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INTRODUCTION

Thls thesls consists of two parts, both concerned with
énsions of the 3-category, but with different purposes, The
pet part is devoted to extending the duality theorem and the
_nd one introduces a eystem of Anvarlants for the stable homo--

y type of a CW-complex. A common notion connects them: that

& spectrum,

A brief description of each part is given below.

PART I
In ELB], Spanler and Whitehead proved a duality theorem
iéh brought a formal justification, at least in the stable
3gé, for some isolated phenomensa, previously observed, of pairs
ﬁal results (for instance, the theorems of Hurewlcz and Hopf).
duality theorem may be stated by saying that, if X,Y are sub-
olyhedra of the sphere 8P, then {X,Y} = {8° - ¥,8° - X} (for the
"pition of the S-group {A,B}, see 40). Part I is concerned
h the extension of this theorem to more general spaces than
iﬁe polyhedra, A simple counter example, however, shows that
@ can be no isomorphism as the one above for all compact sub-

2

ots X,Y of 8P, 1In fact, let X 8% be a circle and let ¥ C §°

e the compact space obtained from the closure of the graph of

8in (1/x), 0 < x ¥ 2m, by connecting the origin (0,0) to the
int (21,0) with a simple are that touches no other point of
thﬁt closure, Then §X,I} = 0, On the other hand,isz - X, 8° Y}
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.'ave the same homotopy type as a palr of points, so
y’sz - X} = 2.

The situation here is simllar to the one met in the

exéhder duality isomorphism HY(X) ~ H (8P - %), x <« gP

P~-q--1
gea; the cohomology group Hq(X) 18 taken in the sense of Cech

.he homology group H _q_l(sp ~ X) 18 the singular one. Thus,

P
order to gxtend the above duallity lsomorphism from polyhedra
bitrary closed subsets of the sphere, & distinction seems
ary, in some way, between "Cech homotopy theory" and "sin-
» homotopy theory". Thie distinction is introduced here, at
level of S-theory, and 1t leads, in fact, to the desired ex-
1on. No attempt is made to develop these theories in the
:i'of homotopy theory. Part of the results obtalned in the

e level &8tl1ll hold for the non-etable one, but the whole
atus of the matter is unsatisfactory, especially in the Cech
"'where the restriction necessary for the definltion of the
motopy groups is a serlous handicap.

In ordinary S-theory, the isomorphism {X,8P-¥}={y,sPx}
8 for arbitrary compact subsets X,Y of sP., This is also

ved in Part I,

| An attempt to determine the most general class of spaces
which a dual can be found and a duality theorem can be proved,
.ds to the notion of a spectrum and that of & space represented
bff& gpectrum. The spectra considered here are sequences of fi-
;te CW~complexes and provide the link between polyhedra and ar-
bitrary spaces. They are of 2 kinde: direct spectra and inverse

Bpectra. The prototype of the former is an increasing sequence




1te subcomplexes of a CW-complex and of the latter is a

:e of nerves of finlte coverings of a compact space, each

sy refining the preceding one. The general theory of spectra
ieir maps is treated in section 1. BSection 2 proves a dual-
sorem for spectra. This is a straightforward generalization
Spanler-Whitehead duality theorem. I% 1s used as a tool in
2-8, in order to prove duallity theorems for spaces.

' Bections 3 and 4 study, respectively, the singular and the

§¢¢ategories. The former is based on approximating a space
'é of finlte polyhedra into 1t and the latbter uses the dual
aa df mapping the space into polyhedra.' The most lmportant

e are the respective eguivalence theorems, analogous to the
ehead equivalence theorem. In the singular theory this
rem is stated in terms of the singular homology (or S-homo-
groups and, in the Cech theory, the Cech cohomology (or
.ﬁbtopy) groups are used.

HSections 5 and 8 are concerned with the representation of
by a spectrum. A space 1g representable by a spectrum if
~be approximated (by one of the methods described above) by
téble gequence of polyhedra., Buch spaces are those with
_ié slngular homology (representable by direct spectra) and
:mpact spaces with countable Cech cohomology (representable
:ﬁyérse spectra), The short section 7 looks at the mixed case
maps of a space represented by an inverse spectrum into a space
presented by a direct spectrum.

Section 8 proves that every space U with bounded and

able singular homology has a p-dual - a compact metric space




.$h9 duality isomorphism holds in the form {x,x}cas.{v,u}s
are p-dual to U,V, where the subscript ¢ denotes the Cech
p and the subecript 8 stands for the singular S-group. Con-
._pvery finite dimensional compact space X with countable
shomology has & p-dual -~ a finite dimensional countable CW-
x:U - and the same isomorphism holds as above. Moreover,
are Tinlte dimensional CW-complexes and X,Y are their
otive p-duals, the isomorphism {X,V} <« {Y,U} holds for

L B-groups.

PART II

M. M., Postnikov introduced in [?] the so called Postnikov
ants and showed that, together with the homotopy groups,
o?ﬁ a complete system of invarlants for the homotopy type
";complex X. A very convenilent description of these invar-
Wa.s glven by J. F. Adams El]. Adams' description requires
imﬁm amount of machlnery and lmproves a previous treatment

. C. Whitehead [17]. Briefly, it goes as follows:

'_Given X and n = 2, construct a complex X(n) with the
owing two properties:

(1) XCXy, M= (X

(n))n;

(2) m r(x(n)) =0 for all r Z n.

| " The complex X(n) is constructed simply by attaching cells
imension £ n+l to X in order to kill the homotopy groups

lyor R From standard obstruction theory, it 1s easily
$hat X(n) 18 determined, up to a natural homotopy equivalence,

and n, so that the cohomology groups Hr(x(n);G), for instance,




/ith the homotopy groups Trl(x), Ll 2(X),.°. characterize
 homotopy equivalence. In other words, they auffice to
| p to an equivalence, the objJects in the category whose
gW-complexes X,Y,... and whose "maps" X——»Y are homo-
ges of continuous functlong Xe=¥,

 6ns1der now the followlng problem: First say that 2

;Y have the same sftable homotopy type if, for some m,

‘sﬁe sions smx, 8™ have the same homotopy type. The prob-

characterize the stable homotopy type of a CW-complex

of algebralc invariants. Of course, if such invariants

change if 8X, SY are substituted for X, Y. The most

lesses 8™X—»8"Y, 1In the S-category, the problem be-
1nﬁ invariante that suffice to claselfy spaces up to an
(that 1s, S-equivalence).

Of course, the natural approach to this problem would be
to imitate the procedure sketched above for the introduc-
he Postnikov invariants. But this does not work in the
;ry, due to the impossibility of constructing a CW-complex

a'preassigned sequence of stable homotopy groups and, in




of constructling a space X(n) with only finitely many

stable homotopy groups. In order to have an object
role of X(n) in the definitlion of the Postnikov in-
ﬁhe S-category will be enlarged. This is done here in
rent ways, one leadlng to the category of direct S-spec-
yther to the category of inverse S-spectra. These two
E are related by the duality theorem of Spanier and
Hence, thelr theorles are parallel, and it suffices
‘direct S-spectra in this summary.

;ﬁ“the ordinary S-theory, an objlect may be considered as
e_(X,SX,SZX,...) consisting of a complex and its consec-
séénsions. In the enlarged category, an object {i.e., a
gpectrum) 18 a Sequence X = (X,sXy,00) where X, ., has
.g”to do with X, but 1s not necessarily equel to 1t. A

ed treatment of direct S-spectra may be obtained if one
that 8K, & Xy 4 and that le agrees with Xi+l up to

h?i. (This definition 18 not adopted in the text, only
t is not possible, in general, to find for every such
gpsctrum a dual inveree S3-gpectrum, with simllar prop-
Maps f:¥ -—>U are defined by means of a double limit-
88 and homotopy theory, including obstructions, is de-
;ﬁ this category. The basic property is that arbitrary
v" groups (denoted by Z..(%)) are realized. Given a

m ¥ and an integer n, it is possible to construct snother
rum :f(n) satlefying conditions similar to (1) and (2) stated
Peginning of this summary, and to define the Postnikov

ts knﬂ‘(%)eHn‘*l(?E(n);Zn(f;J). The invariants k™ +(X )




#;éo that, in particular, the stable Postnikov lnvarlants

ed for a space and they solve the problem of character-

gtable homo topy type proposed above,
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Preliminaries and Notations

;EEEEEEEEE 8% of a topologlical space X lg the quotient
product X X I (I = {0,1]) by the equivalence relation
f1es all the points of the form (x,0), xeX, to a eingle
alall the points of the form (x,1), xe¢X, to another
hé points xo,xlex are called poles.

X.Y be topologlcal spaces. [X,Y] will denote the set
y olasses [f]:X—>Y of continuoue functions f:X—s¥,
n map 8: [X,¥]—s [8K,8Y] is defined by setting

wﬁere g(x,5) = (£(x),t), for [f]e[X,¥Y]. Coneider the

m of sets, under the suspension maps:
X, ¥]-2s [8x, 8Y]-2 (5%, 8%¥] s ...

kX,SkX] is an abelian group and S:[SKX,SKY]—my
Y] 18 a homomorphism. Therefore, the direct Limit
m_{SkX,SkY] of the above system is an abelian group,
group. The elements gdX,Yjare called S-maps. Thus,
X—>Y 18 the equivalence clage f = {r'y &, ¥}or a con-
tion f':SkX——»SKY, another function g':8"™X—s8"Y
alent to f' if and only Af, for some n = k,m, the
 Sn'kf’ and 87%g! are homotopic.K S-maps {:1X—Y,
Y be composed, giving rise to an S-map g o £:X-—>2Z.
8ition yields a pairing:
{r,2} ® {x,1}-—six,2},

g
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“é o f, end it is defined as followe: teke k so

gﬁd g are both represented by continuous functlions
And g':SkY-w;SkZ. Then, set g o £ = {g' o fl%eix,zi‘
Hf:X-way induces, for each sepace 2, a homomorphism
X;ZE, where f%(g) =g o f, Similarly, an S-map

g, for each space X, a homomorphlem gﬁéix,YE~+>%X,Z§
#:f) = g o £, The category whose obj)ects are topo-
éland whose maps are S-maps 1s called the E‘Eﬁﬁﬁ§253°
;an isomorphiem in this category, that 1s, the sus-
prphisme 8: [, 85¥]—s [8572x, 85™y] induce, in the
5morphism 8:{X,¥{—s {8X, 5Y]. |

conn ¥ denote the connectivity of ¥, that is, the

ger 1 such that 7 ,(¥) = O for all | £ 4, Then, if
bmplex and dim X = 2.conn Y, the suspension map

,8Y] 18 a 1-1 correspondence [13]. Since conn 8Y =

nd dim 35X = 1 + dim X, it follows that, whenever X is
é@sional CW-complex, the limit group iX,Y% =

Juis attained by (i.e., isomorphic to) all the groups
ith sufficiently large k. In fact, it suffices to

X +4 {ork 2 @im X + 2, Af ¥ 18 not empty).

are lsomorphisms S:Hq(X):: Hq+1(SX), S:Hq+1(SX)ﬁ:
ced homology and cohomology) such that, for every con-

ction g:X—>Y, the dlagrams below are commutetive:

. H, () 1 (y) B RX)
5 8 g
(8g) &

) — o w p(sn) EC(sy)(88) L w0 (ax)
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(X). For ingtance, fy is defined as follows: repre-

ontinuous function f':8"X—>8"Y and let £, be the

T
———> H
HQ(X) q(x)
gk okt
Ik L K
Hq+k(s X) > Hy e (5°Y)

e.a CW-complex and A X a subcomplex. Denote by
ybtained by identifying A to a single point. Con-
“éwing sequence of B-maps:

A —3> X > XA > BA

ét,one is the inclusion S.map, the second one is the
collapsing function and the third one is the 5-
'ﬁntinuous function f:X/A-—»8A defined as follows:
 ot1on A—>A extends to a continuous function

: A denotes the cone over A. (Any 2 such extensions
-gglative to A.) Compose this extension with the
étion TA-—>B8A. Such composite sends A into a point,
e8 the functlon f:X/A-—>8A,

:ry space Y, the above sequence induces, by compogi-
:_Bequences [13]:

_{X/A,Y% -~—>%X,Y%}~—-—-->€A,Y%—-—-a- %X/A, Y| > ...
WA —s 1Y, X —s (Y, X/ A ——> Y, BA] —> ...
referred to as the exact sequence of (X,A;Y) and

quence of (Y;X,A) reepectively.
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nere 8P will be taken with a fixed triangulation
aron of sP will mean a gubcomplex of some recti-

jon of this trlangulation. A p-dual of a subpoly-

o o subpolyhedron X of SP which is an S-deforma-
-f.s? - X (that is, the inclusion S-map X C8P - X
:ﬁce). Every subpolyhedron X of SP has a p-dual;
yal, then X%,X are also p-dual, and SX,Xbx: as well
@fl)-dual (ef., [12],93). The duality theorem of
téheaﬁ states that if X,X*—and Y,Y*‘are palrs of

edrs of 8P, there 1s an 1somorphism D_:{X,¥} =

P
reral naturality properties (for details, see [12]).
inite CW-complexes X,X*’and S-equivalences

XT X" where Xl,Xif are p~dual subpolyhedra of

;g; §*~ are sald to form a weak p-duallity between

spaces are sald to be weakly p-duasl, If 57,%?%

k duality between Y,Y”, where M 1Y—sY,

ﬁbgn an isomorphism DP:EX,YEZ% {Y*}X*@ can be de-
{Xl,¥1}¢¥ %Yl*,xf%ﬁ An an obvious way, and has

1gr to the latter, The former is called the wesak

phism. It should be remarked that every finite CW-
weak p-dual for sufficiently large p. In fact,
~complex 18 of the same homotopy type as some

clal complex, [15] which can be embedded in 8P for
ﬁual of this simplicial complex will be a weak
.orlginal CW-complex.

1@ension of a compact space will always be taken in

COovering dimension (as in [8], page 208).
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1., Spectra and thelr Maps

‘gpectrum W= (U1s®i): or slmply fl*{vm (Ui) is a

gpecLriy

.) of topologlcal sepaces, together with S-maps

m

The notation ¢y = 4,0 ... o 0, :U,—>U_ will be
- 141 '

that Qi 18 short for @i .

‘1) A topologilcal space U ylelds a direct

1) with each U; = U and Qi:Uiii Uyqq (Ldentity

énerally, a direct spectrum is obtained by choosing
U, ... of subspaces of U and setting ¢, = in-

opologlcal spaces will be ldentified with dlrect

6 first example.

ree_spectrum %= (X,,¥,), or simply %= (Xy), 1s

1s++-) OFf topological spaces, together with S-maps

gein Y, is an abbreviation for Wi+l where, for

QB the composlte S-map wio vee O Wm_lzxm-—mxi.

8: £) A topological space X gives rise to an in-
. Xi

96= (Xl,Ui) where all Xi = X and Ui‘X1+l

t X be a space and (ao,a ) a gequence of open

l,.ﬂ°
Buch that, for each i, &y 4q refines a,. Let Xy

re. of a,, with the weak topology, and let

¢ the (unique) S-class of some "projection" of Xy 41

@ now on called the projection S-map). The collection

Torms an inverse spectruu.

f¢gical spaces will always be consldered as inverse
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A subspectrum of a (direct or inverse) spectrum

4
= (W,,9;) 1s a spectrum W= (W},8]) of the same species,
oh that, for each i, Wiéﬁiwi end 8, 1s the restriction of 9.
this case, one writes W& AT,

A spectrum WS = (Wi) is called finite dimensional if

pe ex18t5 an integer p Z O such that all entries W, have di-
sion = p,

The suspension of a spectrum U = (wi,ei) is the spectrum
(8W,,88,).

A spectrum U = (wi,ei) 1s sald to be of bounded order if

re exists an integer p ¥ 0 such that all the S-maps 9, can be

A speetrum‘b@f= (Wi) is called cellular if all the en-

e e T

ég_wi are finite CW-complexes.

Lemma (L1.1). A cellular spectrum of dimension = p has

Proof. This follows immediately from the fact that

S, aan¥ Fp amply {X,¥}jx [37%%, sP*],

The group of maps {U,lffof a space U into a direct spec-
m: Y = (Vy,¥,) 1s defined as the direct limit

' V)= 1 (v,

} respect to the homomorphisms wj#;iU,VJE——>iU,VJ+i§, induced
he maps WJ. Thus, a map f:U——;lj is represented by (i.e., is
fQuivalence class of) some S-map fJ:U->VJ. Another S-map

““>Vk represents the same map f:U——aTj-if and only if there
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s an index m £ J,k such thet the dlagram below is commuta-

s m
£y~ ¥

e
U\ v,
£ m
kN ﬂ;
Vi

I St

An S-map f:W-m»ﬁ induces a homomorphlsm g;:%W,fj}->iUﬁ?},
6d as the direct limit of the homomorphisms g;:{w,v3§_~>
Hence, the group {U{ﬁ@ 18, for fixed U, a contravariant

ir U= (Ui,@i), V= (VJ,WJ) are direct spectra, the S-map
luces, for each i, a homomorphism
B
Cpi 3{U1+1,U’}-—>§Ui,0'}.
The group of mapa%ﬂi,lff of the direct spectrumtm,into
rect spectrum UV 18 then defined as the inverse limit of
POuUps {Ui,lyj with respect to the homomorphisms ¢1 :
(fu Wiz
= 1w {u,, Ut = 1am  (1am U, ,V,i ).
{4 Loy V') i AR

G <1
A map £:1f —1 18, therefore, the same as a sequence
3o'fl’°°°) of maps f1: 1->1f which are compatlible in the

that the dlagram below 1s commutative for each i:

For instance, let 1L€f1Jo. The incluslon map f:TL&Z%jﬂis

ed ag £ = (fo’f ) where, for each i, f13U1“’}jfis

1’0.0
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regented by the inclusion S-map U, (T V,. In particular, if
-1/, £ ie the identity map. The notation f:U < U will

aye mean that £ is the incluslon map of U tnto V.

Ir 14 reduces to a space U (in the sense of Example 1))
ﬁ the group %Qiﬁlyg reduces to %U,Tf} as defined before. If
only reduces to a space V, the group %ﬁi,zsi is defined by a

gle inverse lim1t°
L,UT = YUY = 1am %Ui,v?.

@ )
oth 1,V reduce to spaces U,V, the group %ﬁﬂ’%fi reduces to

brainary S-group %U,V}. Therefore, the S-category is natu-
_ly embedded in the category of direct spectra.

For every relative integer r, the "indexed" groupi U Erfr
efined Just as for spaces, that is, %ﬁf;ﬂffr = ﬁsrﬁi,ﬁgg if

. $af Ay 4y =rayl . <
0, and (U, = W sTUj e So.

gpecial groups of maps are the homotopy groups g{r(lé)

i

uj

: r

‘ 20, 7 (1 St Ul = fqr+l

Ft spectrum.éﬁ. If r =0, g‘r(ii) = QST,%QE = ,1ims ,Uiﬁ
y 24 7 g +i7

ZRW) = (U, 87 = pam {u,, 877,

The description of the category of direct spectra is com-

and the cohomotopy groups éir(%€)==%?& ,SO}“r of a

éd now with the definitlon of the composite h = g o f:?{n—>7%fw
wo maps £: U1, g:l¥—>U of direct spectra WU = (uy),

{(VJ) and 1 = (W,). The map h is given by the sequence
by,...) where, for each 1, hizUi—m>Eﬁfis defined as follows:
 map £,:U,—>1) 1s represented, for some J, by an S-map

Hl—ﬁivj. Corresponding to the index ), there is a map

g-hb%ﬁi Bet then hy = g, o fiszimmS&fi It is easy o see

- the choice of the representative fyy 18 inmaterial and that
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g various hj~ so defined are compatible, and thus yield a map

e
._éwo

A map f:u -a-)ﬁg is called an eguivalence if it has a

sided inverse, that is, a map g: 17— such that g o p: e L
ro gV,

Maps f:‘ml-—aﬁu{, g:U-—-a-vl induce, by composition, homo-
phisms f#zsﬂzﬁ,v% _._;.%‘éﬁl,’ij’ g%r: Sﬁi,vﬂf —> %tu,?y;g, with re-
t to which the group f@i,sz

i

i

7

{ 18 a covariant functor of ﬂywand

ntravariant functor of . This functor 1s stable under sus-
$ o T . < @, o 2

sion, that 1s, (A,D = gs&,s?)‘”‘f,

Composition in the category of direct spectra defines

efore a palring:

WY e (U L]

e g® f—»g 0 £, fe %‘E,ﬁ ’Jéji ’ ge(i'{f{}w’:,{ff-

Maps of inverse spectra are defined simllarly: the group

--3_:XJ+1——>X 3 An S-map f:Y¥-—>Z induces a homomorphlsm
. - . o ot
;%,YE——»%%,Z%, so the group of maps {E,Q% of the inverse

trum ¥ into the inverse spectrum U= (¥,,§,) can be defined
he inverse limit:

LRI }4}_9%36 Y

:.with respect to the homomorphisms 1111_%: %E’Yiﬂ% -——;ﬁf ’Yieﬁ’
ed by the S-maps ¥y. A map rfif—st 1s, therefore, a se-
be £ = (£,,f),...) of maps ff%-»ﬁfi that are compatible,
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the sense that fi = wi o] f1+1. Composition of maps is defined
analogy with direct spectra, eo the inverse spectra form a cat-
ory, whose groups of maps are stable under suspension. This
ategory also includes the B-category, spaces belng ldentified

”th inverse spectra in the manner of Example 2), In fact, if

| inverse spectra 33,9 reduce to spaces X,Y then the group

_,Q% reduces to the ordinary S-group {X,X}. Composition of

ps 1n the category of Iinverse spectra defines a palring:

.91 @ Y — 1%9)-

¢. )
Just as for direct spectra, the indexed groups i%ﬁ,%}%

€
p—

r
}inverse gpectra, are defined for all relative integers r,

ese include, in particular, the homotopy groups é?r(%i) and the
homotopy groups SEE).

A homology or cohomology theory on a certalin category of
aces extends to direct and inverse spectra with entries in this
tegory by means of a straightforward limiting process. For
tance, 1if 14 = (Uy,94) 18 a direct spectrum, 1ts homology and
omology groups in dilmension g are deflned respectively as:

Hy (W) = 11w H(U,), H4(U) = 1m, #4(u,),

8e limits being taken with respect to the homomorphlsms

Hy (Uy)—~>H, (U, 4, ) and 903U, )—>HY(U,).  0f course, when
e 8pectra in question reduce to spaces, these groups refuce to

¢ ordinary homology and cohomology groups of a space,.

An inverse spectrum X = (Kl,Qi) can also be mapped into

direct spectrum || = (U;,¥,). The group of maps i}h?ig is
fined as the direct limit:
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1th respect to the homomorphlsms @ﬁ? o mi#@” w1#:0 ¢f::%Xi,U1§——>
11+1’U1+1%" 0f course, the maps of an inverse spectrum “F into
direct spectrum L& cannot be uged 1n order to define a category.
:bwever, it ?E,?} are inverse and Uh,iy are direct spectra, com-
osition defines the pairings:
1.4) xul @ ©.x — ul
.5) wrl ® (U —s XUl .
- the first palring, a map fe%%dhi& 18 composed on the right
th a map gci%}{ﬁ} giving £ o ge%Qﬁi& and, in the second one,
iﬁ composed on the left with a map he{1£;U"}, glving
o_fe{ﬁ%,if}. The definition of the composite maps is strailght-
rward and therefore omitted.

o g ‘;
Finally, one may also define the group of maps {QL,%:g of

direct spectrum TL= (Ui,Ui) into an inverse spectrum ¥ =
19,) as the inverse limit

Ea o .

?s"g LY _ ,;:

(WL R = Lim {uy,%,

en with respect to the homomorphisms ¢f? 0 wf% =

0 ¢1§:iU1+1’X1+1}‘“*iU1,X1§’ and composition again ylelds
palrings:
o . ¢ v o~ -
8) WX} ® () —s, %0
(x, 07 @ (Wr) —{wyj.
Indexed groups iji,?ﬁ} and %ﬁi,gﬂg are again defined,
r r
every relative integer r. All 4 kinde of indexed groups here
P9duced, are functors of the spectrs that they involve. For
tance, a map f:17;—>U§y1nduces & homomorphism Q#;%Ei,lfjr-—a
fo}r, which equals fﬁ;isrfﬁfﬁﬁ ——>%Sr?{;§f§ for r 2 0 and
als gy :z{u,srUg‘m-;-%ﬁ;,Sr'Uji for r £ 0,

A map £ —>1 of a direct spectrum ‘L into a direct
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pecrum UV induces homomorphisms:

@*:Hq(li)m-aﬂq(lf), e () —sm® (W)

£ the homology and cohomology groups. In fact, let f =

o’fl’°'°)° To each index i1 there corresponds a j = J(1), such

This can

hat flei—maijfis represented by an S-map fiJ:Ui-_;vj.
pe done in such a way that 1 T 1! implies J(1) ¥ 3(1'). Then,

he order preserving map i—3»)(1), together with the homomorphisms

L H = -
1) .Hq(Ui)~—> q(vj)’ J = 3(1), form a direct system of homomor

niems, whose direct limit is taken as £, :H(WU)—H (1), The
s

ohomology homomorphism £ is defined in a similar way. Following

“procedure analogous to the above, one can also define the homol-

gy and cohomology homomorphisms induced by:

(a) A map g:% —>1) between inverse spectra;

(b) A map h:% —s1l of an inverse spectrum into a direct

The following notations will be used: (Mjwis a direct or

H*jlﬂ) the homology group of?&f:

3]
418
O
’Qr.a
3
i

cohomology group ot UJ .

1
ct
=
o

wOl) = 2 )

Jo—
Lo °

the homotopy group of W)

il
i

2 = 2 (7]

the cohomotopy group of A .

TR = 7 (zqm;‘}))
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ig notation lincludes, of couree, the case of a space W. Unlees
ne entries of the Spectrum‘@&fare Tfinlte CW-complexes, 1t is
cegsary 1o epeclfy the homology and cohomology theories con-—
dered.

A spectrum %fdis sald to have bounded homology 1f

(W) = 0 for sll sufficlently large q. The same notion of
:ndednqgg applles to cohomology, homotopy and cohomotopy.
Although the definitions of this section have been stated

ermg of general epectra, in all that follows, we shall be

werned with cellular spectra only, Thuse, the qualification

uler will be omitted, and all the entries of a spectrum will,

e e e T

m now on, be assumed to be finite CW-complexes,

2. Duality for Spectra

A direct spectrum A = (Ui,©i) and an inverse spectrunm
= (X,,V,) are sald to be p-dusl if, for each 1, Uy and X, are
akly p-dual, in such a way thet the (weak) duality isomorphism

. e
10,0y 03 & {%y49,%,} takes ¢, into ¥,.
Theorem (2.1). Every finite dimensional epectrum has a

ual for some p. If u,}; are p~dual, then SH,K and ‘F-;L,s’(%

e (ptl)-dval. Any two p-duals of the same spectrum are equiv-
ent,

Proof. Let Y = (Uy,9,) be a direct spectrum with

n Ui S q for all 1. Then there exists an integer p (in fact,
tay be taken = 2q + 1) such that each Uy admite an S-equiv.
?nce hi with a subpolyhedron P, of the sphere SP.  Let

L. P, be a p-dual of Py, so that Xi 18 weakly p-dual to

I




22

, for each 1. Define ¢1:X1+l——>xi to be the image of §, under
weak duality Dp:iui,ul +1»§“"“’EX1+1’X1} defined by the equiv-
ences By, hyii. Then ¥ = (X,,¥,) 1s an inverse spectrum,

nal to%i . The existence of a p-~dual to a Tinite dimensional

erse spectrum ls, of course, proved in the same manner. If
¥ are p-dusl then, for each 1,%SU1,Xi§are weakly (p+l)-dual
the weak duality D .. :{8U,,80, 4% {X,4:,X,} takes 8§, into
so 8UL,% are (ptl)=dual. Similarly, one checks that U,8%
(ptl)-dual. Given two p-duale X = (X,,0,), Ty = (X$,71) to

ame spectrum W, = (Ui,¢i), there exists, for each i, an 8-

ivalence fi:Xi~v>Xi, which 18 weakly dual to the identity map

4+ Since J, and P! are both weakly dual to §,, it follows
wt P! o £f,49 = £ O ¥,, hence the various f, combine to give an
ivalence f: 4 —> X9,

Theorem (2.2). Let‘@i,?j’be direct spectra, respectively

somorphlsms

Dot LB 1= W, %]

.h the following properties:

(1) If all these spectra reduce to spaces (i.,e., finite
~¢Qmplexes) these isomorphisms reduce to the Spanier-Whitehead

ality isomorphism;

(2) For W p-dual to %?, J}p takes the peiring (1L.2)
%o (1.3), takes (1.4) into (1.5), and (1.8) into (1.7);

: (3) Sﬁap = £3p+l’ £9p+18 = ﬁap (by considering sl as
*1)-dual to X , S'U ag (pﬂ.}-—dual to @ R ete, ).
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Proof. The proof consists of straightforward passages

1 : "
limits; For(instance, QTXfU'S = éigi(JiigiUi,Vj%) and {Q),%& =
mi(jiigixl,xjé). These limite are taken with respect to S-maps
gt are pairwise p-dual. Therefore, the duality lsomorphieme
g{Ui,VJ%ik {YJ,Xia induce, in the limite, the isomorphism
_;iu_jjﬂrw %zj ﬂ%% « The remaining statements follow easily,

taking limits, from the corresponding properties of the duallty

5. The Singular S-category

A singular S-mep o:U—>V of a space U 1nto a space V 18

cbrrespondence which assigne to each finite polyhedron P a
momorphism

opt{P,Uf—>{P, V]

‘gsuch way that, given another polyhedron Q and S-maps f;P->»Q,

Q—>U, the following relation holds:

op(g o £) = op(g) o f.
The set of singular S-maps ¢;U—V forms, in a natural
¥, & group which is denoted by §U,V§s and called the group of

gular S.maps from U to V. BSpaces and thelr singular B-wape

m a category, the singular S-category. The composite

To 0:U—>W of 2 singular B-maps 0:U—V, T :V—>W 18 defined
Pp = EP 0 0?:EP,U§~—a P,W for each finite polyhedron P. Com-
8ition of singular maps yields a pairing

1) vuf, ® fu,vi,—u,wl,.

A singular'S—map ¢:U-—>V 18 an equivalence if and only if

-{P:UEeriP,VE for every polyhedron P, If there exiets a sin-
lar S-equivalence oiU—>V, the spaces U,V are saild to be of the

18 singular S-type.
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Proof. Define a homomorphism ;i’:%U,VEsﬂwa{U,V} by
S1(o) = oy(3y), where Jy?U& U, It is easily seen that 2.' is
s two-eided inverse of ., ,
Lemma (3.3). Let U be a CW-complex and V be any space.

guppose given, for every finite subcomplex K< U, & continuous

function fp:K—sV in such a way that if LK, f; 2% f|L. Then,
there exists a continuous function f:U—sV such thet f|K X fy for
every finite subcomplex X.

. Proof, The function f will be defined successively on
each skeleton U? and called f,, there. Define fo on U°% to equal
fK on every O-cell K of U. Suppose that fo""’fnal have been
&efined in such a way that filLfﬁ f; for every finite subcomplex
‘of dimension = i, & = n-l, and fl extends fi—l' Then, define
fh:Un—~>V ag follows: for each n-cell XK of U, with boundary L,
.1 |L= £ 22 £ (L. Since fy|L extends to K, the homotopy ex-

tension theorem asserts that f,.7 |l extende to & function

£ |KiK—sV and fn|KiX.fK. Letting K run over all n-cells of U,

: n N
hls defines f:U"—>V, extending f _, and such that f [K<X ryp
or every n-cell K. Now, Af M 1s any finite subcomplex of di-

n-1 .. n-1 n-1
nsion n in U, £, {8 " ¢ CH L A 80 1t may

Mn—lﬁi

¢ assumed that fy and fn|M agree on M1, Now, for every n-cell

nM, f|K= fpox £ |K, therefore fyy== £, |M. Thie completes

e proof of (3.3).

Lemma (3.4). If U is a finite dimensional CW-complex,
bhen the homomorphism 2?;%U,V§-;§U,V§S is onto, for every space V.

Proof. Let dim U = n, There exists an integer p such

het, fop every finite CW-complex K with dim K = n, {K,V%imESpK,éﬁl
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Theorem (3.5). If U is a CW-complex and V is an arbltrary

pace, there 1s a natural lsomorphism @?:iU,Vﬁsﬁc 11mK %K,V},

mhere K describes the finite subcomplexes of U.

Corollary (3.6). If U is a CW-complex and V is an arbi-
ary space, the kernel of the homomorphism E{:{U,V}->%U,V}s
onsists of the S-maps f:U-—V such that f|K = 0 for every finite
“pcomplex K of U,

Proof. Let AéU,V}-—)&EK {X,V] pe the homomorphism that
sgigns to each S-map f:U—sV the string A(f) = (fK) where

|k, Of course, the kernel of A is the set of S-maps
—»V¥ such that £|K = 0 for every finite subcomplex K. The

rollary follows then from the commutativity of the diagren

F/zuv} A
{Uv} W@Jéfixvﬁ

EEE&EE' Examples show that the kernel of @? may be none
'1vial, even for a 2-dimensional CW-complex U.
A singular S-map o:U~sV induces, for each q, a homomor-
:Zf (u) = {8, U}m“>{sq vi = 2 (V). Combining these, one
:‘tains a homomorphlem g, g’;%(u)-» afi,*,(v) If ¢ is the identity
U, is the identity homomorphism. Moreover (c o al¢;='t#~° O
Theorem (3.7). A singular map o:U—»V 18 an equivalence
and only if o s 2 (U =z if%(v)
Proof. Half of the statement is obvious., Buppose that
‘18 an isomorphism onto. Then UP;%P,Ua'Q:%P,VE for every fi-

€ polyhedron P which is an iterated suspension of a
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o-dimensional polyhedron. In fact, such a P is a bouquet of
;epheres of the same dimension, say q, hence i{P,U} ana {P,V§ are
jairect sums (the same number of times) of ;fq(U) and éfq(V) re-
. gpectively, 8o Up ig a direct sum of the isomorphlsme

el

wq(V) the same number of times. Now assume, in-

P
= n,
Let @ be a polyhedron of dimenslon n+l. It will be shown that,

for every integer o, cSrQ:%SrQ,Ugﬁm,{SrQ,VE. The following dia-

gram repregents the homomorphlsm of the exact sequence of

">isr+lQn;Uz~>{Sr(Q/Qn),U%w>{SrQ,U§4>€SrQn’d§4>{sr(Q/Qn),SU}“;‘”

LT

> {8718, Ul {87 (@/Q™), Uj-> (879, U] {8"Q"%, U]—> (8" (0/Q"), SUf->..

@he homomorphisms 1 and 4 are isomorphisms onto, by the inductive
hypothesis, since Q" has dimenslon n. By the same reason, 2 and
5 are also isomorphisms onto, since /A" is a bouquet of (n+l)-

Spheres, hence suspension of a O-dimensional polyhedron. There-

ore, by the five Lemma, 3 is an isomorphlsm onto, which completes

Given a space U, let GU denote the geometrical reallizatlion
of the singular complex of U [6]. GU will be called simply the
Singular complex of U. There is a natural continuoue function

+30U—»U, which inducee isomorphisms between the homotopy groups

T GU and those of U, Then h' and all its suspensions induce
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s1gomorphlisms of the singular homology groups. By & theorem of

pitehead [15], all the suspensions of h' induce also isomor-

phisms of the homotopy groups. Therefore, if h:GU—>U 18 the
g-class of ht, h :2:%(GU)ﬁE,E;%jU), 80 the singular S-map h =
7.(h):GU—>U 18 a singular S-equivalence, by (3.7). This proves:
Corollary (3.8). The natural S-map h:GU-—»U induces a

singular S-equivalence.
Another consequence of (3.7) is:

Corollary (3.9). Let U,V be CW-complexes. An S-map

fg%U,V} is an equivalence 1f and only if the singular S-map
Ei(f)e{U,V}s ie an equivalence,
A singular SB-map 0:U-—sV induces a homomorphism

0 sH, (U)—sH (V)
pf the singular homology group of U into the singular homology
group of V. There are two alternative ways of defining ¢ . The
first one is based on the description of the singular homology
groups of a space by means of maps of Ffinite polyhedra into 1%
(see [18], page 138, and references therein), By this method,
9&13 defined as follows: given a singular homology clase
Hy(U), there exlsts a finite polyhedron P, a homology clase
wel, (P) and an S-map £:P-—»U such that f.(w) = z. Define
:(Z) = UP(fL%(w)eH*jV). This definition does not depend on
'he choices of P, w, f. 1In fact, 1f P' i another polyhedron,
d.w'eH%jP') is a class such that f%jw') = g for an S-map
P'—>U, then there exists (loc cit.,) a finite polyhedron §
Ntaining P, P', an S-map g:Q-—>U and a homology class er*ﬁQ)
.bh that g|P = £, g|P' = ' and j*(w) = %@(w') = x, where




og{g) o 3. Thus op(f), (w) = op(g) [3 (w)] =
(g), [ (wt)] = opy (21D, ().
The induced homomorphism o, may alsc be defined as

: given the singular S-map ¢:U-—sV, let G = 0 o he{GU,V]_.

or each @ = O, let ot = E]Gqu§GUq,V§B. By (3.4), there exists

n S-map fqe{GUq,VE such that 2;(fq) = g2, The S-map fq is not

nique, but any 2 cholces agree on every finite subcomplex of

gul, Moreover, one may define the various fq inductively, so

au? = £ . Now, define :Hq(U)~a>Hq(V) as the

q‘**lt q
omposlite

hat f q*

-1 -1
h J £
By (U) —s H (60) X B (609™) -8 (V)
here 3:6U9":(C GU. It 1s left to the reader to check that this
efinition of ¢ agrees with the previous one. The new definition
88 the advantage of using homology isomorphisms jx:and qul%é
hduced by real S-maps.
Theorem (3,10}, A singular S-map ¢:U—sV 18 an equivalernce
fa . e
nd only if o :H (U) =~ H (V).
Proof. One part is obvious. For the other part, let o

an lsomorphism. Then, in the second definition above,
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a+li
fq"'l%-SHP(Gu )

ment, using the mapping cylinder of some continuous function

o e~
q+léﬁ°“"“r(u) z‘:.,._.r(v) for

every T S q. Since q 1s arbitrary, q&:ig%(UJ Q:E;%IV) g0, by

ﬁkeHP(V) for every r = d. By the classical argu-
pepresenting fq+l’ it follows that f

(3.7}, ¢ 18 an equivalence,

4. The Cech S-category

A Cech Swmap ¥:X-—>Y, from a space X to a space ¥, is a

orrespondence which aggigns to every finlte polyhedron P a

v i1, Pj—siX, P}
in such a way that, if Q@ 1e another finite polyhedron and f:P-~>Q,
3 Y—>P are S-maps, Then

Ur o g) = £ o ¥ a).

Y
The set of Cech S-maps from a space X to a space ¥ 1is

ndowed with a naturel group structure. This group of Cech

-maps from X to ¥ wlll be denoted by {X,Y}c. The composite
=8 0 v of two Cech 8-maps KoY, §3Y—3>»Z is defined by

P szﬁz,PS——agx,P} for every finite polyhedron P, The

= §
dentity Cech 8-map £ :X—sX is characterized by the conditlon
hat EP:XX,Pﬁ-—>{X,PE is the identity homomorphism for each P,

- Cech map v:X—>Y 18 an equivalence if it has a two sided in-

erse 8:Y-—»X, that is, 8§ o v = identity, v o & = identity. This
appens 1f and only if wps‘{Y,P"§ 2 {X,Pl for each P, When 1t

appens, X,Y are sald to be of the same Cech S-type.

The Cech S-category has spaces as its objects and Cech

~laps ag its maps, with composition defined as above., Composi-
lon of maps in this category defines the pailring
¢.1) i,z @ X,y —ix,2}.
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vinary S-18D £:X—>Y induces a Cech S-map

¢ ynere, for each P, vF = iy, P} —{X,P{. The

s r—> | (£) defines a homomorphlsm

| F'={X»Y3-—"">{X»ch

with respect to composition and sends identity
;;ty maps. Thus N 18 a homomorphism of the ordi-
_%;1nt° the Cech S-category.
-ifgwing two lemmas are proved just like their ana-
and (3.2):
(4.2). A Cech S-map v:X—>Y can be extended, in a
uw;;eorreSpondence that assigns to every finite CW-

jmomorphism VK:iY,K}-—>{X,K} such that YL(f o g)=

L i8 another finite CW-complex and f:K—sL, g:Y—>K

(4.3). If Y is a finite CW-complex then, for every

~ {X, Y} e

further study of the Cech S-category, we shall
1tion mostly to compact spaces, because of the sim-
©x1sting between the open coverings of a compact
pravarings of the suspension SX. The followilng
8im to establish these relations.

Be a rinite open covering of a space X. The fol-

N8 will be consistently used:
‘,:: or a;

“a 8ome canonical continuous function determined
g o;

*ﬁ%ﬁ{X,Xu}, the (unique) canonical S-map determined
!
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!
If a' refines «, pg :Xa,-—>Xa denotes some projection
C(.’
function, whose S-class is G(x e{xa,,xa}.

A regular covering p = {(si,ti)} of the open (straight

1ine) interval (eo,tn) consists of open subintervals (so,to),
(gl,tl),...,(sn,tn) with s <8; <t <sgp<t;< rr<B <ty 3 <t
The nerve of a regular covering of an open interval 1s isomorphiec
to & subdivision of the unit interval I.

Let o be a finlte open covering of a space X and let

= {(ei,ti)i be a regular covering of the open subinterval

P_
g = (sn,tn)C: I, Let also A,B denote the followlng disjoint
open subsets of the suspension 8X:

A=1{(x,t) ¢ 5%; t < a}, B = {(x,t) ¢ 8X; t > b},
where a,beJ are such that 8, <@ <8 < - <t ,<b< L7

Then, denote by p = o o p(A,B) the finlte open covering of 8X
consisting of the sets A,B, together with the image under the
injection X J—>8X, of the product covering a X p. The sets A,B
are called the poles of the covering B = a o p(4,B). When there
18 no need to specify the poles A,B, one Just writes B = a o p.
In the covering a o p = o o p(A,B), the set B meets
exactly the sets on the top row of a X p, that is, the sets
VX (s,,t,), Vea, whereas A meets precisely the sets V X (85,t,),

l.e., those on the bottom row of a X p. Now, the nerve of a X p

is the elmplicial product Xa A I_ of the nerves of a and p (see

P
[2], page 66). The subcomplexes Xg, xéc::xa A Ip, generated by
the sets on the bottom and top row respectively are naturally

1somorphic to Xa. The sets in p are ordered in e natural way so

Ip has a natural structure of ordered complex, which will always
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pe implicltly considered. Any linear order in o introduces an
order 1n the nerve X, and gives rise therefore to a cartesian
product X, X 1,5 which 1s a subcomplex of X, A I, ([2], page 87).
This carteslan product contains Xg and X;, no matter what order
48 chosen in a, since the order of p is always the same. From

what was sald above, the nerve (8X) is obtained from Xa AT

aop
by attaching two cones to this space: a cone T°X§, with base

p

xg and another TlXé, with base X&. If p consists of a single

1 so (SX)

: - o _ -
pot, X, A I, =X = X = 8X,. This motivates the

p
followlng definition:

aop

Let a be a finlte open covering of X. The susepension of

@ with poles A,B, 18 the covering sAB(q) = 0 0 po(A,B), where o
is the covering of J = I - i by one set. When there 1s no need
50 epecify the poles A,B, one just writes sa instead of Bypla).
The nerve (SX)Ba of sax = s,p(a) is naturally isomorphic to 8K s
in such a way that A,B are sent into the poles of SXa. Identi-
fying (SX)sa with Sxa under this isomorphism, the suspension of
& canonical function hq:X-—>Xa 1s a canonical function
Bhu:SX-—>Sxa. By iteration, one defines also the suspension

s o
8°a for every r £ 0, and sees that SrX“¢=(SrX) P
8

o
The covering a o p reflnes sa (provided both are taken

With the same poles), 8o there is a uniquely defined projection

= pdop,
& =0, : (8X) — (sx)sa.

aop
Lemma (4.4); The projection S-map © 1s an equivalence.
Proof. Represent & by the simplicial function
.irg(&t)aopﬁ(sx)m = 8X, defined by f(A) = A, £(B) = B,
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e(vV X (8y,%4)) =V X (0,1), for every Vea and (8y,5;)ep. Order
the sets of o linearly, so that the cartesian product xa:x Ip is
defined. Conslder the commutative dlagram below, where g is the

jnclusion function:

T
(sx)ao a 8X

P /,; a
\ /f'

040 1,1
(o x I,) U TOK, U TXy

In the first place, g 1is a homotopy equivalence, since Xa‘x Ip

is & deformation retract of Xa A Ip ([2], page 69) and (sx)aop =

Xa A Ip\) Toxa\J Tlxt. Furthermore, f' is alsoc a homotopy equiv-
alence. In fact, if p consists of a single set, f' is the iden-
tity. If p consists of m+l sets (m = 0) then X, % Ip consists

of m prisms Pl"“’Pm’ with bases Xa’ subdivided simplicially in
the standard manner ([2], page 70), and piled up in such a way
that the bottom face of P1+l coincides with the top face of Pi'
Now, the function f' collapses vertically the prisms Pi onto

the standard base Xa and 1s homeomorphic on the cones. Hence it
is a homotopy equivalence. It follows that f 1s a homotopy
equivalence also, which implies (4.4).

Lemma (4.5). Let X be compact. When o describes the
finite open coverings of X and p runs over the regular coverings
Of open subintervals of I, then the coverings of type a o p form
& cofinal subset of the set of all open coverings of SX.

Proof. Let f be an open covering of 8X. In particular,
B covers the poles of S8X, so there exlst numbers a,b, O<a<b<l,

Such that the sets A ={ (x,t)eSK; t < a}, B = {(x,t)eSX; t > bj
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agre both contained in sets of B. Now, let J be an open sublnter-
gal of I containing a,b and such that 1ts closure J lies in the
interior of I. The injection X X J—>8X induces an open covering
g! on X X J. B8ince both X and J are compact, B' may be refined
py & covering a X p, where o is a finlte open covering of X and
P ls a covering of E'Whose restriction p to J is a regular cov-
ering. Let B" be the finite open covering of SX consisting of
the sets A,B and the images of the sets of a X p under the injec-
tion X X J—>3X. Then B" = a o p and B" refines B.

Lemma (4.6). Let X be a compact space and K a CW-complex,
For every S-map g:X—>K, there exists a finite open covering a
of X, with nerve Xa and canonical S-map ea:X——>Xa, such that g
factors as g = 8g © Ga, with gae{Xa,K}.

Proof. There 18 no loss of generality in assuming that

K 18 a finite polyhedron, since g may be factored as a map of X
into some finite subcomplex of K followed by the injection of
this subcomplex, and every finite CW-complex is equivalent to a
finite polyhedron. Represent g by a continuous function
£:8"X—>8"K, Buppose firet that r = 1. Then (see, for instance,

[8], page 207), there exists a finite covering B of 3X and a

continuous function fB:(SX)ﬁ——>SK, such that f =~ fp ) hﬁ' By

(4~5), there exists a finite open covering a of X and a regular
Covering p of some open subinterval JC I, such that a o p
Tefines B. Now a o p refines the covering sa of SX,

£
> 8K
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which has 8X ~as nerve and S8H, as canonical function. The pro-

Jection function p = paop (SX) _+>sxa ie a homotopy equivalence

o
(gee proof of (4.4)), with 1nver:e p"l. Define f, =
fp o pg°p 0 p'l. Then f:::fa o Sha' Let Bq ={fa}. Since

o, =15Hd}and g = if}, this givee g = g, 0 6,. The case r > 1
rfollows from the case r = 1 by an obvious iteration procedure,

Lemma (4.7). Let X be a compact space, K a CW-complex,

« 8 finite open covering of X, with nerve Xa and projection S-map
0, X—>Xy. If gy 1%y K 18 Buch that g o 8 = Oe{X,k}, then
there exists a finite open covering a' of X, refining a, with
nerve Xa, and projection S-map eg':xa,__>xa, such that

g © Og' = 0,

Proof. Again, 1t may be assumed that K 1s a finlte poly-
hedron. Represent 99 by a contilnuous function fa:SrX->SrK, with
r taken so large that Srh¢o fa5¥ 0. Suppose first that r = 1,

By a result of Spanier, (see [8], page 227, where the argument

gilven for the case K = gl applies ipsis literis for an arbiltrary

K) there exists a finite open covering B of 8X, refining sa, such

that £ o pg-e:o. Now, by (4.5), there exlists a finite

a op ‘///7 a'
p (8X) /a' \

Open covering a' of X and some regular covering p of an open sub-

3

interval or I, such that a o p refines B. Moreover, a' o p also

¥°fines sa! and the projection function pOC °p, (SX) p->sxa, is
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a homotopy equivalence (see proof of (4.5)), with homotopy

jinverse p_l. Bince the block of the above diagram is homotopy

1 a' _l '~
commutative, pg o~ pg o pB °P o P , hence fa o pg 2~ 0. There-
1
fore, passing to S-classes, 8y © Gg = 0, The case r > 1 follows

¢from the case r = 1 by 1lterating the argument,

Corollary (4.8). Let X be a compact space and X a CW-
gomplex. The correspondence that assigns to each S-map faefxa,Kg
(where a 1s a finite open covering of X) the S-map fa o] an{X,K}
induces a natural isomorphism {X,K} a:aiig{xa,K}.

Let ¥ be compact and X an arbitrary space. To every
finite open covering a of Y, assign the group {X,Yag. If B
pefines a, let ix,xﬁ§_->ix,ya§ be induced by the projection S-map
ﬁg:Yp——SYa. This defines an inverse system of groups over the
8et of finite open coverings of Y, ordered by refinement. The
8lements of the correepon@ing limit group QEEE[X,I&} are strings
I = (fa) of S-maps fniX—>X,, indexed by finite open coverings

@, and such that Gg o fB = fa’ when B refines o. There is a
natural homomorphism

¥ 1%, Y], — lin {x,xa’,

Which assigns to each Cech map v:X—sY the string f = (£5),
Where Ty = wYa(ea), 8y :Y—>Y, being, as usual, the canonical
"-m&p,. The homomorphism \Y 1s actually an isomorphism onto,
8ince 1t has a two—sided inverse ¥ ':]ﬂ{X,YaR-»{X,Y}c, which
*88lgns to each string f = (f,) in the first group, the Cech
f;map Y:X—>Y defined as follows: given a finite polyhedron P
204 an §_map ge{I,P}, there exlsts a finlte open covering o of

* 8uch that g = 8y 0 8, with g :Y —>P (by (4.6)). Then, put
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YP(g) = 8y O fyiX—>P. Modulo checking the claims about \?',
which is straightforward, the following result has been proved:

Theorem (4.9). If Y 1s a compact space and X an arbitrary
gpace, there is a natural 1somorphisn1iy:{X,Y}cQ; EEE{X,YGR,
where a describes the finite open coverings of Y.

Corollary (4.10). The kernel of the homomorphism
T g{X,Y}—-){X,Y}c consists, for a compact space Y, of the S-maps
f:X—>Y such that ea o f =0 for every finlte open covering o of

Y.

Proof. Define the homomorphism A :{X,Y‘—e];:_t_gx {X,Ya\
which assigns to each S-map f:X—sY the string A(f) = (£,),
where fa = ea o f. The diagram below 1s commutative:

{x,¥}
r A
LY

{x,¥}, > lim {X, ¥},

8ince ¥ 18 an isomorphism onto, the kernels of | and N\ are

equel. Now, the kernel of /\ 1s obviously the set described in
the statement.

Remark. The following 1s an example of a compact space

X for which {8%,X} 1s nontrivial but {s',x}_ = 0, showing thus
that the kernel of [T may be nontrivial. Let A, be the circle of
radius 1/n, 1in the upper half plane, tangent to the x-axis at the
ﬁrigin P, Let A = &;2 An’ and set X = TAVTA, with the point Po
48 base point (where TA denotes the cone over A). X is the
ntersection (1.e., the inverse 1limit) of a decreasing sequence

T contractible polyhedra, hence {sl,x}c = 0. But 1t can be
Shown that {sl,XS = nl(X) 1s nontrivial.
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A Cech S-map Y¥:X—>Y induces, for each q, a homomorphism
qsq;{I,Sq}——>{X,Sq}. Combining these, a homomorphism {*:Zif(y)-+>
Z_*(X) is obtalned. 1If v is the identity map, 'Y* le the ildentity
nomomorphism, and (8 o w)ﬁ== W#Fo 6¢E
Theorem (4.11). A Cech S-map v:X-—>Y is an equivalence
1f and only if E Z*(Y) = Z’fx).

Proof. One uses the homomorphism that ¥ induces, for

each finite polyhedron P, from the exact sequence of (Y;P,Pn)
into the exact sequence of (X;P,Pn), and arguments entirely

analogous to those of (3.7).

A

Lemma (4.12). Let X be a compact space of dimension
p - 4. Then, for every CW-complex K, {X,XK} = [8Px,8Px],
Proof. If X is a OW-complex, this follows from (7.3) in

[13]. For a compact space X, {X,K}= E&g X_,X}, @ running over
the finite open coverings of X (by (4.6) and (4.7)). Since
dim X = P - 4, 1t suffices to consider those coverings a with
dim X S p - 4. Then, X, being a polyhedron, {X ,K}= [8PX,sPk]
for all those a, so {X,K} ~ lim [8Px , 8PK]~[8Px, sPK].

A Cech S-map y:X—>Y induces a homomorphism v*:H¥(Y)—s>
BX(X) of the Cech cohomology group of ¥ into that of X. «* is
defined as follows: let Yy be represented by a string (ga) of
Compatible S-mapse ga:X——>Ya of X into the nerves Ya of finlte
Open coverings o of Y. Because of the compatibility relation
Qﬁ = 92 ° & which holds when P refines a, the induced homomor-
Phieme g, :H *KY )—a;H*(X) induce, in the limit, a homomorphism
V*II(Y) = lim H*(Y ) Hx?X). The usual properties (identity5*=
ddenty gy, (s o v)" =4* o 6% nold.
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Theorem (4.13). Let X,Y be compact spaces, Y being
metrizable, and v:X—Y a Cech S-map such that w*:H*(Y)ctzﬁ*(X).
Then Y 18 an equivalence, provided that eilther (a) X is finite
daimensional; or (b) X 1s metrizable.

Proof. Since Y is metrizable, 1t has a cofinal sequence

of finite open coverings, with nerves Y°<-—Yl<——..., Y1+l——>Y1
pelng some arbltrarily chosen projection function. The Cech
g-map Y 18 defined by a sequence of compatible S-maps wi:X——>Y1.
Assume firet (a), that is, finite dimensionality of X, Then, by
(4.12), there exists an integer p such that all S-maps v, :X—>Y,
are realized as continuous functions fizst-—>SpI1 and, moreover,
p may be chosen large enough so that f1:= Py © f1+l’ where
p1:8p11+l——>SpY1 is some projection function. In order to sim-
plify notation, assume that such p was chosen and write X for
8PX and Yi for SpYi. Then, there are continuous functions
ri:X-—>Yi and p1:Y1+l—->Y1, given for each index 1, such that

the diagram below is commutative up to homotopy:

Moreover, H*(Y) = li& H*(Yi), the limlt being taken with respect
to Py , and the homomorphiem X HN(Y)—> H*KX), induced by the
Various f,y's, coincides with v , hence 1t 1s an leomorphism onto.
Now let 2y = TX\-/ Y, denote the quotient space of the topolog-
lcal sum TX + Y %Where TX is the cone over X), obtained by iden-

tifying (x,0) in the base of TX with f,(x)eY,. There is an
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ynjecting function ki:xi‘—)zi and a collapej:ng function gl:Zi-—>SX,
the latter being defined by identifying all points of ki(Yi) to a
gingle point. It 1s possible to define, for each 1, a continuous
function gizzi +l-—>zi, such that the dlagram below 1is commutative
ap to homotopy (ef., (12], Lemma (13.1)):
£y k, N 81‘1
X—— Ii ——es Zi —— e B> SYi-—-u-—> ;i
(4.14) 1a Py qiT 1a Py

>Y
i+l

::Zi'l'l >3X %SYi_'_l-——-——é. o

141
141, 8141 8%y 41

f k

Now, for each 1, the sequence of Cech cohomology groups below 1is

exact: * 9(_ %
vo.——>H (sxi)—-——>H *(80) -2 12, )21, ) 21" (%),

Thus, if Z = ‘]&r_n Zi denotes the inverse limit of the compact
8paces Z:L under the functions g4 by continuity of Cech cohomol-
ogy, H (2) = lip H'(Z,) o, taking the limit of the last exact

cohomology sequence with respect to the homomorphlisms 1nduced' by
the functions in the diagram (4.14), the following exact sequence

18 obtained:

L sx)ﬁiﬂ*( sx)_&taﬁ*(z)_k—taﬂ*(x)_flla*(x) :

Now £* (ana Sf*) are isomorphisms onto. Hence H*(Z) = 0, By the

*
‘theorem of Hopf for compact spaces, 2. (Z) = O. But the sequence

-—>Z (8Y) Sf* Z.* SX)--—->Z_*(Z) Z*(Y) ZX-(X),
18 also exact ([12], (7.5)). Thus +¥ 18 an isomorphism onto.
But f#= 'v# also. 8o, by (4.11), v 1s an equivalence.
In order to prove (4.13) in the case (b), where X is

888umeq to be metrizable, but of arbltrary dimension, observe
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firSt that 1f the theorem 1s true for a space X then 1t is true
also for every space that has the same Cech 8-type as X. The
procedure then 18 to prove the theorem for a certailn class (F)
of compact spaces and, after this, show that every compact metric
gpace 18 of the same Cech S-type of some epace in (F),

The class (F) 1s that of filtrable spaces. A compact
gpace X 18 sald to be filtrable 1f there exists a sequence of
oclosed subspaces X% X such that:

(F1) x°C xtc ..., L_qu = X, aim X = q;

(F2) The homomorphisms JJ*EHP(X)->Hr(Xq) (Cech coho-

mology) and Jé%:ZZr(X)——>Z:r(Xq) induced by the inclusion map

_Jq:Xq(: X have kernel zero for r = q and are onto for r = q - 1,

Now, 1f X is a filtrable space, it will be shown that a
Cech S-map ¥:X—>Y that induces a cohomology isomorphism 1s an
equivalence. In fact, 'y induces maps 7q = wc:Jq:Xq——>Y and, for
every ¢ S r - 1:
vi= AL o X (v) BT (xY),
(4.15)

V= o R T —ZT ).

The argument used in the case (a) provides, for each q, a space

2% ang an exact sequence

gy ¥ x ’x *
. '———eHr(SY)—(—'Y—gl)Hr(SXq)-Eq-—)Hr(Zq)—kiaHr(Y)—'ﬁl—>H (X).

By the first formula (4.15), wé‘ie an isomorphism onto for

» <
*=q-1, so (quf*is an isomorphism onto for r = q, By exact-

Ness, H'(29) = 0 for r S q - 1. Take now the case r = q. The

homomorphiem gﬁF:Hq(SXq)——>Hq(Zq) is zero. 1If k;fis also shown

0 be zero, 1t will follow that H(z%) = 0, hence H (z3) = o0,
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* . * .4 a
Now kg = 0 Af and only if Ty :H*(Y)~>H?(X) 18 1-1. But this is
true, because wﬁf = j:-o vaewhere, by assumption v’tis an lsomor-

phiem and jy:HL(X)—>HU(X?) 16 1-1 by the definition of a filtra-
ple space. Thus Hi?Zq) = 0, By Hopf's theorem, Zi*]zq) = 0,

Hence, by the exactness of the sequence
¥

(8v,) ¥
s 7 X)) s T (2 - T M) 2% T ¥ (xY),
1t follows that 7:F
(4.15), 'Y—‘“::Zr(Y)QZr(X) for all » $q - 1. Since q 1is arbi-

le an isomorphlism onto. By the second formula

trary, 'y*:z*(Y)zZ*(x). By (4.11), v is an equivalence.
Theorem (4.13) is then true when X 18 a filtrable compact
space. But which spaces are filtrable? In [2], (Theorem 10.1,
page 284) 1t 1e proved that every compact space X can be written
as an inverse 1limit of polyhedra: X = élg Pa’ relative to con-
tinuous functions fg:PB——>Pa, defined when a < f in a certain
directed set A, and such that fg o) fg = fg for a < B <v. The
proof in [2] does not provide simplicial functions fg. If the
functions £ can be chosen simplicial, then X is filtrable. In

fact, in this case, fg maps the q-sgkeleton Pﬁq into the q-ekeleton

P q’ 80 the inverse 1imit X3 = 1im P 2 1s well defined, and the
o «—Q O 2

x4 are easlly seen to yleld a filltration of X. Now, if X is
metrizable, let Xo, X4,... be the sequence of nerves correspond-

ing to a cofinal sequence of finlte open coverings of X, each
Pefining the preceding one. Let f1:X1+1-—>X1 be a simplicial
Projection function. Then, X' = Lim, X, (1imit taken with re-

8pect to the functions fi) le a flltrable space. Moreover, there

18 a natural Cech 8-equivalence v:X'—X, defined as follows:
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:.given an S-map g:X—sP (P a finite polyhedron) then g = gy 0 9y
for some 1, where gleixi,P} and éi;x__>x1 is the canonlcal S-map,
put wP(g) = g, oT,, where m,:X'—>X, 1s the S-class of the
natural projection of the inverse limlt X' into Xl. This con-
cludes the proof of (4.13).

Remarks. 1) It may be true that every compact space ie
filtrable, or at least of the same Cech type of a filtrable space,
put this question has not been settled.

2) Besides the restriction of metrizability for X and ¥,
there 1s another difference between (4.13) and 1ts counterpart
(3.10) in the singular S-theory. The latter is still valid in
the "singular homotopy theory", where the concepte are similar
to those of sectlon 3, with S-groups {A,B} substituted by sets
of homotopy classes [},B]. On the other hand, Af a "Cech homo-
topy theory" is introduced, in the same spirit, (4.13) no longer
holds. This fallure is connected with the non-universal defini-
tion of cohomotopy groups. A simple counter example 1s provided
by the compact 2-dimensilonal space Y, inverse limlt of a sequence

= of degree 3. The Cech cohomol-

of 2-spheres under maps f:Sz-—>S
Ogy group HX(Y) 18 trivial, but [54,Y]c = Z,, showing that Y 1s
not of the same Cech homotopy type of a point. (Notice however
that Y has the same Cech S-type as a point, so {Sn,Y}c = 0 for

all n,)

5. Representation of Spaces by Direct Spectra

A representation of a space U by a direct spectrum
U = (Ui,¢1) is a map A: U —>U which induces, for every finite
POlyhedron P, an isomorphism:

A= A fp UL {p, 0.
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A representation of U by‘lk is therefore characterized
py three conditions:

1) For every index i1 there exists an S-map AizUi-—>U

guch that the dlagram below commutes:

A\

Py

A
141
Uia

2) Every S-map f:P—sU of a finite polyhedron into U

decomposes, for some index 1, into f = Ai 0 fi’ according to the

commutative diagram below:

3) If = A Ofy = AJ 0 fJ are 2 factorizations of f as

in 2), then there exists an index m = i,) such that the dlagram

below 1s commutative:

\\\31
\/

A representation A:U—>U is sald to be finite dimensilonal

Or of bounded order 1f the spectrum ‘W has the corresponding prop-
erty.

The dimension or order of the representation is that of the

8pectrum

Example. Let U be a countable CW-complex. Let UOCZUfC s

be an increasing sequence of finlite subcomplexes of U such that
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w v
L) Uy =U. Let W= (U,,p,), with 0,:0, CUy4q. Define A =

=0
%Ai);lk-—>U by A1:U1C:U. Then A is a representation (of order 0)

of U by L. This follows immediately from the remark that every
oompact subset of U 1s contained in some U,.
Lemma (5.1). If A:U—>U 18 a representation of U by a
direct spectrum W then, for every finlte CW-complex K,
LK*:{K,'U,} ~ ix,u}.

Proof. There exists a finite polyhedron P and a pair of

jnverse S-equivalences h:K—sP, k:P—>K (by [15]). The diagram

pelow is commutative:

AK
{k,u i > {x,u}
R l e
P
. A #
{P;u-'} - = {P,U.&
Now Agr,ﬁ* and kT are lsomorphisms onto. Hence AE* is also an

isomorphism onto.

There are two ways of extending (5.1). They are summa-
rized in the followling theorem. Before stating 1t, however, 1t
8hould be remarked that a map £ = (f_,f;,...): W —>U of a direct
spectrum W into a space U may be composed wilith singular S-maps

U—sW, yielding a homomorphism:
¥_ %
%= s ¥ {uw), — Wy,

defined as follows: given oe{U,w}s, f*?c) = (g,,81,++.) where
Ei = an(fl). or cqurse, a map £:U —>U induces also, for every
8pectrum a homomorphism f, = EAPINE {w, u.} — iw: u}.

Theorem (5.2). If A:lL—>U 18 a representation of the

8pace U by the direct spectrum U then, for every space W and
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every dlrect spectrumwAY,

£ {v,w, ~ tfu,vi, Ayt {w,ul ~ fw,vl.

Both l1somorphisms above establieh 1l-1 correspondences between

the edquivalences in the domain group and representations in the
image group.

Proof. Only the statement about i& will be checked, the
other belng of a similar nature. Given ceiU,W}s, let X*(o) = 0,
Then for each 1, cUi(Ai) = 0. Thus, if P is any finlte polyhedron
and kc{P,U}, for some i, k factors as k = A, o k,, 80 cp(k) =
°Ui("1) oky =0. Thus 0 =0, and 2 16 1-1. To show that A" 1s
onto, let g = (gi):lk——aw. Then, define ce{U,W}B as follows:
given a finilte polyhedron P and ke{P,U}, k=M ok, for some 1.
Let op(k) = g; o k,e{P,W}. It ie immediate that op 1s well de-
fined and GUi(Ai) = gy, 80 i??c) = g.

Corollary (5.3). Let A:UlL—U, 9:15:—>V be representa-
tions of the spaces U,V by the direct spectraql,,17: There exists
& unique isomorphism

o :{u VUL = {u,v],

such that, for every f:tl——;mj'the following diagram is commuta-
tive:

(. S
A l P
U f(f) >V .

i 41
Proof. Define (L as the composite: i‘u,U _ﬁ{’u,v}’—‘—;
{u,vi,. |
Remark (5.4). Notice thet (L (g o f) = {L(g) o (L(f) and
Q(identity) = identity (the latter, in case (W, au) = (U 6,v)).
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Corollary (5.5). Let A:U—>U, n:'U—>U be representa-
tions of the same space U by direct spectra'U-,T7: Then, there
exlets a unique equivalence h:lL-—;'Ursuch that # o h = A.

Proof. Consider the isomorphism (1 : {U,U} ~{U,ui,.
Because of (5.4), the inverse image by [l of the identity map
U—>U 18 an equivalence h:UL—sU and, of course, 4 o h = A.

Corollary (5.6). Let A:h—sU, p:lUl—sV be representa-
tions of the spaces U,V by the same direct SpectPUﬂllk. Then,
there exists a unique singular equivaelence k:U—»V such that
ko A= Dp.

Theorem (5.7). If A:UL—>U 18 a representation of a space
U by a direct spectrum U then 8A:8U—>SU is a representation of
sU by SU.

Proof., BSince every space has the same singular S-type as
1tes singular complex, there 18 no loss of generality in assuming
that U 18 a OW-complex. Firset, remark that for every suspension
8K of a finite CW-complex K, (SA)y: fsk,8U} =~ {8K,sU}, since
A*:iK,IL} ﬁziK,U}. Now, let P be any finite CW-complex and
f:P—>S8U an S-map. Since 8U 1s the unlion of all subcomplexes 8L,
where L runs over the finite subcomplexes of U, f may be factored
a8 f = g o ', where f' maps P into a finite subcomplex SL of SU
and g:8L C 8U. BSince SL 1s a suspension, by the remark made above,
there exists an index 1 such that g = S\, 0 gy, gy : SL—>8U, .

Hence £ = SAy o f,, with £, = g, o f'. 8o, (sxl#:{P,sll}_->§P,su§

1s onto. Now, let.fe{P,8WU} be such that (SA),(f) = 0. Then f

N
may be represented by an S-map fi:P-—>SU1, such that 8A, o f, =
°€ZP,SU}. Because 8U has the weak topology given by the subcom-

Plexes SL described above, one may write SAi of, as a composilte
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§-map P—ﬁ’aSUi—g-—}SL  8U, for some L, with g o £, = 0. Bince

8L is a suspension, ﬂéi inclusion SL C 8U may be factored, through
gome 85U, asfSL——-)-SU _-’.;.gi 80 8\, o f, may be written as the
composite P—I>5U, 2 o8u, o8, with ho £, = 0. Now 8y o h =
8ay o identity, hence there exists an index m 2 1,) such that

s(pi o fy = B¢J ohof, =0. But 803 o f, also represents
¢:P—>SW, hence £ = 0, and (8A) is 1-1.

Theorem (5.8). If A:U-—>U is a representation of a
gpace U by a direct spectrum U= (Ui’qu)’ then A 'H (W)~ = (U)
where H* is the singular homology theory.

Proof. The proof willl be based upon the description of
the singular homology groups of a space by mapse of finlte poly-
hedra into it. (Cf., [18], page 138.) First of all, the map A
ie onto. In fact, given st*(U), there exlsts a polyhedron P, a
homology clase z,cH (P) and an S-map f:P—>U such that f*_(zoJ = 2z,
Since A*__: {P,'u.} -—>fP,U} is onto, there exlists an index 1 and an
8-map fy:P—>U, such that f = Ay o f;. Let z, = (fi)*(zo)eH*(Uij,
and let wsH*(uJ be the equivalence class of z,. Then z = f*(zo)=
(M) (£4),(25) = (7)), (29) = A (w). To show that A, has kernel
zero, let wcH*(u) be such that ,\*_(w) = OeH*(U). Then, there
exists a finite polyhedron Q and S-maps g:Ui«-—a»Q;, £:Q—>U such
that g (wi) = OeH*(q,) and £ o g = A;. Now, f can be factored as
T = J\ o fy fJ:Q,-éUJ. Let h = fJ 0 gzU—;UJ. Then h*(wi) =
(fJ e [ 8y w,)] = 0, and the dlagram below is commutative:

) e
//
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This means that the S-map AizUi-—>U admits two factorlzations
MM o h = Mo identity, in terms of the representation A.
Therefore, there exlsts an index m 2 1,) such that the dlagram

/\

1

pelow 1s commutative:

/4’“‘

This gives (@T)*(wl) = (¢J)*[h*ﬂwi)] = OeH*(Um), so w = 0, which
concludes the proof.

Corollary (5.9). If a space U admits e representation by
a dlrect spectrum, the singular homology group H*(U) is countable.
In fact, a countable direct 1limit of flnltely generated
groups 1s countable.

Corollary (5.10). Let W,V be direct spectra such that,
for some integer p = O Spll sPv” represent spaces. Then the

following properties of a map f:lL——}T]'are equivalent:

(1) £,:H (W) =B (V);

(2) f#:Z*(u)%Z*(U);

(3) f 1s an equivalence.

Proof. Let A:8PUL-—U, 1:8PU —sV be representations.
They induce, by (5.3), an 1somorphisanl:{Spll,splf}¢8 {U,V}s.
Let ¢ =) (8Pf). Then, (1), (2), (3) are respectively equivalent
to the following proverties of o: (1') tH (U) = H*(V); (24)

%% x
ﬁkzzi*ﬁU):z zi*CV); (3') o is a singular S-equivalence. Now the




52
three latter properties are equivalent, by virtue of (3.7) and
(3.10). |

Theorem (5,11). If thé direct spectrum LA has finite
order p, then Spll,represents some countable CW-complex U.

Proof. Let sPU = U= (Vy,9,). There are continuous
functions f,:V,—>V, . such that {f,{= ¢,. Let C, denote the
mapping cylinder of fi’ and let U be the quotient space of the
topological sum Go + Gl + ..., obtalned by ldentifying the sub-
space V1+l of G1 with the subspace V1+l of 01+1' Let L1 be the
jmage of Go + e+ Ci in U. U 1s a countable CW-complex, which
18 the union of the finite subcomplexes L,. The inJections (or
rather projections) Aizvi-—>U define a representation of U by
VU= 8P,

Remark. If U 1s finite dimensional, so is U, and dim U=
dim ’u. + p.

Consider now the converses of (5.8) and (5.9). The latter
holds without any restrictions, as will be shown below.

Lemma (6.12). Let K be a CW-complex whose singular homol-
ogy group H (K) is countable. Then K admits a countable subcom-—
plex as an S-deformation retract.

Proof. Choose a sequence (zo,zl,...) of slngular cycles

in X, whose cohomology classes generate H*KK). Define inductively
the following increasing sequence L,C LyC ... of finite sub-
Complexes of K: choose for Lo any finite subcomplex of K con-

talning the cycle z Suppose that LOCZ ... C L; have been de-

o.
fined. B8ince L, 1s finite, H_ (L,) is finltely generated. Hence,
i ) Tl

there existe a subcomplex Li+l of K such that the kernel of the
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injection map H (L, )—>H,(K) coincides with the kernel of
H*(Li)——>H*JLi+l). Choose L{,, to be any finite subcomplex of K
containing z, ... Let L1+l = Li+l\j Lg+l' This completes the
definition of the increasing sequence Loc: Llc: ...s Notice that
any homology class in H*jK) can be represented by a cycle in some
Ly Moreover, if some cycle in gr(Li) bounds in H*(K), it also
pounds in Hy (L, ,). Hence L = }:ﬁ L, 1s a countable subcomplex
of K such that the inclusion function f:L C K induces an isomor-
phism f*:H*(L) o H*(K). 80 L 18 an S8-deformation retract of K.

Remark. The method above 1s not sharp enough to prove
that 1f, moreover, K has bounded homology, then the subcomplex L
may be chosen finite dimensional. In fact, there are examples
where this cannot be done. But, relaxing the condition that L
be a subcomplex of K, M. G. Barratt proved the Lemma below (un-
published. See also [6]):

Lemma (5.13). Let K be a CW-complex with countable and
bounded singular homology. Then, there exists a countable, finite
dimensional CW-complex L of the same S-homotopy type as K. More-
over, if H,_(K) 1s finitely generated, L may be chosen finite,

Theorem (5.14). The following statements about a space
U are equivalent:

(1) U admits a representation by a (finite dimensional)
direct spectrum;

(2) U has countable (and bounded) singular homology;

(3) U edmits a representatlion of order O by a (finite
dimensional) direct spectrum;

(4) U has the same singular S-type as a (finite dimen-

sional) countable CW-complex.
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Proof. (1) — (2) by (5.8). To show that (2) —=> (3),
1et GU be the singular complex of U. By (2), H*IGU) 1s countable.

By (5.12), there existe a countable subcomplex L of GU and an S-
equivalence f:L—GU. Now, take an increasing sequence UOCIUlCL.n

®
of finite subcomplexes of U such that \_J U, = L and let U=

- i
(U1,¢1), where ¢1:U1C: Uj4p- Define AT{E-—>U as the composite
‘LL-EephégiziGU—E;aﬂ, where p = (ui) with pizUicz.L and h 1s the
natural singular S-map. Since p 1s a repreeentation and Z(f),
fi are singular equivalences, A 1s a representation (5.2) which,
of course, has order zero. Now, if (3) holds, let AU —sU be
such a representation. By (5.11),1l- represents a countable CW-
complex K. By (5.6), there exists a singular S-equivalence
g:K—>U, s0o (4) holds. It is obvious that (4) implies (1), since
a countable CW-complex always admlits a representation., As to the
more complete statements, including the conditlons of finite di-
mensionality, they hold by virtue of the same proof, with the use
of (5.12) replaced by (5.13), and the remark after (5.11).
Examine now the converse of (5.8). It does not seem to
be true in general, due to the extreme generality in the defini-
tion of a spectrum. Given a map A:U—>U of a direct spectrum
into a space U, such that A*;H*(lL)GS H,(U), then U has countable
8ingular homology, so i1t admits a representation p:QI:—>U. Then,
there exiets a map f:A-—>1) such that p o £ = A (5.2). Thus
H (W) » H*(tr). Now, A is a representation if and only if f
1s an equivalence. There seems to exist no general "egqulvalence
theorem" for direct spectra, but if some suspension sPU repre-

sents a space V, then f 1s an equivalence (5.10), so A is a
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pepresentation. In particular, if U has bounded order, A is a
representation (56.11). Therefore, the following has been proved:
Theorem (5.15). If a direct spectrum W is such that
gome suspension 8P U represents some space V (in particular, if
. has bounded order) then any map AU —>U such that
A*zﬂ*(u) =~ H*(U) is a representation.
Remark. All the preceding results (with exception of
(5.13) and, consequently, the part of (5.14) that refers to fi-
nite-dimensionality) continue to hold if singular homology groups
are replaced by S-homotopy groups throughout. The proofsare ex-
actly the same. The failure of (5.13) and of the finlte-dimen-
sional portion of (5.14) explain the omiesion, in the text, of

the statements involving homotopy groups.

6. Representatilon of Spaces by Inverse Spectra

Some propositions in this section, whose proofs are en-
tirely similar to corresponding propositions in section 5, will
be only stated but not proved.

A representation of a space X by an inverse spectrum
% = (Xi,Ui) is a map m:X—>3¥ which 1lnduces, for every finite
polyhedron P, an isomorphlsm

= n;‘: : {%,PY = §{x, p].

A sequence of S-maps m = (m ,My,...), Tr1:X¥—>X1 18
then a repreeentation of X by ¥ = (X1,$1) Af and only if the 3
conditions below hold:

1) For every 1, the dlagram below is commutative:
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Ty

— Xi
¥
M4+ T .
L41

2) Every S-map f:X—>P (P a finite polyhedron) factors,

X

for some 1, into f = fi c Ty, as shown in the commutative dia-

gram:
X £ —> P
ni\ /fi

Xy

3) Ifrf = £, o m o= fJ 0 nJ are 2 factorizations of f

as in 2), then there exists an index m Z 1,) such that the dia-

gram below 1s commutative:

i
Uy Y
Xm P
vd\ 1 /f;

A representation mM:X—>¥ 1is saild to be finite dimen—

slonal or bounded if ¥ has the corresponding property. The di-

mension or the order of M will be then that of % .

Example. Let X be a compact metrie space, which can and
will be assumed to have dlameter = 1, Define inductively the
gequence (ao,al,..;) of finlte open coverings of X as follows:
let o, coneiset of X alone. If Cys-++,@y_ 5 have been chosen, let

&4 be a finlte covering of X by open balls of diameter
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£ min(1/(1+1), Lebesgue number of @, ;). Then a, refines a_3
and the sequence (o) 1s cofinal in the set of all open coverings
of X. Let X; denote the nerve of a, and write ¥,:X,,,—>X, for
the projection S-map. Let also ﬂi:X—>Xi be the canonical B-map.
Then %= (X;,¥,) 1e an inverse spectrum and T = (m,):X—> %
i a representation. This follows directly from (4.8) and (4.7).

Lemma (6.1). Let T :X—>¥ be a representation of X by

the inverse spectrum ¥ . Then, for every finite CW-complex K,
e
n K:{% kY =~ {x, k3.

Any map T X—>%X of a space X into an Ainverese spectrum
% = (Xi) induces a homomorphism TT#: i% ,W}—a{X,UJ} for every
spectrum 'w/ Now, T may also be composed with Cech 8-maps, thus
inducing, for each space Y, a homomorphism:
X
my = maiy,xt iy, %y,
Theorem (6.2). If m:X—>% 18 a representation of the

space X by the lnverse spectrum ¥ then, for every space Y, and

every spectrum w,

Myt {Y,X?c ~{y,¥}, T s i& ,'UJ] % 1%, wi.

=

Both 1somdrphisms m, , T establlsh 1l-1 correspondences between

+
the equivalences in the domain group and the representations in
the image group.

Corollary (6.3). Let sX—->%, p:Y-—>Q be representa-
tlons of the spaces X,X by the inverse spectra X ,Q . There
exists & unique isomorphism

®: L) ~ {x4,

S8uch that the diagram below 18 commutative for every fe {%,g‘s :
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®(r)

=
v
K—>C
e

X .

Remark.(6.4). The isomorphism () is multiplicative, that
18, for £:% — Y, g:l)ﬁ?{, then @(g o f) = @(g) o @(1).
Moreover, 1f (¥ ,m ,X) = (Y,p,Y) then @ (1dentity) = 1dentity.

Corollary (6.5). Let m:X—s%, p:X—>Y be representa-
tions of the same space X by Anverse spectra i;,é). There exists
e unldue equlvalence h:}——>2:) such that p = h o .

Corollary (6.6). Let m:X—s*, p:Y—>¥ be representa-
tions of the spaces X,Y by the same inverse spectrum i;. There
exlsts a Cech S-equivalence k:X—>Y such that p o k = 7.,

Theorem (6.7). If T :X—>X¥ 18 a representation of a
compact space X by an inverse spectrum X = (X1,$i), then
BT :8X—>8¥ is also a representation.

Proof. For the suspeneion SK of a finite CW-complex K,

3
(sm) :{S% ,SK} x> {SX,SK}. Let now P be any finite CW-complex and
let re{SX,P{. Then, by (4.8), there exists a finite covering a of
X, with nerve Xa and canonical S-map Ga:X—eXa, such that f fac-

tors as £ = f_ o 88, fa:SXa——>P. Now, SXa being a suspension,

a

SGOL:SX—>SXOL factors: 88, =g, o 8m,, for some 1,

8X 3 > P

Se
Sﬂi o fa
Ba,

le = sxa

wlth ga:sxi__)sxa. Let fy =140 By, Then £ = £, o STTi. Hence
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(87 )# is onto. Now, let g:BXi-eP be an S-map such that
g o 8m, = 0:8X—>P. Then, there exists a finite open covering
@ of X with nerve X and an S-map f:SXOL—->SX1 such that f o Sea =

87 4 and g o £ = 0. Now, since sxa 18 a suspension, there exists

an index
8T g
X LI 8X, > P
Se
8T = £
8X ‘1‘? > 8X %) 8
m o J =0 a
= 8 :8 ] m, =
such that sea hj o TTJ, hJ XJ—->SX Now 8 4 = ldentity

o 8T, = (f o hJ) o] S'ETJ are two factorizations of STT1 in terms
of the map 8T, B8ince sxi ls a suspension, there exists an index
mZ1,) such that f o hy o HII;= IFT Then g o mgl: gofo hJoUgl=
0, so g represents the zero element ofiS%,P}. Therefore (ST )"”'=
is 1-1,

Theorem (6.8). Let T :X—>X be a representation of a
compact space X by an inverse spectrum ¥ ., Then T induces an
isomorphism

s 2R ) = 2w,

Proof. To show that T is onto, let ze . '(X). Then,
there exists a finite open covering a of X, with nerve Xa and
canonlcal S-map ea:x—>xa, such that z = e:"(za), for some

o T for

ol i

8ome index i1 and some S-map eaizxi_axa. Thuse, z =

zaez*(xa). Bince T 1is a representation, 8, = ©

¥* # # # '
"1 [eai (za)l, Y (za)cZ (Xi). If w ie the equivalence class
of eaf(za) in 2X(%¥ ), then z = TT#(W), go M 1s onto. 1In
; x
Order to complete the proof, let we, (*) be such that 'n*(w) =

¥ ,
OEZ*'(X). Represent w by an element wlez (Xi)' The S-map T,
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factors as T, = niﬁ o 93 where B 18 gome finite covering of X,
with nerve XB and canonical S-map 95:}(-—»{‘3 (ef., (4.8)). Now

m

X >

0

X

—

i
®s
3 2y >

Xy
U
Xg

n¥(w) 18 the equivalence class in Z*(x) of Tri#(wi). Since
m#(w) = 0, B may be chosen so fine that T ﬁwi) = 0, But, since
T 1s a representation, 9‘3 factors as 9ﬁ = GBJ 0 1'rJ for some
index J. Let hy = T, 0 8 :X,—>X,, 80 that hj*(wi) = 0. But
My = hJ 0 1‘rJ = 1dentity o ™ y are two factorlzations of T 3 in
terms of the representation m . Hence, there exists an index
m £ 1,) such that hJ o 1)31 = @T Therefore QJT (Wi) = Oan [hj (wi)]=
0, that 1s, w = 0,

Corollary (6.9). If a compact space X admits a represen—
tation by an inverse spectrum, then the cohomotopy group Z*(X)
18 countable.

Theorem (6.10). If the inverse spectrum 3 has finite
order p, then sPx represents some compact metric space X.

Proof. Let 9P°% = (X,,¥;). Of course, it may be assumed

that the Xi's are polyhedra. There are continuous functions
£4:X,4—>X, such that {f,{=17,. Let X = Jim X, be the inverse
limit of the spaces Xi with respect to the functions fy. Then X
is a compact metric space, the polyhedra Xi may be ldentified with
a cofinal system of nerves of X, and the maps ‘1’1"‘1+1—>X1 may be
considered as projection S-maps (cf., [2], Lemma (3.8), page 263).
The canonical S-maps T :X—X, define then a representation

m :X—>8PF .
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Remark. In the above construction, dim X = dim ¥ + p.

Theorem (6.11). Let * ,L.) be inverse spectra such that,
for some p 2 0, Sp}, gl represent compact spaces. Then, a map
£:¥—>U 1s an equivalence if and only if f*: 2O ) =2 F).

Proof. Let m:X—>¥, p:Y—>1) be representations, X,¥
compact. They induce an isomorphism ®) : {3’:,9% ~ {X,Y}c. Let
y =@ (Spf)e{X,ch. Then f 1s an equivalence &> v 1s a Cech
g-equivalence <> 'Y*:Z*(Y) ~ Zx) (by (4.11)) &
. 07(9) = T* (¥,

The following reeult contains the converse of (6.9):

Theorem (6.12). The following properties of a compact
epace X are equivalent:

(L) X 1is representable by an inverse spectrum;

(2) Z*(X) is countable;

(3) X has the Cech S-type of some compact metric space;

(4) X ie representable by an inverse spectrum of order O.

Proof. (1) = (2) by (6.9). If (2) holds, let
(24,27,...) be a sequence of generators of Z*'(X). A sequence of
finite open coverings of X, L TERER with nerves Xo’xl’ ... and
canonical S-maps T 1=X-—>X1, and such that a,., refines ay, with
projection S-map 4)1:X1+l-—>xi, is defined as follows: choose a
to be a finite open covering of X such that z, belongs to the
image of 7 :\r :Z*(Xo)-ez*(x). Suppose that a,,...,a, have been
chosen. Let ai_‘_l be a finite open covering, refining oy, with
lerve X{,, and canonical S-map T 41 :X¥—X{ 4y, such that Zy41
belongs to the image of T 5.+1*F: Z*(Xj'_+l)—>2‘*—(}(). Now, the
kernel or 'ﬂf :Z*(Xi)-;Z*(X) is finitely generated. Hence
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there exlsts a finite open covering a,., refining al,, (so that

2,41 Pelongs also to the image of W,,,), such that the kernel

of QDT: Z*(xi).az*(x“l) 1s the same as the kernel of

T f:zf(xi)-ﬁ Z*(X). This completes the definition of the

gequence of coverings (ai). The maln properties of this sequence

are: f(a) zo,...,ziez*(x) can be represented by elements of

5*(Xy); (b) The kernel of m ¥ : Z™(X,)—>5 *(X) 18 the same as
# ¥ ¥

the kernel of ¢, :2 " (X,)—2 (Xy41). Then ¥ = (X,,0,) 18 an

inverse spectrum of order O and the sequence (T o? i 12 i g pro-

vides a map T :X—s¥ such that TI*F:Z*(% )= D¥(X). Since ¥

has order O, there exists (by (6.10)) a compact metric space Y

and a representation p:Y—s¥. Then p#:iX,Y}c %{X,%’S . Let
h=p, (). Then he{X,¥} 18 such that h: 2¥ (1)~ 2 ¥ (x),
since p and T 1nduce cohomotopy isomorphisms., So h 1s a Cech
equivalence (4.11) and (2) = (3). Now, if (3) holds, let
Y:X—>Y be a Cech S-equivalence and p:Y—>l;) a representation of
order O (cf., Example in the beginning of this section). Then
m o= p#('y):X—>?:) is a representation of order 0 (by (6.2)).
Finally, it is obvioue that (4) —=> (1).

The following is a partial converse of (6.8):

Theorem (6.13). Let X be a compact space and ¥ an
inverse spectrum such that some suspension SPX represents a
compact space (for instance, let % have bounded order). Then,
any map T :X—s ¥ such that ﬂ*:z*(%) ~2¥(X) 18 a represen-
tation.

Proof. If T 18 an isomorphism, then Z*(X) is countable,

80 X admite a representation p:X-—>9 (6.12). 8Since
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P#: il:),%’] —~ {X,':ES (by (8.2)), there exists a map r:Y %
guch that £ o p = T, Then ()= S (Y). 8o, by (6.11),
f 18 an equivalence and therefore T 1s a representation.

We shall now investigate what happens when assumptlons of
finite dimenslonality are added to (6.12), as in (5.14) and also
what the effect 1s of replacing the group Z*ZX) by the Cech co-
homology group H*Yx) in the theorems of this sectilon.

The firset question is a very important one, in view of
the applications in section 8. The situation here is not as
pleasant as in (5.14), due to the absence of a dual to Barratt's
Lemma (5.13). Such result, to the effect that a compact space
with bounded and countable Cech cohomology has the Cech S-type
of a finlte dimeneional compact metric space, seems plauslble
but we have not been able to prove (or disprove) i1t, Because of
this, only the following properties of a compact space X can be
stated to be equivalent:

(a) X is representable by a finite dimensional inverse
spectrum;

(b) X has the same Cech S-type of a finite dimensional
compact metric space;

(e¢) X is representable by a finite dimensional inverse
gpectrum of order O.

The proof is immedlate, from (6.12).

Theorem (6.14). If X is a finite dimensional compact
8pace and Z*(X) 18 countable, then X has property (b), hence (e).

Proof. In (6.12), in the proof that (2) = (3), all cov-

erings a, may be chosen such that dim X, S qim X, so ¥ = (Xi) is

finite dimensional and Y has therefore the same property.
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As to the second question, the theorems in which Z*(X)
gppears 1n this sectlon are (6.8), (8.9), (6.11), (8.12), (6.13)
and (6.14). Thelr counterparts for Cech cohomology are:

(6.8)' A representation m :X—>¥ of a compact space by
an lnverse spectrum induces an 1somorphism n¥*H(E )~ H (X).

(6.9)' If a compact space X 18 representable by an in-
yerse spectrum, then H*(X) is countable.

The proofs of these 2 theorems use exactly the same argu-
ments as before, with Z* replaced by H*—

(6.11)" Let ¥ ,Y be inverse spectra such that SP:-)E,SP":)
represent compact spaces, for some p. Then a map f:%——>9 is an
equivalence 1f and only 1if f*:H*(Q ) &~ 5 ().

Proof. The same as in (6.11), except for the following

modification: the spaces X,Y that sPx ; sPy represent can be
chosen compact metric, by (6.12), so that (4.13) may be applled

instead of (3.10).
(6.14)' If X is finite dlmensional and H(X) 1s countalile,

then X has the same Cech S-type of a compact metrlc space of fi-

nite dimenslon.

No version of (6.12) is true with il replacing Z* since
(4.13) is proved only for metric spaces, in which case H® 18 auto-
matically countable.

As to (6.13), only a poorer version of it 1s true, namely:

(6.13)' Let X be compact and either metric or finlte di-
mensional, and ¥ be an inverse spectrum such that some suspenslion
8P ¥ represents a space. Then a map m:¥—>F with n*:H*(% ) &

¥
H"(X) 1s a representatilon.
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7. Direct and Inverse Spectra Together

A strong representation of a space U by a direct spec-

trum (' is a map A: U —sU that induces an isomorphism
X
A= A#:{X,u} — {X,U}

for every compact space X.

. A stable strong representation is a map A:U —sU such

" that, for every r = 0, 8TA:;8"U—>8"U 15 a strong representation.
Lemma (7.1). Every representation A:WU—>U of a CW—
complex U 18 a stable strong representation.

Proof. Let X be a compact space and let re{X,U}. Since

X 1s compact, there exlsts a finite subcomplex L C U and an S-map
f':X—L such that f = g o £, g:LC U. BSince A is a represen-
tation of U by WU = (Uy,9,) and L 18 finite, there exists an in-
dex 1 and a map gi:L——>Ui such that g = Ai 0 g,. Let fi =

gy © f':X——>U1. Then f = Moo fi' Suppose now that an S-map
£:X—>U admits 2 factorizations f = Ay O f, = Aﬂ o fJ, with
fie[X,Ul}, chfX,Udi. Then there exists a finite subcomplex

LC U, and maps gi:Ui——>L, gJ:UJ-—>L, h:LC U, such that h o gy =
A, ho gJ = Ay and gy ©
tored, for some index m 2 ,), as h = Ap © hm’ hm:L——>Um. Then,
Ai = A O identity = Am

in terms of A. Therefore, there existe an index n = m such that

£y = gy © fJ. Now h:L—U may be fac-

o

(hm o) gi) are 2 factorizations of Ay

@? = ¢: 0 h o g€y. By a similar reason, n can be chosen so large

m
bility, 1t follows from the fact that SA:SL&—+>SU 18 again a rep-

that also ¢? = ¢2 oh o gy- Then ¢? of, = ¢? o f,. As to sta-

Tesentatlon (5.7), hence a strong one, since SU is a CW—complex.
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Theorem (7.2). Let T:X—s> ¥ be a representation of the
compact space X by the inverse spectrum X = (X,,¥,) and let
r U —U be a strong representation of the space U by the direct
gpectrum U = (Uy,9,). Then there exists a unique isomorphism
R:{x,U} = ix,u3
guch that, for each fe {f*.,lk} the dlagram below is commutative:

¥ L >
- | »
X R(r) — U
Proof. The statement ie that the map R:f—=Ao f o 7
is an 1somorphism. Now = J\#o 11#, go that 1t suffices to
show that both T%:{%,U} —{X,U} ana Ay X,U} —1x,U] are
s

is an isomorphism by (6.2) and A, is an

isomorphisms. But T *

isomorphlism because X 1s compact and A is strong.

Suppose that AglL——;U is a strong representation of the
space U by the direct spectrum U = (U1,¢1). Then, if X ie com-
pact and V 1s an arbitrary space, a singular map ue{U,V}B may be
composed with an ordinary S-map fch,U}, yielding a map ¢ o f =
U*jf)e{X,V}. Such compoeltion induces a palring
(7.3) v, ® {x,v} — {x,v},
where 0@ f—>0 o £, the S-map ¢ o f belng defined as follows:
8lnce X 1s compact and A = (Ai) is strong, there existe an index
1 such that £ = Ay o f,, fye{X,U,}. Now set c o f = cUi(Ai) o f,.
It 18 easy to see that this definition does not depend on the
cholce of the index 1.

8till under the assumption that there exists a strong

representation A:U —>U, a Cech map 'ye{Y,X}c, where X,Y are
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compact, may be compoeed with an ordinary S-map fe{X,Ul, giving
an S-map £ o v = V*?f)e{Y,U}. This composition induces a pairing:
(7.4) {x,u} ® {y,x{, — {¥,0},

where T® Y—>f o ¥. The S-map f o ¥ 18 defined as follows:
because X 1s compact and A 1s strong, there exists an index 1
such that £ = A, o f,, fie{x,Uii . Put then f o v =

A O 1(f1)elY,U}. A quick checking shows that this definition
does not depend on the cholce of 1.

Theorem (7.5). Let m :X—>X, p:¥—>Y be representa-
tions of compact spaces by inverse spectra. Let also A: U—>U,
p:Qf——;V be strong representations by direct spectra. Then, the

i somorphiem R introduced in (7.3), together with the isomorphisms
0 of (5.3) and ® or (6.3), transform the pairing (1.4) into
(7.4) and the pairing (1.5) into (7.3).

Proof. Obvious.

Theorem (7.5) expresses the naturality of R .

8. Duality for B8paces

Two spaces X,U are sald to be p-dual 1f they admit repre-
sentations T :X—>¥ , A:U —>U by spectra ¥ ,U that are p-dual,
in the sense of section 2.

If X,U are finite CW-complexes, represented trivially by
9[ and W (as in examples 1 and 3 of sectlon l), they are p-dual
in the sense of the above definition 1f and only if they are
weakly p-dual in the sense of Spanier and Whitehead (see $0).
This deviation from the standard terminology is adopted for the

sake of simplicilty.
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If X,U are p~dual, then SX,U and X,8U are (p+l)-dual,
gince thie 18 true for spectra, and the suspension of a repre-
gsentation i1s 8till a representatlon.
Theorem (8.1). Let the spaces X and Y, representable by
inverse spectra, be p-dual respectively to the spaces U and V.

Then, there exists an isomorphilsm
Dp:{x,x}c ~ {v,ui,

with the followlng properties:

(1) If X,Y,U,V are finite CW-complexes, Dp agrees with
the Spanlier-Whitehead duality isomorphism;

(2) Dp is natural with respect to composition, that 1is,
it takes the pairing (4.1) into the pairing (3.1);

(3) Dp is stable under suspenslon, that 1s, considering
firet X,8U and Y,8V as (p+l)-duals, and then SX,U and SY,V as
(p+l)-duals, the following hold:

8D, = Dpﬂ:{x,y}ca’ {sv, su},

. _1 =
D 8™ = Dpﬂ:{sx,sx}c ~ {v,ul,.

Proof. Let m:X—>¥, p:¥—Y, mU—U, u: U —>V be

representations, such that ¥ ,U and Y,V are p-dual spectra.
Define Dp:iX,Y}c——>{Y,U}e as the composite isomorphism

{x,¥} __@j; {%,9} __9..9_P_> AR N {v,u}

8
where ® was defined in (6.3), J9p is the duallty isomorphism
(2.2) for specfra,,andﬂfl was defined in (5.3). The composite
D =AML o l9p o} ()'1 does not depend on the chosen representa-

Y
tions of the spaces by spectra. In fact, if X,Y,U,V are
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pepresented by other spectra %, Y, U, U', there are unique
equivalences hy: ¥'—s¥, ho: Y—>Y', hy: U—s> W, by U'—T,
which induce the isomorphisms represented by vertical arrors in

the dlagram below:

4

cy, 13,93 P ‘m,u}xj
P 5, yd

-4 !
{31 > {’U ,'w}
The naturallity properties of N ,@ and J9p inply commutativity

{x,x} tv,ul,

in each box of this dlagram, Therefore o JQP o @1 -
n'o J,9p o @"l. Since N1, ® ana Qp are multiplicative, the

same 1s true for Dp. Stability of Dp also follows from the same

property for _Q s @ and J9p.

Corollary (8.2). If the spaces W and W', representable
by inverse (resp. direct) spectra are p-dual to the same space Z,
then W and W' have the same Cech (resp. singular) B-type.

Proof. The equivalence W—>W! 1s the map that correspond,

under Dp, to the identity map Z—>Z,

Theorem (8.3). Let X and Y be compact epaces respectively
p~-dual to the spaces U and V, which admit stable strong represen-
tations by direct spectra. Then, there exlsts an lsomorphism

Dp:ix,v} x §Y,ut
with the same formal properties as the isomorphism of (8.1).
Proof. Let m:X—¥, p:¥—Y, MU —T, p: 1=V be

representations such that A and p are strong, and %,U., and

Q,U’ are p-dual. There representations induce isomorphlsme
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R, {F,0) ~ {x,v], Rop: {8, Uy =~ {x,u} as in (7.2). Define
pp:{x,v}->%z,u} to be the composite isomorphism:
R* P R

fa] —La (E U] B (DU B f7,00.
where iyp is the duality isomorphism for spectra (2.2). From
the naturallty properties ofFi and. fDP, 1t follows that Dp does
not depend upon the chosen representatlons.

These duality theorems being proved, the question now is:
which spaces have p-duals? The most general answer to this ques-
tion is glven by the

Theorem (8.4). A space has a p-dual 1f and only if it is
representable by a finite dimensional spectrum. BSBuch a p-dual
may always be chosen to be a finlte dimensional countable CW-
complex (if the spectrum in question is inverse) or a finilte
dimensional compact metric space (if the spectrum is direct).

Proof. To fix 1deas, suppose that the space is X, and

T:X—> ¥ 1s a representation of X by the finite dimensional in-
verse spectrum £ . By (2.1), £ has a q-dual U, which is finite
dimensional, hence of bounded order r. Then'ET= s'U 1s finlte
dimensional, of order O, and is p-dual to ¥ , with p=q + r,

By (5.11), U represents & finite dimensional countable CW-com-
pPlex U which is, therefore, p-dual to X. The treatment of the

remaining case is, of course, similar, hence 1t 1s left to the
reader.

The spaces U which have a p-dual repre-

Corollary (8.5).

gented by an inverse spectrum are preclsely those for which the

8ingular homology group H*jU) is countable and bounded. Every
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finite dimenslonal compact space X with countable Cech cohomology
group H*1X) has a p-dual, represented by a direct spectrum.

From (8.5), 1t follows that closed and open subsets of
the sphere 8P have p-duals. It turns out that p-duals in this
cage may be taken slmply as the complements.

Theorem (8.6). Let X be a closed subset of the sphere
spland U =8P _ X. Then X,U are p-dual.

Proof. It 1s well known that the open subset U of 8P can
be triangulated as a countable CW-complex. Choose an increasing
gequence UoC: UlC: U2 «so Of finite subcomplexes of U such that
LSD Ui = U, Of course, this sequence may be taken in such a way
tggt U1C: int U1+l' This will be done in order to simplify the
argumente that follow. Set ¢,:U, C U,,, and A:U, C U. Then
W= (Uy,0,) 18 a direct spectrum and the A,'s define a stable
strong representation AU —>U. Since U C int U, C U, 8P - Uy
1s a neighborhood of X, whose closure is contained in gP . Uo'
Hence, by Lemma (2.2) of [12], there exists a p-dual X, of U,
suéh that 8P - Ul<:lX°. Let 1 > O, and suppose that Xo,.._.,X1
have been defined in such a way that: (a) Eﬁﬂj_ﬁzzzc:x csP_u,:

J J?
(b) X, and U, are p-dual (3 =0,...,1). Then, since U, CintU,

8P - U1+2C gP _u Again by Lemme (2.2) of . [12], there

i+l’
i P

eéxiste a p-dual X1+l of U1+l such that 8% - U1+2 C:X1+1CZS -U1+1.
This completes the inductive definition of a decreasing sequence
X, D X;D ... of polyhedra satiefying (a) and (b) for all ). Let
Iﬂ_:Xi_‘_lC X, and T ,:XCX,. Then x = (X,,¥,) 18 an inverse
Spectrum and the T,'s define a map m:X—>F. This map 18 a
representation. In fact, a finite polyhedron P is an ANR, there-

fore any S8-map f:X—>P can be extended to a nelghborhood W of X,
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Now X = ﬁxi, 80 any nelghborhood of X contains some Xi. Thus

¢ can be extended to some Xi, that 18, f factors as f = £y 0 My,
f1:xi"">P' Again because P is an ANR, any two extensions of a
continuous function X—P to 2 neilghborhoods of X are homotopic
4jn a semaller neighborhood. But such smaller neighborhood must
contaln esome X , therefore, if f = fyomy = fJ o 1'rJ are 2
ractorizatione of £ in terms of T, there exlsts an index m >1i, )
guch that £, o Y7 = £y 0 mg‘. This concludes the proof that T 1ie

a representation. Since the spectra (‘f,u are p-dual, this con-

cludes also the proof of the theorem.




PART II

STABLE POSTNIKOV INVARIANTS




Preliminaries and Notations

This section will introduce some definitions, notations
and conventlons to be used in Part II, in addition to those al-
ready discussed in section O of Part I.

The word space, until 7, will always mean Tinite dimen-

gional CW-complex and, in 8, it will mean finite CW-complex. In
the main definitions, however, a concession is made and complexes
are expllicitly referred to, in order to avoid misunderstandings,

All complexes are taken with a O-cell as base point, al-
though this will not be mentioned explicitly. Suspensions will
always be reduced. Thus, the open celle of SX (other than the
base point) are suspensions of the open cells of X (other than
the base point). All continuous functions preserve base polnts;
ell homotoples leave base points fixed.

There can be no doubt about the meaning of the p-th
skeleton XP of a space X, For p < O, %P will mean the base
point. The p-th coskeleton of X 18 the quotient epace PX = X/xP,

obtained by identifying to a point the p-th skeleton of X.

The following two eimple Lemmas follow immediately from
the cellular approximation theorem for continuoue functions and
their homotopies, and from the homotopy exteneion property.

Lemma (O.l). In the diagram below, let the homomorphisms
1,2,3 pe induced by inclusion S-maps. Then 1 is onto and 3 has
kernel zero. By commutativity, 3 is actually an isomorphism and

kernel 2 = kernel 1.
74
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e, v ] . > {x0,¥}

N\ {xn’Yn+l‘g /

Lemmg (0.2). 1In the dlagram below, let the homomorphisms

A,B,C be induced by collapsing S-maps. Then C is onto and A haes
kernel zero. By commutativity, A is actually an leomorphism onto

and kernel B = kernel C.

{*=1x, "y} a > {x,7v}
'\ o /5

The codimension of X is the largest integer q such that

X = qX. The coconnectivity of X 1s the smallest integer q such

that Tri(X) =0 for all 1 = q.

Let OL be a collection of subcomplexes of X and {7‘ a
collection of subcomplexes of Y. A carrier _@ :0(—>6' is a map-
ping A—>BA, Acl, PAclr, such that $A C PA' whenever AC A,
A i—funotion f:X—sY 18 a continuous function such that
£(A)C fA for every AcQl. a ;f_—homotopy 1s a homotopy ft;X-—>Y

Such that, for every ¢, fi 18 a ﬁ-function. A_é-homotOpy class
ie an equivalence class of f—functlons under f-homotoples.
Denote by I:X,Y;_f] the set of all f—homotopy classes X—>»Y. The
carrier f ylelds also carriers g?nasndl—>s“ﬁ—, where 8" (U =
iSnA;Aem% and Sné’ is similarly defined. Hence, the set
[BnX,SnY;_én] exists for n = 0,1,2,.... For n 2 2, [8%,8"y; @n_-]
1s an abelian group and the suspension map [snx, SnY,- @n_]—a
[Sn+1X,Sn+lY; énﬂ'] 1s a homomorphism. The direct 1limit

iX,I;ﬁ'S = n]_.iu)a [SnX,SnY;ﬁn_] 18 the group of S-g-maps or the
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poup 0f S-maps X—Y restricted by the carrier 6 The only
.on,_trivial carriers that will be used in the following are the
of skeleta f= ﬁXY These are defined on the skeleta
the first space, and fXY(Xp) = YP, The set of S—fxy—maps
w111 be denoted simply by {X,Y;ﬁ} . An S-mep ¢ restricted by the

carrier of skeleta will be called an external inclusion and will

gometimes be denoted by

P:X < Y.

For every integer p, an external inclusion $:X < Y induces exter-
pal inclusions oP:xP < YP and P¢:PX < PY. Consider the category

whose objects are spaces and whose maps are external inclusions.

The equivalences in this category are called external equalitiles

and denoted by ¢:X = Y.
By improving the method of constructing duals, it can be

shown [14] that every finite CW-complex X has a combinatorial p-
*

dual X° for some large p, with the followlng propertles: there
is a 1-1 correspondence g<—>0" between the cells of X and those
of X*, that reverses inclusions and such that dim o + dim oX = p,
Moreover, if AC X, A and X /B are weakly (p+l)-dual, where B

1e the union of all cells ¢* with oeA. In particular, a combina-—
‘torial p-dual X* of X 18 weakly (p+l)-dual to X. If X,Y are com-
i'binatorially p~-dual to X*,Y* there is a duality lsomorphism
'Dpﬂ:iX,Y;@k ~ {Y*,X*;@} between the external inclusions of X

into Y and the external inclusions of ¥ into X .

1. The Category of Direct S-epectra

A, Objects

A direct B-spectrum ¥ = {Xi,(?i_f conelsts of a sequence

KO, Xl’ “ooy Xi’ ... Of finlte dimenelonal CW-complexes together
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yith external inclusione (see $0) (D_AL:SX:l <X 1= 0,L;xsa;

i+1°
with the following property:

(L.1) For every integer n, there exists an index in such
= (X1+l)n+1+l (external equality) for all
Very frequently, a direct S8-spectrum will be denoted
gimply by ¥ = {Xi}, the symbol §, being altogether omitted.
Then, glven S-maps faXi_*_l_»Y, g:Z—>SXi, the composites

£ o 0,:8%,—Y, ¢1 o g:Z—>X,,; will be called the restriction of

£ to SXi and the injection of g into X1+l respectively. Similar
remarks apply for the composite external inclusion smxi < X1+m.
A finite dimensional CW-complex X ylelds a direct S-spec-
trum ¥ = ixii in a natural way by setting Xi = Si}{. In this
manner, the S-category of finite dimensional CW-complexes will

be embedded in the category of direct S-spectra.

The suspension of a direct S-epectrum ¥ = {xi,rpi'ﬁ is
the direct S-spectrum s¥E = {Sxi,SQJB .
The n-skeleton of % = {Xi.ﬁ 1s the direct S-spectrum

S i(Xi)n*'i} consisting of the (n+i)-skeleta (Xo)n, (Xl)n+l,...

together with the partial external inclusions ¢1:S[(Xi)n+i] <

(X, 1) *, ¥ 1s satd to be finite dimensional if ¥ = X P

1+1)
for some n. The smallest such n is called the dimension ofx_ .

The n-coskeleton of ¥ ={ X, 1s the direct S-spectrum

Ny - n"'1()(1) consisting of the (n+i)-coskeleta (X ),

+
. l(Xl), vee (see§ 0) together with the external inclusilons

)n+1+l . n+1+l(x

0y:80(x,)] = s, /(3% )" < x, /(K

)
induced by ¢,. If F = ¥ for some n (may be n < O!) then




[
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g sald to have finite codimension, If ¥ = n% then :k= k%
or k £ n. The codimension of ¥ 1is the largest n such that
¥ = ¥ . Sometimes ¥ /¥ ™ will be written instead of ny,

The following easy consequences of (1.1) are collected
or future reference:
n -
Lemma (1.2). If F = % , then x1+l = SXi for all 1 0

Proof. For all i, X, = (X,,)™* ana (sx,)?"* - &
nt1+L 2 a1+l

v
[

1.
’ P
t for 1 =1, (X1+l
Lemma (1.3). 1In a direct S-spectrum X, Xy 4o 18 E-
0

onnected.
i 1otk+2 _

roof. ¥y . and an easy induction =

Proof. By (1.1) and induction, (X, 4 .5)

(87K, ) :
o

k-connected and k-connectivity depends only on the (k+l)-skeleton.

Now, the (k+2)-nd Buspension of a space is

B. Maps
First let X be a space (that 1s, a finite dimensional CW-
complex, which will always be i1dentified with the direct S-spec-
‘trum X,SX,S?'X, ... ) and 7_~) =i YJ.i an arbitrary direct S-spectrum,
The group {X,V 7§ of maps £:X—>1 1s defined as the direct Limit
x,01 = JEEL. iijﬂﬁ
With respect to the composite homomorphisms:

(89%,¥,}—{s9*x, 87 | — I, v, 08

Where the first one is suspenslon and the second is injection in
IJ+1' Thue, a map f:X—->Z_-) 1e represented by (i.e., is the equiv-
8lence class of) an S-map fJ:SJX-—>YJ. Another S-map fm:SmX—aYm
Pepresents the same f if and only if there exists some r 2 J,m

Such that the diagram below commutes:
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gt=dy
r-J J
r.
87X X,
sr—m;\\\\\n /////)ﬁ
b
i

where the right hand arrows denote external inclusions.

Lemma (1.4). If p = dim X, then for j 2 , all the

J J+L
nomomorphisms {3 X,YJ}-—>§S X,YJ+1] are 1somorphisms onto.

Proof. Consider the commutetive dlagram

{s”lx,st’; > {8d¥1x,y

pt)+2 }

{89™x, (sy, P*I*2} > {89%1x, (¥

where all the arrows denote injectlons. Since dim (SJ+1X) =

4

p+ )+ 1, the vertical arrows are lsomorphisms onto. For

2
J == Jp-‘.]_’

1s an 1somorphism onto. Therefore the top arrow i1s an isomor-

(SYJ)p+J+2 = (YJ+l)p+J+2 8o the bottom horizontal arrow

phism onto for J 2 Jp and so 18 1ts composition with the suspen-
sion leomorphism, which proves the Lemma.
Thus, for sufficilently large J, all the projections
{SJX,YJ -—>{X}9§ into the 1limlt group are isomorphisms onto,
l.e., the 1limit {X,E)} is "attained". For instance, the homotopy
groups of an S-spectrum X, are defined by Z (¥) = Sp Ezs and. !
they are isomorphic to the S-homotopy groups p+1(X J = iSp+1 X‘E

for 1 2 1 Now; by (1.3) Xi is (1-10-2)-connected. Therefore,

pt+l®
If 1 2 p +2(1, +2), that 1s, 1f p + 1 5 2(1-1 _2), then

le+1(xi) = 1Tp+1(x1). This proves the following:
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Lemma (1.5). For i £ max i 1p+l’p * 2(10 + 2)1,

SE)= 2 pet(Xy) m oy, (%),

An S-map g:Z2—>X composes with a map £1 X b) glving a
gep b = T 0 g1 Z—>1), as follows: let f be represented by an
8-map fJ:SJX——>YJ. Then h is defined as the equivalence class
of the composite S-map hJ = fJ 0 ng

S-’g

sz > 89X

It 18 easy to verify that the map h = f o g so defined
does not depend on the choice of a representative fJ for f.

For a fixed direct S-spectrum &) , the group {x,l)’g is a
econtravariant functor of X: an S-map g:Z—>X defines the homo-
morphism

g#:ix,‘:)% — {z,Q} . g#(f) =fog

with the property that (g o h)-'“:= h# 0 g#

for another S-map
h:Z2'—>Z. This functor 1s stable under suspension. That is, the
Buspension isomorphisms {SJX,Yﬁ = {s-’*lx, SYJ-Q induce, in the
1imit, the suspension isomorphism:

8:{x, 0% ~ {8x,80] .
Notice that if 9 reduces to a space Y then the group
{x’l:)} reduces to the ordinary S-group {X,Y-ﬁ.

Next, let ¥ = {Xli, Y= i!f} be arbitrary direct S-
Bpectra, The group {96,93 of maps f:%-—>9 is defined as the

inverse 1imit

(2.0} = 110 {x,,50]
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where each hombmorphism {x1+l,51*1?g§_.>{x1,319'3 1e the composite

1%, 40,80 > Sex,, 81 ) J{x,,8' U

the firset homomorphilsm being restriction and the second desuspen-~
gion. Thus, a map f: ¥ —>% 18 a sequence f = (£,,f),...) of
maps fizxi_»s“J that are compatible in the sense that, for each

i, the followlng diagram 1s commutative

Sf
sj_+l ]:_)

D

For example, let L™ be the n-skeleton of ¥ = XJ .

The 1nclusion map a: ¥R ¥ 18 defined as a = (ao,al, ...) where,
)n+1

for each 1, ai‘:(Xi -—>51% is represented by the inclusion
map gt [(Xi)nH‘] C sixi. This works for n = @ and defines then

the identity map ¥ C ¥ .

A similar example is the collapsing map T:¥ —>"% of

. into 1ts n-coskeleton n:{, which 1s defined as T = ('n o2 T l""\
where each 111:X1—>Si(n'£) is represented by the collapsing map
i h S al n+i
L X, 8K, /8 [(x,)PTH]
In general, a notlon of S-subspectrum could be defined.

Given a direct S-spectrum ¥ = ixi}, another S-spectrum A =§ Ai}

is sald to be an S-subspectrum of ¥ (written OL C ¥ ) 1r A1C Xy
for every 1 and the external inclusion SAi < A1+1 18 induced by
[ sxi < X1+l, in the sense that the diagram below 1s commutative for

' every 1,
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8, ————> X,

[ T

SA1 i A1+l

the vertical arrows denoting (ordinary) inclusions, If nCcX )
the inclusion map (L —> ¥ may be defined just as for a skeleton
put, in general, there 18 no way of defining the quotient S8-spec-
trum ¥ /0L or the collapsing map X—>*/0].

If Y reduces to a space Y then '{x , X %= Lim, {xl,six}.
For instance, the cohomotopy groups of an B-spectrum ¥ are de-

fined as 2 P(¥ ) = {%,Spi= ii_r_niixi,spﬂ}.

When x, l:) both reduce to spaces X,Y¥Y, the group {%,9}

reduces to the ordinary S8-group {X,Y%. Therefore the category of
direct S8-spectra contains an isomorphic copy of the 8-category
based on finite dimensional CW-complexes.

Notice that, even when Y is a space, the group {¥,Y} 18
not in general attained by some {xi,sixf. However, 1if ¥ 1s
finite dimensional, the double limit

$¥,01 = 11 (1am 83,8, )
G131 J— 1 J

1s actually realized by all groups {SJXI,SiYﬁ with 1,) suffi-
ciently large. In fact, let p = aim X , n = 1p’ q = dim X,

b = Jq+l' Then all homomorphlsms in the dlagram below are iso-
morphisme onto
+
(2,803 «— {Kpq, 8™P) — o — (XY
0
b+l : b+l n+
{8"™x 8%, 1] < {8 "X 40,8 o pe— -

{8 8%} <— {8% . 8"} «—— ...
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In fact, the horizontal arrows denote lsomorphisms, since
x1+l = SX, for 1 2 n, by (1.2). Moreover, by (1.4), all homo-
morphisms iSan,Sani-—> iSJ+an,SnYJ+1} leading to {Xn,SnZJ} are
jsomorphisms onto for } 2 p. Therefore, all vertical homomorphism
of the first column are isomorphisms onto. By an easy induction,
using commutatlivity, it follows that all the remaining arrows
represent lsomorphisms onto. The following Lemma 18 a qulck con-
sequence of this fact:

Lemma (1.8). If X is finite dimensional, an isomorphism
A 36,07 2 {x,1 ]
is defined for sufficiently large 1, in a unique fashion, by the
requirement that the dlagram below be commutative (where the left
vertical arrow is projection from the inverse limit and the bottom

horizontal one 1s projection into the direct limit):

£2,07 —2— {x,,%,}
"l
{x,,8'07 < {s'x,,8%,3

In order to complete the description of the category,

composltlion of two maps fe {'X ,1:)} » g€ iz;),(%} shall be defined now,
The composite map h = g o fe {3’.,(%} will be given &s h = (h _,h,...),
where hlzxi-—>819, is represented by the S-map hik:Skxi->Sizk,
defined as follows: corresponding to the index 1, f provides the
map fizxi——asié) which 1s represented, for some J, by an S-map
Corresponding to J, g provides the map

.8d 1

J d°
gJ}YJ-—>SJQ}, represented, for some k, by the S-map ng:SkYJ-—>

8dz Then, h1k is the j-th desuspension of the composite S-map:

k.
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sty A 8%y, -.-—w-—_>g3k si*iz,

It can be easlly checked that the composite map h = g o £ does
not depend on the choicee of the representatives fij chosen for
£y and ng for gJ.

The group {1,9} 1s a covariaent functor of Y and &
contravariant functor of X. In fact, a map g'L_) ——>Q' induces
the homomorphism 8y ‘ﬁ 91—3’{% l—)} where g#(f) =gof; a
map f: £—>:f' 1nduces the homomorphism f': ¥, — {3, .)S

where f (g) =go f.
With respect to the composition of maps Just deflned,

the homomorphism )\1:{:{,7:)? ——>iX1,Y1‘i of (1.8) ( ¥ finite dimen-
sional and 1 large) 1s natural. That is, if U 18 also finite
dimensional, Q} is arbitrary and 1 is so large that }‘1 and the
isomorphisms

uizi") ,%} x {Ii,zj} , vyl {3‘.,?‘"& & {Xi’zi71
are all defined then, for any fe¢ {%,9 }, geiz:),(%} :
(1.7) vylg o f) =mn,(g) o a(f)

Lemma (1.8). For any X,‘L), i%,'—)ﬁx ]&-jfni }n,t.)i, the
homomorphism {%nﬂ‘,l;)g —%{%n,l')} being induced by the inclusion
map ¥NC ¥ ol

Proof. In the first place, for every 1, {xi,si L)'i )

Lim {(x,)"*,8'0) | eince the 1imit is attained when n  aim X,-1.
Theretore {¥,97 = 1m, {%,,800F & 1w (2am {(x,)™, st} ) =

lin (1im {(x,)™,82Y)) = En_lniaan,?.)}.

Tl

The above lemma justifies the restriction of finite

dimensionality for each component Xi of an B-spectrum % . 1t

- &
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peans that, in order to define a map f:%——éz:), where %’L) are
arbitrary S-spectra, it suffices to deflne f coherently 1in each
gkeleton D, That is, 1t suffices to define, for each n, a map
fn: in-—> l—) in such a way that the dlagram below commutes

%nﬂ.

\/

where a: X0 C ¥2*1  (In other words, £, 18 the restriction of
f.4 50 X0
Given the dlrect S-spectra :‘X,L.) , and a relative Iinteger

r, let

1\

(¥ Y} 1rrZo
Y {%,570) 1erso

The groups {'f,z;).ir have propertiee simllar to and generalize the

{x,97,

group 2%,2')21 « They allow the definitlon of the homotopy groups
of a direct spectrum to be extended, so Zr(}) = %So,'.f% p €xists
for all relative r.
Lemma (1.9). 2, ,(¥) =0 for r = - (1, +2).
Proof. For r = - (1, +2), -r >0 e0 Zr(%) =
{s°,57¥ 1= 11_1_n)l{si,s‘rx1}. For 1 21 +2, 87X, 1s (1 -1 -2-1)-

connected (by (1.3)), so it is a fortiori i-connected hence
{si,s‘rx1} = 0 for all large 1 and Zr(f) = 0.

The following 1s an extension of Lemma (0.1) to direct
S-epectra.

Lemma (1.10). For arbitrary direct S-spectra ¥,Y ana
any integer n, let ﬁ:gnC Z:)n+l, B,:gn*-lcg and B":gnc Y.
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Then ﬁ':# 1s onto and B*": is 1-1. By commutativity of the diagram

pelow, B# is actually an isomorphism onto and kernel B—.\# =

kernel ﬁ;: .
{In’ L-)n‘g Bl . {:{n,z_)%
By \ / ﬁ#:_'
i}—n, l:)n+l}
Proof. By choosing 1 large enough, the l1somorphisms
M:{}_n’ 9n3 ~ i(xi)nﬂ’ (Yi)nﬂ%, Byt {1 n’ 9n+l§ ~
i(Xi)nﬂ,(Yi)nﬂﬂS, viti:{ BY¢ ~ {(Xi)nﬂ,Yi} are defined, as

in (1.8). BSince these isomorphisms are natural, the present

Lemma reduces to (0.1), which proves 1it.

Let, as in 550, @XY:X-»Y denote the carrier of skeleta,
i.e., @xx(xn) = Y, Again, denote by %X,Y;@‘i the group of
external inclusions from X into Y. The double limit

{£.,0;0% = 1, (11mfslx,,8'r;85)

(taken with respect to the obvious homomorphisms) is called the

group of external incluelonse of } into @ . An external inclusion

Ee {%,7:) ,@} induces, for each n, unique external incluslons
enefxn, Ym0,  "ePE,mY;08
There 18 an obvious homomorphlsm
(1.11) u: §%,0 ;8 — $%,07
induced by the homomorphlsm
u b ¥
giji’s YJ:’@% — {iji:s Y;&
which mape each external inclusion lnto the ordinary S—-map that

it determines.
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Lemma (1.12). If ¥ 1s finite dimensional, the homomor-
phism M in (1.11) is onto.

Proof. Let fe{¥,U]. Since ¥ has finite dimension,
the isomorphism )\1;{$,7—)} = ?_Xi,If; is defined for large 1, by
(1.8). But the arguments leading to (1.8) are still valid for
external incluslons, hence there is an isomorphiem pi:i’f,z;) ,éiw
{Xi,Yl; @% for large i. Now let g:Skxi-—e»SkYi be a cellular
continuous function such that {g} = Ai(f)‘ixi’xﬁ' The equiva-
lence class § of g in {Xi,Yi;é} is such that M(uzl(g)) = f,

An n-map from X to 1) 1s a map £: X", from the
n-skeleton of X to the n-ekeleton on) . From (1.10) 1t follows
that, glven a map f:;E—;-Z), there exists always an n-map
fn:f{n—-—}gn such that the dlagram below is commutative (where

the vertical arrows denote inclusions)
f
¥ >1)

! |

D o hgn

Where this i1s the case, the n-map f" 1s said to be induced by f.

Although % 18 not uniquely determined by f, 1t follows from
(1.10) that any 2 n-maps £,g" induced by f agree on :En_l.

An n-cellular approximation of f:% —>%) 18 an n-external
inclusion ¢ "¢ {'I‘.n,?-)n;ég such that M(E™) = fn‘_{xn’gn'i is an

n-map induced by f.

Lemma (1.13). A given map £:¥ —>8 has n-cellular ap-
proximations for every n.

Proof. Thie follows directly from (1.12).
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Lemma (1.14). Let f:¥ —>1) be any map and let
g n+k: £n+k__;9n+k be an (n+k)-cellular approximation of f.
Then the external incluston £": €7 50" getermined by §n+k’
1s an n-cellular approximation of f.

Proof. Proving (1.14) reduces —- after remarking that f
may be assumed to be an (n+k)-map and quoting (1.6) -- to using
the followlng obvious fact: 1f g:W—>Z 18 a cellular continuous
function and so 1is gr:Wr——>Zr, then commutativity of the diagram

below, up to homotoples restricted by the carrier of skeleta,

implies commutativity up to unrestricted homotoples.

W—E& 57

| o ]

wrt ——F_ o g,

2. Homology and Cohomology of Direct S-spectra

It 18 convenlent to consider reduced cellular homology
and cohomology theories. Given a reduced homology theory H on
the category of CW-complexes, the group of cellular n-chains of
X 18 defined as Gn(X) = Hn(xn,xn‘l) and the boundary operator
e:cn(x)._>cn_l(x) 1e the homology boundary operator of the
triple (xn,xn'l,xn‘z). The coefficient group is that of the
theory H. BSince C,(X) is a direct sum of coples of the coeffi-
clent group, corresponding to the n-cells of X (other than the
base point if n = O), suspenseion 1nduces an isomorphism

| 8 :cn(x)xcnﬂ(sx)

that commutes with the boundary operator. The reduced cellular

homology groupse of X are the homology groups of the chain complex
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{Gn(X),QS- Taking the homology theory H wi£h integral coeffi-
cients, the (reduced) cellular cochain groups with coefficients
in a group G are CP(X) = Cn(X;G) = Hom (cn(x),e) and the co-
poundary operator 6:Gn(X)->Cn+l(X) is the transpose of 0. Of

course suspenslon induces again an lsomorphism

8 0" (sx) = ¢™(x)
that commutes with §.

Let £ = {Xi"; be a direct S-spectrum. For each i, the
composition of suspension with the 1nJection:Cn+1(X1)-—>
cn+1+l(sxi)->cn+1+l(x1+l) provides an admissible homomorphism
(1.e., one that commutes with ¢). The limit group

¢, (%) = e Crey (%)
with respect to these homomorphisms 1s called the group of n-
chains of :'E (the coefficient group 1s that of the theory H).

The boundary operator

0:C (¥ )—C _,(¥)

18 defined as the limit of the boundary operatore in Cn+1(x1)'
The n-th homology group Hn(:f) of the B-spectrum X may

be alternatively defined elther as the n-th homology group of
the chain complex {Cn(ri),é} or as the 1limit group
By(E) = Lim B,y (X,)

under the composite homomorphisms Hn+1(Xi)-a>Hn+i+l(Sxi)——>
Hn+1+1(x1+1) where the first 1s suspension and the second is
1njection. These two deflinitions agree, since the direct limit
of exact sequences 1is exact.

Actually, since the chain group Gn+1(X1) dependse only on

)n+1+1

(X , the homomorphism °n+1(X1)">Gn+1+1(X1+1) becomes an

1
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jsomorphism onto for large 1, so that the groups Gn()’.), Hn(',f)
are eventually attained by the groups Gn+i(X1), Hn+1(xi) respec-—
tively.

The cochains of X are similarly defined:

c™¥) = 1m "x,)

Gl
where the inverse 1limlt 1s taken with respect to the composite
homomorphlsms ——>Gn+1+l(SXi)——>0n+1(X1), the first
being restriction and the second suspension. Obviously these
homomorphiems commute with the coboundary operators, so a co-
boundary operator
8:07 (¥ )—>0"*1(X )
can be defined in the limit. Agailn the cochein groups Gn+1(X1)

become "constant! for large 1, so that the n-th cohomology group

of X may be defined elther as

HYE ) = 1im Hn+1(x1)
<1

or as the n-th derived group of the cochain complex {Gn(HE),a}
(wvhich is the same as the n-th cohomology group of the chailn
complex {Cn(3ﬁ),6}, chains with integral coefficients, cochailns
with values in G),

In the above treatment of cochalns and cohomology, the
notation omits the coefficlent group. This was done for the sake
of simplicity. In practice (e.g., obstruction theory) the coef-
ficient group will usually be expliclitly indicated.

The induced homomorphism for homology and cohomology
groups are easily defined. First let f:X—>%) be a map of a space

into an S-spectrum. For some )}, f is represented by an S-map
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£ 89Xy y- Define then
£, :H (X)—H (%)

a8 the composite homomorphism

3 (£4)y
B, (X) — B, (8%X) —5 Hyeg (Xy) — H (D)

J
where the first homomorphism is the j-th suspension and the last

one 18 projectlion into the direct 1limit. It 1s clear that the
cholce of the representative fJ for £ does not matter. If
g:Z—>X 1s another S-map, (f o g)* = f,0 g*:Hn(Z)-—>Hn(%§).
Moreover, considering Sf:SX—>89 gives S, o0 f, =

(Sf)*_o S*:Hn(x)——>Hn+l(S§D) (where 8, 1s the suspension isomor-
phism for homology groups).

Now, if f:¥ —>0 1is an arbitrary map of spectra, for
every 1, fisxi__>sL9 induces a homomorphism (fi)* that makes the

dlagram below commutative.

(£,)x

9 1
Hney (Xg) - > B4y (879)
l (f349)
141 )% 141
Bt i) > By (5770

So the limit of the (f,), gives a homomorphism

£, 10 (¥)—>H (D)

that 1s stable under suspension and has the usual functorial
properties.

The definition of the cohomology homomorphisms f ;H?(¥)—>
H'(Y ) 1s entirely similar and will be omitted.

It would be deslirable to introduce a speclal kind of map
’g::{—ﬂ.j with two properties:
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(1) & induces homomorphisms C*:Gn(:-ﬁ)—ﬂ.‘;n(l;)) that
commte with the boundary operators (n = ...0,1,2,...);

(2) For every map f: ¥ —> Y, there exists an "approxi-
mation" ; such that the homology homomorphisms £ Cx- :Hn(%)—>
Hn(&‘)) coincide.

Of course (1),(2) imply similar properties for cohomology.

It does not seem possible, however, to find a clases of
| maps C as above. Nevertheless, the external inclusions come
close to this ideal and, for all practical purposes, are useful
enough.

Theorem (2.1). An external inclusion C}C_»Q induces
admissible homomorphisms 1;* :Cn(i )—>Gn(9 ), for all dimensions
n, such that (& ol e = ’g'*og* :Gn(f)qcn((.}) where
g :L)—><} 1s another external inclusion. If M: {I,L) ,@§—>
{E,}d} is as in (1.11) the homology homomorphisms

t;*,M( g )*:Hn(:f )—>H (%)) coincide for all n.
Proof. The definition of Q*:Gnﬁ]E)——>Gn(§9) ie entirely

seimilar to the definition of the homology homomorphism induced by
a map ¥ —»4) given above. The only remark to add is that an
external inclusion l;:W—z-Z (of spaces) induces chain homomor-
phisms §*:cr(w)_>cr(z), by the homotopy axiom, since Gr(W) =
Hr(Wr,Wr'l), C.(2) = Hr(Zr,Zr-l). The naturality of Q‘* is
Obvious and the homology homomorphism is the same as that induced
by M(Z: ) because, in the preceding remark, the homology isomor-
Phism induced by C 1s the same as that induced by any continuous
function in the class C .

Remark. Of course a result similar to (2.1) holds for

Cochains and cohomology groups.
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Theorem (2.2). Let £:¥ —>Y and let g“:xn_>&)n be
an n-cellular approximation of f. Then £y = E:Hr(x )@Hr(g)
for r = n-1 (where Hr(‘£ 5, Hr(Q) are identified with Hr('%n),
Hr({—)n) for r = n-1).

Proof. The dlagram below is commutative , Where £ =

M(ET

H (¥) ——--—->H(&))

H,(E") —-——-—-> H (Qn)

But (£7), = (E™) by (2.1).

The groups H (X ), H?( %), together with their induced
homomorphisms, are functors in the category of direct S-spectra.
They satisfy the universal coefficlent theorems (for homology and
cohomology) since they are attained as limits. For a fixed 3(‘.“,
these groups are also covariant functors of the coeffilcient group
G. For instance, write explicitly Hn(:*:;G-) to denote the n-th
cohomology group of £ with coefficients in G. A glven homomor-

phism h:G—>Gl induces a coefficlent homomorphism

by :HY(E ;6)—H"(D ;6 )
with functorial properties. In fact, h* is first defined as a
cochain homomorphism h*_:Gn(ff ;6)—C" (¥ ;G,), since AN ;e) =
Hom (Gn( ¥;2);G). This cochailn homomorphism is admissible, hence
1t induces cohomology homomorphisms,
Notice that the groups Hn(}”. ), H'(¥ ) may be non-zero for

8ome n < 0. However they are zero for all n sufficiently small.
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3. Qbstruction Theory

Let (X,A) be a OW-pair. Consider the sequence of S-maps:

(3.1) A2 x Boxm Y, osa
where a:AC X, B 18 the S-homotopy class of the collapsing func-
tion X—X/A and v i1s defined as follows: the 1dentity function
A—>A extends to a continuous function X—>TA, where TA denotes
the cone over A, (Any 2 such extensions are homotopic relative
to A.) Compose this extension with the collapsing function
TA—>8A. The composlte function sends A into a point, hence it
induces a function X/A—>8A, whose S-homotopy class is v.

The sequence (3.1) induces, for every space Y, the exact

sequence below (see [13]):

¥ * *
(3.2) - -———>{X/A,Y}r_ﬁ—->ix,x}r_"‘—>{A,Y}r_Y__>{X/A,Y}r_l—>

Thie generalizes, but only in part, for S-spectra. In
the most general direct S-spectrum, the notion of S-subspectrum
1s not very useful. Nevertheless, the skeleta are special S-sub-
epectra with good behavior. Given a direct S-spectrum ¥ = {Xj}
and its n-skeleton X, the sequence
(3.3) ¥t E.F B, O Y g¥l
may be defined. In fact a and P have already been introduced in
§1. The map ¥ 1s given by the sequence Y = (Y55Y1:¥ps + -+ ) where,
for each 1, 'vizxi/ (Xi)n+1_>si+1£n is the equivalence class of
the S-map 8% [X,/(X,)""*]—>8[8(X,)®™], the 1-th suspension of
the last map in (3.1) above, taken with respect to the pair
(Xl,(Xl)nﬂ). The sequence (3.3) lnduces, for each dlrect S-

8pectrum X, the sequence

#* e
(3.4) ..._éinx,q}ri{x,z)}r—%{x“,L)ir—"’—»{“I,L)L-l
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Theorem (3.5). The sequence (3.4) has order 2. It is
exact at {},L)} P

Proof. Notice first that, if ¥ is a space, (3.4) is
exact since 1t 1s, in this case, a direct 1limit of exact sequences
of the form (3.2). For a general ¥, (3.5) 1s the inverse 1imit
of sequences similar to it but with £ substituted by a space.
Hence (3.5) 18 an inverse limit of exact sequences and as such
has order 2. Moreover, since ¥" 1s finite dimenslonal, the
groups I(xi)n"'i,sil_)}rﬂ’ whose 1limit is i:i’:n,&)grﬂ, become
eventually all isomorphic so that the theorem follows from the
algebraic Lemma below:

Lemma (3.6). Let Gi-—>H1——>K1--->L1 form an inverse system
of exact sequences, l1.e., homomorphisms are defined so as to make
the diagram below commutative for each 1:

Gi — i, — K, —> L,

]

G pp—>Hy g —K g —L

If the homomorphism G1+1—>G’1 is onto for all i = 1,, then the
limit sequence G—s>H—K-—>L 18 exact at K.

Proof. Only one inclusion kernel ¢ image has to be
proved. Let k = (k,)eK, with k—>OcL. Then k,—>OcL, for each
1. By -exactness, there exists hJ'.GH:\.’ h:'L"'"'ki‘ These h) don't
necessarlly fit together to define an element of H, so they have

to be altered. Thus, let hy = hi and let h, be defined, for
o

o
1 51, as the image of h, under the homomorphism H, —sH,.
o’ 10 10 i
Suppose that 1 = 1, and (ho,hl,...,hi) has been defined eo as to

be a compatible string mapping onto (ko,kl, .+.,k,) and proceed
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to define h, ;. Let hj ,—>hieH,. Then h, - h&'_——;OeK1 so, by
exactness, there exists g,eG,, g,—>h, - h{. Because 1 2 1,
there exists gi+l€Gi+l’ By 41—>84 - Let g1+1'*S§1+1€H1+1' Put
By = hig + §1+l' Then h, 4, —>h, and h, ; —k,;. This com-
pletes the inductive construction of h = (h,,h),...,h,,...)eH
such that h—k,

Theorem (3.6). If ¥ is finite dimensional, the sequence
(3.4) 1is exact.

Proof. This 1s clear, since all the inverse limits are

then attained.

The following theorems express the functorial behavior

of the sequence (3.4):
Theorem (3.7). An external inclusion §:21_>3€ induces,

for every n, external inclusions gn:lg—eln, ng :nxl—e»n:f.

The ladder:
. ¥ W2y {n 'Q —— {95 Z)} ——>{In Z—) i {n'}.,?-)}r_l—z-

“r £ l f“ l Dg

e PE S0, — 13,0 __.,{x;,z.sjr._.a.in%,ag}r_l_,---

1s commutative, where f = M(E ), (grﬂ, e = M(ng ). This
makes the sequence (3.4) a contravarlant functor of £ with re-
spect to external inclusions.

Proof. This follows immedlately from the naturality of

(3.2) with respect to cellular continucus functions.

Theorem (3.8). Any map f:;)'°>%)l induces & homomorphism
of the sequence (3.4) relative to the pair (¥,Y ) into the simi-
lar sequence for (X ,L_)l).

Proof. Obvious.
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In [13], page 353 and following, a natural isomorphlem
Vb Sl § S ¢™(X; 2 ,.(¥)) 16 established, which takes the
composite homomorphism {X /Xn~l Y}r->{Xn,Y}r-—>an+l/Xn,Y}r_l
pap (D)) =0 H(x; 2L (1)),
thus providing a description of the cohomology groups Hn(X;Zhth)

into the coboundary operator §:CP(X; >

in terms of 8-maps of the skeleta and coskeleta of X into Y.
This result extends to direct S-spectra without any difficulty.

In fact, for 1 large enough:

iIn/En—l’ 'L-)} 'rz {(xi)n+1/ (xi)n'fi—l,yi's .

n+1 . V) A n . A
O N Egt F s (T e UK T (B
In a similar way, 1t may be checked that this isomorphism carries

the composlte homomorphism
-1 +
&5 0] — {E 0, —{ %™ & 0],
into the coboundary operator

8:0M¥ ;2 L (D) —0™H(E ;T L (D).

n+r
The development of obstruction theory for direct S-epectra

will be based on the malin diagram below:

l l

e ] B — B
anl

\2

..éii /£ ILJ}_>{$ >0} n { Ry 6 ﬂi"&{ nﬂp}_l "' nﬂ;l_)}_ze...

Ot‘n

v

SETER Y, — (N
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This diagram has the basic property that any zig-zeg
pattern in 1t that goes two steps to the right and one step down
forms an exact sequence. Furthermore, the maln dlagram 1is
natural., That 1s, an external inclusion E:E)El-aif induces a

e

nomomorphism of each entry of the main dlagram of (X,Y ) into

the corresponding entry in the dlagram of (il,?-) ), in such a
way that the 3-dimensional dlagram so obtained 1ls commutative.
In the same fashlon, any map h:?—_)—>?—)l induces & "homomorphism"
of the diagram of (*,4 ) into the diagram of (:f,L.)l). These
assertions follow immediately from (3.7) and (3.8). Diagrams
of this sort were introduced in [3]. (See also [9] and [4].)

Let a map £:¥"—Y Dbe given.

The obstruction to extending f one step i1s the cochain
cn+l(f)ecn+l(i;z n(Z:) )) that corresponds to wﬁ(f)ei_{n+1/}_n,g}_l

under the isomorphism established above. The identification
=+
oM

£) = v, (f) is frequently made.

The notation f' will be used to indicate the restriction
of f one step below. Thus if fei&‘_n,"-_)} , TV = aﬁ(f)e{%n_l,?:)} .
Let f,ge{%n,"-)} agree on £n-l’ i.e., let £ =
g'ei‘%n-]‘,z—)} . Then (f - g)' = 0 so, by exactnees, there exists

some element a™(f,g)eC™(¥ "Zn(L) )) (i.e., 1in {%n/?;n-l,l)} )
such that ﬁﬂ:(dn(f,g)) = f - g, Any such d™(f,g) will be called

& difference cochain of the palr (f,g). There are in general

several difference cochalins for the same palr of maps f,g with

f' = g'. Any two of them differ by an element of ﬁ?:'l(o) &=

Image 'vr_l.
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The following list of properties shows that obstruction

theory carries over to the category of direct S-spectra, at
least in the speclal case of extending a map defined over a
skeleton ("absolute case" of obstruction theory).

Theorem (3.9). Let f,ge{:fn,?.)g and f' = g'e{lf:n-l,l)-g .
Then:

1) The obstruction cochain c®*1(f) 1s a cocycle; f ex-
tends to ¥V 4 and only 1Af cn+1(f) = 0;

2) f = g Af and only if some (and hence all) d"(f,g)e
# 1 n =
B (0). 1In particular, if some d (f,g) 18 a coboundary, f = g;
3) For any difference cochain, 6a"(f,g) = cn+l(f)—cm1(g);
4) £' = £|F" extends to £ ir anda only 1f o*t(r)
1s a coboundary;

5) cn+l(f) and dn(f,g) are natural, More precisely,

let g :f_l-—>1 be an external inclusion and h:Q —-—>'l:)l be any
map. Then:

h*[ g*cnﬂ(f)] = ™m0 £ o M gn))

hy, [ g*dn(f,g)] a%(h o £ o M( gn),h 0o go M(gn))

where B :0%(Y l,Zr(Q ) )—>CY(X 19 Zr(l)l)) denotes the coefficient

iy
homomorphism induced by h,:Z (% )—->Zr(z—)l)-

NtL oy _ oo oy o R

Proofs. 1) &€ "(f) = 8v, (f) = ¥ 41B,417,(f) = O since
¥ A F_
Bn+l e N, = O; the second statement expresses that image Cpty =
. kernel Wit

# n n
2) 8ince B, (f,8) = f - g, £ =g Af and only irf 4" (f,g)
18 in the kernel of Bﬁi Every coboundary, of course is in the

i ¥ ¥
kernel of Bn, since ann-l =0,

3) 8a%(1,g) = VhEaN(f,8) = Va(f - g) = <"L(2) - ™L(g).
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n+l n+l
4) Suppose that f' extends to ¥ and let he {& ,L)S

pe such that h' = h|E L = £*, Then o™ (n') = 0, eince

n-—1

n! = hlin extends. Moreover h',f agree on ¥ So, by 2),

+ } ‘

sa®(£,n') = ™(r) - ™ (mr) = (). Thus V() is the
' n 1 n n-l 4.

coboundary of 4 (f,h ). GConversely, let we{} /¥ 5 )73 exist

n+1(

with 8w = ¢ f). Set g=f - ﬁﬁ(w). Then ¢"*1(g) = 0, s0o g

extends to ¥ n*l gyt g = ' - aﬁﬁ‘\:(w) = f', therefore g' is
already a one-step extension of f!',

5) This follows immediately from the naturality of the
main dlagram of (¥, ).

n+l(

Given fci} n,l)‘g , the cohomology class u of ¢ f) in

Hn*l(l;Zn(Q )) 1s called the primary obstruction of f. By 4)

above, u = 0 if and only if f' extends to :Enﬂ'. The primary
obstruction 1s natural with respect to maps k:¥,—>X (not

necessarily of type g ) and h:d ——>91.

4. The Classical Theorems of Homotopy Theory

A, The Hurewlcz Theorem
For every direct BS-spectrum ¥ and integer n, there 1is a
natural homomorphism h:Zn(% )—>Hn(% ), defined as the direct
limit of the usual Hurewicz homomorphisms h1:2n+1(xi)"_)
Hn+1(x1); h will also be called the Hurewicz homomorphism.

Theorem (4.1)., If Zq(i) = 0 for ¢ < n then Hq(%) =0
for ¢ < n and h:Zn(?I: jre H (S Ja

Proof. This followe from a strailghtforward limiting

process. Take 1 so large that Hq+1(x1) ~ Hq(% ), Zq+1(x1) ~

Zq(it) for all -m< q = n. By the classical Hurewlcz theorem,
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Hq(x) = Hq+1(X1) = 0 for q < n. Moreover, the diagram below is
commutative and hi’ as well as the vertical arrows are isomor-

phisms onto. Therefore h:Zn(i ) =~ H (X).

> (¥) —=2 H (X )

T

Zopry (¥y) > Hyyy (X

y)

Remarks. 1) Of course, Hq(:f) = 0 for g < n also im-
plies Zq(X) =0, q <n and h:zn(%)k H (%) (same proof).

2) The ebove proof ie made trivial by the fact that the
homology and homotopy groups of _% in dimensions = n can be si-
multaneously realized by some Xi with suffilciently high index 1.
It 1s perhaps of interest to remark that the Hurewicz theorem
et1ll holds in a more general category, where the "direct S-spec~
tra' are sequences {xi,q)i}, 1=0,1,2,..., where X, 18 any space
and ¢1:SX1—>X1+1 is any 8-map. The proof 1s, however, more in-

volved and shall be omitted.

B. The Whitehead Equivalence Theorem
According to the general definition for categories, a

map £:¥ —s L) will be called an equivalence if it has a 2-gided

inverse, 1.e., 1f there exists a map g:l) —s ¥ such that
gof:¥XCF androg:Cy,

An n-map f::{n—»l)n 1s called an n-equivalence if it has

an n-inverse, which is an n-map g:1)"—> ¥" such that

g o AFE ala xn, f o g':l)n"lc Hn,
(where a prime, as usual, denotes restriction one step down). The

S-~apectra ¢ d ’Z_) are sald to be n-equivalent, or of the same n-type,
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1f there exlsts an n-equivalence f:}_n——>7—)n. A (global) map

r:¥ —1) is called an n-equivalence 1f some n-map ¢n:%n—>l-)n

induced by f 1s an n-equivalence. This concept does not depend
on the cholce of (1,)n; elther all n-maps 1nduced by f are n-equiv-
alences or none is. This is Corollary (4.4) below.

Lemma (4.2). Let 0,¥: (" —1" and g:L_)n-—>£n be such
that:

g o [F".En-lC 3En,> b o g':l)n_lC or,

Then §' = ' and ¢, are both n-inverses of g.

Proof: Let U, ;: %n_l 'L)n-l and g, _1: Y = 1__>}__n--l
(n-1)-maps induced by U,g respectively. Let a:xn"lc ¥,
B:L,)n_lC )™, Then the hypotheses are that § o g o p =

goVoa=a.

D '] g }xn___L_éz_:)n

gn-1 Un1 )[1-15. n-1 Ll’nil/

-

Then §' =Poa=¢ogofPoa=0ogopol, ,=pol, ;=

U oa=7'. This implies immediately that ¢ is an n-inverse of

g. Moreover, p=¢ogop=0oaog, =0'0g 5 = 7' o 8 T
Togop=Tog', sol ie also an n-inverse of g.

Corollary (4.3). An n=map may have several n-inverses

but any two of them agree on the (n-1)-skeleton.

Corollary (4.4). If 2 maps §,0:E"—U" agree on %n-l’
an n-inverse of { is also an n-inverse of T.

Lemma (4.5). A map f: ¥ —{) 1s an equivalence if and

only if it is an n-equivalence for all n SN = max{dim%, diml-)}+l
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Proof. Only the "if" part needs proving. It is obvious

1f N is finite. If N= o, let (f,) .

induced by f and let hn:i—)n—-> *" be an n-inverse or f,. The

7 be a sequence of n-maps

first step of the proof is to show that, if h8+1 ls any n-map

induced by h then

n+l
RS TRAL L L e

This will follow from (4.2) provided it is shown that

hgﬂ o f): %n"lc %", Now a o hgﬂ of,=h o0 fr'l_,_l:'I_nC Inﬂ'

(see dlagram), so a o hﬁ_ﬂ 0 fl'lzif,n_lC xn+1' But

a,; P 2P A {21 2™ by (2.20), 0 1O, 0 £1: F 0L g1

¥0-1 __'n-1 1yn-1

L

Jx n fn 1:) n hn-i-l 35 n

l .
£ hn+1 -i n+l

}. n+l n+l L) n+l

Thus, equality (X) follows. By composing with a, hl"'l."'l = a o hl,

Now let kn denote the composite map:
h
kot Yt L S x ¥,
Then k! k!. Finally, let 8, = k} "xn—>L), n=20,1,....

n+l ~ *n n+l*

This gives B+l = k.{,'l = k)4, = &,, 80 the various g, fit to-

+2
gether and define a map g:(-_) —-—>k, that 1s obviously an inverse
of f.
Lemma (4.8). If f:¥—>{) 1s an n-equivalence, then
f#:i'uj P fuf,t)} p for all W and r such that r + dimW = n-1,
Proof. . It suffices to prove this for an n-map f:%n»?;)n.

First assume r 2 0, so that §W,'f n}r ={ 87w, %n},
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{U),L_)n}r = {srw,t)n}. Let g: 9)"—>¥™ be an n-inverse for f.
Given a map he{Sru)’, %n}, there exists hleslsrw,%n']'} such that
h=ao hy (a: ¥%1c ¥%). Then g*f#(h) =gofohs=
gofoaoh =go 1 oh; =aohy =h. Similarly, f#g#(k)=
k for all ke{w, L_)n}g 80 f, is an isomorphism and g, is its in-
verse., If r S0, let r = -k, k 2 0. Then {w, lngr =i(w, Skfn},
iw, l)n}r =SLw’,skL)“§ and f#:iw,x;n}r—-)iw, z:)n}r is Just
(Skf)#:iw,skxn}—e{w, Skl)n}. Now, since f 1s an n-equivalence,
sk 18 an (n+k)-equivalence, so fa= (Skf')# 1s an i1somorphism
onto for all W such that dim W S n + k -~ 1 (by the first case),

that is, such that aimW + r S n - 1.

Theorem (4.7). A map f::f—>l-_) is an n-equivalence if

and only if f#:{w,xir%{w,zf_)}r for a1l W and r such that
r + dimw = n-1,

Proof. The "only if" part 1s (4.8) thus only the "irt

part needs proving., First of all, i1t may be assumed that
f:ffn—>9n is an n-map with the above property. Considering
W = Qn"l, r = 0, it follows that there exists g'e{b)n_l, En}

such that f o g' = ﬁ:L_)n-lC O™, In order to show that g' may

be extended to Zﬂn, conslder the dlagram below, where the verti-

cal homomorphiems are induced by f, so the third one 1s an iso-

morphism:

E 3
N, {gn,xn} B {l:) n-l,xn} i {(:)n/(__)n-l’xn}_l__)m
el f3
R {l_.] n’gn} — {gn—l,gn} — {qn/?:)n—l’ l:)n}_l—-a-m
By commutativity, fscnﬂ'(g') = "(r o g') = cnﬂ'(p) =
3

0 since

P may be extended. Now f° is an isomorphism, so cnﬂ'(g') = 0,
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Hence there exists ge {;_)n,xn} such that g' = g o B. To show

that g 1s an n-inverse of f, 1t remains to prove that g o f' =
= "

a: ¥ LCY"™ This 1s done by the usual trick: let

fn_l:%n—'l——)z)n_l be an (n-1)-map induced by f. Then

£ 3 n-l,zn — n-l,gn being an isomorphism, f#(g o f!) = |
foglof,,=fof ;=foas= f#(cz) Amplies |
xn T 9 n & % n f g n
aT T B g il
n_l rn_l L n,_l/
X —=Y

that g o f' = a, which concludes the proof.
Theorem (4.8). A map f:¥ —» ) 1s an n-equivalence if
and only if f#:zr(I)ﬁZr(l_))for 8ll r S n - 1. |
Proof. Since Zr(w') = {So,w}r (W=2%,Y ), the "only 1
if" part ie included in (4.7). For the converse, notice first ‘
that 1f dlmMW =qand r +q = n - 1 then f*:{w’/qu‘l,ﬁ X |
?w/wq-l’z_)} r since{w// wq'l,¥}

product of copiee of Zq+r(‘f ), one copy for each (q * 1)-cell |

p 18 isomorphic to a direct ”

of Z, (1 large enough). Now assume (by induction on p) that |
f#:{'uf,lf PN {'LO’,L)} » for all W,r with aim W < p, r + aimuy§ | ‘
n - 1 (this certainly holde for p = 1). Then let aimW = P, I

pt+tr Sn- 1. In the dlagram below, the four outer vertical |
g ’

U™ Ha P B}, 0, X, 5 8, «

WP P, 0] D O > 0 L o),
arrows denote isomorphisms onto 8o, by the "five Lemma" the mid- | ‘

dle vertical arrow is also an isomorphism onto, which completes

the induction. e
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Corollary (4.9). A map f:¥ —>U 18 an equivalence if
and only if f#:zr(% ) = Zr(?;)) for all r S N - 1 =
mex { aim¥, dim Ui,

Proof. By (4.8) f 1s an n-equivalence for every n S N,
So, by (4.5), £ is an equivalence.

Theorem (4.10). A map f:¥ —>U induces isomorphiems
f*:Hr(af. )2 H. (D), r n -1, 1f and only if 1t induces iso-
morphilsms f#:zr(i)’«‘: Zr(Z:) ), S n - 1.

Proof. By (2.2), the effect of a map on the homology
and homotopy groups of dimenseion Sn-11is determined by any
n-map induced by 1t. Hence, it may be assumed that ¥ =3F T,

L) = z;)n. By taking 1 large enough %%,9} x ?_Xi,Yiﬁ, and the
homology and homotopy groups of 3‘.,9 are also represented by
thoee of X:UY:L’ in dimensions S n + 1 - 1, A-gain, by choosing
k sufficiently large, ixi,xﬁ o [skxi,skyi] and (4.10) reduces
to a classical result of J, H. C. Whitehead, proved by consider-
ing the mapping cylinder of some function representing f and
using the theorem of Hurewicz (cf., [15]).

The following 1e a simple application of (4,9):

Theorem (4.11). Any S-spectrum may be arbitrarily de-
suspended. That is, given ¥ and r 2 0, there exists a spectrum
%' and an equivalence f:87¥'—¥.

Proof. Let ¥ =X ,X;,...}. Define ¥' =3X]} by set-

ting X} = pt. for 1 < r and X} =X for 1 € r, Define f;:8¥'—

1
¥ vy letting, for each 1 2 Q, fizsr rj'_-—a.Sif be represented by

i-r

the trivial map if 1 < r and by the i-th suspension of the com-

posite external inclusion erl— < X if 1 2 r., It 1s clear

r 1’
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that this definee f well and f*:Zk(erE') x2 () for all k,
f I - r - r — -
slnce Zk(s SE') = Zk+i(s xj'_) = Zk+1(s xi_r) - 2_];+:]_-r(x.‘l.—r) -

Zk(i) for large enough 1. Hence f 18 an equivalence.

C. The Hopf Classification Theorem

Lemma (4.12). Let % be an (n - 1)-connected S-spectrum,
1.e., 2..(8) =0 for r <n, Then {%,Z)S =0 1f dim¥ < n,
Moreover to every 16 there corresponds a homomorphism

0y WO —BW; 2 (9))
with the property that:
(4.13) 8q (g 0 1) = £¥[o,,(e)],
for f:%——ﬂ}r, g:W—aQ.

Proof. By (4.8) an (n - 1)-connected S-spectrum 8) has
the same n-type as a point, so {% ,L)} = 0 for dim¥ < n. For
an arbitrary W, define the homomorphism © = Qw as follows:
given filUW—2) , let £, = £ 158, Because{wn‘l,?.)} = @,
fn|u5n"'l = 0, 80 a difference cochain u = dn(fn,O)e{lJn/ufn"l,L)])
ie defined; u 1s a cocycle 8u = cn+l(fn) = 0 due to the extenda-
bility of f,. Then put e(f) = [uJeHn(w;Zn(L:) )). Thie appar-
ently depends on the choice of a difference cochain u = dn(fn,O).

But another choice will be of the form u + 'yf_l(w), W USn"l,LJ}l.

-1, n2 Bn=“:-l n-1 'Y:-z- n 151: n 'Y;T nt
S T i =St B U R DR T 1)

1 l

- 0 0
Now {'UJ n—Z,L)} 1 = O so there exists ze{wn—l/wn-z,l‘)}l with
ﬂf_l(z) = w. Thus any other difference cochain of f, and O will
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-lﬁt:-'l(z) = u + 8z, hence [u] = [a"(f,0)]

be of the form u + v
1s a well defined cohomology class. It is obvious that © is a
homomorphism, and the naturality equation (4.13) followse from
the naturality of difference cochains,

Remark. In the equality (4.12), put W= ana g:HcCcH,
Then g o £ = f, 80 (4,13) becomes
(4.14) 8q (f) = £ (1)
where 1 = 9,9 (1dentity map of &) )eH™(V ;Zn(L))) is called the

characteristic class of 9 . The class 1+ 1s defined for every

(n - 1)-connected S8-spectrum &_) and may be alternatively defined
as the image of the 1dentity homomorphism Hn(L) )—->Hn(l)) under

the composite isomorphlsm
Hom(H, (Y ), H (Y ))—E™(Y ;H (D)) —E"(D ;2 _(Y))

where the first 1s given by the universal coefficlent theorem
and the second by the theorem of Hurewlcz.

Lemma (4.15). Let X be an (n + 1)-coconnected S-epec-
trum, 1,e., H (¥ ) = 0 for r > n, Then, for anyg » the restric-
tion homomorphism {I ,L)} _>{gen,t)‘3 has kernel zero and its image
coincides with that of {¥ ™"107 —{x ", V.

Proof. Given f:¥ —>1), let £, = £| %%, It needs to be

shown that f, = O implies fn+r = 0 for all r, Consider r = 1.

n+l _ _n+2 _
Bince f ., extends, &84 (fn+l,0) =c (fn+l) = 0. But
Hnﬂ'({ ;Znﬂ(l-) )) = 0 (by the universal coefficient formula),
80 d_n+l(fn+l,0) 1s a coboundary, thus f ,, = 0. Proceed by

induetion. For the second part, let f:in-—>9 have an extension

gzaﬁ“ﬂ—#) . Then f extends all the way to ¥ . 1In fact, since
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Hn+2(&:;2?n+l(gb)) = 0, cn+2(g) 18 a coboundary so f extends to
%n+2. Proceed by induction.
Theorem (4.16). Let H (¥ ) = 0 for r > n and z?r(é)) =0

for r < n. Then e:ias,L)} ~ HYF ;Zn(Q)).

Proof. The kernel of @ 1s zero for, given f:¥ —s 1),
a(f) = [an(fn,o)] = 0 implies f = O hence f = 0, by (4.15).
Moreover, an element of Hn(i:;zfn(é))) 1s represented by a co-
cycle ueiffn/%n"l,z—)} . Let £, = ﬁﬁ(u). Then cn+l(fn) =
Jiéi(u) = 6u = 0 s0 £, extends to 3En+l (see dilagram for the
proof of (4.12)). By (4.15), f, extends to a map £:¥—>9Y ana
1t 1s clear that 6(f) = [u], so & is onto.

Theorem (4.17). Let Zr(L)) =0 for r # n, Z—n(&)) = @,
(Existence of such S-spectra for arbltrary n,G will be proved in
the next section.) Then 9:{%,1:)} o Hn(aﬁ;G).

Proof. The proof reduces to the observation that the

conclusions of (4.15) hold under the weaker assumption that
Hr(I;Z_r(L))) = Hrﬂ'(x;zr(&) )) =0 for all r > n. Then the

argument of (4.16) applies verbatim.

5. The Realizability of Homotopy Groups

Here the differences between the ordinary and the enlarged
S-categories start to appear; in the former it i1s not always pos-
8lble to find a space X with arbitrary preassigned S-homotopy
groups. This however can be done in the enlarged category of
direct S-spectra. In the theorem below, all cells are to be
attached by cellular continuous functions.

Theorem (5.1). Let {Grg be a sequence of abelian groupe

(~0< r < +0 ) with G, =0 for r < r,. There exlsts a spectrum

o
X withzr(¥)=Gr, -o<r < to .
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Proof. The construction of X follows the lines of [16].

The general result will follow from the specilal case ry = 1, by
(4.11). So, r, = 1 will be assumed. Given the sequence of
groups Gy,G,, ..., the S-spectrum ¥ = { leg 1s constructed by
induction. X, =V Sé ls a wedge of circles corresponding to
gsome system of gegerators fal for G ;X = X U eg is obtained
by attaching 3-cellse to sxo in correspondence Sith the relations
p among the generators o, so as to make ﬂz(xl) = @,. Notice
that X, 1s simply connected hence nz(xl) is stable. Now assume
that Xz,Xz,...,X1 have been obtailned in such a way that

(a) 8X, 1s a subcomplex of Xy 410 (SXK)2k+1 = (Xk)2k+l;

(b) dim X, = 2k + 1 and SX, is & retract of (X, )%**Z

() Mg (X)) = 6. (k=0,1,...,1 -1)

_ 2142, , 21+3
Put X, = (Sxi\: 8° )\g &5 s

that 1s, firet wedge a bouquet of (21 + 2)-spheres S§1+2 to 8X,,
one sphere to each generator o of a system arbitrarily chosen
for Gi+l5 at this stage the resulting space Y = SX1\¢’821+2 is
such that ﬂ21+2(1) is the direct sum of n21+2(SX1) and a free

abelian group H with generatore corresponding to the a's. Then,

21+3
P

purposes: s8ome of them are to kill ﬂ21+2(SX1) and the others are

a collection of (21 + 3)-cells e is attached to Y with two

to introduce in the group H the relatione existing in G1+l among
the generators a. In this way, 1t 1s clear that n21+2(x1+1) =

G It i1s aleo clear that this completes the inductive con-

i+l
struction of a sequence X ,X,,... of spaces satisfying (a), (b),

(¢c) From (a), 1t follows that X =i xi} i8 a direct S-spectrum.
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Since X, 1s connected, (a) aleo implies that each X, 18 i-con-
nected, so Zr(xi) = n‘r(Xi), r £ 21, By (a) and (b), the inclu-
slon SX1C X, 41 induces isomorphisms nr+l(SX1) x‘nrﬂ(xiﬂ) for
r £ 21, that 1s, Z X)) ®Z (X ) for » 220, By (c),
221(){1) = G;. Therefore Zi(%) = Gi for 1 = 1,2,....

In particular, (5.1) implies that for every abellan group
G and every integer n there exists an S-sepectrum % such that
Z 4(¥) =0 for 1 # n, 2 (X)>=@. (Notice that n may be

negative.)

6. Killing Homotopy Groups of an S-epectrum

Given a direct S-spectrum X and an integer n, another
direct S-spectrum % (n) will be constructed. The functor
¥ '—>£(n) will have the basic property that ¥ anda © are n-
equivalent Af and only if %(n) and z')(n) are (fully) equivalent.
In (8.1), all cells are to be attached by cellular continuous
functilons.

Theorem (6.1). Given a direct S-spectrum ¥ = {X1,¢173
and an integer n, there exists a direct S-spectrum %(n) =
W, b, ] such thas:

| (1) XCE ;¥ = (X

(2) Zr(x(n)) =0 for r

Proof. Let k, be the first index such that the following

n))n)

n.

v —~

propertles hold:
(a) ﬂr+k(xk) 18 stable, for every k = k,, and r = n;
(b) The external inclusion QJK:SXK < X 47 1nduces external

equalities in dimensions s n+k+2, for every k 2 x

o.
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Such index k, exists by Lemma (1.5). The properties

<
above imply that 2 (¥) =M, (X,) for all k 2k, r 3 n,

In order to define BE(n), put W, = X, and ¥, = ¢, for

i1 <k Set
- n+ko+l

W, = U e
ko Xko o a ’

where the (n + Ko + 1)-cells are attached by functions repre-

senting generatore o of nn+ko(xko), 80 as to make nn+ko(wko) = 0,
The S-map ¢ :8%, —»X, ., induces an isomorphism
o o o

hznn+ko+l(Sxko)—"nn+ko+l<xko+l)’ since these groups are stable.
. n+k +2

Attach (n + k, 2)-cells €q ! to xko+l by functions repre-

senting the images o' = h(Sa), thue obtalning a space

n+ko+2

ol ? !

W = U
k 41 xko'i-l

(W ) =0,
ol n+k +1' "k _+1

Then Ok extends uniquely to an external inclusion
P, :8W, < W
ko ko ko+l,

which 1e an "equality" in dimensions = n + k, + 2. Proceed
similarly until reaching kl, the first index greater than ko for

which (a), (b) hold with k) instead of k, and n + 1 instead of n.

Then, define W, by attaching to X, , not only (n + k, + 1)-cells
1 p N

1
to kill T (W, ), but also by attaching (n + k, + 2)-celle in
n+kl kl ) 1

order to make T .. +1(Wk ) = 0. This indicates the inductive

1 1 ,
procedure to follow. The sequence aE(n) = {Wik thus obtained 1is

easlly seen to be a direct S-spectrum that satisfles conditilons

(1) ana (2).
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Lemma (6.2). Every n-map £: ¥ P—U" extends uniquely
to a map Pn(r)‘}-(n)"—)g(n)' Two n-mape f,g have the same ex-
tension, pn(f) = pn(g), if and only if they agree on ;:n-l. The
mep pn:{in’ ?')n}"’{i(n)’?')(n)} is a homomorphism, which is
functorial with respect to n-maps.

Proof, 1In first place, the restriction map {'w: l—)(n)}—;.

iwn,'ﬂ(n)} is an lsomorphism onto, for everyw, since the ob-
struction cocycles and difference cochalns for the extension
problem wn—>9(n) have all coefficients in Zr( C:)(n)), r 2 n,
hence are all zero. Define P, a8 the composite

(", 0%} — {"{n’q(n)-& — i'x(n)’ z")(n)‘S
where the first homomorphism is injectlon and the second 1s the
inverse of the restriction isomorphism (recall (¥ (n))n =",
The kernel of Pp 18, of course, the kernel of the above injec~

tion. Hence, in the dlagram below, where the arrows have obvious

meaning, 1t has to be shown that kernel A = kernel p.
n ,\n A n
9" —— 1¥.5))
o) e

{Xn-l, Qn} v {I’n_l’ g(n)x

Because v 1s 1l-1, kernel AC kernel p. Now & 1s also 1l-1, since

difference cochains with coefficlents in Zr(zi)(n))’ r 2 n, are
all zero. B8Bo kernel p C kernel A. Thie completes the proof of
(6.2), since the naturality of p, 18 obvious.

Lemma (6.3). An n-map £:¥"—=U" 18 an n-equivalence

if and only if pn(f):'.f(n)-el_)(n) is an equivalence.
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Proof. If p (f) 1s an equivalence, then f 1s an n-equiv-
alence, since f 18 an n-map induced by pn(r). Conversely, if f
is an n-equivalence, let g:@n-—>};n be an n-inverse for f. Then
Pn(8) 18 a full fledged inverse of Pp(f). In fact pn(g)o po(f) =
pp(g o ) = P,(1identity) = 1dent1ty:'x(n)C {X_(n) since g o f
coincides with the inclusion in"lc ¥ on %n-l and so does also
the identity map ,fnc %n (ef., (6.2), where the kernel of P, 18
determined). Similarly po(f) o pn(g):?)(n)c Q(n)‘

Theorem (6.4). The S-gpectrum %(n) is characterized,

up to a natural equivalence, by the properties:

(1) % C X(n); En = (k(n))n;

(2) 2 (X)) =0,
Proof. The properties of .{(n) established in Lemmas

v

n.

(6.2), (6.3) are proved on basis of properties (1), (2) only.
Therefore, if i(n)’ %'(n) are two direct S-spectra satisfying
(L) and (2), let f:( f(n))n—>( Ezn))n be the identity map. Then
f 1s an n-equivalence, so p (f): :f(n)-—> ¥ (n) 18 & (natural)
equivalence.

As a consequence, the homology and cohomology groups
Hr(&(n);G)' Hr(z(n);G) form a simple system, eo they may be
considered as depending only onx ,h but not on the particular
spectrum I(n) chosen with properties (1), (2) above.

In fact, the construction of %(n) involves one arbi-
trariness, namely the attaching of celle in order to kill homo-
topy groups of certailn epaces. This arbitrariness, however, can

be overcome by attaching all cells in question by all possible

continuous functione of a sphere of a certaln dimension k into




115
the space whose k-th homotopy group 18 to be killed. By doing
g0, a special S-spectrum xc(:n) is obtained, with the desired
properties (L), (2) plus the additional fact that it 1s well
determined, not only up to an equivalence. Then, not only the
homology and cohomology groups of f{_?n) are well defined, but
also 1ts groups of chains, cochains, cycles, cocycles, etc. are
well defined. The notation pg: {En, L)ng__) {z?n)’ Z)?n)} willl be
used for thils speclal case of the homomorphiesm introduced in
(6.2).

It will also be seen in ¢ 8 that, in connection with
duallty, incluslons are not very useful. Therefore, 1t is of
interest to remark that given %,n, the class of all pairs
(k(n),r) where

(la) £: X——>¥ (n) is an n-equivalence;

(2a) Zi(}(n) =0 for 1 £ n,

forms a simple category, that 1s, given any two such pairs

%(n f) and () (n)€ ), there is a canonical equivalence
h'%(n)'_) -)(n)‘ Just define h to be the (unique) extenslon of
the composite (I(n‘))n—>xn—_->9(n) where the first map is
induced by some n-inverse of f and the second one 1s gl_%n.

In other words, the pairs (X(n),f) satisfying (la) and
(2a) are well determined up to a natural equivalence. Therefore,
the homology and cohomology groups of these pairs (defined simply
to be the homology and cohomology groupé of 3£(n)) form a simple

system,

7. The Btable Postnikov Invariants

Let ¥ =iXi} be a direct S-spectrum. For each integer

n, denote by %(n) any direct S-spectrum satisfying (1), (2) of




116
Theorem (6.4) and by %?n) the special ‘%(n) introduced at the

end of § 6.

The Postnikov cocycle of % (in dimension n + 1) is the
obstruction cocycle for extending the inclueion map (X?n))n C¥
one step; 1t will be represented by the notation

M (E )™ (X )i Z (X))

The cocycles cnﬂ'(X) are also called the c-invarlants

of ¥ . An external inclusion g : X—> Y can be extended (in
mahy ways) to an external inclusion g :ch(’n)—>9?n) and for
each such extension, S*cnﬂ.( Y) =8 ™L(¥) (where

8 :Gn+1( c(’n);Zn(:f))——->Gn+l(3_‘?n),2_n(l:) )) is the coefficient
homomorphism induced by g#: Z_n(:f ) —> Zn( t))). This establishes
the invarlance of the Postnikov cocycles with respect to cellular
maps and 1s a consequence of Theorem (7.2) below. For the proof
of that theorem, the following Lemma is needed:

Lemma (7.1). Let o,A :Zn(X)—>G be homomorphisms in-
ducing the coefficient homomorphisms 9*,/\*:Gn+l(2c(’n);zn(.{))——e-
™ (X 9,):0) . If 8™ (X) = N\ o™ F) then 0 = A,

Proof. The group Gn+l(Ic(’n);H) (H any abelian group) can
be represented as the direct product of coples of H, one copy for
each "(n + 1)-cell of z‘(’n)" (that 1s, for each (n + 1 + 1)-cell

of the firet space W, in :{c()n) for which the relation (swi)n+1+2=

(W»\Ti,‘_]_)n"'“'2 holds and continues to hold for all higher indices
than 1). Thus, given the homomorphism O:Zn(if )—>G, the coef-
ficient homomorphism 9*:Gn+l(} c(>n); Zn( I))-—>Cn+l(% on);G) just
maps each string (xo) of the first group (0 running over the

(n + 1)-cells of ?ﬁ?n)’ xceZn(i )) onto the string (yo) of the

second group, where, for each o, ¥y, = e(xc). With this point of
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view, the Postnikov cocycle cnﬂ('{) 18 just the string (zc)
where, for each 0, z_¢ Zn(z) ig the class of the characteristic
map of the cell o. For each ern(z ), there exists a @ such
that x = z, (z; in the cocycle "*L(¥)). This fact can be ex-
pressed by saying that cnﬂ'(%) is a cocycle onto Zn( ¥) and it
implies that the homomorphism & is characterized by the lmage
e*cnﬂ'(x )eGn+l(:f?n);Gr). In fact, given ern(.% ), choose @
such that x = z_ as above. Then 8(x) is the entry of index ¢

g
in the string © cnﬂ(} ). This proves (7.1).

*
The nature of the cocycle cnﬂ'(ff) as a sort of universal
obstruction 1e displayed in the next theorem (see [1] ana [17]).
Theorem (7.2). An n-map £f: ¥P—=U" extende to an (n +1)-
map F: xn+1__>(:)n+l if and only i1f there exlets a homomorphism
Q:Zn(x )-——>Zn( ) such that

(7.3) £¥0%1(Y) ) = o, (X)
for some (and hence every!) (n + k)-cellular approximation g of
p?l(f):.{?n)—-)l_) (()n)‘ If such a homomorphism © existse, 1t is
unique and equals F,.,

Proof. Suppose first that F exists, extending f. Let
E be any (n + k)-cellular approximation of pg(f). By (1.14),
gn ie an n-approximation of pg(f), i.e., M(gn):(z?n))n 18 an
n-map induced by pg(f). But £ has this property, too. Therefore,
in the dlagram below, where a,f are inclusione and 6,€ are lden-

tity maps, all three paths going from (¥{.))" to YL jead to

the same result. In particular, Bo€ o M(gn) =Foao8d.

(D))t 5 " £ 9

M(gn>'[ | Tf TF

(Ic()n))n 8 In o 3&n+l
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Computing obstruction cocycles gives: g*cn+l(2:)) =
e¥ " l(goe) =™ (po€ o M(EM) =" (Fo o) =
(£,) ™ (@ 0 8) = (£,) ™" (%). 8o (7.3) holds, with © = F,.
Conversely, if (7.3) holds for some g and some ©, the obetruc-
tion to extending B o f o & to xn+l is X*§*0n+l(g)’ hence it
equals X*Q*cn*'l(X) = 8, [X*cn+1(:¥ )] (where Y € i¥n+l,3€°1{)é}
is the inclusion map). But X*cnﬂ'(X) = 0: the obstruction
vanishes, so f extends to a map F::fn+l—>9n+l. By the first
part, (F‘#)* cnﬂ'(ﬁ) N g*cn"'l(z:)). 8o, by (7.3) and (7.1),
e = F#.

Corollarz (7.4). Let f::{n-—> z__)n be an n-equivalence.
It extends to an (n + 1)-equivalence F: ¥ UL 4+ ana only
if Zn(‘f)ﬁzn(@) and moreover (7.3) holds for some (and
hence every) (n + k)-cellular approximation g of p;(f) (x 2 1)
and some isomorphism 8: Zn(x )~ Zn(z) ). If such isomorphism
& exists, 1t 1s unique and agrees with F ,

Proof. If f extends to F, (7.3) holds and if F ie an

(n + 1) equivalence, F#: ?n(% ) & Zn(9>' Conversely, if (7.3)

holds for some ‘5' and some isomorphism © then f extends to F and
Fe =9, 80 F 18 an (n + 1)-equivalence by the Whitehead equivalence
theorem.

The Postnikov cohomology class of £ » in dimeneion n + 1,

is the primary obstruction of the inclusion map (:E(n))nC%,

1.e., the cohomology class that represents the obstruction to

extending two steps the restriction of this map to (f(n))n_l.

This class 18 denoted by
WLE ) ™ E ()32, (E )
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The cohomology classes knﬂ(%) are also referred to as the k-

invariants of ¥ . The naturality of these k-invariants under

arbltrary maps £: X -—->l_«) (and, in particular, the fact that they
do not depend on the particular %(n) chosen to define them)
follows from the Theorem below. Although this Theorem is en-

tirely simllar to (7.2), 1t has a more invariant statement, |
since 1t refere to cohomology, rather than cochains,

Theorem (7.5). Given an n-map £: ¥"—-0" and a homo- (
morphism G:Zn(f )-->2-n(9 ), there exists an (n + 1)-map ‘ 1
F; :'En+l—-> 9n+l agreeing with Bf on :)En_l (where g: 1 anﬂ‘) {“

and inducing © if and only if '
X
(7.8) Pa(e) &Y ) = o kP L(¥)

Remark. This time, of course, the homomorphism © is
not uniquely determined by f since F may be quite arbitrary on
EEn

Proof. If F exists with these properties, the naturality

*
of the primary obstruction gives p, .. (F) X)) = G*I:nﬂ'(x ).

But pn+l(F)* = g* vhere g is some (n + 1l)-cellular approxima-

tion of pn(F)‘ Then M(gn):xn—) UM agrees with f on 3€n"1 :
hence p, (f) = pn(M(gn)) = p,(F). Thus pn(f)* = pn(F)*, proving ': |
the first part. Conversely, if 6 is such that equation (7.8) |
holds, by choosing ¥ c(’n), {) c(’n), 1t follows that the obstruction ’
cocycle to extend Bf to (%?n))nﬂ is e*c“"l(a‘.) + Swe
Cnﬂ'(f ?n);zn(c) )), where we{% n/In-l’ 9n+l} . Let he{ln,gnﬂ'ﬁ ‘
be the image of w. Then the obstruction cocycle of g = Bf - h

is 9*cn+l(:f), which of course 1s zero when restricted to ¥ P71,

Therefore g extends to a map F: ,{n+1___>® ntl ith Fy = 6. Now

the image of h in {zn—l’g"\“fis zero, so F agrees with pf on ¥I-1,
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Corollary (7.7). Let f: '{n__égn be an n-equivalence
and O: Z_n(x )X Zn(t)) an isomorphism. There exists an (n + 1)-
equivalence F: ¥t 5 yntl agreeing with Bf on ¥ n-l (where
B:E)ncgn*l) and inducing © if and only if pn(f)*knﬂ'(g) =
o k" (¥).

*
Proof. Thies follows immediately from (7.5) and the

Whitehead equivalence theorem.
Given the direct S-spectrum f and the integer n, con-

slder the subset
K E )R ) Z(ED)

consisting of all the cohomology classes ©, pn(h)* [kn+l(x )]
where h:¥ "—Uf" 18 an arbitrary n-equivalence of X with
itself and ©: Zn(I )—»Zn(.%) is an arbitrary automorphism of
the group 2 (¥ ). In other words, let H be the group of all
n-equivalences of X7 with itself and A be the group of all auto-
morphisms of Zn(}). Then A X H operates on Hnﬂ'(%(n); Zn(I)):
given 6eA, feH, ueHnﬂ(}f_(n);Zn(% )), set (€,f)u = *[pn(f)*(u)].
Thus & "*1(¥) 18 Just the orbit of k™ 1(¥ ) under this action.
Call at_n+l(:f) the Postnikov set of ¥ (in dimension

n +1). These sets nnﬂ'(}) are called also the I -invarlants

or ¥ .

The following theorem introduces an inductive procedure
in order to determine whether or not two given direct S-spectra
are equivalent. As i1s shown, the homotopy groups and the & -
invariante completely characterize an S-spectrum up to equivalence.
Of course, this includes a classification of spaces (1.e., finite

dimensional CW-complexes) up to S-homotopy type.
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Theorem (7.8). Two direct S-spectra ¥,5 have the same

(n + 1)-type if and only if they have the same n-type, l1somorphic
m_n-*-l

homotopy groups in dimension n, and the "same' -invariant,
that is

+ +
(7.9) pa ()N ) = o, ™)

for some (and hence any) n-equivalence f:a‘,n—ﬂ—)n and for some
(and hence any) isomorphism 8: Zn(x Y= 2 n(g ).
Proof. First, let F: ¥ "1 0P e an (n + 1)-equiv-

alence. Any n-map f~%n-—>7:)n induced by F i1s an n-equivalence.
Moreover pn(f) " (Y) knﬂ(% ), by (7.7), with 6 = Fy.
Hence the two sides of (7.9) have an element in common, so they
agree. If g:¥"—U" 18 another n-equivalence and A: Zn(X) A
Zn(?:)) another isomorphiem, then pn(g)* [pn(g)'lpn(f)]*kn"'l(i_)) =
Ny (A7) XM H(E) 0 pp(e)F ™H(D) = Art™H(X), waien
completes the proof of the "only if" part. Conversely, if (7.9)
holds, then, for some n—equivalencefh'?én—> In and some auto-
morphism A: 2 (¥)—Z (%), p (£) k*(D)) =

e, A pp(n) k n+l(f), so p (f o b1 E™1(Y) = (9/\)*kn+l(?:)).
Therefore, by (7.7), there exiete an (n + 1)-equivalence

Fip 0t nl,

It remains to be shown now that, given %,n, there exist
S-spectra @ with the same n-type as ¥ ana arbltrary Zn(?:) ),
knﬂ'(zt)). 8ince the n-type depends only on the n-skeleton, it
may be assumed that K =X 0,

Theorem (7.10). Given x =% ™ and an arbitrary abelian
group G, there exists Q = z:_)n such that

H 1) ¥CL) and this inclusion map is an n-equivalence;
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2) For every cohomology class Eu]eHn+l(ZJ(n);G), there

is an S-spectrum <%= (}nﬂ. with %n =Z-_) (hence 3(n) = Z—) (n))’
Zn(Q) =@, ena (9 = [ul.

Proof. Let 1 be the smallest index such that ;?r(as) =

B Z -3 =
(i +J(XJ)’ SXJ B Xj+l for all J £ 1, r = n. Let YJ Xj for

J <1 and, for ] = 1 let ¥, = X Sn+J are in 1.1 correspon-
J J g

g
dence with the elements geG. This deflnes 29 = {Yﬁ} satisfying
1) above. Let L)?n} =iW }. Then WJ = YJ = XJ for J < 1 and,

for J 2 1, (W yRrtL V Sn+J eg-i-j-*l where there 1s a cell
a

2+3+1 attached for every continuous function o:8" J—ASKJ\/ gntd

g

Thus the subcomplex of W, generated by the (n + 1 + 1)-cells
gn+i+l

g €

that any (n + 1 + l)-cocycle w of W, that vanishes outside of

e

whose boundaries are in is contractible. This implies

these celles 18 cohomologous to zero. For instance, let w be the
(n + 1 + 1)-cocycle of Wi, with coefficients in G, which 1s zero
everywhere, except on the (n + 1 + 1)-cells attached to W by

the inclusion maps SgH'C\/ Sg"'i and in each of these cells takes
g

the value geG. By considering u + w, one sees that every cocycle

| ueGn+1+l(WiJG) 1s cohomologous to a cocycle onto G. In particu-

lar, the given cohomology class Eu]eHn+l(;)?n);G) can be repre-
sented by a cocycle u onto G. Let Z1 be the subcomplex of Wi

obtained by attaching to Yi the cells of W1 that are in the ker-
nel of u. The cocycle u induces an isomorphism A:nn+1(z1)cz G
and, under the coefflcient isomorphlsm induced by A, u corre-

sponds to the obstruction cocycle for extending the identity map

)n+1 )n+1+l

. Define Z, for } > 1 in a similar way

(2 --—>Z1 to (Wi

1 J
(thie corresponds to attaching (n + J + 1l)-cells to YJ

B
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corresponding to those already attached %o Yj-l’ under the ex-

ternal equality SYJ_l = YJ). Set (3 = {ZJ}, obtaining thus a
direct S-spectrum that satisfles condltion 2).

Remark. By imitating the above procedure, one is led
to an inductive construction that proves the following result:

Given any direct §5spectrun13f, there exists an S-spectrum

Y ={1,], equivalent to ¥, and such that BY, C ¥,,; for each 1.

In other words, all that was proved for direct S-spectra in the
previous sections could have been done even 1f these were re-
stricted by the condition that, in the Definition (1.1), the

external inclusilons ¢1 were restricted to be ordinary incluslons.

By adopting this simplified point of view, some proofs would
have been simplified. Moreover, the notion of S-subspectrum
would appear as a natural one, in all its generality, and the
quotient 8-epectrum i/O’L would be well defined for any S-sub-
spectrum OLC%. This, however, has not been done, and the
main reason for assumling this more general viewpolnt 1s based
on duality. When the more restricted definition of S-spectrum

| is taken (with ordinary 1nclusions), it does not seem possible
to prove that every dlrect S-spectrum 18 equivalent to a direct
8-spectrum that has a dual. Thus, the next sectlon will provide
the first instance in which external inclusions are necessary 1ln

the definition of an B-spectrum.

8. Inverse S-spectra

In this section, another enlargement of the S-category
will be described, namely, the category of inverse S8-spectra.
This will provide an alternative system of invariants charac-

terizing the stable homotopy type of a space. The new invariants

-
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are homology classes with coefficients in cohomotopy groupe and
they are related to the Postnikov invariants of §7 by the
duality theorem of Bpanier and Whitehead. In fact, the whole
theory of inverse S-spectra is dual to that of direct S-spectra.
When the components of the S-spectra are finite complexes, such

duality 1s a theorem. In general, it 1s based on analogy.

In order to avoid unnecessary repetitione, the descrip-
tion of inverse S-spectra will be made in a concise manner.
Proofs that are entirely simllar to those of the previous sec-
tions willl be omitted. Other theoreme will be proved by duality. ‘
In order to be able to do so, the following assumption 1s made:

All spaces in this section are FINITE complexes.

A. The Category
An inverse S-spectrum ?,J= iwi,wi} or, simply, W = {Wi-f

consists of a sequence Wo,‘l,... of spaces and external inclu- |
sions Wi:W1+l < BW, such that:
w

(8.1) Given n (E relative integer), wi:n+1+l(

1+l)

n+i+l(SW1) is an external equality for all large 1.

Spaces yileld inverse S-spectra in the obvious way. l
Suspension, skeleta and coskeleta, dimension and codimension are

defined Just as for direct B8-spectra, Of course coskeleta and

codimension here play the most important role. For instance, if

nu7=w then W1+1 = swi for all large 1. This follows from '
(8.1), which implies aleo that, for all large 1, W, 18 (1 + q)- |
coconnected (where g is a constant). l

The group of maps of an inverse S-spectrum 'CF= {Vi} into

a space W 1e defined as the direct limit
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- J
U,Wi= 1m fvy,shvi
with respect to the composite homomorphisms

gd ¥y}

where the first one i1s suspension and the second is restriction.

{vy, 80— {ov,,89*w ]} — {vjﬂ,

The group {'U’,W} is attalned by EVJ,SJW} for large jJ. In par-
ticular, the cohomotopy group ZP(U) = SL'U’, Sp} is realized by
Zpﬂ (VJ) = nPH (VJ) for large J.

In general, the group of maps of 1Y into another inverse

8-spectrum UY= iwi} 1s defined as the 1nverse 1limit
{'U‘,w }= Ei isiv’:wi‘i

with respect to the composite homomorphism (of clear meaning):
| + + 1
{8t LU0, — 1P, sv,j — {stU,wj.

Composition of maps 1s defined just as for direct S-
spectra. The group {'lY,'UY}is a covariant functor of 'Uyand a
contravariant functor of U- It 1s stable under suspension.
Given a relative integer r, iU—, 'Uf}r {SrU—,US} if r £ 0 and
= {'U-,S'rw} 1f r £ 0. Then Zr(ly) = {So,'\f}r and Z25(V) =
i’l)',so}r rér - < I < t®. Z, () = 0 for all large r. If

'UY= nw,for some n then the group i'()’,'\lf} is 1somorphic to
{vi,wi} for any and all large i. A map f:'()'—;LlYmay be

described as a collection of mape fn:'lf——;nw (-m<n < +m )

such that

By B

fﬂ\‘ n+11l;(f

n

is a commutative dlagram for every n (the vertical arrow: col-

lapsing map).
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The group i'l)’US@} of external inclusions is defined
just as {U, W, but replacing {8'v,, 8w} vy {8lv,,shw,; DY .
There is a natural homomorphism:

v: 0w} B} — (U, W

Ir w =,n'l,6 for some n, this homomorphism is onto. An n-map of
the inverse 8-spectrum V:I.nto the inverse S-spectrum wis a
map nfan_)nw’. Buch a map 1s sald to be 1nduced by a map
b gH lr-—>w if the dlagram below, where the T's denote collapsing

maps, 18 commutative:

v ——w

i n ln
nv/ T }nu)/

It follows from (0.2) (which 1s readily generalizable

to Anverse S-spectra) that a map f:U—)U{induces n-maps
nf:nUanur for every n. Of course D¢ 18 not unliquely deter-
mined by f, but any other ng induced by f agrees with D¢ when
projected into n+lu)f

An external inclusion Aeinl)',nuf;ég is called an n-

cocellular approximation of f£:1)—sU) if N(A)e{“D’,nw’}is in-
duced by f.
An external inclusion A:U—ew induces external inclu-
slons:
Aneilyn’mn; @}’ n}‘cinﬁ’nw;é}.

If Ac {n+kvf,n+kw’, @S 1s an (n + k)~cocellular approxi-

mation of f: '(f—>w then A 1s an n-cocellular approximation of f,
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B. Homology and Cohomology
The group of n-chains of an inverse S-spectrum ]£;= {Wig
is defined as Gn(UY) =1lim C__,(W,) and the boundary operator
1s obtained also as a limit. The groups Gn+1(W1) become constant
for large 1, so i1t 1s indifferent to define the homology groups
of'Uj/either as H (UY) lim H +1(W1) or as the homology groups

of the chain complex an(tﬁ),éi. Cohomology is treated similarly.

For instance, Hn(UY) =111m Hn+i(W1).
—_—
A map f:ly;—>VV induces a homomorphism ﬁ*:Hn(tr5—~>Hn(W)

a8 follows: represent f by an S-map fJ:VJ-—>SJW. Then

(25 oy Vg )—Hpyy
phism By (U7)—>H, OV, )—>H_,, (89W)—>H (W) where the first is

(SJW). Define Ty as the composite homomor-

projection from the inverse limit, the second 1is (fj)* and the
third is desuspension. The choice of the representative fJ is
easlly seen to be immaterial.

Next, a general map f:tr——alﬂ/provides, for each i, a
map fl:Sitr——>W1. As above, f, induces a homomorphism

(fi)*:Hn+i(311y)u—>Hn+1(Wl) and hence a homomorphism hl:Hn(oa-—>

Hn+1(w ). The various h, (1 =0,1,...) so obtained, fit together
as they should and yield a homomorphism f* H (TT)-—;H UG}.

The induced homomorphism for cohomology 1s treated simi-
larly.

The homology and cohomology groups of inverse 3—-spectra
are functors in the category of inverse S-spectra and their maps
to the category of groups. They satisfy the universal coefficlent
formulas, since they are attained as 1limits. Also the "coeffi-

clent homomorphiem" (for homology and cohomology) is defined

without difficulty,
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Chain and cochain groups are moreover functors relative
to external inclusions. If one remarks that an external inclu-
sion of spaces induces chailn and cochain homomorphisms (silnce
these are relative homology and cohomology groups of skeleta),
the above definition of induced homomorphlsme for homology and
cohomology carrles over completely for chains and cochains, with
an external inclusion replacing a general map. The homology and
cohomology homomorphisms induced in this way by an external inclu-
sion Aei_D’,w; ég coincide with the homomorphisms induced by
N(A)e{Tf;Uf}, as defined previously. BSince one may identify
Hr((J) with Hr(nU) for r 2 n + 2, the homology homomorphisms
f :Hr(iy}——>Hr(Uf3 induced by a map f:\V-—>UJ agree with those

¥
induced by an n-cocellular approximation A of f, for r Zn+ 2

C. Duality
A direct S-spectrum ¥ = {Xﬁ,¢1} and an inverse S-spec-
trum x*={}{:,¢a{} are sald to be p-dual to each other if, for
every index 1, Xi and X:-are combinatorially (p + 21)-dual and,
moreover, the external inclusions ¢1:SX1 < X, 4, and
¢§:Xi;l < SXf—are dual S-maps, 1.e., they correspond to each

other under the relative duality isomorphism:

Drioi+a’ {sx,,%, 410 =~ %x-ix-ﬂ’sx:; b}
between these groups of external inclusions (cf., [}4], § 6).
Notice that SX, is a combinatorial (p + 21 + 2)-dual of 8X, .
It 1s convenlent to keep in mind that if X, x* are com--
binatorlally p-dual, then they are weakly (p + 1)-dual,
It follows from [}4], Corollary (10,3), that the p-dual

of an S-spectrum i1s unique up to an equivalence. Theorem (9.4),
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loc. cit., implies that if 'f,u, are p-dual then, for each n,
%p-n-l and Ml are also p-dual,

Theorem (8.2). Any S-spectrum (direct or inverse) is
equivalent to a spectrum that has a p-dual, for some p £ O,

Proof. A proof will be given only for a direct S-spec-
trum ¥ = ixii, the other case being entirely similar. First
of all, each Xi has a combinatorial xi-dual, for some integer
Xy ([14], Theorem (10.4)). Let p = x,. Define a seduence {mi'i

of non-negative ilntegers by letting m = 0 and my = max{mi_l,xi-p-ii

v

<
for 1 > 0. Then m_, = m and p + 2m1 m - 1+ Xy Now, de-

my ~1
=8 Xi and,

fine a direct S-spectrum L) = {Yj'ﬁ by setting Ym
1
form ; <) <m, YJ B SYJ—l (external inclusions defined in

the obvious way). Each Y, has a combinatorial (mi -1 + xi)-

dual, hence a combinatoria]i. (p + 2m1)-dual. Therefore, every YJ
has a combinatorial (p + 2))-dual Yj". Let (DT;:Y;(;_]_—»SY;‘ be the
external inclusion that corresponds to the external inclusion
¢J:SYJ'_>YJ+1 (given by 3] ) under the duality isomorphism
Dp+23+:5:{SYJ'YJ+1"©§ %{Y;]_,S}[;; { between groups of external
inclusions. The duality relations between inclusions and col-
lapsing maps imply that Z—_)* = {Y§’¢j5 is an inverse S-spectrum,
p-dual to the direct 8-spectrum &_) . It remains only to show
that % is equivalent to 9 . A palr of inverse equlvalences

£: ¥ —>0 and g:1) —> ¥ 18 defined as follows: for each 1,
1—>Sil:) is represented by the identity map Smlxi-asiYm H
and for each J, gJ:YJ——aSJ¥ 1s represented by the external .

flzx

inclusion SJYJ < SJXJ (J-th suspension of the composite external

inclusion YJ < XJ). There is no difficulty in checking that
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T ogand g of are ldentity maps. In fact, Q 1s, 8o to speak,
"externally included" in X .

Notice that, if X 1s a space with a combinatorial p-dual
W, then the S-spectra ¥ = {X, 8X, . } and U0 = fw,sw,... } are
p-dual.

Theorem (8.3). Let 36,9 be S-spectra (of the same
nature) and I*, l:)* respectively be p-dual to them. There existe
2 unique isomorphism

D)= {v%x*]
that agrees with the Spanler-Whitehead [12] duallty isomorphism
Dp+1 when .’I,l) ,K*, L.)* reduce to spaces and is natural in the
sense that:
91,(@ of) = Qp(f) 0 &p(g), fei%,’:)} , ge%@,%}

Proof. First remark that, for every i and }J, S-]Xi is

weakly (p + 21 + 2) + 1)-dual to SJX—: and SiYJ 1s weakly

(p + 24 +2) + 1)-dual to six* Hence

J.
§gd * gdy*
Dtor+epen’ 199Ky, 8 } & {BhY), 89x))
by the duality theorem for spaces. Since the isomorphisms
Dp+2i+2,j+l are natural, (and the externil inclusions for 35,?'_)
are respectively dual to those for %*,9 ) they induce, in the

limit, an isomorphism:

\9 ¥ L0 } lim, ( lim s-’xi,s T, )% Ln ( lim S xj,iji J =

* *
{O* X,
If all these S-spectra reduce to spaces, 9p reduces to the
ordinary isomorphism Dpﬂ:ix,x} %i!*,x*}. The naturality of

\91) follows directly from the naturallty of the various

Dp+21+2j+l ’
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Remarks. 1) The isomorphism °9p is completely charac-
terized by the naturality property, together with the fact that
1t agrees with the Spanier-Whitehead isomorphism Dp+l for spaces.

2) In (8.3), if 95: U™ ang :ft P‘n‘ly’f then the p-
dual of the inclusion map £:1)"( L) 1s the collapsing map 9pf =
m: Q)*—an"p'll:)*.' This follows directly from the similar result
for spaces.

ir ¥ ,’x* are p-dual then Zr(f ) &Zp'r(f*) for all r.
In fact let m 2 r,p , 8o that 8" has a weak (m + 1)-dual 8™ T
(where, for definiteness, r Z 0 is assumed). Then Sm'p.f*and
¥ are m-duals, 8o Zr(:)f) = {Br,xa %ism-pi*,sm-rs ~
X" 80t <SP R,

Using the same result for spaces, it i1s readily shown
that, for p-duals %,35*, H (¥ ) ’A:Hp_r(z*). In fact more 1s
true, since the spaces in 35,%* are comblnatorilally dual,

o (¥ )=~ Gp_h(x*) and this isomorphism carries § into o,

D. Eqgqulvalences

An equivalence f:U—)LL)/, in the category of inverse 8-

spectra 1s, as expected, defined by the property of having an
inverse, l.e., a map g:w——> Usueh that g o f:lf—>’lf and
f o g:'llj—>l/yare both identity map.

An n-map I‘:nl)’——>nujis an n-equlvalence if it has an

n-inverse, l.e., an n-map g:n‘IJ——>nU’ such that To go f =
.n:nU____>n+lu’ and Mo fog= Tl:nw'—anﬂ‘WWhere ﬂ:nV—>n+lv'
and ﬂ:nZU——>n+lWare the collapsing maps. A map r:U—WW 1

called an n-equivalence if some n-map nf:n'()'—anuy:lnduced by it

is an n-equivalence.
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It is immediate from (8.4) that, in (8.3), the dual
f* =Q)9pf of an equivalence f:3f —->L) is an equivalence f*:l:)*——>
Hf*. Moreover, since indusions and collapsing maps are dual to
each other, the dual of & (p - n — 1)-equivalence f:¥P0-1__,
(_)p—-n—l (say X,L_) are direct 8-spectra) 1s an n-equivalence
T :nL;)*—»n:f*.

The above facts imply that all theorems of §4 can be
dualized. For instance:

Theorem (8.5). A map £: U—s W (of inverse S-spectra)
is an n-equivalence if and only if f*: 2T(W) ~2%(U) for all
rZn+ 2.I

Proof., By passing to equivalent S-spectra if necessary
(by (8.2)), 1t may be assumed that U,UY have p-duals X ,9
respectively. Now let g = Jgpf: U % . Then £+, 2T(W) =~
2 Y(U) Af and only if 8, Zp-r( O )=2 p—r( ¥ ). Now f is an
n-equivalence 1f and only if g 1s a (p -~ n - 1)-equivalence,
whlch happens Af and only if g 18 an isomorphism for all p - r
p - n - 2, which 1s, finally, the same as to say that f is an
isomorphism for all r 2 n + 2.

Using the same technique, one shows that a map f:15;->10’
is an equivalence if and only if i1t 18 an n-equivalence for all
nZN - 1l, where N = minicodimlf; codimlﬁ}. Thie ylelds the
followlng _

Corollary (8.8). A map f:ly——allfis an equivalence if
and only if f#:zr(uj)’z: 25(U) for all r 2 N — 1, where N =
min{codimg, codim'blj}.

It is a consequence of the "equivalence theorem" (8.6)

that given an inverse S-spectrum U and an integer k 2 O, there

A
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exists an inverse S-spectrum Ujleuch that Sklﬂlis edqulvalent to
V. The proof consists of Just imitating (4.11).

E. Obstruction Theory

For a given space W, the following sequence of S-maps is

a special case of (3.1) (where "WP': = B(yntl) _ (T )P+ )

Ifqiyvis an inverse S-spectrum, an obvious limiting process leads
to the sequence:

n, .n+ + +1.

wn 1 nu)’ n lw S(nwn l)
So, if 1Y 1s another inverse S-epectrum, composition with the

maps of the above sequence gives rise to the infinite sequence;
(8.1) s (U] S{ Py ) gy

The sequence (8.7) 1s exact since 1t 1s a 1limit of exact
sequences in which each i1s attained. It is also dual to the
sequence (3.4). That is, if b’,w are p-duals of & and &:) re-
spectively then the groups of (8.7) correspond, by'i9p, to the
groups of (3.4), with an obvious shift of dimensions., Moreover
the homomorphisms of these sequences are compositions with pair-
wlee dual maps,

The sequence (8.7) 1s the basis for obstruction theory,
This time it is the case of obstructions o lifting, illustrated

by the diagram below:

(8.8) U/’i//’win
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A map f:U—>n+lw i8 given and the question ie whether or not
1t 1s possible to 1lift it to a map T:\J—>"U, 1.e., whether or
not a map such as f exists with the property that M o £ = f. Let
cn+1(f)e{lf,nwn+l -1 be the image of f by the homomorphism of
(8.7) (taken with r = 0), By exactness, £ "1ifts" to nuY if and
only if ¢ 4, (f) = 0. Now ir W reduces to a space W, it 1is
proved in [13] that {U’nwnﬂ}r 1s naturally isomorphic to
cnﬂ(w;zn-r'i-l(v’)) and this lsomorphism takes the composite
homomorphiem

{U ,nu§n+l'gr s {'U’ ,nw}r s %-r]f’n-llon}

into the boundary operator G:Gn_‘_l(W; zn—r+l(-6))__>

r-1

Cn(Uj;Zin-r+l(TT)). This shows that °n+l(f) may be regarded as
& chaln and 1t 1s easy to see that oc, ., (f) = 0. 1In fact a dla-
gram like that of § 3 may be introduced and the whole theory of
obstructions to lifting may be developed in lines entirely anal-
ogous to those of §3. This will not be done here, but all the
results of such a possible procedure will be used freely. For

instance, obstruction cycle cn+l(f)ecn+l(w;zn+2(17)), primary

- -
obstruction [cn+1(f)]eHn+l(w;Zn 2(77)) are among these. The
latter 1s the obstruction to the existence of a map f: U—>nu)'
that agrees with f, when they are both projected into n+2w.

Ir U,W are p-duale to ¥ ,& respectively, let q =
P - n - 2. Then the diegram (8.8) is dual to the diagram
qtl -
&/)\gb
(8.9) T ¥

where g = ﬁpf and g (1f it exists) equals ,Bp?. The vertical
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arrow, of course, denotes inclusion. Thus the 1lifting problem
(8.8) 1s equivalent, under duality, to the extension problem
(8.9). The obstruction cycle, primary obstructlon and difference
chains of the problem (8.8) are carried byJ91>into the obstruc-
tion cocycle, primary obstructlion and difference cochains of the

extension problem (8.9).

F. The Dual Postnikov Invariante
Theorem (8.10). Given an inverse S-spectrum 'V and an
integer n, there exists an inverse S-spectrum 1]’n) and a map

h: )-—>U such that

(n
(L) h is an n-equivalence;

r . b
(2) 2 (g(n))—Oforr—n-l—l.
Proof. It i1s clear that '17 may be substlituted by any

equivalent S-spectrum, therefore 1t may be asesumed that thas a
p-dual, a direct S-epectrum ¥ . Set q=p-n-~ 1 and let I(q)
be a direct S-spectrum with Zr(‘%(q)) = 0 for r £ q, and such
that there exists a q-eQuivalence f: X ——> %(q) (ag in §6). It
may be assumed that x(q) has an m-dual Z‘)ECI) and, of course, 1t
1s always possible to suppose that m = p. Then 8™P1 16 an m-
dual of ¥ . Thus e =J9mf:8m_pU—>u7(q) isan (m-p + n)-
equivalence, and Zir(tdlq)) =0forrSm-p+n+1. Let

17}q

alence g:w(q)—-)Sm°p 'Zj(q). It is clear then, that the (m -~ p)=-

) be an inverse S-spectrum for which there exists an equiv-

th desuspension h of g o £*,g0=P)__ gn-P UZQ) satisfies (1) and

(2).
Theorem (8.11). Given U,n, the set of all pairs
(1j}n),h) satisfying conditions (1), (2) of (8.10) 1s a simple

L———
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category. That 1s, given 2 such pairs, (U(n),h), (Ukn)h')
| there is a unidque equivalence g:U(n)—e. Uzn) such that the

' diagram below 1s commutative:

Proof. Let TT:U(n)—an 'O'(n) denote the collapsing map,

let nh:n’lj(n)——a-n'\fbe any n-map induced by h and let f:nU—->
n‘\jzn) be some n-inverse of h'. First of all remark that the
composite gy =fo ) o T does not depend on the cholces of By

and f. In fact, if "k 1s another n-map induced by h, "h, "k

agree when projected into n+annd go do "h o m, " o M. Hence
' the difference chain d_n+l(nh o M," o M) exists. But such chain
has coefficlents in Zn+l(v(n)), so 1t 18 zero. Therefore
Phom="k om Aleo, 1f f; is another n-inverse of h', the
difference chain dn+l(fl o™ omf o "h o) is zero because

it has coefflcilents 1nZn+l(17(n)). So f; o Y om=ro"onm.
Now g = f 0 Ny o TT:U/(n)--»nD’Zn) 1ifts all the way up to a map

g:'lf(n)—a'lfzn)', since all the obstruction cycles for doing so

vanish, since they have coefficients 1n'2:r(172n)), rSn+1,

Moreover, the lifting g is unique, as 1t followe immedlately from
| the vanishing of the difference cheins., Again, g o h = h' by the
same reason.
I From now on, the notation 1ykn) will indicate, for short,
a pair (1fkn),h) satisfying (1), (2) of (8.10). In other words,
the mention of tf(n) will contain implicitly the choice of an n-
equivalence h:})}n)—+>lf'that goes with it. In this fashlon,

4—_‘
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the homology and cohomology groups of Ijkn) are functions of
and n alone, but do not depend on the choilce of a particular
spectrum U, n) 8lnce given 2 choices ( (n)B ), (15} ),
there is a unique isomorphism g, H (Tf(n) ;@) x H, (If ),G'
provided by (8.11).

The same technique as in (8.11) shows that any n-map
£:7—"J can be 1lifted uniquely to a map Gn(f):qy(n)——>1ﬂzn

(in the sense that the dlagram below commutes, where ’CQn

Tny»8)» Wiy = (Weayom)
o (f)
U Wy,

n)

//g SN

T:/w’

nly f - nTAf

The mapping

On:{nv’, nW} —_— i'l)—(n),w(n;ﬁ

thus defined ie a homomorphism and is natural with respect to
compositlion of maps. The kernel of o, conelsts of those n-maps
f:nlj——>nLO’that are zero when projected into n+luj: It follows
that an n-map f 18 an n-equivalence if and only if an(f) is an
equivalence.

The dual Postnikov clase of 15’(1n dimension n) is the

primary obstruction of the map f o ﬂ:lf——>nlf-—>n1]2n), where

A n "
f: tr—e> 17kn) 1s some n-inverse of h.1)kn)——>1Ji It represents
the obstruction to finding a map 17-—>n_l1)2n) that agrees with

n n+117kn)' Such obstruction 1s thus a homology class

. +1
ke (U)er (U, 270
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One considers also the group H of all n-equivalences
f:U(n)—> Q)Zn)’ and the group A of all automorphisms
9:2n+1(U)—->Zn+l('6). The direct product H X A operates on

+4
Hn(U(n>;Zn(U)) by setting
(£,8)(u) =0, o, (£) ()]
where 9* 1s the coefflcient homomorphism induced by 6. The orbit
of k., (V) under this action is the subset
(U = { 0, [0, (0),k, (1) ];0ea, zet |

of B (V)i Z2H(U)). Thie subset & _(U) 1s the n-th ausl

299tnikov et of?jﬂ

All the machinery is at hand, to show that the dual Post-
nikov invariants, together with the cohomotopy groups, character-
1ze the inverse S-spectra up to equivalence. The proofs are
exactly as in §7. Therefore, only the results will be listed:

(8.12) Given an n-map f:nQI-—>nlﬂ’and a homomorphism
9:2in+l(Uj)——>2En+l(Tf), there exists an (n - 1)-map F:n-l?5:—>
n‘lkf: agreelng with £ o Tm on n+lqoz(where ﬂ:n'117;—>n17) and
inducing @ if and only if:

(8.13) o, (£) k(D) = o,x_(W).

(8.14) Let f:nlf——>n1[Ybe an n—-equivalence and
G:Zin+l(Uj) Q:an+l(T7) an isomorphism. There exists an (n-1)~
equivalence F:n“lijl—an"lTITagréeing with £ o T on n+lu5'and
inducing © if and only if (8.13) holds.

(8.15) Two inverse S-spectra 1j;u5’are (n - 1)-equiv-
alent 1f and only if they are n-equivelent, have isomorphic coho-

motopy groups in dimension n + 1 and the "same" (T that is

n,
oy () W, (T) = 0,00 (W)
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for some (and hence every) n-equivalence £:"U—>2U) and some
(hence any) isomorphism 6::Zn+1(uj)ﬂt 25“*1(1I3.

The invariants kn,gin correspond by dvuality to the in-
varlants kQ+1,!tq+l of §7 (see the proof of (8.10)). Therefore
1t 1e possible to prove the dual of (7.10), to the effect that

such invariants may be arbltrarily realized.
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