct spectra, the indexed groups rE LY) 

    

r 

inverse spectra, are defined for all relative integers r.    
ese include, in particular, the homotopy groups apd) and the 

    

homotopy groups a *(#). 

A homology or cohomology theory on a certain category of    
aces extends to direct and inverse spectra with entries in this 

tegory by means of a straightforward limiting process. For 

tance, if Uf = (U,,9,) 18 a direct spectrum, its homology and 

homology groups in dimension q are defined respectively as: 

Wyn: G(1k) = 4 Hg(L) = lim Hy(U,), HA(1L) Lim HA(U,),    
8e Limits being taken with respect to the homomorphisms 

q 

& Spectra in question reduce to spaces, these groups reduce to 

| *& 4G q H (Uy )—>H, (Uy 4)? and Q/":H*(U,,,)—>H*(U,). Of course, when 

    

    

       

© ardinary homology and cohomology groups of a space, 

An inverse spectrum ~ = (X49) can also be mapped into 

direct spectrum ‘}{ = (U,,,). The group of maps 2 &, Lh is 

fined as the direct limit:



L9 

4th respect to the homomorphisms 0,” o Vy a Vay 0 of tx, ,0,$— 

Xa Uaaa}: Of course, the maps of an inverse spectrum “ into 

dairect spectrum ie cannot be used in order to define a category. 

lowever, if £5 are inverse and use are direct spectra, com- 

osition defines the pairings: 

1.4) LEW @ [Oe] > TU, U4 
15) wy} @ uy — ie). 
the first pairing, a map re {XL} is composed on the right 

th a map eid XX) giving f o ee fyi} and, in the second one, 

4g composed on the left with a map nei U,irt, giving 

o fe( X, US. The definition of the composite mans is straight~— 

pward and therefore omitted, 

Finally, one may also define the group of maps VL, } of 

direct spectrum 71 = (U,,0,) into an inverse spectrum = 

,0,) a8 the inverse limit 

(UX) = 1am [0,,4,3 

en with respect to the homomorphisms o* 0 0" a 

20 Viet yay Saar} —> Uy) and composition again yields 

‘pairings: 

ea? Ce ay 4 
8) WX} ®@ iyjuy —siv, *%4 

(K,0, @ UF) wy}. 
Indexed groups (E, Us and ees are again defined, 

r r 

every relative integer r. All 4 kinds of indexed groups here 

roduced, are functors of the spectra that they involve. For 

tance, a map £:V%— >i) inauces & homomorphism £,t(U Uf 

US| which equals ES KY) —> is tL uss for r 20 and 

ele sr (Us Uj fu, sus for r 20, 

A map f:1/~—> 1% of a direct spectrum VL into a direct  
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pectrum W anduces homomorphisms: 

£,tHy (UL )—sH,(), e*nt(U) —sn4( ) 

¢ the homology and cohomology groups. In fact, let f = 

or tyrttels To each index 1 there corresponds a j = j({1), such 

hat £,:U,—> U is represented by an S—map £4 4:U,—>V,. Thies can 

@ done in such a way that 4 S 4! amplies 3(4) 3 3(4!'). Then, 

he order preserving map i—»j(i), together with the homomorphisms 

43 1H, (Uy )->H, (V4), j= j(1), form a direct system of homomor— 

nisms, whose direct limit is taken ae f,:H,(L)—oH, (U7). The 

“45 defined in a similar way. Following cohomology homomorphism f 

“procedure analogous to the above, one can also define the homol- 

gy and cohomology homomorphisms induced by: 

(a) A map g:X—>l) between inverse spectra; 

(bo) A map h:% —sll of an inverse spectrum into a direct 

pectrun. 

(c} A map ck: —» ¥ of a direct spectrum into an inverse 

will be used: (UY 48 a direct or 

Hy CW) the homology group of ll, 

¢ OD . 

HEC) = 7 )s cohomology group of WA). 

en, 

bo! ° Pix O) ? the homotopy group of //) 

5) = ~ ; the cohomotopy group of LA,  
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49 notation includes, of course, the case of a space W. Unless 

he entries of the spectrum 7A) are finite CW-complexes, it ia 

eceasary to specify the homology and cohomology theories con- 

dered. 

A spectrum UW 18 said to have bounded homology if 

(WS) = Q for all sufficiently Large q. The same notion of 

indedness applies to cohomology, homotopy and cohomotopy. 

Although the definitions of this section have been stated 

erms of general spectra, in all that follows, we shall be 

ywerned with cellular spectra only. Thus, the qualification 

ular 
‘li ea 

mnow on, be assumed to be finite CW~complexes. 

will be omitted, and all the entries of a spectrum will, 

2. Duality for Spectra 
  

A direct spectrum 7/4 = (U,,0,) and an inverse spectrum 

= (X,,J,) are said to be p-dual if, for each 4, U, and X, are 

akly pedual, in such a way that the (weak) duality isomorphism 

{UU} © (%y4g%y} takes 6, into ¥,. 
Theorem (2.1). Every finite dimensional spectrum has a 

dual for some p. If 1 are p-dual, then su, ¥ and U, st 

@ (ptl)-dual. Any two p-duals of the same spectrum are equiv- 

  

Proof, Let WU = (U,,9,) be @ direct spectrum with 

4 = q for all i. Then there exists an integer p (in fact, 

may be taken = 2q + 1) such that each U, admite an S-equiv- 

enee hy with a subpolyhedron P, of the sphere SP. Let 

Cc sP 

      

~ P, be a p-dual of P,, 80 that x, is weakly p-dual to 
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, for each 4. Define ,:X,,,->X, to be the image of 9, under 

weak duality Daye Uy Ua yy} ya hy} defined by the equiv- 

ences hy, Hy4,- Then H = (X,,U,) 18 an inverse spectrum, 

val to - The existence of a p-dual to a finite dimensional 

eree spectrum is, of course, proved in the same manner. If 

x are p-Gdual then, for each 1, (8U,,X,jare weakly (ptl.)-dual 

the weak duality D_4,:{8U,,8U, 415% [X,4,,%,) takes 8), into 

go SIL,X are (ptl)=dual. Similarly, one checks that (4,3% 

(ptl)-dual. Given two p-duale = (X,, V5), Yt = (X1,01) to 

game spectrum lt = (U,,9,), there exists, for each i, an S~ 

iavalence PyiX,—>X], which 18 weakly dual to the identity map 

4° Since J, and Yj are both weakly dual to 0,, it follows 

vat Vj} o f,,, = f, 0 Py, hence the various f, combine to give an 

= By: UW 
h the following properties; 

(1) If all these spectra reduce to spaces (i.e., finite 

~complexes ) these isomorphisms reduce to the Spanier-—Whitehead 

ality isomorphism; 

(2) For US p-dual to GY, 0, takes the pairing (1.2) 

‘to (1.3), takes (1.4) into (1.5), and (1.6) into (1.7); 

| (3) 87, = Poa JF 48 = 0. (py considering SU as 

+1 )~dual to X, sU aa (ptl}-dual to U , ete.).            
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Proof. The proof consists of straightforward passages 

q “ 
) Lintte. For instance, FU,V = Lim, (,Lim{U,,V54) and. {Ox} = 

im, (2am 1% 55) These limits are taken with respect to S—maps 

at are pairwise p-dual. Therefore, the duality isomorphieme 

{Uy V5) iX4,%,) induce, in the limite, the isomorphism 

{uo ~ i 54 > The remaining statements follow easily, 

taking limite, from the corresponding properties of the duality 

5. The Singular S-category 
  

A singular S-map o:U—sV of a space U into a space V is 

orre spondence which assigns to each finite polyhedron P a 

nomorphism 

Op: P,Uj—>iP, Vj 

uch way that, given another polyhedron Q@ and S-maps f:P—— >», 

Q— 2, the following relation holds: 

Cp(go f) = ge) o f. 

      

The set of singular S—-maps ¢;U-——»V forms, in a natural 

ay, a group which is denoted by (U,V, and called the group of 

  

gular S—mapa from U to V. Spaces and their singular 5S—mape 
   

  

ma category, the singular S-category. The composite 
  

  

   

to o:U—sW of 2 singular S-maps o:U—sV, ¢:V—sW 41s defined 

    

Pp = tp 0 Ops iP, US —> P,W for each finite polyhedron P. Com~ 

    

ition of singular maps yields a pairing 

1) iv,wh, @ ju,vp.—iu,w),. 

    

   A singular 8-map g:;U.»V is an equivalence if and only if 
rr rr nee 

{PLU} a {pv} for every polyhedron P, If there exists a sin- 

   
ar Sequivalence o:U—»V, the spaces U,V are said to be of the 

   

me Singular S-type. 
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Proof. Define a homomorphism SA: {U,Vh—>tu, v4 by 

Z\(e) = oy(3y), where jy:UC U. It 1s easily seen that 2' 1s 

a two-sided inverse of 2, , 

Lemma (3.3). Let U be a CW~complex and V be any space. 

Suppose given, for every finite subcomplex KU, a continuous 

   
function fy:K—sV in such a way that if LOK, ft)“ f,|L. Then, 

   
there exists a continuous function f:U—sV such that f|K““f, for 

every finite subcomplex K. 

    

Proof, The function f will be defined successively on 

   
each skeleton u" and called f,, there. Define ty on U° to equal 

fy on every O-cell K of U. Suppose that Poreeer fy have been 

    

defined in such a way that f,ju= f, for every finite subcomplex 

    

L of dimension £4, 4 3 n-1, ana f, extends f, ,. Then, define 

f,iu"—>V as follows: for each n-cell K of U, with boundary L, 
   

fyijplb= ff, fy|L. Since fy|L extends to K, the homotopy ex-     

   
   

f,{K:K-»V and fi (k= f,. Letting K run over all n-cells of U, 
: h . 
his defines f,:U'—sV, extending f, | and such that f,([K= fy 

or every n-cell K, Now, 1f M is any finite subcomplex of ai- 

    

nsion n in U, fy lwent x f nL ny fie? so it may 

De assumed that fy and ft, |M agree on M-1, Now, for every n-cell 

nM, f,|K= f,~f_|K, therefore fy f,|]M. This completes 
M K niu M n 

   
€ proof of (3.3). 

   
Lemma (3.4). If U ig a finite dimensional CW-complex, 

hen the homomorphism ZU, Vj—>iU,V} is onto, for every space V. 

   
Proof. Let dim U =n. There exists an integer p such 

hat, for every finite CW-complex K with dim K $ n, LK, V4 =| 9PK, SV). 
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Theorem (3.5). If U 1s a CW-complex and V is an arbitrary 

space, there is a natural isomorphism u,v Lim, eK, vt, 

mere K describes the finite subcomplexes of U. 

Corollary (3.6). If U is a CW-complex and V is an arbi- 

‘yyary space, the kernel of the homomorphism Z {U,Vj—>, V} , 

onsists of the Smaps f:U--»V such that flK = 0 for every finite 

pcomplex K of U. 

Proof, Let AiU,Vj—>Lim, }K,V} be the homomorphism that 

signs to each S-map f:U—sV the string A(f) = (fy) where 

f{K. Of course, the kernel of A is the set of S-maps 

—»V¥ such that f]K = 0 for every finite subcomplex K. The 

rollary follows then from the commutativity of the diagram 

ze 

u,v, — 2. aan fev} 

Remark. ixamples show that the kernel of ? may be non 

‘ivial, even for a 2-dimensional CW-complex U. 

A singular S-map o:U-—»V induces, for each q, a homomor— 

gaia (u) = { 84, Uj» {34, vis = q(V) Combining these, one 

tains a homomorphiem 9, 22 y(U)—> Z9). If o 1s the identity 

C, is the identity homomorphism. Moreover (Go G), = Ty 0 Os 

Theorem (3.7). A singular map o:U—~»V is an equivalence 

and only if O. 22, dU) = ZV). 

Proof. fant of the statement is obvious. Suppose that 

‘4s an isomorphism onto. ‘Then Gp 1P,US <e {P,V§ for every fi- 

© polyhedron P which is an iterated suspension of a  
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gudimensional polyhedron, In fact, such a P is a bouquet of 

“ gpheres of the same dimension, say q, hence }P,U} ana {P,Vj are 

airect sums (the same number of times) of Zq(U) and Lgl) re-~ 

gpectively, 60 Op is a direct sum of the isomorphisms 

he 

Ag (V) the same number of times. Now assume, in- 

P 

= ne 

Let Q be a@ polyhedron of dimension nti. It will be shown that, 

That 

each vertical arrow represents the appropriate homomorphism 

[stta", Uj» (3"(9/a"), u} > (87a, Uj {s"Q", uj -> is" (9/@”) gU fe. 

a ee eee 
,> {sgh u}> (87(a/a") ,u}—> (s"@, Ul» (s"a", ul» {s"(a/a") , suj—... 

The homomorphisms 1 and 4 are isomorphisme onto, by the inductive 

hypothesis, since Q@" has dimension n. By the same reason, 2 and 

5 are also isomorphisms onto, since 9/Q" is a bouquet of (n+l)- 

Spheres, hence suspension of a 0-dimensional polyhedron. There- 

ore, by the five Lemma, 3 is an isomorphism onto, which completes 

Given a space U, let GU denote the geometrical realization 

Of the singular complex of U [5]. GU will be called simply the 

Singular complex of U. There 1s a natural continuous function 

"GU, which induces isomorphisms between the homotopy groups 

f GU and those of U. Then h' and all ites suspensions induce  
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4somorphisms of the singular homology groups. By a theorem of 

Whitehead [15], all the suspensions of h' induce also isomor— 

  

phisms of the homotopy groups. Therefore, if h:GU-—sU is the 

S-class of h', h :2 (au) 2 (U), so the singular S-map h = 

?,(h):GU—>U is a singular S-equivalence, by (3.7). This proves: 

Corollary (3.8). The natural S-map h:GU--sU induces a 

singular S-equivalence. 

Another consequence of (3.7) is: 

Corollary (3.9). Let U,V be CW-complexes. An S—map       re{U, Vj is an equivalence if and only if the singular S-—map 

Z(r)e {u,v} , ig an equivalence. 

A singular S-map o:U-->V induces a homomorphism 

O, 2H, (U)—sH (V) 

of the singular homology group of U into the singular homology 

group of V. There are two alternative ways of defining o . The 

first one is based on the description of the singular homology 

groups of a space by means of maps of finite polyhedra into it 

(see [18], page 138, and references therein), By this method, 

x 18 defined as follows: given a singular homology clase 

H,(U), there exists a finite polyhedron P, a homology class 

weH, (P) and an S-map f:P—-sU such that f,(w) = 2. Define 

(2) = p(t), (w)eH (V). This definition does not depend on 

the choices of P, w, f. In fact, if P’ 18 another polyhedron, 

Gd w'cH, (P') is a class such that ty (w') = for an S-map 

Pl__sU, then there exists (loc cit.,) a finite polyhedron Q 

Ntaining P, P', an S-map ¢:Q—5U and a homology class xeH (Q) ich that g/P = f, g|P' = f' ana J"? = Ja (wt) = xX, where    



    
    

    

     
        
     

4sPC a, J':P! ag, 

            
The induced homomorphism Oo, may also be defined as    

   ollows: given the singular S-map o:U.V, let G = 0 0 he {GU,V}.. 

   

  

n S-map fyeiout, vj such that 2. (fq) = o?, The S—map fy 48 not 

nique, but any 2 choices agree on every finite subcomplex of 

Moreover, one may define the various tq inductively, so 

aut = f.. Now, define 2H (U)—>H(V) as the hat Poa! q %y, 

             
          

     
        
       

    

i —L -1 j t 
Hy (0) ae H, (GU) es H, (cut) athe Hy(V) 

   
here 3:GU97%+< GU. It ig Left to the reader to check that thia 

efinition of o agrees with the previous one. The new definition 

   
as the advantage of using homology isomorphisms jy, and Fat 

hduced by real S-maps. 

    

Theorem (3.10), A singular S~map o:U—-»V is an equivaleme 

  

fa . one nd only if o :H,(U) * HL(V). 

Proof. One part is obvious. For the other part, let o 

§n isomorphism. Then, in the second definition above,
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q+ 
Ett yy (GU ) 

ment, using the mapping cylinder of some continuous function 

eo wee 
qty? = (U) fa fV) for 

every ° Sq. Since q 16 arbitrary, 0,2 24(U) 2. (V) so, by 

a HV) for every r = q. By the classical argu- 

representing Pot? 4t follows that f 

(3.7), 0 18 an equivalence. 

4. The Gech 5-category 
  

A Gech S-map y:4--»>¥, from a space X to a space Y, is a 

correspondence which assigns to every finite polyhedron P a 

viv, P}-—six, Pl 
‘in such a way that, if Q@ is another finite polyhedron and f:P-—>Q, 

:3¥—>P are Smaps, then 

y@ (fog) =f0 y(g). 

The set of Cech S~maps from a space X to a space Y¥ is 

ndowed with a naturel group structure. This group of Cech 
  

maps from X to Y will be denoted by LX, YQ. The composite 

= 60 vy of two Cech 5~maps yiieme¥, &5:¥—sZ is defined by 

Po vy? ; iz, Pi —>{x, Py for every finite polyhedron P, The = 6 

dentity Cech S-map €:X—-»K is characterized by the condition 

hat eP 1x, Pi —>{x, Pi is the identity homomorphism for each P. 

. Cech map y:X—»Y¥ is an equivalence if it has a two sided in- 

  

erse 6:Y—»X, that is, 6 o y = identity, yo 6 = identity. This 

appens if and only if vy’ fy, Pt  iX,P} for each P, When it 

  

@ppens, X,Y are said to be of the same Cech S-type. 

The Cech S-category has spaces as its objects and Cech 

~laps as its maps, with composition defined as above. Composi- 

‘ion of maps in this category defines the pairing 

4.1) {¥,25 @ {xX,¥> ——>ix,2z}. 
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y S-map f:X—»Y induces a Cech S-map 

Wy where, for each P, yP = fs {y,Pp{]—s{x,P$. the 

ie? defines a homomorphism 

T {x, ¥4 ——> {X,Y}, 

with respect to composition and sends identity 

sbity maps. Thus [ is a homomorphism of the ordi- 

py into the Cech S-category. 

‘lowing two lemmas are proved just like their ana- 

pa (3.2): 
(4,2). A Cech S-map y:X—+Y can be extended, ina 

‘a correspondence that assigns to every finite CW- 

Ly momorphism vX sfx, K}—>{x, kK} such that y-(f o g) = 

L is another finite CW-complex and f:K—>sL, g:Y—>K 

(4.3). If Y is a finite CW-complex then, for every 

Gx) ~ {X,¥I.. 

further study of the Cech S-category, we shall 

atio mostly to compact spaces, because of the sim- 

existing between the open coverings of a compact 

® Coverings of the suspension SX. The following 

eim to establish these relations. 

E & finite open covering of a space X. The fol- 

9S will be consistently used: 

nerve of a; 

=) 

a? Seme canonical continuous function determined 

BO; 

Bah «{X,x, 1, the (unique) canonical S-map determined  
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' 
If a! refines a, Po 2X1, denotes some projection 

! 

function, whose 5-class is en {Xr Xoys 

A regular covering p = 1 (8,,¢,)5 of the open (straight 

line) interval (s,,t,) consists of open subintervals (s.,t,), 

(81) %,),+-+, (8,5) with 8,<8)<t,<8)<tj<-''<6 .<t,4<t,. 

fhe nerve of a regular covering of an open interval is isomorphic 

to a subdivision of the unit interval I. 

Let a be a finite open covering of a space X and let 

3 { (9, ¢4)$ be a regular covering of the open subinterval 

“a 
=. 

tt 
\ 

(8,,t,)C I. Let also A,B denote the following disjoint 

open subsets of the suspension SX; 

a=] (x,t) ¢ SX; t < al, B = {(x,t) ¢€ 8X; t > bv}, 

where a,beJd are such that s. <a < GB <7 <t <b<t,. 
° n=l 

Then, denote by 6 = a o p(A,B) the finite open covering of 8X 

consisting of the sets A,B, together with the image under the 

injection X J~+»SX, of the product covering aX p. The sets A,B 

are called the poles of the covering B = ao p(A,B). When there 

is no need to specify the poles A,B, one just writes B =ao p. 

In the covering a4 0 p = a0 p(A,B), the set B meets 

exactly the sets on the top row of ax p, that is, the sets 

VX (s,,t,), Vea, whereas A meets precisely the sets V * (8,,t,), 

1.e., those on the bottom row of a xp. Now, the nerve of a x p 

ie the simplicial product X, 4 1, of the nerves of a and p (see 
Pp 

2], page 66). The subcomplexes xo KCK, A Th generated by 

the sets on the bottom and top row respectively are naturally 

isomorphic to Xa The sets in p are ordered in a natural way so 

T, has a natural structure of ordered complex, which will always 
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pe implicitly considered. Any linear order in a introduces an 

order in the nerve X, and gives rise therefore to a cartesian 

product X, x Io) which 18 a subcomplex of x, 4 I, ((2], page 67). 

This cartesian product contains xo and x, no matter what order 

4g chosen ina, since the order of Pp is always the same. From 

what was Said above, the nerve (SX) 1s obtained from x, Af ao p 
py attaching two cones to this space: a cone T°xX?, with base 

p 

x and another mx, with base x. If p consists of a single 

7 sO (BX) 05 7 SX. This motivates the    

     
      

   

   
  

. — Oo _ set, X, AI, = x0 =x 
p 

following definition: 

Let a be a finite open covering of X. The suspension of 

@with poles A,B, 1s the covering Ban (a) =ao p, (A,B), where Py 

is the covering of J =I - I by one set. When there is no need 

to specify the poles A,B, one just writes sa instead of Bap(a). 

The nerve (8X) oe of sa = 6,,(a) 16 naturally isomorphic to SX; 

in such a way that A,B are sent into the poles of SX. Identi- 

fying (8X) 5 with SX under this isomorphism, the suspension of 

& canonical function hy :X—>X, 1s a canonical function 

Sh, :SkK—>sx,. By iteration, one defines also the suspension 
vt 
8a for every r 2 Q, and sees that S°X, ~(8"x) r: 

8 a 
The covering a o 9 refines sa (provided both are taken 

ith the same poles), so there is a uniquely defined projection 

S-map; 

= 9%P, 8=o00 : (8%) 0 5——> (SX) sas 

Lemma (4.4), The projection S-map @ 1s an equivalence. 

Proof. Represent 6 by the Simplicial function 

t; — _ = (8K) p> (8K) 4, = SK, defined by f(A) = A, £(B) = B, 
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r(V %(8,,t,)) = VX (0,1), for every Vea and (6,,t,)ep. Order 

the gets of a linearly, so that the cartesian product x, % Ty is 

aefined. Consider the commutative diagram below, where g is the 

anclusion function: 

  

(BX) O06 p 

oN “ot 
OvO ly (Xx I) UTX UTX 

In the first place, g is a homotopy equivalence, since x, % 1, 

46 a deformation retract of Xa A I, ( [2], page 69) and (BX) oop = 

1 
Xo A Iu TX LY T Xie Furthermore, f' is also a homotopy equiv— 

alence. In fact, if p consists of a single set, f' is the iden- 

tity. If p consists of m+l sets (m = 0) then Xi I, consists 

of m prisms Paseeea Pas with bases Xe subdivided simplictally in 

the standard manner ( [2], page 70), and piled up in such a way 

that the bottom face of Poel coincides with the top face of P,. 

Now, the function f! collapses vertically the prisms Py onto 

the standard base Xa and is homeomorphic on the cones. Hence it 

isa homotopy equivalence. It follows that f is a homotopy 

equivalence also, which implies (4.4). 

Lemma (4.5). Let X be compact. When a describes the 

Tinite open coverings of X and p runs over the regular coverings 

6f open subintervals of I, then the coverings of type ao pe form 

& cofinal subset of the set of all open coverings of SX. 

Proof. Let. 8 be an open covering of 8X. In particular, 

B covers the poles of SX, so there exist numbers a,b, 0<a<b<l, 

Such that the sets A =f (x,t)e&X; t <a}, B= [(x,t)eSK; t >}  
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ave both contained in sets of 6. Now, let J be an open subinter- 

yal of I containing a,b and such that its closure J lies in the 

anterior of I. The injection X x J—>S8X induces an open covering 

g! on X X J. Since both X and J are compact, 6' may be refined 

py @ covering a x , where a is a finite open covering of X and 

p is a covering of Z whose restriction p to J is a regular cov- 

ering. Let 6" be the finite open covering of SX consisting of 

the sets A,B and the images of the sets of a x p under the injec- 

tion X X J—>SX. Then 6" = ao p and 6" refines £. 

Lemma (4.6). Let X be a compact space and K a CW-complex. 

For every S-map g:X—»K, there exists a finite open covering a 

of X, with nerve Ke and canonical S-map OX such that ¢ 

factors as g = Ey ° Ou with Buf iX KI. 

Proof. There is no loss of generality in assuming that 

K is a finite polyhedron, since g may be factored as a map of X 

into some finite subcomplex of K followed by the injection of 

this subcomplex, and every finite CW-complex is equivalent to a 

finite polyhedron. Represent g by a continuous function 

f:S°x_»s°K, Suppose first that r = 1. Then (see, for instance, 

[8], page 207), there exists a finite covering 6 of SX and a 

continuous function fg: (SK),—=8K, such that f ~ fp Oo hg. By 

(4.5), there exists a finite open covering a of X and a regular 

Covering p of some open subinterval JC I, such that ao p 

Tefines 8. Now ao p refines the covering sa of &X, 

f 
> SK    
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which has SX, as nerve and SH, as canonical function. The pro- 

jection function p = pee; (SX) —>8x, is a homotopy equivalence cop 

(see proof of (4.4)), with inverse pre. Define f, = 

o pg’? o p*. Then ff, 0 Shy. Let g, ={f,3. Since 
tg 
e, ={SH, jana g= ir}, this gives g = By ° a The case r>l 

follows from the case r = 1 by an obvious iteration procedure, 

Lemma (4.7). Let X be a compact space, K a CW-complex, 

ga finite open covering of X, with nerve Xe and projection S-map 

0,iX—>%,. If g,€iX,.%4 18 euch that go @ = Oe{X,K}, then 

there exists a finite open covering a' of X, refining a, with 

nerve Xo and projection S-map eX 1X, such that 

B, ° ee! = 0, 

Proof. Again, it may be assumed that K is a finite poly- 

hedron. Represent bo by a continuous function fi: S°X—>8"K, with 

r taken so large that 3°h 0 t= O. Suppose first that r =1, 

By a result of Spanier, (see [8], page 227, where the argument 

given for the case K = gs” applies ipsis literis for an arbitrary 

K) there exists a finite open covering 6 of SX, refining sa, such 

that f, 0 pe x0. Now, by een there exists a finite 

#4 SX 

we 
Re Nie 

SK 

a'op 
Pat 

Te i, 

Spen covering a! of X and some regular covering p of an open sub— 

(SX), 

gion 

*nterval of I, such that ao p refines ®. Moreover, a! o p also 

Pefines sa’ and the projection function pe, OP, (8X) 04 top Xa is  
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a homotopy equivalence (see proof of (4.5)), with homotopy 

anverse pl. Bince the block of the above diagram is homotopy 
t a! =-1L 

commutative, Po a pe ° Pa oP Oo p » hence f° pes O. There- 

fore, passing to S-classes, Sy 9 Qt! = 0. The case r > 1 follows 

from the case r = 1 by iterating the argument, 

Corollary (4.8). Let X be a compact space and K a CW- 

complex. The correspondence that assigns to each S—map £,e{X.K3 

(where a is a finite open covering of X) the S-map fy 0 0 eiX,K} 

induces a natural isomorphism {x,K} a lim{X,,K}. 

Let Y be compact and X an arbitrary space. To every 

finite open covering a of Y, assign the group {x,¥, 4. If £B 

refines a, let iX,Y,}—> ix, ¥,3 be induced by the projection S-map 

of :Y,—>Y,. This defines an inverse system of groups over the 

set of finite open coverings of Y, ordered by refinement. The 

@lements of the corresponding Limit group prime Yah are strings 

f= (f,) of S—maps f,sX—2Y,,, indexed by finite open coverings 

@, and such that of oO tT, = fo? when B refines a. There is a 

Natural homomorphism 

¥ {X,Y}, —> lin {x, X43 

Which assigns to each Cech map y:X—sY¥ the string f = (f,), 
where tu = 1 %(9,), Og :Y—>Y, being, as usual, the canonical 

S-map, The homomorphism Y is actually an isomorphism onto, 

Since it has a two-sided inverse YW trLamix, Yo} —>{x, x], which 
*8siens to each string f = (f,) in the first group, the Cech 
Sma Y:X—»Y defined as follows: given a finite polyhedron P 

8nd an S—map eelY,P}, there exists a finite open covering a of 

* 8Uch that & = €, 0 8 with g.:¥,—>P (by (4.6)). Then, put 

 



   
    

      

    

    

  

    

    

     

         
       

     

     

  

      

39 

vy? (g) = &, 0 iy ik—>P. Modulo checking the claims about Ye, 

which is straightforward, the following result has been proved: 

Theorem (4.9). If Yisa compact space and X an arbitrary 

space, there is a natural isomorphism Y :{x,v} rim {X,¥%, 

wnere 4 describes the finite open coverings of Y. 

Corollary (4.10). The kernel of the homomorphism 

r :{X,¥}—>iX,¥}, consists, for a compact space Y, of the S-maps 

f¢:X—>Y such that By o f= 0 for every finite open covering a of | 

X. 

  

Proof. Define the homomorphism K :{x,Y}—s1in x, 

which assigns to each S-map f:X—sY the string (fr) = (f.), 

where to = 8. o f. The diagram below is commutative: 

(x, ¥} 
r A 

y {X,X},, > lim {X,X,). |   

Since Y 1s an 1somorphiam onto, the kernels of [ ana |\ are 

     @quel. Now, the kernel of /\ is obviously the set described in 

the statement. 

   
Remark, The following 1s an example of a compact space 

X tor which {s!,x} is nontrivial but {st,x} = 0, showing thus 

    
that the kernel of [ may be nontrivial. Let A, be the circle of 

Padius 1/n, in the upper half plane, tangent to the x-axis at the 

    

: i) 
Srigin Po: Let A = ( ) Aw and set X = TAVTA, with the point Po 
E n=1 
&8 base point (where TA denotes the cone over A). X is the 

   
“Mtersection (1.e., the inverse limit) of a decreasing sequence 
8T contractible polyhedra, hence {sx}, = 0. But it can be 
“A0wn that ist x} = Ty (X) is nontrivial.
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A Cech S-map y:X—»Y induces, for each q, a homomorphism 
qd 

vy :{y, 87} —>{x, 8%. Combining these, a homomorphism ye: Dy)» 

(x) is obtained. If y is the identity map, v* ie the identity 

nomomorphiem, and (6 o v)* = yo gt, 

Theorem (4.11). A Cech S-map y:X-->Y¥ is an equivalence 

af and only if vy": 2 (x) ~~ a). 

Proof. One uses the homomorphism that y induces, for 

each finite polyhedron P, from the exact sequence of (Y3P,P™) 

into the exact sequence of (X;P,P"), and arguments entirely 

anelogous to those of (3.7). 

Lemma (4,12). Let X be a compact space of dimension Ss 

p- 4. Then, for every CW-complex K, {X,K} ~ [SPx,SPK]. 

Proof. If X 1s a CW-complex, this follows from (7.3) in 

[13]. For a compact space X, {X,K}= 1imiX, X_,K}, @ running over 

the finite open coverings of X (by (4.6) and (4.7)). Since 

dim xX 3 p- 4, it suffices to consider those coverings a with 

aim xX, Sp - 4. Then, X, being a polyhedron, {X,,K{~ [sPx, sx] 

for all those a, so {X,K} % Lim [s?x,, 8°K]~[8°x, SK]. 

A Cech S-map y:X—»Y induces a homomorphism *:H*(Y)—> 

H*(X) of the Gech cohomology group of Y into that of X. y* is 

defined as follows: let y be represented by a string (g,,) of 

Compatible S-—maps By iX—>Y, of X into the nerves Y, of finite 

Open coverings a of Y. Because of the compatibility relation 

&, = af ° && which holds when 6 refines a, the induced homomor- 

Phisms @, 3H H*(Y,, )—sH* (x) induce, in the limit, a homomorphism 

v* 7H *(y) = Lim Cr, ) —sH* (x), The usual properties (1aentity)*= 

ddentaty, (eo oy)" =y* 0 8&* hold.  
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Theorem (4.13). Let X,Y be compact spaces, Y being 

metrizable, and y:X—»Y a Cech S-map such that v*:H* (XY) ce H* (x). 

Then Y 18 an equivalence, provided that either (a) X is finite 

dimensional; or (b) X 1s metrizable. 

Proof. Since Y is metrizable, it hae a cofinal sequence 

of finite open coverings, with nerves Y,<—Y<—..., oq, 

peing some arbitrarily chosen projection function. The Cech 

§-map Y is defined by a sequence of compatible S-maps Y,:X—>Y,. 

Assume first (a), that is, finite dimensionality of X. Then, by 

(4.12), there exists an integer p such that all S-maps y,:X—>Y, 

are realized as continuous functions ,:8°x—s8?y, and, moreover, 

p may be chosen large enough so that t,= Py 0 fagp where 

p,:SP¥,,,—>8"Y, 48 some projection function. In order to sim- 

plify notation, assume that such p was chosen and write X for 

8Px and XY, for sPy,. Then, there are continuous functions 

f,:X—s¥, and Py iX, 443%, given for each index 1, such that 

the diagram below is commutative up to homotopy: 

  

Moreover, H*(X) = Lim A" (¥,), the limit being taken with respect 

to Py, , and the homomorphism t* :H*(¥)—» H*(X), induced by the 

various f,'s, coincides with y , hence it 1s an isomorphism onto. 

Now let Z, = abs ‘Y, denote the quotient space of the topolog- 

deal sum TX + Y, "1 mere TX 18 the cone over X), obtained by iden- 

Sitying (x,0) in the base of TX with f,(x)e¥,. There is an  
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the latter being defined by identifying all points of ey (Y,) to a 

gingle point. It 1s possible to define, for each i, a continuous 

function 42S, ey such that the diagram below is commutative 

up to homotopy (cf., (12], Lemma (13.1)): 

fy k Bf, 
Xx—--—> Ys — Zs sic i I a at sY,———> or) 

(4.14) id Py G4 1d Dy 

    >8X x >8Y54,-————>- - - 

441 441 4+1 

Now, for each 1, the sequence of Cech cohomology groups below is 

exact: aX * * 

es: *(s1,)4 oH *(sx) +> w*(z,)—Lsu* (x, )—b s(x). 

Thus, if Z = jim Z, denotes the inverse limit of the compact 

spaces Zs under the functions S4> by continuity of Gech cohomol- 

ogy, H (Z) = Lig H"(Z,) eo, taking the limit of the last exact 

cohomology sequence with respect to the homomorphisms induced by 

the functions in the diagram (4.14), the following exact sequence 

is obtained: 

51" ( sy) 3f5u*( sx) 8 5u*(z) S sn*(y)fon(x) 

Now r* (and st*) are isomorphisms onto. Hence H*(z) = 0. By the 
p . * 
theorem of Hopf for compact spaces, a (Z) = 0. But the sequence 

2" (SY ) Bf — +7" ax) 8 95 *(z) Es "Sty t #5 *(x), 

4s also exact ([12], (7.5)). Thus £* 46 an 4somorphism onto. 

But 2° ve also. So, by (4.11), ¥ 18 an equivalence. 

In order to prove (4.13) in the case (b), where X is 

“88umed to be metrizable, but of arbitrary dimension, observe 

anjecting function k,:Y,—>Z, and a collapsing function G,:%,~->X, 
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first that if the theorem is true for a space X then it is true     

    

   

    

    

    

  

   

  
     

    

also for every space that has the same Cech S-type as X. The 

procedure then is to prove the theorem for a certain class (F) 

of compact spaces and, after this, show that every compact metric 

apace 16 of the same Cech S-type of some espace in (F). 

The class (F) is that of filtrable spaces. A compact 

space X 1s said to be filtrable 1f there exists a sequence of 

glosed subspaces x? X such that: 

(FL) x°c xtc ..., _) xa =X, dim x2 Sq; 

(F2) The homomorphisms J) tH (X) su? (x4) (Cech coho- 

mology) and Ign tL. (X) 7,7 (x4) induced by the inclusion map 

By yixC X have kernel zero for r = q and are onto for r =q - 1. 

Now, 1f X is a filtrable space, it will be shown that a 

Cech S-map y:X—+Y that induces a cohomology isomorphism is an 

@quivalence. In fact, y induces maps Yq = YO Jq:Xi—a¥ and, for 

every gq Sr -1: 

y= JR) o oX:H" (¥)—sH" (x4), 
(4.15) 

v= ft o oF DP (x) —sZ7 (x). 
‘The argument used in the case (a) provides, for each gq, a space 

za and an exact sequence 

* * ae + 
(8Y,)° k 

+ sH? (gy) Van? (5x4) 89 oP (79) 4 a? (x) (X). 

By the first formula (4.15), vq 38 an isomorphism onto for 
- < 
Pq - 1, so (By, )"48 an isomorphism onto for r $ q. By exact— 

Mess, H"(22) = 0 torr S$q-—1. Take now the case r=q. The 

homomorphism e* :H4 (x4) —_H4(24) is zero, If kg 18 eteo chow q 
q 

So be zero, 1t will follow that H2(z%) = 0, hence H (2%) = 0, 
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Now Kg = 0 if and only if vq. 

true, because ve = 3g ° y™ where, by assumption vy* 1s an isomor— 

2H (¥)—»HT(xX) 48 1-1. But this is 

phiem and jv:H1(x)—sH7(x?) 1¢ 1-1 by the definition of a filtra- 

ple space. Thus H*(29) = 0. By Hopf's theoren, 2,* (24) = 0, 

Hence, by the exactness of the sequence 

¥ 
$ 

ex) te 58x) 529) FH) F*xd), 
ei 

4t follows that Yq 

(4.15), POP (x) =D P(x) for allrSq-1. Since q is arbi- 

is an isomorphism onto. By the second formula 

trary, vs > *(¥) & D(x). By (4.11), y 18 an equivalence. 

Theorem (4.13) 18 then true when X is a filtrable compact    
space. But which spaces are filtrable? In [2], (Theorem 10.1,    
page 284) it is proved that every compact space X can be written    

  

as an inverse limit of polyhedra: X = Lim Pu relative to con- 

  

tinuous functions tf :P.—>P,,, defined when a < 8B in a certain 

  

directed set A, and such that rf oO £3 = rf fora<£f6<¥. The 

proof in [2] does not provide simplicial functions o. If the 

    

functions f© can be chosen simplicial, then X is filtrable, In 

  

fact, in this case, 8 maps the q-skeleton Pas into the q—ekeleton 

  

i so the inverse limit Xt = 11m P_% is well defined, and the 
<—q & 

x4 are easily seen to yield a filtration of X. Now, if X 1s 
   

  

metrizable, let Xo? X,,-.. be the sequence of nerves correspond- 

  

ing to a cofinal sequence of finite open coverings of X, each 

  

Tefining the preceding one. Let £424,412, be a simplicial    
Projection function. Then, X! = Lim, X, (limit taken with re- 

  

Spect to the functions f,) ie a filtrable space. Moreover, there 

  

18 a natural Cech S-equivalence 7:X'—-»>X, defined as follows:      
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given an S-map g:X—»P (P a finite polyhedron) then g = B, 0 8 

  

for some 1, where g,¢1X,,P} and @, :X—>X, ig the canonical S8-map. 

put y* (e) = g, 0T,, where 1,:X'—»X, 1s the S-class of the 

natural projection of the inverse limit X' into X,- This con- 

oludes the proof of (4.13). 

Remarks. 1) It may be true that every compact space is 

filtrable, or at least of the same Cech type of a filtrable space, 

put this question has not been settled. 

2) Besides the restriction of metrizability for X and Y, 

there 18 another difference between (4.13) and its counterpart 

(3.10) in the singular S-theory. The latter is still valid in 

the "singular homotopy theory", where the concepts are similar   
to those of section 3, with S-groups {A,B} substituted by sets 

of homotopy classes [A,B]. On the other hand, if a "Cech homo- 

topy theory" is introduced, in the same spirit, (4.13) no longer 

holds. This failure is connected with the non-universal defini-    

  

     

     

     
    

    

     
    
  

    
tion of cohomotopy groups. A simple counter example is provided 

by the compact 2-dimensional space Y, inverse limit of a sequence 

ef 2-spheres under maps £:8°_ss* of degree 3. The Cech cohomol- 

    

gy group H*(¥) 18 trivial, but [8*,¥], = 2), showing that ¥ 1s 

not of the same Cech homotopy type of a point. (Notice however 

    

   that Y has the same Cech S-type as a point, so {s", x}, = O for 

@ll on.) 

   
5. Representation of Spaces by Direct Spectra 
    

A representation of a space U by a direct spectrum 

    

U= (Us 05) is a map A: UW ——>U which induces, for every finite 

Polyhedron P, an isomorphism: 

Age Mar{p,Ut © {P,u}.
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A representation of U by U ie therefore characterized 

py three conditions: 

  

1) For every index i there exists an S—map A, :U,—sU 

guch that the diagram below commutes: 

Ay 
, > 

  

U 

Py 
d 1+1 

Uae 

2) Every S-map f:P—sU of a finite polyhedron into U 

        
      
        

      
        
       

        decomposes, for some index i, into f = Ay oO fy; according to the 

commutative diagram below: 

p—_f..y 

NA 

i 

3) If f= Ayo f, = d, 0 ty are 2 factorizations of f as 

in 2), then there exists an index m 2 i,j such that the diagram 

below is commutative: 

Uy m f p 
Ny 

Ny AO 
A representation A:U—»U is said to be finite dimensional 

  

Or of bounded order if the spectrum ‘UL has the corresponding prop- 

erty. The dimension or order of the representation is that of the 

Spectrum 

        
    

Example. Let U be a countable CW-complex. Let UC US see 

be an increasing sequence of finite subcomplexes of U such that
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0 7 

L) ¥, =U. Let VW= (U,,0,), with $,:U,CU,,,. Define A = 

(4,)*Uu by A,:U,CU. Then A is a representation (of order 0) 

ef U py U. This follows immediately from the remark that every 

compact subset of U is contained in some U,. 

Lemma (5.1). If A: U—sU 1s a representation of U by a 

direct spectrum ‘U then, for every finite CW-complex K, 

Motus ~ tk,v}. 
Proof. There exists a finite polyhedron P and a pair of 
  

anverse S-equivalences h:K—»P, k:P—sK (by [15]). The diagram 

pelow 1s commutative: 

  

  

»* 

{kw} = > ik,u} 
ie | it 

P . X + 

{P,W} = {P,u} 

Now one and i* are isomorphisms onto. Hence vi is also an 

dsomorphism onto. 

There are two ways of extending (5.1). They are summa- 

rized in the following theorem. Before stating it, however, it 

should be remarked that a map f = (f,,f,,---):W—su of a direct 

8pectrum U into a Space U may be composed with singular S—maps 

U—sw, yielding a homomorphism: 

ree 2s fuywh, —> {U,wy, 

defined as follows: given oe{U,W] ., t*(o) = (g,,8,,++-) where 

8, = oy, (Fy). Of course, a map f:U—sU induces also, for every 

Spectrum a homomorphism fy = (fos dye? {wy, ut —> iw, us . 

Theorem (5.2). If A: U—sU is a representation of the 

Space U by the direct spectrum U then, for every space W and   
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every direct spectrum W, 

*, {u,wt, » (U,wt, Ay? {wut » fu,u}. 

Both isomorphisms above establish 1~l correspondences between 

the equivalences in the domain group and representations in the 

{mage group. 

Proof. Only the statement about * will be checked, the 

other being of a similar nature. Given oe {U, Wi ,, let rx* (a) = 0, 

Then for each i, Oy, Cay) = Q. Thus, if P is any finite polyhedron 

and ke {P,Ut, for some 1, k factors as k = A, o k,, 80 Op (I) = 

Oy, (A) ok, = 0, Thus o = 0, and x* 461-1. To show that A” 1s 

onto, let g = (g,):U—sw, Then, define oe{U, WI . as follows: 

given a finite polyhedron P and ke{P,U}, k= A, 0 k, for some i. 

Let op(k) = g, o k,e{P,W}. It 16 immediate that op ie well de- 

fined and Oy, (4) = 64, 80 x (9) =. 

Corollary (5.3). Let a:U—sv, p: U—sv be representa-— 

tions of the spaces U,V by the direct spectra U,U. There exists 

&® unigue isomorphism 

a iu Ut x {u,v}, 

such that, for every ft: —» U the following diagram is commuta-— 

tive: 

  

U——=—+V 
X | [ 

py A) oy, 

Proof. Define {. as the composite: *U,U Pe fy vyeo 

WU, v},. | 
Remark (5.4). Notice that (go rf) = {1(g) o M1(f) ana 

XY (saentaty) = identity (the latter, in case (UL,a,u) = (Wn,Vv)). 
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Corollary (5.5). Let a:UL—su, »:U—su be representa- 

sions of the same space U by direct spectra U,V, Then, there 

exists a unique equivalence h: Y\—> V such that poh= u.. 

  

Proof. Consider the isomorphism (1: {U,U} ow {U,U},. 

pecause of (5.4), the inverse image by [L of the identity map 

y—>U 1s an equivalence h:1—>U and, of course, poh= A. 

Corollary (5.6). Let a: U—su, n:lL—sv be representa 

tions of the spaces U,V by the same direct spectrum U, Then, 

there exists a unique singular equivalence k;U—»V such that 

koA= Pp. 

Theorem (5.7). If A: U—sU is a representation of a space 

U by a direct spectrum U then SA:SU—+SU 1s a representation of 

gsU by SU. 

Proof, Since every space has the same singular S-type as 

its singular complex, there ia no loss of generality in assuming 

that U is a OW-complex. First, remark that for every suspension 

SK of a finite CW-complex K, (SA),: (SK, SU} ~ (8K, SU}, since 

dy {KW x {k,U}. Now, let P be any finite CW-complex and 

f:P—>»SU an S-map. Since 8U is the union of all subcomplexes SL, 

where L runs over the finite subcomplexes of U, f may be factored 

as f=g¢of', where f' maps P into a finite subcomplex SL of SU 

and ¢g:SLC 3U. Since SL 1s a suspension, by the remark made above, 

there exists an index 1 such that g = SA, ° &4, g,:SL—>Sv,. 

Hence f = SA, o f,, with f, = g, 0 f'. 80, (8A), 2 {P, SU} —> bP, su} 

is onto. Now, let.fe{P,SU be such that (SA),(f) = 0. Then f dy 
May be represented by an S-map f,:P—>8U,, such that Sa, o f, = 

Oc iP, gut. Because SU has the weak topology given by the subcom- 

Plexes SL described above, one may write Sa, of, asa composite 
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ft gz 

g-map P—->SU,—>SL CSU, for some L, with go f, = 0. Since 

gL is a suspension, the inclusion SL CSU may be factored, through 
EN 

some 8U,, a8 SL—>SU —tsU, so SA, o f, may be written as the 
f Sh 

comosite P—>sv,-->su,—ssu, with ho f, = 0. Now 8A, 0 h = 

BA, 0 identity, hence there exists an index m 2 i,j such that 

so; of, = 54) ohof, = 0, But Sp; 0 f, also represents 

f:P—>sU, hence f = 0, and (SA) is 1-1. 

Theorem (5.8). If A: U—sU is a representation of a 

space U by a direct spectrum U= (U,,94), then a sHL (UW) ~ H(U), 

where Hy is the singular homology theory. 

Proof, The proof will be based upon the description of 

the singular homology groups of a space by maps of finite poly-— 

hedra into it. (Cf., [18], page 138.) First of all, the map A 

48 onto. In fact, given zeH(U), there exists a polyhedron P, a 

homology class z,¢H (P) and an S-map f:P—>U such that fy (z,) = 2. 

Since A,; eP, Ut —>{P,U} ie onto, there exists an index 1 and an 

S-map f,:P—sU, such that f = A, o f,. Let 2, = (£4) (25) eHy (Uy), 

and let wel, (UW) be the equivalence class of z,. Then z = f(z) = 

(Ay) (fy) (29) = (Ay) (24) = A(w). To show that A, has kernel 

zero, let weH, (WU) be such that A (w) a OcH, (U). Then, there 

exists a finite polyhedron Q and 5S-maps g:U,—>Q, £:Q—sU such 

that (wy ) = OcH, (Q) and fog=.A,. Now, f can be factored as 

f= Ay o fy, £,:Q—>U,. Let h = f, o g:U—su,. Then hy (wy) = 

(f, . [g(w,)] = 0, and the diagram below is commutative:  
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This means that the S-map A, :U,—3U admits two factorizations 

dy = Ay oh= A, 0 identity, in terms of the representation A. 

fherefore, there exists an index m 2 i,j such that the diagram 

x Nt 
NE 

This gives (Dy dy (wy) = OD, bal = OcH (UL), so w= 0, which 

pelow is commutative: 

concludes the proof. 

Corollary (5.9). If a space U admits a representation by 

a direct spectrum, the singular homology group H,(U) is countable. 

In fact, a countable direct limit of finitely generated 

groups is countable. 

Corollary (5.10). Let U,U be direct spectra such that, 

for some integer p 2 Q, sU, SPU represent spaces. Then the 

following properties of a map f:U—>V are equivalent: 

(1) t,:H, (UW) @ HY(U); 

(2) sEskreh ire 

(3) f 48 an equivalence. 

Proof. Let a:S°(.—su, :8°U —sV be representations. 

They induce, by (5.3), an isomorphiem {1 :{8?U, 8°} ~ {U,V} ,- 

let go =(. (Sr). Then, (1), (2), (3) are respectively equivalent 

to the following properties of o: (1') Oy: :H,(U) & HL(V); (2') 

GO (0) x 2.y6V)5 (3') o 48 a singular S-equivalence. Now the 
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three latter properties are equivalent, by virtue of (3.7) and 

(3.10). | 

Theorem (5.11). If the direct spectrum UL has finite 

  

    

  

order p, then 3° UL represents some countable CW-complex U. 

    

Proof. Let S?>W= U = (V,,0,). There are continuous     
functions f,:V,—>V,,, such that fr,= ,. Let CG, denote the 

    

mapping cylinder of ty; and let U be the quotient space of the 

    

topological sum Cy + CL + ..., obtained by identifying the sub- 

    

apace V,,, of C, with the subspace V,,, of 6,,,. Let L, be the 

    

4mage of GC, ticee + 0, in U. U is @ countable CW-complex, which 

    

is the union of the finite subcomplexes L,. The injections (or       
rather projections) A, 2V,—2U define a representation of U by 

w= eu. 

Remark, If U is finite dimensional, so is U, and dim U= 

dim UW + p. 

    

  
          

    

Consider now the converses of (5.8) and (5.9). The latter 

  

   
holds without any restrictions, as will be shown below. 

    

Lemma (5.12). Let K be a CW-complex whose Singular homol- 

    

ogy group H (K) is countable. Then K admits a countable subcom- 

  

   
plex as an S-deformation retract.    

     Proof. Choose a sequence (255 Zz2+0+) of singular cycles 
  

    
in K, whose cohomology classes generate H,(K). Define inductively 

    

the following increasing sequence L,c L,C ... of finite sub- 

  

     Complexes of K: choose for Lo any finite subcomplex of K con-     
taining the cycle Zz Suppose that LC -..C L, have been de- 0° 

fined, Since L, 1s finite, H,(L,) 16 finitely generated. Hence, 1 HET 

  

          

  

there existe a subcompLex Lia of K such that the kernel of the      
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injection map H,(L,)—+H,(K) coincides with the kernel of 

Hy (Ly)—>H (Lj, ). Choose Li,, to be any finite subcomplex of K 

containing z,,,- Let Loa = Liv Lan: This completes the 

aefinition of the increasing sequence L4G L,C ..-» Notice that 

any homology class in H,(K) ean be represented by a cycle in some 

L,- Moreover, if some cycle in Hae(Ly ) bounds in H,(K), it also 

pounds in H,(L,,,). Hence L = U L, 16 a countable subcomplex 

of K such that the inclusion function f:LC K induces an isomor- 

phism f, ‘Hy (L) os H(K). So L 18 an 8-deformation retract of K. 

Remark. The method above is not sharp enough to prove 

that if, moreover, K has bounded homology, then the subcomplex L 

may be chosen finite dimensional. In fact, there are examples 

where this cannot be done. But, relaxing the condition that L 

be a subcomplex of K, M. G. Barratt proved the Lemma below (un- 

published. See also [6]): 

Lemma (5.13). Let K be a CW-complex with countable and 

bounded singular homology. Then, there exists a countable, finite 

dimensional CW-complex L of the same S-homotopy type as K. More- 

over, if H,(K) 1s finitely generated, L may be chosen finite. 

Theorem (5.14). The following statements about a space 

U are equivalent: 

(1) U admits a representation by a (finite dimensional) 

direct spectrum; 

(2) U has countable (and bounded) singular homology; 

(3) U admits a representation of order O by a (finite 

dimensional) direct spectrum; 

(4) U has the same singular S-type as a (finite dimen- 

Sional) countable CW-complex. 
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Proof. (1) ==> (2) by (5.8). To show that (2) => (3), 

jet GU be the singular complex of U. By (2), H,,(GU ) 48 countable. 

  

         
    
    
      
      
    
    
      
      
      
    
      
    
    
    
    
    
    
      
    

By (5.12), there existe a countable subcomplex L of GU and an S- 

equivalence f;L—sGU. Now, take an increasing sequence US UC ww 
a 

of finite subcomplexes of U such that Lu, = Land let U= 
1=o 

(U,,94); where 9,:U,C U,,,- Define A:1.—>U as the composite 

Ybor Zev Bou, where p = (p,) with p, 30, L and h is the 

natural singular S-map. Since » is a representation and 24 (f), 

h are Singular equivalences, A is a representation (5.2) which, 

of course, has order zero. Now, if (3) holds, let a:U—sU be 

such a representation. By (5.11), U represents a countable CW-   
complex K. By (5.6), there exists a singular S-equivalence 

o:K—»U, so (4) holds. It is obvious that (4) implies (1), since 

a countable CW-complex always admits a representation. As to the 

more complete statements, including the conditions of finite di- 

mensionality, they hold by virtue of the same proof, with the use 

of (5.12) replaced by (5.13), and the remark after (5.11). 

Examine now the converse of (5.8). It does not seem to 

be true in general, due to the extreme generality in the defini- 

tion of a spectrum. Given a map x: Us of a direct spectrum 

        
    
      
      

    
    

into a space U, such that aH (WU) H,(U), then U has countable 

Bingular homology, so it admits a representation pr Ws. Then, 

there exists a map f: A—->17 such that po f = A (5.2). Thus 

f:H (WU) 2 HU). Now, A is a representation if and only if f 

1s an equivalence... There seems to exist no general "equivalence 

theorem" for direct spectra, but if some suspension Ss°UL repre- 

Sents a space V, then f is an equivalence (5.10), so Xis a 
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pepresentation. In particular, if U has bounded order, » is a 

representation (5.11). Therefore, the following has been proved: 

Theorem (5.15). If a direct spectrum U is such that 

some suspension S°U represents some space V (in particular, if 

YL has bounded order) then any map a:U—sU such that 

aH (UL) ~ H(U) 16 a representation. 

Remark. All the preceding results (with exception of 

(5.13) and, consequently, the part of (5.14) that refers to fi- 

nite-dimensionality) continue to hold if singular homology groups   are replaced by S-homotopy groups throughout. The proofsare ex- 

actly the same. The failure of (5.13) and of the finite-dimen- 

sional portion of (5.14) explain the omission, in the text, of 

the statements involving homotopy groups. 

6. Representation of Spaces by Inverse Spectra 
  

Some propositions in this section, whose proofs are en- i 

tirely similar to corresponding propositions in section 5, will 

be only stated but not proved. 

A representation of a space X by an inverse spectrum 

X= (X,,0,) is a map 1:X—»% which induces, for every finite 

polyhedron P, an isomorphism 

= mp (X%, Pd {x, Py. 

A sequence of S-maps 7 = (11,,1)4,---), TT 4:X—sX, is 

then a representation of X by X= (X,,,) 1f and only if the 3 

conditions below hold: 

1) For every 1, the diagram below is commutative: 

| 
|      
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TT 
1 

eer eens 4 

Vy 
i+1 

—
_
»
 *
 

M4 47, 

bal
 

2) Every S-map f:X—»P (P a finite polyhedron) factors > 

for some i, into f = ft, o T,, a8 shown in the commutative dia- 

gram: 

3) Iff=f, o Tm =f, 0 1, are 2 factorizations of f 

as in 2), then there exists an index m2 i,j such that the dia- 

gram below is commutative: 

1 

vw Ne 
Xn P 

BN ‘ 4 

A representation T:X—»X¥X is said to be finite dimen-— 

  

sional or bounded if € has the corresponding property. The di- 

mension or the order of T will be then that of ¥ 7 
  

  

Example. Let X be a compact metric space, which can and 

will be assumed to have diameter £1. Define inductively the 
sequence (%,,0,,..) of finite open coverings of X as follows: 

let a, consist of X alone. If G52+++,%,_, have been chosen, let 

Q, be a finite covering of X by open balls of diameter 
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S min(1/(1+i), Lebesgue number of @,_,)+ Then a, refines Gs a 

and the sequence (a,) 18 cofinal in the set of all open coverings 

of X. Let X, denote the nerve of a, and write ,:X,,,—>X, for 

the projection S-map. Let also 1, :X—aX, be the canonical S-map. 

then X= (X,,,) 16 an inverse spectrum and m = (1,):X—>X 

4g a representation. This follows directly from (4.6) and (4.7). 

Lemma (6.1). Let 7 :X—» be a representation of X by 

the inverse spectrum %. Then, for every finite CW-complex K, 

ae 
Te t¥ Kk} © XK, Kh. 

Any map T *X—>k of a space X into an inverse spectrum 

ye = (X, ) induces a homomorphism nt, x sw t{—>{x,w} for every 

spectrum WwW. Now, TT may also be composed with Cech S-maps, thus 

inducing, for each space Y, a homomorphisn: 

XY Ty = Ty tt¥, x} —sby, 5 . 

Theorem (6.2). If 11 :X—»> 1s a representation of the 

space X by the inverse spectrum ¥ then, for every space Y, and 

every spectrum WwW, 

Ty iy, x}, we fy, &}, a iz ws % Fx, wy. 
te 

Both isomorphisms T ,» 17 establish 1-1 correspondences between 
a 

the equivalences in the domain group and the representations in 

the image group. 

Corollary (6.3). Let 7 sX—»¥, p:¥——»>U be representa-— 

tions of the spaces X,¥% by the inverse spectra £ 9 « There 

exists a unique isomorphism 

@: 5%,0$ ~ {x,¥} | 

Such that the diagram below is commutative for every fe {¥,0$ 
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f 
_ X 

" x @(r) 

Remark.(6.4). The isomorphism @) is multiplicative, that 

4s, for £:% —Y, g:Y—>Y, then @(go f) = @(g) o @(r). 

Moreover, 1f (¥,7 ,X) = (9,p,¥) then @(identity) = identity. 

K
O
C
 

wD 

  

Corollary (6.5). Let 1:X—»%, p:X—>Y de representa— 

tions of the same space X by inverse spectra & 9 . There exists 

a unique equivalence h:$ —s>9 such that 9 =honm. 

Corollary (6.6). Let :X—>X, p:¥—>X be representa- 

tions of the spaces X,Y by the same inverse spectrum £ . There 

exists a Cech S-equivalence k:X—»Y such that po k= TMT. 

Theorem (6.7). If 1 :X—» HX is a representation of a 

compact space X by an inverse spectrum X= (X,,0,), then 

81 :8X—»S8X is also a representation. 

Proof. For the suspension SK of a finite CW-complex K, 
  

(sTI ue EES 8K} ~ fsx, 8K. Let now P be any finite CW-complex and 

let fe{SX,P}. Then, by (4.6), there exists a finite covering a of 

X, with nerve Xe and canonical S-map 0,2X—>XK,; such that f fac-— 

tors as f= f. 0 se.) £25k ,—>P. Now, BX being a suspension, a 

80: SK—>SX, factors: 86, =g, 0 81,, for some i, 

8X ———_—_—_——_—_—_—-» P 

with B,2SX,——>SX, Let f, =f, 0 Bo: Then f= f, o St ,- Hence 
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(37 \* is onto. Now, let g:8X,—>P be an S-map such that 

go S17, = O:SX-—+P, Then, there exists a finite open covering 

q of X with nerve X, and an S-map f:8X —>5X, such that f o 56. = 

ST 5 and go f=0. Now, since SX. 18 a suspension, there exists 

  

an index J 

SX PTs BX, sree ees P 

- am, : oe. f 

x, ——iL_—> SX, i» 5K, 

such that SO, = h, Oo S14, h,:8X,—>8x. Now ST 4 = identity 

o 87, = (fo h,) ° ST, are two factorizations of BT, in terms 

of the map 8T., Since SX, 1s a suspension, there exists an index 

m= 41,J such that fo h, 0 vy = yy. Then g o vy = gofo hyo ys 

0, 80 g represents the zero element of {SX,P}. Therefore (ST )* 

ie 1-1, 

Theorem (6.8). Let 1 :X—»X bea representation of a 

compact space X by an inverse spectrum %. Then TW induces an 

isomorphism 

ms OK) we Ex), 
Proof. To show that N™ 41s onto, let ze>.‘(xX). ‘Then, 

    
    

     

    
  

there exists a finite open covering a of X, with nerve Ka and 

Canonical S—map 0, sX—K,, such that z = Os (24), for some 

a1 ° Ty for 

Some index 1 and some S-map On ty — aX, Thus, z = 

zed, (X,). Since T is a representation, a9, = 9 

¥ + + + ; 
y le.5 (zd, O04 (zoded (X,). If wis the equivalence class 

or Our (zy) in 2*(¥ ), then z = TT (w), so T 468 onto. In 
. *¥ 

Order to complete the proof, let we? (X) be such that m1 (w) 7 
¥ 

OD * (x), Represent w by an element wie? (X,). The S-map 7, 
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factors as T, = Tag 0 Og where B is some finite covering of X, 

with nerve Xp and canonical S-—map Op :X—>K,, (cef., (4.6)). Now 

TT 
x ——_+—_> x, 

8 
B 

Xx — x 
J B4 B 

m*(w) 18 the equivalence class in ax) of 7 wy). Since 

T*(w) = O, B may be chosen so fine that 7 Fwy) = 0, But, since 

T is a representation, 88 factors as Og = a, 0 Ts for some 

index J. Let hy = 7 4, 0 @,,:X,—X,, 60 that ny (wy) = 0. But 

Ty = hy oT j = identity o Ty are two factorizations of T 4 in 

terms of the representation 1. Hence, there exists an index 

m= 4,jJ such that hy 0 py = or Therefore oF (w,) = by [h, (w, )] = 

QO, that is, w= 0, 

Corollary (6.9). If a compact space X admits a represen- 

tation by an inverse spectrum, then the cohomotopy group 2 *(X) 

is countable. 

Theorem (6.10). If the inverse spectrum X has finite 

order p, then gPX represents some compact metric space X. 

Proof. Let SPX = (X,,¥,). Of course, it may be assumed 
  

that the X,'s are polyhedra. There are continuous functions 

f4:X,4)-->X, such that {f,}= U,. Let X = Lim X, be the inverse 
limit of the spaces X, with respect to the functions f,- Then X 

is a compact metric space, the polyhedra xy may be identified with 

a cofinal system of nerves of X, and the maps Vy 2X44, —X, may be 

considered as projection S-maps (cf., [2], Lemma (3.8), page 263). 

The canonical S-maps mT 4:X—sX, define then a representation 

T :X—ssP =F , 
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Remark, In the above construction, dim X = dim& +p, 

Theorem (6.11). Let x Jo be inverse spectra such that, 

for some p 2 0, sPz, s°%) represent compact spaces. Then, a map 

¢:%—Y 1s an equivalence if and only if cf, DO) ee *(¥). 

Proof. Let m:X—»>}, p:¥—»> be representations, X,Y 

compact. They induce an isomorphism ©): 2£,0§ x $x,X.. Let 

Y =@ (SPr)efx,xt.. Then f 18 an equivalence <=> yy is a Cech 

g-equivalence <=> i> * (x) x D(x) (by (4.11)) ==> 

57 (9) wT*(¥). 
The following result contains the converse of (6.9): 

Theorem (6.12). The following properties of a compact 

epace X are equivalent: 

(1) X 41s representable by an inverse spectrum; 

(2) > * (x) 48 countable; 

(3) X has the Cech S-type of some compact metric space; 

(4) X 48 representable by an inverse spectrum of order 0. 

Proof. (1) => (2) by (6.9). If (2) holds, let 

(25,21,+--) be a sequence of generators of >*(x). A sequence of 

finite open coverings of X, Or Ayrees with nerves XX, eee and 

canonical S—maps TI 4 X—>X,,, and such that a,,, refines a,, with 

projection S-map 42%, 4)->X,, is defined as follows: choose a, 

to be a finite open covering of X such that Zo belongs to the 

image of T = 22 *(X,)—> 271k). Suppose that a,,...,a, have been 

Chosen. Let Ol EL be a finite open covering, refining sy with 

Nerve X/,, and canonical S-map T $4, :%—>Xj]4,, such that Zeal 

belongs to the image of T hag Z* (X14, )—2 *(x). Now, the 

kernel of n* D(x.) FF (x) is finitely generated. Hence 
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there exists a finite open covering a,,,, refining a},, (so that 

Z4+, Pelongs also to the image of 7,,,), such that the kernel 

of oe: 2 *(K4)—> SE (K, 4) is the same as the kernel of 

TT OK) a(x), This completes the definition of the 

| sequence of coverings (a, ). The main properties of this sequence 

are: (a) Zoro +2242 (X) can be represented by elements of 

57 (X,); (b) The kernel of T : 2" (X,)—>E *(x) is the same as 

the kernel of Oy" 2 7(x, + BK, ,,). Then X = (X,,6,) 1s an 

inverse spectrum of order O and the sequence (tT 0? TT 1? wee) pro- 

vides a map T:X—»X such that nt; F(x )ax D*(x). Since ¥ 

has order 0, there exists (by (6.10)) a compact metric space Y 

and a representation p:Y—»}. Then py X,X4, ~ 4x, 4 . Let 

h=py-(™), Then he{X,¥}, 16 such that hy: 2*(¥)~ 2 * (x), 

since p and T induce cohomotopy isomorphisms. S30 h is a Cech 

equivalence (4.11) and (2) => (3). Now, if (3) holds, let 

v¥:X—>Y be a Cech S-equivalence and p:¥—>%) a representation of 

order O (cf., Example in the beginning of this section). Then 

T = p(y) :X—» 9 18 a representation of order 0 (by (6.2)). 

Finally, it 18 obvioue that (4) —> (1). 

The following is a partial converse of (6.8): 

Theorem (6.13). Let X be a compact space and % an 

inverse spectrum such that some suspension SPX represents a 

compact space (for instance, let % have bounded order). Then, 

any map T :X—»} such that n> (Xk) ~D>*(X) is a represen- 

tation. 

Proof. If m* 1a an isomorphism, then > * (x) is countable, 
  

80 X admits a representation p:x—> Y (6.12). Since 
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ot 19,43 ~ £x,%} (py (6.2)), there exists a map £:9 —»>f 

guch that fop=T. Then et; 57 (%)~ 5% (9). 80, by (6.12), 

f 18 an equivalence and therefore Tl is a representation. 

We shall now investigate what happens when assumptions of 

finite dimensionality are added to (6.12), as in (5.14) and also 

what the effect is of replacing the group =x) by the Cech co- 

homology group H*(x) in the theorems of this section. 

The first question is a very important one, in view of 

the applications in section 8. The situation here is not as 

pleasant as in (5.14), due to the absence of a dual to Barratt's 

Lemma (5.13). Such result, to the effect that a compact space 

with bounded and countable Cech cohomology has the Cech S—type 

of a finite dimensional compact metric space, seems plausible 

but we have not been able to prove (or disprove) it. Because of 

this, only the following properties of a compact space X can be 

stated to be equivalent: 

(a) X 46 representable by a finite dimensional inverse 

spectrum; 

(bo) X has the same Cech S-type of a finite dimensional 

compact metric space; 

(c) X 418 representable by a finite dimensional inverse 

Spectrum of order QO. 

The proof i8 immediate, from (6.12). 

Theorem (6.14). If X 18 a finite dimensional compact 

Space and > *(x) is countable, then X has property (b), hence (c). 

Proof. In (6.12), in the proof that (2) => (3), all cov- 

  

erings a, may be chosen such that dim X, = aimX, so €= (X,) is 

finite dimensional and Y has therefore the same property. 
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As to the second question, the theorems in which 2 *(x) 

appears in this section are (6.8), (6.9), (6.11), (6.12), (6.13) 

and (6.14). Their counterparts for Cech cohomology are: 

(6.8)' A representation 1:X—>X of a compact space by 

an inverse spectrum induces an 4somorphism nm :H*(H)~w H (KX). 

(6.9)! If a compact space X is representable by an in- 

yerse spectrum, then H* (X) ig countable. 

The proofs of these 2 theorems use exactly the same argu- 

ments as before, with >* replaced by io 

(6.11)! Let ¥ ,O be inverse spectra such that g?¥, 8° 4) 

represent compact spaces, for some p. Then a map r:¥ —Y is an 

equivalence if and only if e* HF(Y )x H*(£). 

Proof. The same as in (6.11), except for the following 

  

modification: the spaces X,Y that sPZE ’ gP U) represent can be 

chosen compact metric, by (6.12), so that (4.13) may be applied 

instead of (3.10). 

(6.14)" If X 18 finite dimensional and H*(X) 48 countable, 

then X has the same Cech S-type of a compact metric space of fi- 

nite dimension. 
¥ 

No version of (6.12) is true with H* replacing >.” since 

(4.13) 18 proved only for metric spaces, in which case H™ 18 auto- 

matically countable. 

As to (6.13), only a poorer version of it is true, namely: 

(6.13)! Let X be compact and either metric or finite di- 

mensional, and ¥% be an inverse spectrum such that some suspension 

8? $ represents a space. Then a map T3:S—>F with nr Ht (% ) 

¥ 
H’ (X) i8 a representation. 
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7. Direct and Inverse Spectra Together 
  

A strong representation of a space U by a direct spec- 

trum U is a map a:U —sU that induces an isomorphism 

X Ay Xfx,Uy —> fx, U3 

for every compact space X. 

_A stable strong representation is a map A:1U,—sU such 
  

that, for every r 2 0, s'a;5° U—sstu is a strong representation. 

Lemma (7.1). Every representation ’:WU—sU of a cW- 

complex U is a stable strong representation. 

Proof. Let X be a compact space and let fe{X,U}. Since   

X is compact, there exists a finite subcomplex LC U and an S-map 

f':X—»L such that f=gof!, g:LC U. Since X isa represen-— 

tation of U by U= (U,,9,) and L is finite, there exists an in- 

dex i and a map g,:L—su, such that g = Ay O G4. Let fs = 

B, 0 f':X—sU,. Then f = A, 0 fy. Suppose now that an S-map 

f:X—sU admits 2 factorizations f = A, 9 f,= A, o ty, with 

f,e{X,U,}, f,e{X, U5}. Then there exists a finite subcomplex 

LC U, and maps g,:U,—sL, G,:U,;—sl, h:LC U, such that h o &, = 

4,, ho By = Aj, and &, 0 

tored, for some index m 2 i,j, as h= An ° ha h:L—u_ Then, 

Ay = 4 0 identity = An 

in terms of 3. Therefore, there existe an index n = m such that 

f,= 6,0 ty. Now h:L—-sU may be fac- 

° (hn Oo g,) are 2 factorizations of Ay 

o? = or oh, 0 €,. By a similar reason, n can be chosen so large 

m 

bility, 1t follows from the fact that 8a:SU—>sU is again a rep-— 

that also oy = 9" oho G,- Then oT of, = 5 of,. As to sta- 

Tesentation (5.7), hence a strong one, since SU is a CW-complex. 
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Theorem (7.2). Let :X—»># be a representation of the 

compact space X by the inverse spectrum X= (X,,,) and let 

nx: U->U be a strong representation of the space U by the direct 

spectrum U= (U,,9,). Then there exists a unique isomorphism 

R:{X,U3 x ix,v} 

such that, for each fe {Xu} the diagram below is commutative: 

ne wena meee UL 
«| |» 

R(r) 
X eee 

Proof. The statement is that the map R:f—=vo fom 
  

4s an isomorphism. Now = Ay © ne so that it suffices to 

show that both T*:{%,U}—>{x,U} ana At {Ks UY —>{X,U5 are 
| a+ 

ig an isomorphism by (6.2) and A, is an 4somorphisms. But 7 de 

isomorphism because X is compact and A is strong. 

Suppose that A:1{ —>U is a strong representation of the 

Space U by the direct spectrum U = (U,,9,). Then, if X is com- 

pact and V is an arbitrary space, a singular map oe{U, V4, may be 

composed with an ordinary S-map fe{X,U}, yielding a map oo f = 

o,(t)e{X,v}. Such composition induces a pairing 

(7.3) {u,v}, @ {x,u} ——  {x,v}, 

where o@ f—so o f, the S-map o o f being defined as follows: 

Since X 18 compact and A = (A, ) is strong, there exists an index 

1 such that f = A, 0 fy, f,e{X,U,}. Now set co f = oy, (Ay) o fy. 

It is easy to see that this definition does not depend on the 

choice of the index 1. 

Still under the assumption that there exists a strong 

representation a: U—sU, a Cech map ve{Y,X}., where X,Y are 
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compact, may be composed with an ordinary S-map re{x,u}, giving 

an S-map f o 7 = v*(f)e{X,Ut. This composition induces a pairing: 

(7.4) {x,u} @® {¥,x}, ——> ly,v}, 

where f@ ‘v—>fo y. The S-map f o y is defined as follows: 

     
    
      
      
          
    
    
    
     
     

    
        

    
    
    

    
    
    

    
    

    

pecause X 16 compact and A is strong, there exists an index 1 

euch that f = A, o fy, £,e{X,U,$ . Put then fo y = 

A, oY *(f, ely, ut. A quick checking shows that this definition 

does not depend on the choice of i. 

Theorem (7.5). Let 1:X—>X, p:¥—>9¥ be representa- 

tions of compact spaces by inverse spectra. Let also A: A—su, 

p:J—v be strong representations by direct spectra. Then, the 

{somorphiem R introduced in (7.3), together with the isomorphisms 

f) of (5.3) ana @ of (6.3), transform the pairing (1.4) into 

(7.4) and the pairing (1.5) into (7.3). 

Proof. Obvious. 
  

Theorem (7.5) expresses the naturality of R. 

8. Duality for Spaces 
  

Two spaces X,U are said to be p-dual if they admit repre- 

sentations T:X—>¥, A:W—sU by spectra ¥,U that are p-dual, 

in the sense of section 2, 

If X,U are finite CW-complexes, represented trivially by 

¥ ana U (as in examples 1 and 3 of section 1), they are p-dual 

in the sense of the above definition if and only if they are 

weakly p-dual in the sense of Spanier and Whitehead (see 90). 

This deviation from the standard terminology is adopted for the 

Sake of simplicity. 
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If X,U are p-dual, then SX,U and X,S8U are (pt+l)-dual, 

gince thie is true for spectra, and the suspension of a repre- 

sentation is still a representation. 

Theorem (8.1). Let the spaces X and Y, representable by 

4nverse spectra, be p-dual respectively to the spaces U and V. 

Then, there exists an isomorphism 

Dyi{X,Y}, ~ fv,u}, 

with the following properties: 

(1) If X,¥,U,V are finite CW-complexes, Dy, agrees with 

the Spanier-Whitehead duality isomorphism; 

(2) dD, is natural with respect to composition, that is, 

it takes the pairing (4.1) into the pairing (3.1); 

(3) Dy is stable under suspension, that 1s, considering 

first X,SU and Y,8V as (ptl)-duals, and then SX,U and SY,V as 

(ptl)-duals, the following hold: 

sD, = Doe 1X ¥h,* {sv, SU} , 

= ~ 
D3 = Do41? 18K, 8X], = {v,ut,. 

Proof. Let m:X—>¥, p:¥—>¥, A:U—sU, p: V—sV be 

  

representations, such that ¥,U and ¥,U are p-dual spectra. 

Define D,: 1X, X},—> fv, Uf, as the composite isomorphism 

—-1L 

x,y}, 24 {en} Ze. fru; 2. wu}, 
where ® was defined in (6.3), o, is the duality isomorphism 

(2.2) for spectra, ana {2 was defined in (5.3). The composite 

D. = flo 0, QO @-1 does not depend on the chosen representa-— 
p 

tions of the spaces by spectra. In fact, if X,Y,U,V are 
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yepresented by other spectra %', U', U', VU', there are unique 

gquivalences hy: X'—>}¥, hg: Y—>Y', hg: U—sW', by: VI-V, 

the diagram below: 

d0 

which {induce the isomorphisms represented by vertical arrors in 

4 {X,9} ——_-—2_+ WU} 2 - 
oN {au'] —r_, ouy® 

‘The naturality properties of .,®@ ana dD, imply commutativity 

{x, x} iv, Uf, 

in each box of this diagram. Therefore NL o 39, 0 @- = 

fL'o D., ° @'7. Since 2, @ ana f, are multiplicative, the 

same is true for Do: Stability of Do also follows from the same 

property for Q ; @ and f,. 

Corollary (8.2). If the spaces W and W', representable 

by inverse (resp. direct) spectra are p-dual to the same space Z, 

then W and W' have the same Cech (resp. singular) S-type. 

Proof. The equivalence W—>W' is the map that correspond, 

  

under Dy» to the identity map Z—>Z, 

Theorem (8.3). Let X and Y be compact spaces respectively 

P-dual to the spaces U and V, which admit stable strong represen-— 

tations by direct spectra. Then, there exists an isomorphism 

Do: {X,V} x fy,u} 

With the same formal properties as the isomorphism of (8.1). 

Proof. Let 7 :X—>%¥, p:¥—>¥, asW—eu, p:—sV be 

representations such that A and p are strong, and *%,U, and 

Y,w are p-dual. There representations induce isomorphisms 
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Ry: {EU} ~ {xv}, Ro: {9,U} x f,0} as an (7.2). Derine 

a
a
 

p,iiX,Vi —> ¥, 0} to be the composite isomorphism: 

Ri p R 
{x,v} it, 1X US saan 19 jU} _ 2. fy,u}. 

where Dp, is the duality 1somorphism for spectra (2.2). From 

the naturality properties of R and. D.,, it follows that dD, does 

not depend upon the chosen representations. 

These duality theorems being proved, the question now is: 

which spaces have p-duals? The most general answer to this ques- 

tion is given by the 

  

Theorem (8.4). A space has a p-dual if and only if it is   representable by a finite dimensional spectrum. Such a p—dual 

may always be chosen to be a finite dimensional countable CW- 

  

complex (if the spectrum in question is inverse) or a finite 

  

dimensional compact metric space (if the spectrum is direct).     Proof. To fix ideas, suppose that the space is X, and 
  

1 :X—»> is a representation of X by the finite dimensional in- 

verse spectrum <. By (2.1), % has a q-dual U, which is finite 

dimensional, hence of bounded order r. Then U = S°U is finite 

dimensional, of order 0, and is p-dual to ¥ », with p=qtr. 

By (5.11), 7% represents a finite dimensional countable CW-com- 

    
     
    

  

plex U which is, therefore, p-dual to X. The treatment of the 

remaining case is, of course, similar, hence it is left to the 

reader. 

       

    

Corollary (8.5). The spaces U which have a p-dual repre- 

   Sented by an inverse spectrum are precisely those for which the 

Singular homology group H,(U) is countable and bounded. Every
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finite dimensional compact space X with countable Cech cohomology 

group H*(x) has a p-dual, represented by a direct spectrum. 

From (8.5), 1t follows that closed and open subsets of 

the sphere Ss? have p-duals. It turns out that p-duals in this 

case may be taken simply as the complements. 

Theorem (8.6). Let X be a closed subset of the sphere 

3? and u = 8? _ xX. Then X,U are p-dual. 

Proof. It 1s well known that the open subset U of SP can 

pe triangulated as a countable CW-complex. Choose an increasing 

sequence UVC BC Us »o. Of finite subcomplexes of U such that 

OO) Uy =U. Of course, this sequence may be taken in such a way 

Bat uc int User: This will be done in order to simplify the 

arguments that follow. Set $,:U,C U,,, and A,:U,C°U. Then 

Us (U,,,) 48 a direct spectrum and the 4,'8 define a stable 

strong representation A:U.—sU. Since U,C int UL, 4, gP _ UL 

is a neighborhood of X, whose closure is contained in gP _ U5: 

Hence, by Lemma (2.2) of [12], there existe a p-dual X, of Uy 

euch that SP - U, co X,. Let 1 > 0, and suppose that Kor eee yk 
1 

have been defined in such a way that: (a) sg? - U4 CXC -U,; 

(b) X, and U, are p-dual (j = 0,...,1). Then, since U,,,CintU,,, 

P_ p_ 8 Us40 GC 8 U 

  

441° Again by Lemma (2.2) of [12], there 

p p exists a p-dual X41 of U such that 5* - Ure X44, C8 -U 4+1 4+1* 
This completes the inductive definition of a decreasing sequence 

Xj, X,> ... of polyhedra satisfying (a) and (b) for all j. Let 

BAX gg X, and 7,:XCX,. Then & = (X,,J,) 18 an inverse 

Spectrum and the 1 ,'s define a map T :X—»>Z. This map isa 

representation. In fact, a finite polyhedron P is an ANR, there- 

fore any S-map f:X— >P can be extended to a neighborhood W of X, 
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Now X= C\Xx,, 80 any neighborhood of X contains some X,- Thus 
i=o 

¢ can be extended to some Xs that is, f factors as f=f 4° 4; 
f,:X,—>P. Again because P is an ANR, any two extensions of a 

continuous function X—s»P to 2 neighborhoods of X are homotopic 

4n a smaller neighborhood. But such smaller neighborhood must 

contain some X,, therefore, if f = f,o 74 = ry ° Ty are 2 

factorizations of f in terms of T, there exists an index m >i, j 

such that f, o Up = f, 0 v5: This concludes the proof that 7 1s 

a representation. Since the spectra EU are p-dual, this con- 

cludes also the proof of the theorem. 
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Preliminaries and Notations 

Thie section will introduce some definitions, notations 

and conventions to be used in Part II, in addition to those al- 

ready discussed in section 0 of Part I. 

The word space, until 7, will always mean finite dimen— 
  

gional CW-complex and, in 8, it will mean finite CW-complex. In 

the main definitions, however, a concession is made and complexes 

are explicitly referred to, in order to avoid misunderstandings, 

All complexes are taken with a O-cell as base point, al- 

though this will not be mentioned explicitly. Suspensions will 

always be reduced. Thus, the open cells of SX (other than the 

base point) are suspensions of the open cells of X (other than 

the base point). All continuous functions preserve base points; 

all homotopies leave base points fixed. 

There can be no doubt about the meaning of the p-th 

skeleton XP of a space X, For p < 0, XP will mean the base 

point, The p-th coskeleton of X is the quotient space Px = x/x?, 

Obtained by identifying to a point the p-th skeleton of X. 

The following two simple Lemmas follow immediately from 

the cellular approximation theorem for continuous functions and 

their homotopies, and from the homotopy extension property. 

Lemma (0.1). In the diagram below, let the homomorphisms 

1,2,3 be induced by inclusion S-maps. Then 1 is onto and 3 has 

kernel zero. By commutativity, 3 is actually an isomorphism and 

kernel 2 = kernel 1. 

74 

—_
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ix" y"} 1 {x9 y} 

> {xn yntl} Ye 

Lemma (0.2). In the diagram below, let the homomorphisms 

  

   

    

A,8,¢ be induced by collapsing S~maps. Then C is onto and A has    
kernel zero. By commutativity, A is actually an isomorphism onto 

  

and kernel B = kernel C. 

jr-'x, "y} ——_4__> {x, "y} 
A a wee 

The codimension of X ig the largest integer q such that 

    

   
X = dy The coconnectivity of X 1s the smallest integer q such 

    

that m(X) = 0 for allizZq,. 

  

Let Ol be a collection of subcomplexes of X and ty a mw 

  

collection of subcomplexes of Y. A carrier ep A+ is a map- 

  

ping A> fa, Ac, Pactr, such that GAC PA! whenever AC Al, 

    

A f-function f:X—»Y is a continuous function such that 

  

f(A)C GA for every Ac. A £ -nomotopy is a homotopy ft, :X—2¥    
Such that, for every t, f, is a -function. A B-homotopy class ? , ic neice oe ai al 

  

is an equivalence class of ¢-tunctions under G -homotopies. 
   

Denote by (x,x; 2] the set of all  -homotopy classes X--»Y. The 

carrier gd yields also carriers gs" h_ssf, where S"(l = 
    

8; Ae NG and sof is similarly defined. Hence, the set 

[s"x, sy; B"] exists for n=0,1,2,.... Forn#2 2, [8"x,s"y; 6") 

is an abelian group and the suspension map (s™x, s"y; @*)_» 

n+l ntL [s"*1x 3s 

   
   

   

  

as gry is a homomorphism. The direct limit 

  

ix, x; 64 = niin [s%, s"y, OJ is the group of s-¢-mape or the 
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poup of S-maps X—>Y restricted by the carrier @. The only 

_on-trivial carriers that will be used in the following are the 

s prters of skeleta ¢= byy- These are defined on the skeleta 

5 the first space, and Dy (X”) = YP, The set of s- 9,,-maps 

mn pe denoted simply by {x,x; 9} . An S-map ) restricted by the 

marrier of skeleta will be called an external inclusion and will 
  

gometimes be denoted by 

p:X < ¥. 

For every integer p, an external inclusion ?:X < Y induces exter- 

fal inclusions bP:xP < yP ana °g:Px < Py. Consider the category 

wnose objects are spaces and whose maps are external inclusions. 

The equivalences in this category are called external equalities 
  

and denoted by $:X = Y. 

By improving the method of constructing duals, it can be 

shown (a4] that every finite OW-complex X has a combinatorial p- 

dual x* for some large p, with the following properties: there 

is a 1-1 correspondence g<—-p0* between the cells of X and those 

of X”, that reverses inclusions and such that dim o + dim o*= p. 

Moreover, if AC X, A and X /B are weakly (ptl)-dual, where B 

ig the union of all cells o* with oeA. In particular, a combina-— 

torial p—dual x* of X is weakly (ptl)-dual to X. If X,¥ are com- 

Dinatorially p-dual to x" y* there is a duality isomorphism 

Die (X,¥5 9 4 ~ i x* x64 between the external inclusions of X 

into Y and the external inclusions of Y into X . 

1. The Category of Direct S-epectra 
ee 

A. Objects 

A direct 58-spectrum ¥ = £X5 1941 coneists of a sequence 
  

B» Xi eae, Ky» .e. Of finite dimensional CW-complexes together 
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4th external inclusions (see §0) g, 8X, <X 1 =0,1,..., 
i+1? 

yjth the following property: 

(1.1) For every integer n, there exists an index in such 

titl ~ +i+ grat 0,:(8K, PTA" = (x, Pte 
214 

441 external equality) for all 

n° 

Very frequently, a direct S-spectrum will be denoted 

simply by ¥£ = X43, the symbol , being altogether omitted. 2
 

Then, given S-maps f:X,4,—>Y, g:Z—>8X,, the composites 

fo $,:8X,—>Y, 9, Oo g:Z—>X,,, will be called the restriction of 

f to SX, and the injection of g into Xa 47 respectively. Similar 

  

      

       

      
    
          

        

      
     

  remarks apply for the composite external inclusion °K, < Xs em* 

A finite dimensional CW-complex X yields a direct S-—spec-— 

trum X = {x44 in a natural way by setting x, = six, In this 

manner, the S-category of finite dimensional CW-complexes will 

   
be embedded in the category of direct S-—spectra. 

The suspension of a direct S-epectrum X = {x,,045 18 

the direct S-spectrum sk = { 8x, , 90,4 . 

The n-skeleton of ic = i X44 is the direct S-spectrum 

¥* = }(x,)2*4 consisting of the (n+ti)-skeleta (x,)", (x, 7"). 

together with the partial external inclusions p,:S[(x,)2*4] < 

(X ntitl x i+) ig said to be finite dimensional if X = £"” 

for some n. The smallest such n is called the dimension of ¢ 7 

  

The n-coskeleton of % ={ X,} is the direct S—spectrum 

"ft = mrt (x) consisting of the (nti)-coskeleta ™(X5), 
+ 

. (x1), see (seed 0) together with the external inclusions 

+ ++ ++ +i+ ,:8[P7*(x,)] = sx,/(9x, 777 < x yntitl _ ntithsy 
ati/ (Xya4y +1) 

induced by $,. If F= 1} for some n (may be n < 0!) then     
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4g said to have finite codimension, If ¥ = 1% then K= ky 

gor * =n. The codimension of £ is the largest n such that 

| 7 = "XE. Sometimes ¥/¥™" will be written instead of aX, 

The following easy consequences of (1.1) are collected 

gor future reference: 

Iv
 

3 

Lemma (1.2). If € = X", then X,,, = SX, for all 4 
_ ntitl ntitl _ Proof. For all 1, Xsan = (Xy44? and (SX, ) = 8X 

ntitlL . ntiL_t1 
) ~ (SX, ) ° 

4° 

. 2 
B t for i= i (Ko 47 

Lemma (1.3). In a direct S-spectrum X, Xy tte is k- 

Lotkt2 _ 

4 +42) 7 i gkt 9 (8 x) . Now, the (k+2)-nd suspension of a space is 

Proof. By (1.1) and an easy induction, (X 

k-connected and k-connectivity depends only on the (k+l)-skeleton. 

B. Maps 

First let X be a space (that 18, a finite dimensional CW- 

complex, which will always be identified with the direct S-spec- 

‘trun X,8X,8°x,... ) and Q={ x, 5 an arbitrary direct S-—spectrum. 

The group ix, 9} of maps f:X—»9) 1s defined as the direct limit 

{x,0} = juz tsix,¥,4 

With respect to the composite homomorphisms: 

{s!x,x,}—> {s?**x, sx,] = (997K, 415 

Where the first one is suspension and the second is injection in 

vie: Thue, a map £:X—s9 is represented by (1.e., 18 the equiv- 

8lence class of) an S—map fj:8/X—sY,, Another S-map f 23 XY, 

represents the same f if and only if there exists some r 2 j,m 

Such that the diagram below commutes:   
 



      

    

   

Lemma (1.4). If p = 

Proof. 

{l*tx, (ax, Pts? $_____, fad 4x cy 

where all the arrows denote injections. 

pt+jti, the vertical arrows are isomorphisms onto. 

> 
j = 

is an isomorphism onto. 

\ptjt2 - p+j+2 

phism onto for } 2 Jy 

Sion isomorphism, which proves the Lemma. 

Thus, for sufficiently large j, all the projections 

(stx,x, —>{x,9 3 into the limit group are isomorphisms onto, 

1.e., the limit §x,9} is “attainea". 

groups of an S-spectrum & are defined by 2. (H) = 

they are isomorphic to the S-homotopy groups 

> 

where the right hand arrows denote external inclusions. 

dim X, then for j = 

Jj gd tl 
homomorphisms {3 X,X 5} —> 8 XX 415 are isomorphisms onto. 

Consider the commutative diagram 

{s)*1x, sv} incanenncmanty: # ITY y 

Since aim (sd*x) = 

s0 the bottom horizontal arrow 

Therefore the top arrow is an isomor— 

and so is its composition with the suspen- 

For instance, the homotopy 

Now, by (1.3) X, is (1-1,-2)-connected. 

= Jo4y? all the 

ptj+2 | 
y+? 

   

For   
    
    

  

  

   
   

  

  
   

$3? x4 and 

ioP*t xy 
Therefore, 

   
Z pa (%q )=         

if 42 ifpti pt 2(4, + 2), 

Ze (Ky) = T ty (4). 

that is, 

This proves the following: 

< 
= 2(1-1,-2), then    
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Lemma (1.5). For 4 = max : 1 ot1?P i 2(1, + 2), 

(t= 2 pe (%4) & TW oyy (Ky). 

An S-map g:Z—»X composes with a map f:X—> 4 giving a 
   

  

     
       

      
     
      

      

  

      

          
     

   

    

mep ih = fo eg: z—>U, as follows: let f be represented by an 

gmap f,:3/X—>¥,. Then h is defined as the equivalence class 

   
of the composite S—map hy = fy oO ade 

  
It 1s easy to verify that the map h = f o g so defined 

does not depend on the choice of a representative t for f. 

For a fixed direct S-spectrum 9 , the group 2x, 2) § isa 
   

contravariant functor of X: an S-map g:Z——X defines the homo- 

morphism 

ge 3§x,9} — §2,0§ ; e*(r) =fog 

He 

   

with the property that (g o h)* = il og for another S—map    
   

h:Z'—»Z. This functor 1s stable under suspension. That is, the 

   

Suspension isomorphisms isJx, r,{~ ~ {sd xe SY, induce, in the 

limit, the suspension isomorphism: 

g:{x,¢ ~ jsx,3}. 

Notice that if 9) reduces to a space Y then the group 

    

x,9} reduces to the ordinary S-—group X,Y}. 

   
Next, let = Xt, Us {X45 be arbitrary direct S- 

Bpectra, The group $%,04 of maps t:X—>Y is defined as the 

   
inverse Limit 

{EU} = ae fx, 819] 
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where each homomorphism 2X, 4, 8'*1Y (+ fx, ,81Y)} is the composite 

2Xy 4, 8710 —» Sex, tty t{_+fx, sty 4 

the first homomorphism being restriction and the second desuspen— 

aion. Thus, a map f:4—>¥Y 1s a sequence f = (f£,,f1,++.) of 

maps f,:X,—>3*Y that are compatible in the sense that, for each 

4, the following diagram is commutative 

Sf ee gil 1) 

\ Peel 
Kee 

For example, let £" be the n-skeleton of % =} x, . 

=), 4 

The inclusion map a:¥"C % 418 defined as a = (a,,%,,++.) where, 

for each i, a4: (%,) 774381 % is represented by the inclusion 

map s+ C(x, 274) Cc s*x,. This works for n = m and defines then 

the identity map EC x. 

A similar example is the collapsing map T:X¥—>" of 

into its n-coskeleton "“¥, which is defined as Tt = (Tw O97 yeere) 

where each 1, 3X,—>8*("Z) is represented by the collapsing map 

8*x, —>81x,/s*[(x, )"*1]. 

In general, a notion of S-subspectrum could be defined. 

Given a direct S-spectrum $ = 1X,}, another S-spectrum ( = ¢ A,} 

1s said to be an S-subspectrum of X (written OL C X¥ ) ar A,C XK, 

for every i and the external inclusion BA, < Agar is induced by 

8X, < Xe in the sense that the diagram below is commutative for 

every i, 
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SX, a Keay 

l 
SA, ————> Aaa 

the vertical arrows denoting (ordinary) inclusions. If OC : 

the inclusion map O—s>} may be defined just as for a skeleton 

put, in general, there is no way of defining the quotient S-spec- 

trum ¥/Q or the collapsing map K—>#/(. 

Ir 4 reduces to a space Y then ¥ X4= Lim, <x, 8°¥3. 

For instance, the cohomotopy groups of an S8-spectrum £ are de- 

fined as 2 °(X) = {x , 8? ¢ = Lim, {x,,8?"*{ . 

When ¥, L) both reduce to spaces X,Y, the group SK} 

reduces to the ordinary 5-group ¢X,¥4. Therefore the category of 

direct S-spectra contains an isomorphic copy of the 8-category 

based on finite dimensional CW-complexes. 

Notice that, even when Y 18 a space, the group {¥,¥} 18 

not in general attained by some £x,, S*¥f. However, if ¥ 18 

finite dimensional, the double limit 

§¥,D% = 11m (11m s9X,,5*Y, ) 
<—i j— i J 

  

is actually realized by all groups {stx, s+, with 1,j) suffi- 

ciently large. In fact, let p = aim * , n= 1 q = dim X,, 

b= Then all homomorphisms in the diagram below are iso- Jqti: 

morphisms onto 

{x,,8"0§ <— {X48 Yh eee ee {X,Y} 

t 
{s?*x_, S9y oe {on p=— Eee b 

{sx , sv} <— {sey} <— ---    
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In fact, the horizontal arrows denote isomorphisms, since 

X41 = SX, for 4 2n, by (1.2). Moreover, by (1.4), a1] homo- 

norphisms {s?x,,8°Y,t—> (39K SL saa f leading to {x87 44 are 

4somorphisms onto for j 2b. Therefore, all vertical homomorphism 

of the first column are isomorphisms onto. By an easy induction, 

using commutativity, it follows that all the remaining arrows 

represent isomorphisms onto. The following Lemma is a quick con- 

sequence of this fact: 

Lemma (1.6). If % 4s finite dimensional, an isomorphism 

Ay: 2%) 4 ~4X,,¥, 4 

is defined for sufficiently large 1, in a unique fashion, by the 

requirement that the diagram below be commutative (where the left 

vertical arrow is projection from the inverse Limit and the bottom 

horizontal one 1s projection into the direct limit): 

{£9} posentomee {X,,4,5 

gt 

{x,,8'O} <__—_—__ {s*x, ,s4y, 

In order to complete the description of the category, 

composition of two maps fe {% YO} » &E {9,9} shall be defined now. 

The composite map h = go fe {2,9} will be given as h = (h,,h,...), 

where hy :X,—>8*Y is represented by the S-map h s*x,—>8°Z ik? k? 

defined as follows: corresponding to the index 1, f provides the 

map f,:X,—>8*Y which is represented, for some J, by an S-map 

fy ,:8!X,—>s*Y,, Corresponding to Jj, g@ provides the map 

gy1¥, 89, represented, for some k, by the S-—map B4,33°X > 

siz. Then, hoy ia the j-th desuspension of the composite S-map: 
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+5 
—+is sity, Eye. git 2 sJ*Kx, 

It can be easily checked that the composite map h = g¢ o f does 

  

not depend on the choices of the representatives Pay chosen for 

fs and Bik for Gy: 

The group £¥,9} is a covariant functor of YJ and a 

contravariant functor of X. In fact, a map e:4 —> Uj! induces 

the homomorphism G 3E, Yt + |X, yit where g, (f) =gofja 

map f: 7 ininoes the homomorphism f*: {¥',O} — tk, yt, 

where f Fe) =gof. 

With respect to the composition of maps just defined, 

the homomorphism 421 ¥,93 —>jX,,¥,4 of (1.6) ( Erinite dimen- 

sional and 1 large) is natural. That is, if \) 1s also finite 

dimensional, % is arbitrary and 1 is so large that Ay and the 

isomorphisms 

4319 1% x £¥,, 244 ; Vy: 1,91 ~% 1X,.245 

are all defined then, for any fe £9 5, 634,91 ; 

(1.7) vi(go f) = wy(g) o A, (f) 

Lemma (1.8). For any ¥,4, 1¥,05 x Lin E",YF, the 

homomorphism ggentt yt —>{¥",Y} being induced by the inclusion 

map X7C ¥N*H, 
Proof. In the first place, for every i, teat Utz xy 
  

Lim {(x,)9*1,8*Y| since the limit 1s attained when n 2 dim X,-1. 

Therefore {¥,93 = nim, £4,874 w Lim, (nam {(x,)""*, stt)}) = 

Lim (Lim, {(x, "74, 8424) t) = Lim 2%", Uf. 
<——N) 

The above lemma justifies the restriction of finite 

dimensionality for each component xX, of an 8-spectrum ¥ - it 

    

ee 
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peans that, in order to define a map f:¥—>J, where X,Y are 

arbitrary S-spectra, it euffices to define f coherently in each 

skeleton £™. That is, it suffices to define, for each n, a map 

fni ~~» Y in such a way that the diagram below commutes 

_ntl_ ntl. 

MO 
where a: ¥°C ¥"*2, (In other words, f,, 18 the restriction of 

n , to £".) 

Given the direct S-spectra ¥,o » and a relative integer 

r, let 

Iv
 

{s*¥,U} arrZo 

“) {Xs FOt arr £0 

The groups ‘¥,U% have properties similar to and generalize the 

{¥, V5, 

group 3¥ 9% . They allow the definition of the homotopy groups 

of a direct spectrum to be extended, so 2 (EF) = 48°, £4 yr exists 

for all relative r. 

Lemma (1.9). 2, ,(¥) = 0 for r 5 - (4, + 2). 

Proof. For r = - (14, +2), -r > 0 60 2 pl) = 

{s°,s-*Z } = iin {s*, 877K, |. For 124, +2, SX, 18 (1 -1,-2-r)- 
  

connected (by (1.3)), so it 18 a fortiori’ i-connected hence 

{s*,s-"x, } = 0 for all large 1 and 2. WE) = 0. 

The following is an extension of Lemma (0.1) to direct 

8-spectra. 

Lemma (1.10). For arbitrary direct S-spectra £,4 and 

any integer n, let B:9%C Ont prsQMtlcY and Bhs UBC Y . 

    

  

  
 



  

86 

Then Bi is onto and Bi. 4s 1-1. By commutativity of the diagram 

pelow, Ba 41s actually an isomorphism onto and kernel Ba = 

kernel Ba : 

{%A, Lyre __fs Sx, Uf 

Py Thy re Pa 
a yatlt 

Proof. By choosing i large enough, the isomorphisms 

Mik, yy = §(x, 944, (x, )e*44, Ha '¢ n yntrs ~ 

§(x, PY (y,)Ptety, vitik nut ~ 4(x, 2 ¥, 4 are defined, as 

in (1.6). Since these isomorphisms are natural, the present 

Lemma reduces to (0.1), which proves it. 

Let, as in 20, O yy :X—>¥ denote the carrier of skeleta, 

4.€., ® xy (X") = Y". Again, denote by 3x,Y;04 the group of 

external inclusions from X into Y¥. The double limit 

$¥ 2) ;O} = Lin, ( 2am {s%x,, 9475505) 

(taken with respect to the obvious homomorphisms) is called the 

group of external inclusions of ¥ into © - An external inclusion 
    

Be §¥,2) 504 induces, for each n, unique external inclusions 

erefEO7, OG}, Be fh ¥,7Y 54 
There is an obvious homomorphism 

(1.11) Mr §¥,0 ; 0} —> 3,9} 
induced by the homomorphism 

1 1 
‘sdx,,6 ¥ 5305 _. 189K, 8 x45 

which maps each external inclusion into the ordinary S-map that 

it determines.   
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Lemma (1.12). If ¥% 1s finite dimensional, the homomor- 

phism M in (1.11) 18 onto. 

Proof. Let tei,U{. since ¥ has finite dimension, 

the isomorphism A hE, 9} = £X,,¥43 is defined for large i, by 

(1.6). But the arguments leading to (1.6) are still valid for 

ond, external inclusions, hence there is an isomorphism ESC) :® 5 ~ 

{X4,¥43 b§ for large 1. Now let g:S"X,—>s*Y, be a cellular 

continuous function such that fet = A, (£)¢{X,,¥,¢. The equiva- 

lence class & of g in $X,,¥,303 18 such that M(py()) = f, 

An n-map from ¥ to 4 18 a map f:("—»U", from the 

n-skeleton of %X to the n-skeleton of O) . From (1.10) it follows 

that, given a map f:¥-—-9, there exists always an n—map 

fo, ¥N_, ON such that the diagram below is commutative (where 

the vertical arrows denote inclusions) 

  

¥ ++) 

Poof 
pn rf un 

Where this is the case, the n-map f” 1s said to be induced by f. 

Although f™ 4168 not uniquely determined by f, it follows from 

(1.10) that any 2 n-maps f”,e" induced by f agree on -rt, 

An n-cellular approximation of t:£ —>% is an n-external 

inclusion &%¢ (£7, 9750 § such that M(E™) = ef K2, O24 48 an 

n~map induced by f. 

Lemma (1.13). A given map f:4—> has n-cellular ap- 

proximations for every n. 

Proof. This follows directly from (1.12). 
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Lemma (1.14). Let t:X—>% be any map ana let 

& nvk xatk_  antk be an (ntk)-cellular approximation of f. 

Then the external inclusion €7:E" +45", determinea by ene 

is an n-cellular approximation of f. 

Proof. Proving (1.14) reduces -- after remarking that f 

may be assumed to be an (n+k)-map and quoting (1.6) -- to using 

the following obvious fact: if g:W—»Z is a cellular continuous 

function and so is BpiW—s2", then commutativity of the diagram 

below, up to homotopies restricted by the carrier of skeleta, 

implies commutativity up to unrestricted homotopies. 

w 8s 7 

|. | 
wr ___ Fes 7. 

2. Homology and Cohomology of Direct S-spectra 

It 1s convenient to consider reduced cellular homology 

and cohomology theories. Given a reduced homology theory H on 

the category of CW-complexes, the group of cellular n-chains of 

X 16 defined as G(X) = B(x", x07) and the boundary operator 

0:6, (X)—sC,,_, (X) ie the homology boundary operator of the 

triple (x8, xAwd yee) | The coefficient group is that of the 

theory H. Since C,(X) is a direct sum of copies of the coeffi- 

clent group, corresponding to the n-cells of X (other than the 

base point if n= 0), Suspension induces an isomorphism 

| g 10, (X) a C_., (8X) 

that commutes with the boundary operator. The reduced cellular 

homology groups of X are the homology groups of the chain complex 
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{o,(x), 0}. Taking the homology theory H with integral coeffi- 

cients, the (reduced) cellular cochain groups with coefficients 

in a group G are O"(x) = o"(X;G) = Hom (0 (X),@) and the co- 

poundary operator 6:07(x)—so"t+ (x) is the transpose of 6. Of 

course suspension induces again an isomorphism 

gs :o®tl (sx) (x) 

that commutes with 6. 

Let E = ix,} be a direct S-spectrum. For each i, the 

composition of suspension with the injection:¢ 1, (X,)—> 

Cea gy (5K) ay gy (Ky 4y) provides an admissible homomorphism 

(4.e., one that commutes with 6). The limit group 

G,(£) = Lam 0,44 (%,) 

with respect to these homomorphisms is called the group of n- 

chains of ¥ (the coefficient group is that of the theory H). 

The boundary operator 

a:0, (£ )—s, 1 (¥) 

is defined as the Limit of the boundary operators in C44 (X,)- 

The n-th homology group H(E) of the S-spectrum X% may 

be alternatively defined either as the n-th homology group of 

the chain complex 1c, (¥),04 or ae the limit group 

HME) = him Hayy (%4) 

under the composite homomorphisms Hey (%4 PH 44 7 (8K, 

Heat (447) where the first 18 suspension and the second is 

injection. These two definitions agree, since the direct limit 

Of exact sequences is exact. 

Actually, since the chain group C44 (%4) depends only on 

yntitl (x , the homomorphism Cty (4 IPO ty (F547) becomes an 
1  
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isomorphism onto for large 1, so that the groups Ci(%), HX) 

are eventually attained by the groups Ce (%4)> He (X4) respec 

tively. 

The cochains of % are similarly defined: 

co X) = tim oM*4(x,) 
<—-1 

where the inverse limit is taken with respect to the composite 

homomorphisms —>ontt*) (sx, )—so"*4(x,), the first 

being restriction and the second suspension. Obviously these 

homomorphisms commute with the coboundary operators, so a co- 

boundary operator 

8:07 (% )—soP*4(¥ ) 
can be defined in the limit. Again the cochain groups on** (x, ) 

become "constant" for large 1, so that the n-th cohomology group 

of & may be defined either as 

H"(¥ ) = lim ot? (x, ) 
<—1, 

or as the n-th derived group of the cochain complex io"(¥),8} 

(which is the same as the n-th cohomology group of the chain 

complex {o,,(%),o}, chains with integral coefficients, cochains 

with values in G), 

In the above treatment of cochains and cohomology, the 

notation omits the coefficient group. This was done for the sake 

of simplicity. In practice (e.g., obstruction theory) the coef- 

ficient group will usually be explicitly indicated. 

The induced homomorphism for homology and cohomology 

groups are easily defined. First let f:X—>% be a map of a space 

into an S-spectrum. For some j, f 18 represented by an S-map 
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f :SUX—-s¥ j- Define then 

fy 7H, (X)—>H, (¥ ) 

as the composite homomorphism 

  

(f,) 
H,(X) ——> Hy, (89x) —2S HL (x,) —> #,(9) 

where the first homomorphism is the j-th suspension and the last 

one is projection into the direct limit. It is clear that the 

choice of the representative ry for f does not matter. If 

g:Z—»X is another S-map, (fo Bly = fo g, 2H, (Z)—>H, (9). 

Moreover, considering Sf:SX-»S9O gives 8,0 f, = 

(Sf), 0 8, :H, (X)—sH 4, (89 ) (where S, is the suspension isomor-— 

phism for homology groups). 

Now, if f:%—>®% 1s an arbitrary map of spectra, for 

every i, f4:X,—>8*d) induces a homomorphism (£4) x that makes the 

diagram below commutative. 

(f,) 
Beg (Ky) => #44 (8°Y ) 

ntitl itl 
H H pe 24 ) 

nti+1' 

So the limit of the (f,), gives a homomorphism 

fH, (% )—>#, (9) 

that 18 stable under suspension and has the usual functorial 

properties. 

The definition of the cohomology homomorphisms f :H"({¢)—> 

H"(Y) 46 entirely similar and will be omitted. 

It would be desirable to introduce a special kind of map 

GX a with two properties: 
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(1) © 4nauces homomorphisms Gy 20, (¥ )—sc (4) that 

commute with the boundary operators (n = ...0,1,2,...); 

(2) For every map f:¥—»Y, there exists an "approxi- 

mation" e such that the homology homomorphisms fo Ga 2H A(X )— 

H,(9) coincide. 

Of course (1),(2) 1mply similar properties for cohomology. 

It does not seem possible, however, to find a class of 

| maps C as above. Nevertheless, the external inclusions come 

close to this ideal and, for all practical purposes, are useful 

enough, 

Theorem (2.1). An external inclusion C:¥-sY induces 

admissible homomorphisms Cx OE )—>0 (9 ), for all dimensions 

n, such that (£ of = E ol, 10, (E )— 0, (9) where 

g :J—+Y is another external inclusion. If M: £¥,9 304 —> 

1,0} ig as in (1.11) the homology homomorphisms 

Cy MC og ), HA (E )—>H,, ( ¢)) coincide for all n. 

Proof. The definition of by 204 (FE 9, (9) 4g entirely 

  

Similar to the definition of the homology homomorphism induced by 

a map ¥ —>Q given above. The only remark to add is that an 

external inclusion 6 :W—sz (of spaces) induces chain homomor- 

phisms Oy iCn(W)—>c (2), by the homotopy axiom, since C.(W) = 

H (we wet), 0.(Z) = H(z, 20-1), The naturality of Cy is 

Obvious and the homology homomorphism is the same as that induced 

by u(t ) because, in the preceding remark, the homology isomor- 

Phism induced by r is the same as that induced by any continuous 

function in the class C . 

Remark. Of course a result similar to (2.1) holds for 

Sochains and cohomology groups. 
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Theorem (2.2). Let f:¥—>% ana let EP:e7 YN be 

an n-cellular approximation of f. Then ty = pl )—>H,.(4 ) 

for r = n-l (where a ), H,(Q) are identified with H.(¥"), 

H.(9”) for r = n-1), 

Proof. The diagram below is commutative ,» where ro = 

m(E*); 

  

Tx 
HA( ) ———> H,,(4 ) 

(f° H.(2) 2 *, H(2"), 
But (f"), = (§"), by (2.1). 

The groups H,(£), H"(%), together with their induced 

homomorphisms, are functors in the category of direct S-spectra. 

They satisfy the universal coefficient theorems (for homology and 

cohomology) since they are attained as limits. For a fixed x, 

these groups are also covariant functors of the coefficient group 

G. For instance, write explicitly H"( ¥ ;G) to denote the n-th 

cohomology group of £ with coefficients inG. A given homomor- 

phism h:G—sG, induces a coefficient homomorphism 
  

hy :H"(E ;4)—sH"(9 5G, ) 

with functorial properties. In fact, hy is first defined as a 

cochain homomorphism hy:0"(¥ 34)—sco"(¥ 3G,), since o"(¥ -¢) = 

Hom (c.,( ¥;Z);G). This cochain homomorphism is admissible, hence 

it induces cohomology homomorphisms, 

Notice that the groups HX ); H"( 3%) may be non-zero for 

Some n < 0. However they are zero for all n sufficiently small. 
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3. Obstruction Theory 
  

Let (X,A) be a CW-pair. Consider the sequence of S-maps: 

(3.1) Asx B, x/a Ys ga 

where a:AC X, 6 is the S-homotopy class of the collapsing func- 

tion X—»X/A and y is defined as follows: the identity function 

A—>A extends to a continuous function X—»TA, where TA denotes 

the cone over A. (Any 2 such extensions are homotopic relative 

to A.) Compose this extension with the collapsing function 

TA—>5A. The composite function sends A into a point, hence it 

induces a function X/A—>S8A, whose S-homotopy clase is y. 

The sequence (3.1) induces, for every space Y, the exact 

sequence below (see [13]): 

as te ae 
(3.2) ++ -—>|x/a,x}—- sfx, x} fay} “ts fxyayy} vee 

This generalizes, but only in part, for S-spectra. In 

the most general direct S~spectrum, the notion of 8-subspectrum 
  

is not very useful. Nevertheless, the skeleta are special S—sub-— 

spectra with good behavior. Given a direct S-spectrum ¥ = ix,5 

and its n-skeleton X", the sequence 

(3.3) en yy Bey 1, gx 

May be defined. In fact a and ff have already been introduced in 

§1. The map ¥ is given by the sequence y = (Y5.%12Vo.+--) where, 

for each 4, ¥,:X4/ (x, )MTA_ sit EN is the equivalence class of 

the S-map 8*[x,/(x,)"**]—+s*[s(x,)"*"], the 1-th suspension of 

the last map in (3.1) above, taken with respect to the pair 

(x4, (X,)7*4), The sequence (3.3) induces, for each direct S- 

Spectrum £, the sequence 

* + (3.4) > P¥,9} 2 fx}, > [2,05 ofa, UF, 
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Theorem (3.5). The sequence (3.4) has order 2. It is 

exact at {¥,0} ee 

Proof. Notice first that, if X¥ is a space, (3.4) is 

exact since it is, in this case, a direct limit of exact sequences 

of the form (3.2). For a general ©, (3.5) 18 the inverse limit 

of sequences similar to it but with £ substituted by a space. 

Hence (3.5) 48 an inverse limit of exact sequences and as such 

has order 2. Moreover, since ¥" 18 finite dimensional, the 

groups f(x, 974, 8* Yt, whose limit is 0 t a become 

eventually all isomorphic so that the theorem follows from the 

algebraic Lemma below: 

Lemma (3.6). Let G,—>H, —>K,->L, form an inverse system 

of exact sequences, 1.e., homomorphisms are defined so as to make 

the diagram below commutative for each i: 

G, —_— Hy —> Ky —> Ly 

| 
Ca a a 

If the homomorphism G4 ty is onto for all i = 1,, then the 

limit sequence G—»H—»K-—->L is exact at K, 

Proof. Only one inclusion kernel < image has to be 

proved. Let k = (k,)eK, with k—»OeL. Then k,—>0eL, for each 

1. By exactness, there exists hyed,, hi—>k,. These hj don't 

necessarily fit together to define an element of H, so they have 

to be altered. Thus, let h, = hj and let h, be defined, for 
° ° 

1=4,, as the image of h, under the homomorphism H, -—>H,. °? i, 1 i 

Suppose that 1 = 4, and (ho, Hy,.--,h,) has been defined so as to 

be a compatible string mapping onto (k, ky, -++,k,) and proceed 

  

  

   



        
          

96 

to define h,,,. Let hj,,—>h{eH,. Then h, - hi—>0eK, 80, by 

      
      
    

> 
exactness, there exists g,eG,, g,—>h, - h{. Because 1 = Ao) 

there exists By 47 &4F4 44> 6441 Bs - Let C5414 aa - Put 

Ay4y = Aya 7 Caer: Then Hy yyy and Ny 43 Eye: This com-— 

          

      
    
      

      

  

       

      

       

      

      
    

         

pletes the inductive construction of h = (ho,h),---,H,,...)eH 

such that h—=»k, 
  

Theorem (3.6). If XH ie finite dimensional, the sequence 

(3.4) 18 exact. 
  

Proof. This is clear, since all the inverse limits are 
  

then attained. 

The following theorems express the functorial behavior 

of the sequence (3.4): 

Theorem (3.7). An external inclusion E:¥,—+X induces, 

for every n, external inclusions oer So ng KE. 

The ladder: 

as x,t. _ °X dt. —>{",0}, —_—> {ny OO) 

Ne f | fm | Ne 

sve—ofP¥E OS, —> 1k, OF, —{k8 0} — PEOE 

  
1s commutative, where f = M(E ); em = M(E*), Np = u(ME ). This 

makes the sequence (3.4) a contravariant functor of X with re- 

spect to external inclusions. 

Proof. This follows immediately from the naturality of 
  

(3.2) with respect to cellular continuous functions. 

Theorem (3.8). Any map 4-9, induces a homomorphism 

of the sequence (3.4) relative to the pair (£,%) into the simi- 

lar sequence for (< ,9,). 

Proof. Obvious. 
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In [23], page 353 and following, a natural isomorphism 

axnyxet yyy oM(x;2_(¥)) 18 established, which takes the 

mE yt xy} fet tyatyt 

nop L—ee™ (x; ZY), 
thus providing a description of the cohomology groups HM (X;2_(y)) 

composite homomorphism {x2 /x 

4nto the coboundary operator 6:0°(X; > 

4n terms of S-maps of the skeleta and coskeleta of X into Y. 

This result extends to direct S-spectra without any difficulty. 

In fact, for 1 large enough: 

{er HM, wy} pee {(x,)2*4/ (x) y,3 , 

nti . S\~ n . ‘ OPT K a Feng (Lg) OME FZ, 4(9)) 

In a similar way, it may be checked that this isomorphism carries 

the composite homomorphism 

n -1 + REEMA YL > ERDF KM EVOL 

into the coboundary operator 

820K 57 (D)) oom (¥ 7 (D)). ntr 

The development of obstruction theory for direct 8-spectra 

will be based on the main diagram below: 

! 
ofa atyt fg ty I fe Ly aS UL 

a J 

7 nyn-l,) ®n_cny7*n nt},n Fr wily te rae wef} oR} ee) aE Ufo + G, n 
v 

SREY SEY SIE = [EVV 
|   

| 
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This diagram has the basic property that any zig-zag 

pattern in it that goes two steps to the right and one step down 

forms an exact sequence. Furthermore, the main diagram is 

natural, That is, an external inclusion &:¥,—* induces a 
— 

homomorphism of each entry of the main diagram of (X,% ) into 

  

the corresponding entry in the diagram of (£,,% ), in such a 

way that the 3-dimensional diagram so obtained is commutative. 

In the same fashion, any map n:%)—> 4, induces a "homomorphism" 

of the diagram of (%,% ) into the diagram of (¥,9,). These 

assertions follow immediately from (3.7) and (3.8). Diagrams 

of thie sort were introduced in [3]. (See also [9] ana [4].) 

Let a map f:£"—»% be given. 

The obstruction to extending f one step is the cochain 

othe) ect (XE +2 n(@ )) that corresponds to vece)esxer* tg Uf 

under the isomorphism established above. The identification 

+ 

oN th ( 

    

f) = ¥,(f) 1s frequently made. 

The notation f' will be used to indicate the restriction 

of f one step below. Thus if re {X,Y} , fic at (r)ef"71,Yf ; 

Let £,ee{X",0} agree on eo i.e., let f' = 

eref¥Xat yj . Then (f - g)' = 0 80, by exactness, there existe 

some element a%(r,¢)e0"(¥ 55 (Y)) (1.0., in {¥/¥7",Yt ) 
such that Br(a"(t,¢)) =f-g, Any such a"(f,g) will be called 

a difference cochain of the pair (f,@). There are in general 
  

several difference cochains for the same pair of maps f,g with 

f'=g'. Any two of them differ by an element of pr-t(0) = 

Image v4. 

 



99 

  

The following list of properties shows that obstruction 

   

        

    

      

   

  

   

   

     

   

     

theory carries over to the category of direct S-epectra, at 

least in the special case of extending a map defined over a 

skeleton ("absolute case" of obstruction theory). 

Theorem (3.9). Let f,ge{¥7,0§ and f' = green yy : 

Then: 

1) The obstruction cochain c@t(rf) 16 a cocycle; f ex- 

tends to ¥ 7) a¢ and only if ott s) = 0; 

2) f= g if and only if some (and hence all) a(f,g)e 
#1 n 
B (0). In particular, 1f some d'(f,g) 18 a coboundary, f = g; n > ?   3) For any difference cochain, 6a"(f,g) = cMth( ¢)_ Mle), 

4) ft = £/%" extenas to ¥2* af ana only if cB (4) 

is a coboundary; 

5) eM (r) ana a"(t,e) are natural. More precisely, 

let & :£ 1 —>¥ be an external inclusion and h:4 —U be any 

map. Then: 

hy [ er om (e)] = thin o to M e*)) 

hy [ e*a"(t,2)] a"(h o fo M e"),h ogo m(&™)) 

where h* ;:09(¥ ye pO ) )—sot(¥ 1 Z(93)) denotes the coefficient | 4 
homomorphism induced by h,:Z (4) )—>2 (91). 

nt+1 — pat _ wt at ra) _ Proofs. 1) 6€° “(f) = 6y,(f) = Yo Poa %n(f) = 0 since 
tf _ a. eL B tl ov, = QO; the second statement expresses that image Ont = 

_ Kernel ve 

Fon n 2) Since B 2 (f,g) = f- ge, f =e if and only if a'(f,2) 

is in the kernel of B. Every coboundary, of course is in the 

+r a 
kernel of Ba since BaYn-1 = 0, 

3) sa%(t,¢) = WeeMa%(2,0) = (ef - g) = oP (er) — Mig),  
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n+l ntl 4) Suppose that f' extends to ¥ and let he 8% Oo} 

pe such that h’ = njx¥™+ = ft, men o®(n') = 0, since 

ne So, by 2), 

nt+1 ( 

hn! = nix ® extends. Moreover h',f agree on XL. 

sat(rjnt) = cM (r) ~ ont) = oBt(f). «Tus ct (£) 15 the 

coboundary of d™(f,h'). Conversely, let weg ¥™/H¥M LF exist 

ntl ( with 6w=c f). Set g=f - er (w). Then c@t4(g) = 0, so g 

extends to £ oak But gf =f! - at Br (w) = f', therefore g' is 

already a one-step extension of f', 

5) This follows immediately from the naturality of the 

main diagram of (¥,4 ). 

n+l Given reh¥ met , the cohomology class u of ¢ f) in 

  

BEE 2 (0 )) is called the primary obstruction of f. By 4) 

above, u = 0 if and only if f! extends to x ntl, The primary 

obstruction is natural with respect to maps k:¥,—>X (not 

necessarily of type E ) ana h:9 —>4,. 

4, The Classical Theorems of Homotopy Theory 
  

A, The Hurewicz Theorem 

For every direct 8-spectrum *¥ ana integer n, there is a 

natural homomorphism n:2 (% )—oH, (¥ ), defined as the direct 

limit of the usual Hurewicz homomorphisms Hy t 2 ny (Ky) 

Hey (%4)3 h will also be called the Hurewicz homomorphism. 

Theorem (4.1). If 2 g(X) = O for q <n then H(A) = 0 

for q <n and hi 2 (zk )x HX ). 

Proof. This follows from a straightforward limiting 
  

Process. Take 1 so large that Haag (X4 ) te Hy (% ); 2 gta (Ky) ~ 

2 (¥) for all -m<q = n,. By the classical Hurewicz theoren, 
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HA (¥) = Hoa (%) = 0 forq <n. Moreover, the diagram below is 

commutative and h,, as well as the vertical arrows are isomor- 

phisms onto. Therefore h:2 (¥ ) = HAE). 

zk) —* A(X ) 

fo | 
Zeta (Sy) => Hy (Ky) 

  

Remarks. 1) Of course, HC ) = 0 for g <n also im- 

plies 2 ,(X) = 0, q <n and hid (¥)x H,(%) (same proof). 

2) The above proof is made trivial by the fact that the 

homology and homotopy groups of E in dimensions =n can be si- 

multaneously realized by some x, with sufficiently high index i. 

It is perhaps of interest to remark that the Hurewicz theorem 

etill holds in a more general category, where the "direct S-spec-— 

tra" are sequences (X,04%, i = 0,1,2,..., where X, is any space 

and $4, :8K,—>X, 44 is any S-map. The proof is, however, more in- 

volved and shall be omitted. 

B. The Whitehead Equivalence Theorem 

According to the general definition for categories, a 

map f:¥ —>l) will be called an equivalence if it has a 2-sided 

inverse, 1.e., if there exists a map g:l)—>¥ such that 

geor:X¥c¥ anaro g:O0cd., 

An n-map fr: X57)” is called an n-equivalence if it has 

an n-inverse, which is an n-map g:l)"—>¥" such that 

go ie Se x, fo gt:yate ia ae 

(where a prime, as usual, denotes restriction one step down), The 

S-spectra ¥ JY are said to be n-equivalent, or of the same n-type, 
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4f there exists an n-equivalence r: FP d?. A (global) map 

  

f:¥ —>9 is called an n-equivalence 1f some n-map ox 7b" 

  

anduced by f 18 an n-equivalence. This concept does not depend 

  

on the choice of On3 either all n-maps induced by f are n-equiv- 

  

alences or none 1s. This 1s Corollary (4.4) below. 

  

Lemma (4.2). Let $,§:%7—>v” ana g: 2)" +" be such    
  

go ws¥BtC eo d 0 gts yicte @)®, 

Then t' = @' and 0, are both n-inverses of g. 

    

Proof: Let ,_4: gets yn and g, 4:4 n-t_+_™t be 

  

(n—lL)-maps induced by W,g respectively. Let arX¥M tC %", 

  

prt) PC 2)", Then the hypotheses are that $ 0 go 6 = 8, 

  

goYoa=a. 

yh yn ye yt 
«| |e pe 7" 

%* n-1 Vy-1 U) n-l &n-1 wyn-1 

      

  
  

  

Then Ob} =Poa=bogoWPoa=Pogopoyp,, =f) = 

Yoa=W'. This implies immediately that > is an n-inverse of 

        

g. Moreover, B=bogop=hoaog,  =Fog,=V'ogF 

    

Jogofp=VWog', so J is also an n-inverse of g. 

  

Corollary (4.3). An n=map may have several n—inverses 

  

but any two of them agree on the (n-1)-skeleton. 

  

Corollary (4.4). If 2 maps 0,0: $"7—»0)" agree on ae 

  

an n-inverse of ? is also an n-inverse of WJ. 

  

Lemma (4.5). A map f:¥—>0) is an equivalence if and 

  

   
only if it 18 an n-—equivalence for all n Sy = max{dim%®, aimd}+1. 
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Proof. Only the "ir" part needs proving. It 41s obvious 

if Nis finite. If N=, let (f,),. 

induced by f and let hi ¥" be an n-inverse of fi: The 

z be a sequence of n-maps 

first step of the proof is to show that, if hae is any n-map 

induced by h then 
ntl 

neo = Hy:2P7_¥™ 

This will follow from (4.2) provided it is shown that 

heel of): xn-te *. Now a o bead of, = hay, 0 floskc yar 

(see diagram), so ao hoeL ° fg ™ ic xy ath, But 
a fe P-L xO} aw fet x A by (2.10), 90 neyo ths eM EM. 

yd __ fn-2 Lyn 

yn ty un Dnt yen 

| 0 
zat ft yn Bnet ntl 

Thus, equality (x) follows. By composing with a, nee =aohi, 

Now let Kn denote the composite map: 

h 
kt QP 2s ECE. 

n Then kntl = Khe Finally, Let Sn = whet —>), n=0,1,.... 

This gives BA+1 = kite = Ki. = Gy» 80 the various &, fit to- 

gether and define a map g:%) —*¥, that 1s obviously an inverse 

or f. 

Lemma (4.6). If f:—»2) i6 an n-equivalence, then 

£7 {W Xf rw guy, dF r for all US and r such that r + dimlj = n-l. 

Proof. It suffices to prove this for an n-map £:% PO”, 

First assume r 20, so that SW m. =2 8", *"F, 
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gwar. = {sw , Of, Let g:¢)"»" be an n-inverse for f. 

Given a map nei SU, ef, there exists hy ef S7W, EP} such that 

h=aoh, (a: KP te %"). Then Ey, (h) =gofohs= 

gofoaoh =gof! oh) =aoh, =h. Similarly, f,8,() = 

k for all Kesh Uy, ant 60 f, 16 an isomorphism and gis its in- 

verse. If r 50, let r = -k, k 20. Then sw, xt =3W, siz" t, 
k)\n n n sw , OF |. = Ws L) f and t, Wx $ >, y I ie just 

(8° )y SW, S°¥™} S58, sot. Now, since f is an n-equivalence 

s*r is an (n+k)-equivalence, so fy= (Sf), is an isomorphism 

? 

onto for all W such that dim W £n+k-—1 (by the first case), 

that is, such that dimW+rSn-1, 
Theorem (4.7). A map f:K—>d) is an n-equivalence if 

and only if few 5, ~fW, Ut, for all W and r such that 
rt aim UY S n-1, 

Proof. The "only if" part 18 (4.6) thus only the "art   

part needs proving. First of all, it may be assumed that 

r:¥7+H" is an n-map with the above property. Considering 

US = aynel r= 0, it follows that there exists grefajn-t x} 
such that fo g! = p:A) 4 OQ", In order to show that g' may 
be extended to ayn consider the diagram below, where the verti- 

cal homomorphisms are induced by f, so the third one is an iso- 

morphism: 
+ a {On ¢ an} 8. Fyn-l xnt —_— {OH KAP... 

el r* r° 

© OSS i) "Ont —> ae! unt == fyay yr-2, yey ae 

By commutativity, reoMtl (or) = oMth(s o g') = ctl (8) = 
3 

QO since 

B may be extended. Now f° is an isomorphism, so eM tl (or ) = 0, 
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Hence there exists ge {Ox Mt such that g' = go Bp. To show 

that g is an n-inverse of f, it remains to prove that go f! = 

a:¥™ Cc} mis is aone by the usual trick: let 

fk yt be an (n-1)-map induced by f. Then 

(go f') = 
f: n-l yn _— 22 being an isomorphism, f 

fog'of,,=6of,,=foas f(a) implies 

xen i_5y n © _, % "i" n 

«| { B B 

grt fad, yea 

that go f' = a, which coneludes the proof. 

Theorem (4.8). A map f:¥ —>2 is an n-equivalence if 

and only if £22 ,(¥ )=~ 29) for allrin-1l. 

Proof. Since 2 (WW) = 8°, WH, (W= ,9 ), the "only 

if" part is included in (4.7). For the converse, notice first 

that 1f aimW =q andr +qSn-1 then 2, :{W/WI¥} 
(W/wI+, Ot. since; W /W4},X} r is isomorphic to a direct 

product of copies of 2 gan ), one copy for each (q * 1)-cell 

of Z, (1 large enough). Now assume (by induction on p) that 

4, HWE p~ {0,4} , for all Wor with aim W <p, r+ aims 

n -~ 1 (this certainly holds for p= 1). Then let aimUy =p, 

ptr Sn-1. In the diagram below, the four outer vertical 

{ust een uh ES, oh), et) Pe 

(Pg MAP, 9h, fw Oh Wet) gO} 
arrows denote isomorphisms onto so, by the "five Lemma" the mida-— 

dle vertical arrow is also an isomorphism onto, which completes 

the induction.    
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Corollary (4.9). A map f:¥—sY is an equivalence if 

and only if £422 ,(% )= 2%) for allr=N-1 = 

max { aim¥, dim Yt. 

Proof. By (4.8) f is an n-equivalence for every n =N, 

So, by (4.5), f is an equivalence. 

Theorem (4.10). A map f:£—>U induces isomorphisms 

fy tH, (% )x HAO), x Sn-—i1, if and only if 1t induces 1s0- 

morphisms fy: 2 (E)¥ 24 ), rin-1. 

Proof. By (2.2), the effect of a map on the homology 

and homotopy groups of dimension Sn-1 is determined by any 

n-map induced by it. Hence, 1t may be assumed that X¥ =X", 

b) = QO», By taking 1 large enough 2¥,0 3 x 2%45%45, and the 

homology and homotopy groups of £,Y are also represented by 

those of X,,¥,, in dimensions =n +1 -1. A-gain, by choosing 

k sufficiently large, 4X,,¥45 x [e*x,,8°¥,] and (4.10) reduces 

to a classical result of J. H. G. Whitehead, proved by consider- 

ing the mapping cylinder of some function representing f and 

using the theorem of Hurewicz (cf., [15]). 

The following is a simple application of (4.9): 

Theorem (4.11). Any S-spectrum may be arbitrarily de- 

suspended. That is, given ¥% ana r 2 QO, there exists a spectrum 

%' and an equivalence £:5° ¥'—> ff. 

Proof. Let ¥ =%}X,,X,,...}. Define €' =}X]} vy set- 

ting X} = pt. for 1 <r and X} =X for ifr. Define r:S°¥'—> 
i-r 

¥ by letting, for each i 2 Q, ,:3" {—>s"¥ be represented by 

the trivial map if i < r and by the i-th suspension of the com- 

posite external inclusion s°X, <X if i12r. It is clear 
r 4? 
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that this defines f well and fyi 2 (SE!) x2 ,(£) for all k, 
far = Tr. _ r — a since 2 (8 X') = 2 44 (8 X}) = 2 44 (8 X,_y) ~ 2 iether (4 _p) ~ 

2, (¥) for large enough 1. Hence f is an equivalence. 

C. The Hopf Classification Theorem 

Lemma (4.12). Let 9 be an (n — 1)-connectea 38-spectrun, 

d.e.,2.,(9) =0 forr <n, Then £¥,03 =O if dim£ <n, 

Moreover to every Ww there corresponds a homomorphisn 

O15 HUD | EW; 2,(9)) 
with the property that: 

(4,13) Gq (go ft) = £*[e,,(e)], 

for f:Y —»W, e:W—>9. 

Proof. By (4.8) an (n - 1)-connected S-spectrum &) has 

the same n-type as a point, so SX 50} = 0 for dim¥ <n. For 

an arbitrary W, define the homomorphism 9 = Sus as follows: 

given f:W—>2) , let fi = e(us”. Because jU) -",0)} = 0, 

t, (Wn = 0, so a difference cochain u = ar ,oe{wy yay} 

is defined; u is a cocycle §u = c(t) = O due to the extenda- 

bility of f,. Then put Q(f) = [ujeH™(W 52 (0 )). This appar- 

ently depends on the choice of a difference cochain u = an(f,,0). 

But another choice will be of the form u + 1 (w), w Ur, Q4,. 

-l, nz ry nL ms ny, pel er n te nt 

0 0 

Now fuy n-2 0} 1 = 9 so there exists 2d us yy2-?,y}, with 

pe (2) = w. Thus any other difference cochain of f, and 0 will 
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be of the form u + Ye Pr 3 (2) =u + 6z, hence [u] = (a"(#,,0)] 

is a well defined cohomology class. It is obvious that @ is a 

homomorphism, and the naturality equation (4.13) follows from 

the naturality of difference cochains, 

Remark. In the equality (4.12), put Wy=4 ana ecb, 

Then go f = f, so (4.13) becomes 

(4,14) @q (f) = £* (1) 

where v = ®,) (14dentity map of 4) )eH™(Y 32,,09)) 4s called the 

characteristic classe of dy) - The class 1 is defined for every 
  

(n - 1)-connected S-spectrum 2) and may be alternatively defined 

as the image of the 1ldentity homomorphism HS )—>H, (9) under 

the composite isomorphism 

Hom(H, (4) ),#, (0 ))—sH(4 5H, (0) ))—se™(Y 52 (9))   where the first 1s given by the universal coefficient theorem 

and the second by the theorem of Hurewicz. 

Lemma (4.15). Let X% be an (n + 1)-coconnected S-spec- 

trum, i.e., HT (¥ )=0 forr>n. Then, for any U) » the restric- 

tion homomorphism {¥ 24) } —>{ Xd} has kernel zero and its image 

coincides with that of {x 74,9} {x7}. 

Proof. Given f:£—>9), let f= r|¥%. It needs to be 

shown that f, = O implies fntp = 9 for all r. Consider r = 1. ( 

ntl | 
Since tat extends, 64 f 

ntl]? 

qty 52 na (Y )) = O (by the universal coefficient formula), 

ntl ( 
ft 

= gute = 0) =e (f,44) =O, But 

so d nt1??) is a coboundary, thus f.,, = 0. Proceed by 

induction. For the second part, let f:¥%sY have an extension 

eg: XML, 2) . Then f extends all the way toX. In fact, since   
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H” (E32 (9 )) = 0, eM t2/.) ig a coboundary so f extends to 

Xnte Proceed by induction. 

oO Theorem (4.16). Let H(¥) =0 forron and 2 9) = 

forr<n. Then a:( ¥,04 x HE 32,,(9)). 

Proof. The kernel of @ is zero for, given f:¥—>Y, 

a(r) = [a"(t,,0)] = 0 implies f,, = 0 hence f = 0, by (4.15). 

Moreover, an element of H"(¥ 12 (9 )) 18 represented by a co- 

VnPy (a) = §6u = 0 60 ft, extends to ent (see diagram for the 

proof of (4.12)). By (4.15), f, extends to a map f:¥—>9 ana 

it is clear that 6(f) = [uj], so @ is onto. 

Theorem (4.17). Let 29) = 0 for r # n, 2 (9) = G, 

(Existence of such S-spectra for arbitrary n,G will be proved in 

the next section.) Then 0:7% ,d) | ~ H™(X ;G). 

Proof. The proof reduces to the observation that the 
  

conclusions of (4.15) hold under the weaker assumption that 

a™(E;2(9)) = wt (X 2 (2 )) = 0 for all r->n,. Then the 

argument of (4.16) applies verbatim. 

5. The Realizability of Homotopy Groups 
  

Here the differences between the ordinary and the enlarged 

S-categories start to appear; in the former it is not always pos- 

sible to find a space X with arbitrary preassigned S-homotopy 

groups. This however can be done in the enlarged category of 

direct S-spectra. In the theorem below, all cells are to be 

attached by cellular continuous functions. 

Theorem (5.1). Let iG.,§ be a sequence of abelian groups 

(~o< r < to) with G, = 0 forr<r,. There exists a spectrum 

xX with 2 .(¥) = 4, -o< r<t@, 

0   
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Proof. The construction of X follows the lines of [16]. 

  

The general result will follow from the special case r= 1, by 

(4.11). So, r, = 1 will be assumed. Given the sequence of 0 

groups G,,G5, eee, the S-spectrum ¥ = i x, is constructed by 

Anduction. X, =V oe is a wedge of circles corresponding to 
a 

some system of generators {a} for @,;X, = XU e° 18 obtained 
6 

by attaching 3-cells to SX, in correspondence en the relations 

8 among the generators a, so as to make Te (X, ) =G,. Notice 

that X, 1s simply connected hence Tp (X, ) is stable. Now assume 

that Ko,Xz,.+-,Xy have been obtained in such a way that 

(a) SX, is a subcomplex of X41) (ax, )eK*2 = (x, )°k*2 

(b) dim X, = 2k +1 and SX, ie @ retract of (X,,,)°**2; 

(c) Mp (X,) = G@. (k = 0,1,...,1 - 1) 

_ Zit2),) 2143 Put = Xyy = (8x, 3° yg en 

that 1s, first wedge a bouquet of (21 + 2)-spheres ge ite to SX,, 

one sphere to each generator a of a system arbitrarily chosen 

for Gy 433 at this stage the resulting space Y = sx, \V/ 21% is 

such that Te440(Y) 4s the direct sum of Tos +0 (8X, ) and a free 

abelian group H with generators corresponding to the a's, Then, 

21+3 
B 

purposes: some of them are to kill To440(SK, ) and the others are 

@ collection of (21 + 3)-cells e is attached to Y with two 

to introduce in the group H the relations existing in Gray among 

the generators a. In this way, it 18 clear that Ta 440 (%5 44) = 

Goan It is aleo clear that this completes the inductive con- 

struction of a sequence X,,X,,... of spaces satisfying (a), (b), 

(c) From (a), 1t follows that ¥ =f x, 4 is a direct S-spectrum, 
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Since X, 18 connected, (a) aleo implies that each X, 1s i-con- 

nected, 60 2..(%,) = T,(X,), r 524. By (a) ana (b), the inclu- 

sion sx, C X,41 induces isomorphisms Tey (5X, ) FS Ty (X44)? for 

r S24, that 16, 2 (X,)&2 14, (X,4,) for r 5 24. By (c), 

Z. 94 (K,) = G,. Therefore 2 (¥) = G, for 1=1,2,.... 

In particular, (5.1) implies that for every abelian group 

G and every integer n there exists an S-spectrum ¥ such that 

Z.4(£) = 0 tor 1 # n, Z ,(X)*~G. (Notice that n my be 

negative.) 

6. Killing Homotopy Groups of an S-spectrum 
  

Given a direct S-spectrum x and an integer n, another 

direct 8-spectrum x (n) will be constructed. The functor 

¥ —Z£ (n) will have the basic property that X ana © are n- 

equivalent if and only if E on) and O(n) are (fully) equivalent. 

In (6.1), all cells are to be attached by cellular continuous 

functions. 

Theorem (6.1), Given a direct S-spectrum * = £X,,9,3 

and an integer n, there exists a direct S-spectrum Xin) = 

t iwW,,0,} euch that: 

(1) ¥C ~ ny? xR = (3% 

(2) 2 pF (yy) = 0 forr 

Proof. Let k, be the first index such that the following 

n)) 3 

n. WW
 

properties hold: 

(a) Tete (Xe) is stable, for every k 2 ky, andr =n; 

(b) The external inclusion 25K, < X,4, induces external 

equalities in dimensions Sn+kt+ 2, for every k 2 koe 
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Such index k, exists by Lemma (1.5). The properties 

< above imply that 2,.(X) x74, (%,) for all k 2k, rin, 
o? 

In order to define (nye put W, = X, and P, = 6, for 

Set 
yy ntk +1 

Ww = e ’ a SY Pa 

where the (n + Ky + 1)-cells are attached by functions repre- 

senting generators a of Masic, ic?» so as to make Tae, Mie? = 0, 

The S-map >, :8X, —»X, 4, induces an isomorphism 
° oO ° 

BM tic 2 k )—Ma ic 41 ie, 4) since these groups are stable. 

. ntk, +2 
Attach (n + Ky 2)-cells an to Xe +1 by functions repre- 

senting the images a! = h(Sa), thus obtaining a space 

ntk)t2 
a! ? Tt w = LU ko+L oH (W ) = 0, at ntk +1‘ "k +1 

Then », extends uniquely to an external inclusion 

U, :SW, < W 
Ky Ko kot)? 

which is an “equality” in dimensions =n + k, + 2. Proceed 

similarly until reaching kK, the first index greater than kK, for 

which (a), (b) hola with k, instead of k, and n + 1 instead of n. 

Then, define Me by attaching to Xe not only (n + k, + 1)-cells 

to kill 7 (W, ), but also by attaching (n + k, + 2)-cells in 
ntk, kK) ’ 1 

order to make T4, +1 Wie ) = 0. This indicates the inductive 
1 1 

procedure to follow. The sequence Ln) = tw, thus obtained is 

easily seen to be a direct S-spectrum that satisfies conditions 

(1) ana (2). 
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Lemma (6.2). Every n-map f:¥ "+9" extends uniquely 

to a map Py(f)2L(ny— Yq): Two n-maps f,g have the same ex- 

tension, p(t) = pyle), if and only if they agree on x 2-1, The 

map Patt x YEE ny Vinyt is a homomorphism, which 16 

functorial with respect to n-maps. 

Proof, In first place, the restriction map fw, Yin) 
  

{WY} is an isomorphism onto, for every W , since the ob- 

struction cocycles and difference cochains for the extension 

problem WY a) have all coefficients in Z. Meals r=n, 

hence are all zero. Define P, a8 the composite 

tx", OP} — 1£" O(n) —> 1X ny» Dia) 

where the first homomorphism is injection and the second is the 

inverse of the restriction isomorphism (recall (£ (n))- ="), 

The kernel of P, 18, of course, the kernel of the above injec~ 

tion. Hence, in the diagram below, where the arrows have obvious 

meaning, it has to be shown that kernel X = kernel yp. 

n n 
fe", O°} —~>— 1B Dca)} 
pe 8 

iyo yr v fe, Yen yh 

Because V is 1-1, kernel XC kernel ». Now © 1s also 1-1, since 

  

difference cochains with coefficients in ZO (ny) r2n, are 

all zero. So kernel »C kernel A. This completes the proof of 

(6.2), since the naturality of p, 18 obvious. 

Lemma (6.3). An n-map f:¥"—>2" 18 an n-equivalence 

if and only if Pa(f): En) —> O(n) is an equivalence.    
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Proof. If p,(f) 18 an equivalence, then f is an n-equiv- 

alence, since f is an n—map induced by p,(f). Conversely, if f 

is an n-equivalence, let g: 7» be an n-inverse for f. Then 

P,(g) 18 a full fledged inverse of p,(f). In fact p,,(e) o p,(f) = 

p,(e o f) = p, (identity) = laentity: ¥€ (.)C Lon) since gof 

coincides with the inclusion xN-1e ¥” on x Ant and so does also 

the identity map t"c a" (cf., (6.2), where the kernel of p, is 

determined). Similarly pP,(f) 0 py(eltDinyC Dn) 

Theorem (6.4). The S—spectrum X (n) is characterized, 

up to a natural equivalence, by the properties: 

(1) ¢¥ Cc L (n)i ¥" = (Ly)? 

(2) 2 .(¥(q)) = 9, ¥F 
Proof. The properties of Ln) established in Lemmas 

lv
 

n. 

(6.2), (6.3) are proved on basis of properties (1), (2) only. 

Therefore, if Ein)? %! (n) are two direct S-spectra satisfying 

(1) and (2), let f:( E(n)) —>( Etna)” be the identity map. Then 

f 18 an n-equivalence, so p,(f): Ln) ¥! (n) 18 @ (natural) 

equivalence. 

As a consequence, the homology and cohomology groups 

HACK (ny), HY (¥ (5G) form a simple system, so they may be 

considered as depending only on & »n but not on the particular 

spectrum X(n) chosen with properties (1), (2) above, 

In fact, the construction of X (n) involves one arbi- 

trariness, namely the attaching of cells in order to kill homo- 

topy groups of certain spaces. This arbitrariness, however, can 

be overcome by attaching all cells in question by all possible 

continuous functions of a sphere of a certain dimension k into   
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the space whose k-th homotopy group is to be killed. By doing 

60, a special S-spectrum ¥(n) is obtained, with the desired 

properties (1), (2) plus the additional fact that it is well 

determined, not only up to an equivalence. Then, not only the 

homology and cohomology groups of Xn) are well defined, but 

also its groups of chains, cochains, cycles, cocycles, etc. are 

well defined. The notation pp: 2z", On» {¥n)» On) will be 

used for this special case of the homomorphism introduced in 

(6.2). 

It will also be seen in $8 that, in connection with 

duality, inclusions are not very useful. Therefore, it is of 

interest to remark that given ¥ ,n, the class of all pairs 

(2% (nef) where 

(la) f: KE, (n) 18 an n-equivalence; 

(2a) 2 3(E (ay) = 0 for i12n, 

forms a simple De that is, given any two such pairs 

(Len) f) and (9 (n) ), there is a canonical equivalence 

hi E (yy Din): Just define h to be the (unique) extension of 

the composite (£ (gy) BP Yay where the first map is 

induced by some n-inverse of f and the second one is g(t. 

In other words, the pairs (X(q)2f) satisfying (la) and 

(2a) are well determined up to a natural equivalence, Therefore, 

the homology and cohomology groups of these pairs (defined simply 

to be the homology and cohomology groups of Xin)? form a simple 

systen, 

7. The Stable Postnikov Invariants 

Let *¥ ={x,} be a direct S-spectrum. For each integer 

n, denote by Xen) any direct S-spectrum satisfying (1), (2) of 
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Theorem (6.4) and by En) the special Xn) introduced at the 

end of § 6. 

The Postnikov cocycle of x (in dimension n + 1) 41s the 
  

obstruction cocycle for extending the inclusion map (Xiny)” cx 

one step; it will be represented by the notation 

oh (E eo (XP ZA (ED) 
The cocycles oMth(¥ ) are also called the c-—invariants 

of ¥. An external inclusion E :X—> YO can be extended (in 

many ways) to an external inclusion C :¥(q)—> 9 fn) and for 

each such extension, Benth Y) =e ct(¥) (where 

@ ;oatl | Qn)i onl ¥ SOF Cay a ))} 1s the coefficient 

homomorphism induced by Ea! 2 lk )— 2 nl ())). This establishes 

the invariance of the Postnikov cocycles with respect to cellular 

maps and is a consequence of Theorem (7.2) below. For the proof 

of that theorem, the following Lemma is needed: 

Lemma (7.1). Let 0,A :Z ,(¥%)—>4 be homomorphisms in- 

ducing the coefficient homomorphisms ON s0P (F252 (PD) 

oP ( XA 5G). Ie ec™(€) = Ayo®™*(¥) theno =A. 
Proof. The group om (E Sys) (H any abelian group) can 

be represented as the direct product of copies of H, one copy for 

each "(n + 1)-cell of ¥(n)" (that is, for each (n + 1 + 1)-cell 

of the first space W, in Ela) for which the relation (sw, DTI Fe 

ynti +2 (Ww holds and continues to hold for all higher indices 
itl 

than i). Thus, given the homomorphism 0:2 (& )—>G, the coef- 

ficient homomorphism 9, 09 (E (n)} 2 ah ¥))—>oP (KF 54) just 

maps each string (x,) of the first group (o running over the 

(n + 1)-celle of ¥ ln)? xe2 (¥ )) onto the string (¥,) of the 

second group, where, for each o, y, = @(x,). With this point of       
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view, the Postnikov cocycle oN th (¥ ) is just the string (2g) 

where, for each o, 2 € 2 nlk) 4g the class of the characteristic 

map of the cell o. For each xe2 (¥ ), there exists a go such 

that x = z, (z, in the cocycle oMtl(¥ )). This fact can be ex- 

pressed by saying that ohtl¥ ) is a cocycle onto 2 ah F) and it 

implies that the homomorphism 9 is characterized by the image 

oom ¥ ye?" (F275). In fact, given xe2 (¥ ), Choose o 

such that x = z. as above. Then Q(x) is the entry of index o Gg 

in the string 9 oh th (zy ). This proves (7.1). 
* 

The nature of the cocycle oMth ¥) as a sort of universal 

obstruction 1g displayed in the next theorem (see [1] ana [17]). 

Theorem (7.2). An n-map f:%"—+O" extends to an (n +1)- 

map F; xatt_, gntt 4f and only if there exists a homomorphism 

0:2 (EF )—>2 2)) such that 

(7.3) EF nt1(2)) = o oA ¥ ) 
for some (and hence every!) (n + k)-cellular approximation E of 

  
pn(t): X¢ny—>Y (n)°* If such a homomorphism © exists, it is | 

unique and equals K,. 

Proof. Suppose first that F exists, extending f. Let 

E be any (n + k)-cellular approximation of pn(f). By (1.14), 

e* ig an n-approximation of pn (f), 1.e., MCE M) (ECA) 4s an   n-map induced by pr(f). But f has this property, too. Therefore, 

in the diagram below, where a,f are inclusions and 6,€ are iden- 

tity maps, all three paths going from (X%,))” to nt ieaa to 

the same result. In particular, B 0 € o m(E™) =Foao 6, 

(O fq" E> OF Bs» Ut 
ue) | | | [ 

(¥%,)) 6 ¥n a ent   
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Computing obstruction cocycles gives: EN ntl (2) ) = 

e* omttip o€) = oM*h(g 9 € o M(EM)) = oMM(F 0 a 0 8) = 
(Fy) oP*1(a 0 8) = (FJ e™(X). So (7.3) holds, with © = Fy. 
Conversely, if (7.3) holds for some E and some 9, the obstruc- 

tion to extending 6 o f o & to % At is yrE*omtt(Q), hence it 

equals ¥* a0 (X¥ ) = 0, [y tem (¥ | (where ¥« {ert X42 Ad} 

ia the inclusion map). But yror*h( ¥ ) = 0: the obstruction 

vanishes, so f extends to a map Fr; ¢OTL_2) 972, By the first 

part, (Fy) oh t+ Op) SS eM Y ). So, by (7.3) and (7.1), 

9 = Eye 

Corollary (7.4). Let r:X¥"_, Uh be an n-equivalence. 

It extends to an (n + 1)-equivalence F: ¥™*4_5U"t 4¢ ana only 

if 2 lk) 2y(9) and moreover (7.3) holds for some (and 

hence every) (n + k)-cellular approximation E of p(t) (x 21) 

and some isomorphism @: 2 (x )x~ 2,9 ). If such isomorphism 

@ exists, it is unique and agrees with F , 

Proof. If f extends to F, (7.3) holds and if F is an 

(n +1) equivalence, Et 2 Ak )* 2 (9). Conversely, if (7.3) 

  

holds for some § and some isomorphism 9 then f extends to F and 

Fy = 8, so F is an (n + 1)-equivalence by the Whitehead equivalence 

theorem. 

The Postnikov cohomology class of £ » in dimension n + 1, 
  

4s the primary obstruction of the inclusion map (Ein) "ck, 

i.e., the cohomology class that represents the obstruction to 

extending two steps the restriction of this map to (L(y). 

This class is denoted by 

eM (E ew FE yy 2, (£)) 
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The cohomology classes ctl (¥ ) are also referred to as the k- 

invariants of ¥, The naturality of these k-invariants under 

arbitrary maps t:% —>U) (and, in particular, the fact that they 

do not depend on the particular £ (n) chosen to define them) 

follows from the Theorem below. Although this Theorem is en- 

tirely similar to (7.2), it has a more invariant statement, 

Since it refers to cohomology, rather than cochains. 

Theorem (7.5). Given an n—map f: "+O" ana a homo- 

morphism e:2 (¥ J+ 2 (9 ), there exists an (n + 1)-map 

F; gente cast agreeing with Bf on en} (where 6: 2m c att) 

and inducing 9 if and only if 

(7.6) p,(ry ePth(Y) ) = eet (X) 

Remark. This time, of course, the homomorphism 9 is 

not uniquely determined by f since F may be quite arbitrary on 

es 

Proof. If F exists with these properties, the naturality 

  

of the primary obstruction gives Prey (F) ntl (¥) = @cM*2(X), 

But Pray (F)* = e* where E is some (n + 1)-cellular approxima- 

tion of py (F). Then M(E™): % 0» QO" agrees with f on eal 

hence p,(f) = py(M( £")) = p,(F). Thus py(f)* = pn (F)™, proving 

the first part. Conversely, if @ is such that equation (7.6) 

holas, by choosing ¥ (n)? c) (n)? it follows that the obstruction 

cocycle to extend pf to (E0, yn is Qo. ght (£ ) + dwe 

anti (ee (n)3 52 n (9)), where ae ay pnt, grt, Let nef EA, UML} 

be the image of w. Then the obstruction cocycle of g = Bf -h 

is ac™(¥ ), which of course is zero when restricted to gent 

Therefore g extends to a map F: yal. nvl with Fy = @. Now 

the image of h in SEP UM zero, 80 F agrees with pf on ¥"-1 
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Corollary (7.7). Let f: Fs" be an n-equivalence 

and Q: 2 (Xk x 2 (9) an isomorphism, There exists an (n +1). 

equivalence F: ¥™t+_, qyatl agreeing with Bf on ¥ n-l (where 

p:4®c Unt) and inducing © if and only if pa(f) emt (Y ) = 

a, etl (¥ ), 

Proof. This follows immediately from (7.5) and the 
  

Whitehead equivalence theoren. 

Given the direct S-spectrum ¥ and the integer n, con- 

sider the subset 

er (E Cwm ¥ ys 2 (E)) 
consisting of all the cohomology classes 0, p(n)” ert (XE | 

where h:& "sl" 462 an arbitrary n-equivalence of X™ with 

itself and @: 2 lt )—2,(%) is an arbitrary automorphism of 

the group 2 ,(¥). In other words, let H be the group of all 

n-equivalences of ¥" with itself and A be the group of all auto- 

morphisms of 2 (%). Then A X H operates on BK ys 2 n(%)): 

given OeA, feH, ve (K ays 2n(& )), set (@,f)u = [Py (t)*(u)]. 

Thus m974(¥) 16 just the orbit of k™*1(¥) under this action. 

Call a ntl F< ) the Poatnikov set of ¥ (4n dimension 

n+l). These sets wth (FZ) are called also the K-invariants 

of k. 

The following theorem introduces an inductive procedure 

in order to determine whether or not two given direct S-spectra 

are equivalent. As is shown, the homotopy groups and the “a - 

invariants completely characterize an S-spectrum up to equivalence. 

Of course, this includes a classification of spaces (1.e., finite 

dimensional CW-complexes) up to S-homotopy type. 
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Theorem (7.8). Two direct S-spectra €,4 have the same 

(n + 1)-type if and only if they have the same n-type, isomorphic 

antl homotopy groups in dimension n, and the "same" -invariant, 

that is 

+ + (7.9) pa(t) am (9 ) = 0, x (E) 

for some (and hence any) n—equivalence f:¥" +) and for some 

(and hence any) isomorphism 6: 2 (¥ )x2 nO ). 

Proof. First, let F: ¥7t+~32)"*+ pe an (n + 1)-equiv- 

  

alence. Any n-map 4: Ks" induced by F is an n-equivalence. 

Moreover py(ft) NFL L) ) a wh (X ) ), by (7.7), with 6 = Fy 

Hence the two sides of (7.9) have an element in common, so they 

agree. If g:¥"™—s0)" ig another n-equivalence ana /\: 2,(%) ~% 

2 (9) another isomorphism, then p,(e)* [eo (e)~*p,(£)] «2 (9) = 

A, (AO) e™*(¥X) 60 pyle eP(O) = Ay P(X), watch 
completes the proof of the "only if" part. Conversely, if (7.9) 

holds, then, for some reas EP and some auto- 

morphism \:2,(¥)—>2,(¥), ppl etd) = 
0, A. enh) & ele ), eo p.(fo nh) kM(2)) = (ON) PT (D), 

Therefore, by (7.7), there existe an (n + 1)-equivalence 

F; Oth, 2) 042, 

It remains to be shown now that, given ¥ x, there exist 

S-spectra 2) with the same n-type as ¥ ana arbitrary 2 (9 ), 

KML (Y), Bince the n-type depends only on the n-skeleton, it 

may be assumed that ¥ =", 

Theorem (7.10). Given x = ™ and an arbitrary abelian 

group G, there exists g) = Un such that 

1) ¥cY and this inclusion map is an n-equivalence;   
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2) For every cohomology class [uJeH™™ (4 (5), there 

is an S-spectrum Q = Qyntt with 3° = C) (hence Son) = 6) (n)?» 

Zp(Q)% 4, ana eM1(Q) = fu. 
Proof. Let i be the smallest index such that 2k) = 
  

7 2 7 = Tt +4 (%4)> SX, 7 “ye for all j} =i, r=n. Let x, x, for 

j <i and, for Jj = 24, let x, = x, so" are in 1-1 correspon- 
& 

dence with the elements geG. This defines L) = ty, satisfying 

1) above. Let On) - {. Then Wy = x, = x, for } < i and, 

for 32 4, (W, ynrjtl . (x, sn") Y ent sth where there is a cell 

neste attached for every seat onbue function «:5” Ss, V gat | 
& 

Thus the subcomplex of W, generated by the (n + i + 1)-celis 

gntitl 
g & 

that any (n + 1 + 1)-cocycle w of W, that vanishes outside of 

e 

whose boundaries are in is contractible. This implies 

these cells 18 cohomologous to zero. For instance, let w be the 

(n + 1 + 1)-cocycle of Wy with coefficients in G, which is zero 

everywhere, except on the (n + 1 + 1)-cells attached to Ws by 

the inclusion maps ag CV sn and in each of these cells takes 

the value geG. By considering u + w, one sees that every cocycle 

G) 1s cohomologous to a cocycle onto G. In particu- 

lar, the given cohomology class [wJ ex? (Q7, 54) can be repre- 

sented by a cocycle u onto G. Let Z, be the subcomplex of Wy 
  

obtained by attaching to Yy the cells of Wy that are in the ker- 

nel of u. The cocycle u induces an isomorphism A:T 44 (24) % G 

and, under the coefficient isomorphism induced by A, u corre- 

sponds to the obstruction cocycle for extending the identity map 

(24) +2, to (wy arate, Define 2 for j >i ina similar way 

(this corresponds to attaching (n + } + 1)-cells to x, 
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corresponding to those already attached to Y5 i under the ex- 

ternal equality SY 43 = Y,). Set 3 = {Z,}, obtaining thus a 

direct S-spectrum that satisfies condition 2). 

Remark. By imitating the above procedure, one is led 

to an inductive construction that proves the following result: 

ee ee 

YO ={¥,}, equivalent to ¥, and such that BY, C ¥,,, for each 1. 

  

    

In other words, all that was proved for direct S-spectra in the 

previous sections could have been done even if these were re- 

stricted by the condition that, in the Definition (1.1), the 

external inclusions , were restricted to be ordinary inclusions. 
  

By adopting this simplified point of view, some proofs would 

have been simplified. Moreover, the notion of S-subspectrum 

would appear as a natural one, in all its generality, and the 

quotient S—epectrum ¥F/Ov would be well defined for any 5-sub- 

spectrum Ack, This, however, has not been done, and the 

main reason for assuming this more general viewpoint is based 

on duality. When the more restricted definition of S-spectrum 

4s taken (with ordinary inclusions), it does not seem possible 

to prove that every direct 8-spectrum is equivalent to a direct 

S-spectrum that has a dual. Thus, the next section will provide 

the first instance in which external inclusions are necessary in 

the definition of an S-spectrun. 

8. Inverse 8-spectra 
  

In this section, another enlargement of the S-category 

will be described, namely, the category of inverse S-spectra. 

This will provide an alternative system of invariants charac- 

terizing the stable homotopy type of a space. The new invariants 
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are homology classes with coefficients in cohomotopy groupe and | 

they are related to the Postnikov invariants of 67 by the (\} 

duality theorem of Spanier and Whitehead. In fact, the whole 

theory of inverse S-spectra is dual to that of direct S-spectra. i 

When the components of the S-spectra are finite complexes, such { 

duality is a theorem. In general, it 16 based on analogy. 

In order to avoid unnecessary repetitions, the descrip- 

tion of inverse S-spectra will be made in a concise manner. 

Proofs that are entirely similar to those of the previous sec— Nn 

tions will be omitted. Other theorems will be proved by duality. li 

| In order to be able to do so, the following assumption is made:   
  

All spaces in this section are FINITE complexes. { 

i 

A. The Category | 
| 

An inverse S-spectrum uy = wy. 0,4 or, simply, US = iw,j i 
Ih 

  

consists of a sequence Wor Wyy eee of spaces and external inclu- | 

sions ELPeSt < 8W, such that: 

nti tl - A (8.1) Given n (a relative integer), Vy Wao) 

nva*l (su, ) is an external equality for all large 1. 
    Spaces yield inverse S-spectra in the obvious way. \) 

Suspension, skeleta and coskeleta, dimension and codimension are it 

defined just as for direct 8-spectra. Of course coskeleta and 

codimension here play the most important role. For instance, if I 

Nyy =Uy then Wy +1 = SW, for all large 1. This follows from i 

(8.1), which implies also that, for all large i, W, is (1 + q)- | it} 

coconnected (where q is a constant). 

The group of maps of an inverse S-spectrum V= iv into 

a space Wis defined as the direct limit 
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= J [U,w f= ram {v,,sw 4 
with respect to the composite homomorphisms 

gJ tly 

where the first one is suspension and the second is restriction. 

iv, ,3¢W {— {sv,, 89 | — {yaa 

The group tu, w} is attained by iv, Swf for large j. In par- 

ticular, the cohomotopy group 7.°(U) = SU, gP} is realized by 

pers (V5) = 7rd (V4) for large }. 

In general, the group of maps of vw into another inverse 

5-spectrum w= iw, t is defined as the inverse limit 

{U,W f= aaa {s*U,w, 
with respect to the composite homomorphism (of clear meaning): 

| + + 4 Sat 1U wy} —> ist™U, aw,) —» {s'U,w,t. 

Composition of maps is defined just as for direct S~— 

Spectra. The group (0, US } 1s a covariant functor of W ana a 

contravariant functor of Vv. It is stable under suspension. 

Given a relative integer r, {v, ut fa UW} if r = 0 ana 

= {Us w} ifr 20. Then 2(0) = (3°, UH. and 2*(\)) = 

3 st. for -o<r < +o, 2 (UY) = 0 for all large r. If 

W = W tor some n then the group 3 wt is isomorphic to 

$ V4 Wa} for any and all large i. A map t:))—>W may be 

described as a collection of maps £20" (-m <n < +m) 

such that 

vy fn ny 

ton mis n 

48 a commutative diagram for every n (the vertical arrow: col- 

lapsing map). 
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The group ww; Of of external inclusions is defined 

just as U, wf, but replacing {s*v, 8,4 by is*v, ,8°W,; Os . 

There is a natural homomorphism: 

ns {Wh bf > WW} 
If wy = My for some n, this homomorphism is onto. An n-map of 

    

  

the inverse S-spectrum \! into the inverse S-spectrum 1) is a 

map Ne yy "WW. Such a map is said to be induced by a map 

ifs V—w if the diagram below, where the T's denote collapsing 

maps, is commutative: 

uv £1 
| ih 
n ne n v w 

It follows from (0.2) (which is readily generalizable 

    

to inverse S-spectra) that a map £:¥ —>W anauces n—maps 

ety for every n. Of course Ne 45 not uniquely deter- 

mined by f, but any other ne induced by f agrees with Ne when 

projected into ntlyy 

An external inclusion rey "Wi O45 is called an n~ 

  

  

cocellular approximation of t:15—>U) ar N(A)e f° PW [te in- | 

duced by f. 

sions: 

| re {59,3 Of, Pac UW: Of. 

An external inclusion aD Hw induces external inclu- 

| 

| 
If Xe rey MY; On 4s an (n + k)-cocellular approxi- 

mation of f: yw then "A is an n-cocellular approximation of f, 
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B. Homology and Cohomology 

The group of n-chains of an inverse S-spectrum W = iw, 

is defined as a, (W) 7 Lim, Cay (Wy) and the boundary operator 

is obtained also as a limit. The groups C44 (Wy) become constant 

for large 1, so it 18 indifferent to define the homology groups 

ot W either as H, (W) = Lin, H nti (4) or as the homology groups 

of the chain complex fo. (18), 8}. Cohomology is treated similarly. 

For instance, a (US ) =, lim H** (Ww, ). 
— 

A map r:\)—sw induces a homomorphism fy :H, (1) —sH,, (Ww) 

as follows: represent f by an S-map f,:V,—>s4W, Then 

(f fy nty (Vy )—>H, 4, 

phism H,((7)—oH,, (W,)—>H,,,(S9W)—sH,(W) where the first 1s 

1H (sw), Define fy as the composite homomor- 

projection from the inverse limit, the second is (fy) and the 

third i8 desuspension. The choice of the representative ry is 

easily seen to be immaterial. 

Next, a general man t:1) —>W provides, for each i, a 

map £,:5'U —sw,. As above, f, induces a homomorphism 

(f,) 2H, (8°) 8 (Wy) and hence a homomorphism h,:H (0) —> 

He (Wy ). The various h, (1 = 0,1,...) 60 obtained, fit together 

as ey should and yield a homomorphism fy: 7H (U )—s4, (uy). 

The induced homomorphism for cohomology is treated simi- 

larly. 

The homology and cohomology groups of inverse S—spectra 

are functors in the category of inverse S—spectra and their maps 

to the category of groups. They satisfy the universal coefficient 

formulas, since they are attained as limits. Also the "coerrfi-_ 

cient homomorphism" (for homology and cohomology) is defined 

without difficulty. 
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Chain and cochain groups are moreover functors relative 

to external inclusions. If one remarks that an external ineclu- 

Sion of spaces induces chain and cochain homomorphisms (since 

these are relative homology and cohomology groups of skeleta), 

the above definition of tnduced homomorphisme for homology and 

cohomology carries over completely for chains and cochains, with 

an external inclusion replacing a general map. The homology anda 

cohomology homomorphisms induced in this way by an external inclu-— 

sion ri, W; d | coincide with the homomorphisms induced by 

(Ae {UV ,US}, as defined previously. Since one may identify 

H(U) with H("U) for r2n + 2, the homology homomorphisms 

f 7H (U )—oH, (UW) induced by a map f:1)-—»U) agree with those x 

induced by an n-cocellular approximation A of f, forr 2n+ 2. 

C. Duality 

A direct S-spectrum = X4,044 and an inverse S-spec- 

trum X" ={ x7, 0%] are said to be p-dual to each other if, for 

every index i, x, and xy are combinatorially (p + 21)-dual and, 

moreover, the external inclusions @, 2 8X, < X,,, and 

i < SX* are dual S-maps, 1.e., they correspond to each 

other under the relative duality isomorphism: 

Doeoieg 8X4) Xq 405 o} - {x 5x2; O} 

between these groups of external inclusions (cf., (24, 6 6).   Notice that SX, is a combinatorial (p + 24 + 2)~dual of SX, . 

It 16 convenient to keep in mind that if X, Xx” are com 

binatorially p-dual, then they are weakly (p + 1)—dual. 

It follows from [14], Corollary (10.3), that the p-dual 

of an S-spectrum is unique up to an equivalence. Theorem (9.4), 
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loc. cit., implies that if ¥,U are p-dual then, for each n, 

¥ P-L and "ll are also p-dual. 

Theorem (8.2). Any S-spectrum (direct or inverse) is 

equivalent to a spectrum that has a p-dual, for some p 2 0, 

Proof, A proof will be given only for a direct S—spec-— 

trum ¥ = {X,t, the other case being entirely similar. First 

of all, each x, has a combinatorial x,-dual, for some integer 

Ky ({24], Theorem (10.4)). Let p = X,- Define a sequence im,} 

of non-negative integers by letting m 5 = O and m, = max{m, 1 ,X,-P-2$ 

li
v s for i1>0. Then mM, = m, and p + 2m, m - 4 + Ky Now, de- 

m,—4 
= 5 x, and, fine a direct S-spectrum 0 = ix, 4 by setting a 

1 
form, ,<J<m,, Y, 7 BY, (external inclusions defined in 

the obvious way). Each Yn, has a combinatorial (m, -it+ x, )- 

dual, hence a combinatorial (p + 2m, )-dual. Therefore, every Y, 

has a combinatorial (p + 2j)-dual ue Let 0:04 art be the 

external inclusion that corresponds to the external inclusion 

$4 :8¥j,— Yay (given by Q) ) under the duality isomorphism 

D490 543 (8X4 L545 O§ UX ay 843 { between groups of external 

inclusions. The duality relations between inclusions and col- 

lapsing maps imply that uyt = {x04 is an inverse S-spectrun, 

p-dual to the direct S-spectrum 0) . It remains only to show 

that ¥ is equivalent to ) ». A pair of inverse equivalences 

f:¥—>9O and g:) -»¥ is defined as follows: for each 4, 

ee) is represented by the identity map s *x,—>s4y, 7 

and for each J, g,:¥,>89X is represented by the external * 

f,:x 

inclusion avy, < sox, (j-th suspension of the composite external 

inclusion x; < Xj). There is no difficulty in checking that 
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fog and go f are identity maps. In fact, ) is, so to speak, 

"externally included" in ¥ . 

Notice that, if X is a space with a combinatorial p-dual 

W, then the S-spectra X = 3x, 8X, vee} ana UW = {w,8W,... } are 

p-dual. 

Theorem (8.3). Let ¥,9 be S.~spectra (of the same 

nature) and ¥* OY respectively be p-dual to them. There existe 

@ unique isomorphism 

DES ~ {or x*] 
that agrees with the Spanier-Whitehead (12] duality isomorphism 

Doth when ¥,4 xk, us reduce to spaces and is natural in the 

sense that: 

P(e of) = Pie) ° Pe), eZ ¥,9| , g24,9} 

Proof. First remark that, for every 1 and Jj, sJx, is 

weakly (p + 24 + 23 + 1)-dual to sJxt and SY, 1s weakly 

(p + 24 + 23 + 1)-dual to sty. Hence 

§gJ  dy* Dpezatajer: (99x, 8°x,) = fsx, 8x,4 

by the duality theorem for spaces. Since the isomorphisms 

D424 +2541 are natural, (and the external inclusions for 4) 

are respectively dual to those for x*Y ) they induce, in the 

Limit, an isomorphisn: 

3 ¥,2 f= six, ,8°y, )~ Jx* ) = Dio dim, (lim , 0% Lim, ( Lim sty},3 1) 

% * syte*t, 
If all these S—spectra reduce to spaces, reduces to the 

Dp 

ordinary isomorphism Diy UEsX} % UX* XFS. The naturality of 

i,, follows directly from the naturality of the various 

D 42442541 ° 
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Remarks. 1) The isomorphism D, is completely charac- 

terized by the naturality property, together with the fact that 

it agrees with the Spanier-Whitehead isomorphism Doth for spaces. 

2) In (8.3), af f= L)” ana x4 p-n-Lijy then the p- 

dual of the inclusion map f:t)"¢ L) 18 the collapsing map Die = 

T: UF _,n-polyt This follows directly from the similar result 

for spaces. 

Ir ¥ x are p-dual then 2 (E ) a DPE for all r. 

In fact let m= r,p , go that 3” has a weak (m + 1)-dual 87-7 

(where, for definiteness, r 20 is assumed), Then s™P Fang 

¥£ are m-duals, 80 2 WE) 7 ist, X 4 % fam—P ¥* guar | XS 

fx" ser} FP zt). 
Using the same result for spaces, it is readily shown 

that, for p-duals x ¥", H"( x) ~ Hy (¥*). In fact more is 

true, since the spaces in ¥, ** are combinatorially dual, 

oF(¥ )xw On ( XL") and this isomorphism carries § into 6, 

D. Equivalences 

An equivalence t: 7 WU, in the category of inverse S- 

spectra 1s, as expected, defined by the property of having an 

inverse, 1.e., @ map e:W —> U such that go r: UU and 

fo g:W—>W are both identity map. 

An n-map £:1y —s"yS 16 an n-equivalence if it has an 

n-inverse, 1.¢., an n-map eg: 9 such that To go f= 

m2 Us tly anatto ro g = ni WY —s9t1W where me yt 

and m"Y5—s2tLUy are the collapsing maps. A map f:U—sW 1s 

called an n-equivalence if some n—map Me Ny _s" Uy inaucea by it 

is an n-equivalence, 

—
—
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It 16 immediate from (8.4) that, in (8.3), the dual 

c* =, of an equivalence r:¥ —>4) ig an equivalence s*,U_, 

EF. Moreover, since indusions and collapsing maps are dual to 

each other, the dual of a (p - n — 1)-equivalence fr: ¥ 2-1, 

()p-n-1 (say X49 are direct S-spectra) is an n-equivalence 

f 2 OF_ np 

The above facts imply that all theorems of §4 can be 

dualized. For instance: 

Theorem (8.5). A map f: U—»W (of inverse S-spectra) 

48 an n-equivalence if and only if f: 27(W) x 2T(U) for all 

r2nt 2. 

Proof. By passing to equivalent S-spectra if necessary 

(by (8.2)), 1t may be assumed that v Ww have p-duals X£ 9 

respectively. Now let g = De: LU)». Then rar 2T(W) 

> *(W) ar ana only if 6,3 2px! YQ)? p_r! ¥% ). Now f is an 

n-equivalence if and only if g is a (p — n - 1)-equivalence, 

IA
 

which happens if and only if g 168 an isomorphism for all p - pr 

p-n- 2, which is, finally, the same as to say that f is an 

{somorphism for all r 2 n + 2. 

Using the same technique, one shows that a map ft: U-+ WD 

is an equivalence if and only if it is an n-equivalence for all 

n2N- 1, where N = min{codim U, codim Uf. This yields the 

following 

Corollary (8.6). <A map r:V—>W ie an equivalence if 

and only if 57 (W) x 2° (W) for all r 2 N-—1, where N = 

min{codin VU, codim 0}. 

It is a consequence of the “equivalence theorem (8.6) 

that given an inverse S-spectrum U ana an integer k 2 0, there 
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exists an inverse S-spectrum W such that SKU is equivalent to 

VU. The proof consists of just imitating (4.11). 

E. Obstruction Theory 

For a given space W, the following sequence of S-maps is 

a special case of (3.1) (where "wet? = A(yntl) _ (ny)ntl), 

ir‘W 18 an inverse S-spectrum, an obvious limiting process leads 

to the sequence: 

n, nt + +1. wr 1 Buy n luy s(hysn 1) 

So, if wv is another inverse S-spectrun, composition with the 

maps of the above sequence gives rise to the infinite sequence; 

(6.7) oof gh {ty apt). 
The sequence (8.7) is exact since it ig a limit of exact 

sequences in which each is attained. It 18 also dual to the 

sequence (3.4). That is, if vw are p-duals of £ ana ) re- 

spectively then the groups of (8.7) correspond, oy J, to the 

groups of (3.4), with an obvious shift of dimensions. Moreover 

the homomorphisms of these sequences are compositions with pair- 

wise dual maps, 

The sequence (8.7) 1s the basis for obstruction theory. 

This time it is the case of obstructions to lifting, illustrated 
  

by the diagram below: 

(8.8) vs 
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A map titty is given and the question is whether or not 

it 1s possible to lift it to a map f:\)—»>"W, 1.e., whether or 

not a map such as f exists with the property that To f= f. Let 

Ona (FEL Bye -1 be the image of f by the homomorphism of 

(8.7) (taken with r=0). By exactness, f "lifts" to nyy 4f and 

only if c.4,(f) = 0. Now if W reduces to a space W, it is 

proved in (13] that RU By nt} is naturally isomorphic to 

C4 (WW; TEE (V)) and this isomorphism takes the composite 

homomorphiem 

£45 Pye _s iy Purp, _» $5, BLY nt a 

into the boundary operator 8:01, (0; DA-Pt1 (5 ))—s 

C(W; DP). This shows that Ch 4 (f) may be regarded as 

a chain and it is easy to see that 6c,,,(f) = 0. In fact a dia- 

gram like that of 63 may be introduced and the whole theory of 

obstructions to lifting may be developed in lines entirely anal- 

ogous to those of 63, This will not be done here, but all the 

results of such a possible procedure will be used freely. For 

instance, obstruction cycle Cray (FEC 4 (W; SPF), primary 
  

; + obstruction [ona (f) eH, (Ws ” 2(.7)) are among these. The 

latter is the obstruction to the existence of a map f: V— > us 

that agrees with f, when they are both projected into nteyy, 

Ir Y,W are p-duale to ¥ , respectively, let q = 

p-n-2, Then the diagram (8.8) is dual to the diagram 

qtl 7 
Qe 

(8.9) a ¥ 
y iow 

where g = Ds and g¢ (if it exists) equals DF. The vertical 
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arrow, of course, denotes inclusion. Thus the lifting problem 

(8.8) 18 equivalent, under duality, to the extension problem 

(8.9). The obstruction cycle, primary obstruction and difference 

chains of the problem (8.8) are carried vy JJ into the obstruc-— 

tion cocycle, primary obstruction and difference cochains of the 

extension problem (8.9). 

F. The Dual Postnikov Invariants | 

Theorem (8,10). Given an inverse S-spectrum U ana an 

integer n, there exists an inverse S—spectrum Von) and a map 

he > U such that (n 

(1) h 1s an n-equivalence; 

r i s (2) > (Uig)) = 0 for r Sn +1, 

Proof. It is clear that wv may be substituted by any 
  

equivalent S-spectrum, therefore it may be assumed that CU has a 

p-dual, a direct S8-epectrum %. set qd=p-n-1 and let Lia) 

be a direct S-spectrum with 2 (Fig) = 0 for r 2 q, and such 

that there exists a q-equivalence f: K— > X (4) (as in 66). It 

may be assumed that Eg) hes an m-dual Wea) and, of course, it 

is always possible to suppose that m2 p. Then s™-P'U) 16 an me 

dual of {. Thus r* =O ,f:8"? VW, ig an (m-ptn)- 

equivalence, and 2"(Wiqy) =Oforrim-~ptn+l. Let 

Weg 

alence e438"? Wa): It is clear then, that the (m - p)— 

) be an inverse S—spectrum for which there exists an equiv- 

th desuspension h of go e*:g@-P77_.g™P Na) satisfies (1) and 

(2). . 

Theorem (8.11). Given VU on, the set of all pairs 

(Oyen) satisfying conditions (1), (2) of (8.10) 1s a simple 
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category. That is, given 2 such pairs, (Oe ny dD), (Utah) 

there is a unique equivalence e: Un) Uta) such that the 

diagram below is commutative: 

  

Proof. Let Tt: Un) Vin) denote the collapsing map, 

  

Let Ma > U be any n—map induced by h and let r:"(J—> 

“Utn) be some n-inverse of h', First of all remark that the 

composite @, = fo Mh o T does not depend on the choices of Dy 

and f. In fact, if "k 1s another n-map induced by h, “h, ™k 

agree when projected into ntl 4 ana so do “h o Tl, "ek o 1. Hence 

the difference chain diy ( B o 7, "k o 1) exists. But such chain 

has coefficients in ZV ay) so it 18 zero. Therefore 

"ot = "ko 1, Also, if f, 18 another n-inverse of h', the 

difference chain dy (fF o ™howt,fo hom) 1s zero because 

it has coefficients in 2 P(U a) So f, 0 Mot = fo hon. 

Now g, = fo Mh 9 m1: Vin)" Uta) lifts all the way up to a map 

g: Vn) Ut ay Since all the obstruction cycles for doing so 

vanish, since they have coefficients in 2*(V ay); rin¢tl.   
Moreover, the lifting g 18 unique, as it follows immediately from 

the vanishing of the difference chains. Again, goh= h' by the 

same reason. 

From now on, the notation Vin) will indicate, for short, 

a pair (Wqyeh) satisfying (1), (2) of (8.10). In other words, 

the mention of Von) will contain implicitly the choice of an n- 

  

equivalence h: Vn) U that goes with it. In this fashion, 
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the homology and cohomology groups of Von) are functions of 

and n alone, but do not depend on the choice of a particular 

spectrum U, n) Since given 2 choices (U, (n)>2 ), (OF yeh 

there is a unique isomorphism g tH 2 U (n)i |G) ~ H, (Wt a 

provided by (8.11). 

The same technique as in (8.11) shows that any n-map 

r:"(J—s™W can be lifted uniquely to a map o,(£):0 (y= Wen) 

(in the sense that the diagram below commutes, where Von 

Feny28)2 Wony = Wen oh) 
(r) 

Vinny —— Wn) 

Ye » \ 

nya 
2 US 

    

The mapping 

eV, Wi—> (UW 
thus defined is a homomorphism and 1s natural with respect to 

composition of maps. The kernel of 0, consists of those n-maps 

£:7717—s"W that are zero when projected into ntLyy, It follows 

that an n—map f is an n-equivalence if and only if o,(f) is an 

equivalence. 

The dual Postnikov class of WT (an dimension n) is the 
  

primary obstruction of the map f o 1: U0 Un where 

on n : f: _—- Vin) is some n—inverse of hi Uy U. It represents 

the obstruction to finding a map Vt Va) that agrees with 

n OU in): Such obstruction is thus a homology class 

. +1 € (UH (Us 220) 
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One considers also the group H of all n-equivalences 

t:V (ny Ua): and the group A of all automorphisms 

0: 22tt( yy) 74), The direct product H * A operates on 
+4 

H(U (_y32™U)) by setting 

(f,6)(u) = 0, [o, (fr), (a)] 
where O, 1s the coefficient homomorphism induced by @. The orbit 

of k.(U) under this action is the subset 

Wy(U) = { [oy t),%y(D )];0eA, text | 
of HV ayia (U)). Thies subset (UV) 1s the nth dual 

  

Postnikov set of VT. 

All the machinery is at hand, to show that the dual Post-— 

nikov invariants, together with the cohomotopy groups, character-— 

ize the inverse S-spectra up to equivalence. The proofs are 

exactly as in bv, Therefore, only the results will be listed: 

(8.12) Given an n-map r:"¢J—s"V) ana a homomorphism 

or 2M (W)_s pata), there exists an (n — 1)-map F;"-17)_. 

nly). agreeing with f o T on ntLUY (where m2 Yt) and 

inducing @ if and only if: 

(8.13) o,(t) (D0) = ek (W). 
(8.14) Let f:"1y--»" YJ be an n—equivalence and 

e:> Bt) oe > atta) an isomorphism. There exists an (n-1). 

equivalence F:2-11y_?-1 yy agreeing with f o T on ntLYY ana 

inducing © if and only if (8.13) holds. 

(8.15) Two inverse S-spectra UW are (n — 1)-equiv- 

alent if and only if they are n-equivelent, have isomorphic coho- 

motopy groups in dimension n + 1 and the "game" ¢{ that is 
yy 

on(f), (0) = 04 M,(W) 
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for some (and hence every) n—equivalence f:"U_s"W ana some 

(hence any) isomorphism e: Dat WwW) zm Y), 

The invariants ky ty correspond by duality to the in- 

variants cath ttt of 67 (see the proof of (8.10)). Therefore 

it 18 possible to prove the dual of (7.10), to the effect that 

such invariants may be arbitrarily realized. 
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