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Some comments by editors were made in footnotes.

We added a bibliography, the original book cited references in the text without

having a dedicated bibliography.

We added citations and references with hyperlinks. References to e.g. theo-

rems/paragraphs in the book are in blue, while citations to the bibliography is

in red. The bibliography also has URLs now, for easy access. Some of the books
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Preface

This book has evolved out of a graduate course in algebra I gave at Brandeis

University during the academic year of 1967-1968. At that time M. Auslander

taught algebraic geometry to the same group of students, and so I taught commu-

tative algebra for use in algebraic geometry. Teaching a course in geometry and

a course in commutative algebra in parallel seems to be a good way to introduce

students to algebraic geometry.

Part I is a self-contained exposition of basis concepts such as flatness, dimen-

sion, depth, normal rings, and regular local rings.

Part II deals with the finer structure theory of Noetherian rings, which was

initiated by Zariski [Zar50] and developed by Nagata and Grothendieck. Our

purpose is to lead the reader as quickly as possible to Nagata’s theory of pseudo-

geometric rings (here called Nagata rings) and to Grothendieck’s theory of excel-

lent rings. The interested reader should advance to [Nag75] and to [Gro64].

The theory of multiplicity was omitted because one has little to add on this

subject to the lucid expositon of Serre’s lecture notes ([SC00]).

Due to lack of space some important results on formal smoothness (especially

its relation to flatness) had to be omitted also. For these, see EGA.

We assume that the reader is familiar with the elements of algebra (rings,

modules, and Galois theory) and of homological algebra (Tor and Ext). Also, it

is desirable but not indispensable to have some knowledge of scheme theory.
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I thank my students at Brandeis, especially Robin Hur, for helpful comments.
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Preface to Second Edition

Nine years have passed since the publication of this book, during which time

it has been awarded the warm reception of students of algebra and algebraic

geometry in the United States, in Europe, as well as in Japan.

In this revised and enlarged edition, I have limited alternations on the original

text to the minimum. Only Ch. 6 has been completely rewritten, and the other

chapters have been left relatively untouched, with the exception of pages 37, 38,

160, 176, 216, 252, 258, 259, 260.

On the other hand, I have added an Appendix consisting of several sections,

which are almost independent of each other. Its purpose is twofold: one is to

prove the theorems which were used but not proved in the text, namely Eakin’s

theorem, Cohen’s existence theorem of coefficient rings for complete local rings

of unequal characteristic, and Nagata’s Jacobian criterion for formal power se-

ries rings. The other is to record some of the recent achievements in the area

connected with PART II. They include Faltings’ simple proof of formal smooth-

ness of the geometrically regular local rings, Marot’s theorem on Nagata rings,

my theory on excellence of rings with enough derivations in characteristic 0, and

Kunz’ theorems on regularity and excellence of rings of characteristic p.

I should like to record my gratitude to my former students M. Mizutani and

M. Nomura, who read this book carefully and proved Th.101 and Th.99.
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Conventions

1. All rings and algebras are tacitly assumed to be commutative with unit

element.

2. If F : A −→ B is a homomorphism of rings and if I is an ideal of B, then

the ideal f−1(I) is denoted by I ∩A

3. ⊂ means proper inclusion

4. We sometimes use the old-fashioned notation I = (a1, . . . , an) for an ideal

I generated by the elements aj .

5. By a finite A-module we mean a finitely generated A-module. By a finite

A-algebra, we mean an algebra which is a finite A-module. By an A-algebra

of finite type, we mean an algebra which is finitely generated as a ring over

the canonical image of A.
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1. Elementary Results

In this chapter we give some basic definitions, and some

elementary results which are mostly well-known.

1 General Rings

(1.A) Let A be a ring and a an ideal of A. Then the set of elements x ∈ A,

some powers of which lie in a, is an ideal of A, called the radical of a.

An ideal p is called a prime ideal of A if A/p is an integral domain; in other

words, if p ̸= A and if A− p is closed under multiplication. If p is prime, and if

a and b are ideals not contained in p, then ab ̸⊆ p.

An ideal q is called primary if q ̸= A and if the only zero divisors of A/q are

nilpotent elements, i.e. xy ∈ q, x /∈ q implies yn ∈ q for some n. If q is primary

then its radical p is prime (but the converse is not true), and p and q are said

to belong to each other. If q ( ̸= A) is an ideal containing some power mn of a

maximal ideal m, then q is a primary ideal belonging to m.

The set of the prime ideals of A is called the spectrum of A and is denoted

by Spec(A); the set of the maximal ideals of A is called the maximal spectrum

of A and we denote it by Ω(A). The set Spec(A) is topologized as follows. For

any M ⊆ A, put V (M) = {p ∈ Spec(A) :M ⊆ p} and take as the closed sets

in Spec(A) all subsets of the form V (M). This topology is called the Zariski

19



Chapter 1: Elementary Results

topology. If f ∈ A, we put D(f) = Spec(A)− V (f) and call it an elementary

open set of Spec(A). The elementary open sets form a basis of open sets of the

Zariski topology in Spec(A).

Let f : A −→ B be a ring homomorphism. To each P ∈ Spec(B), we associate

the ideal P ∩ A (i.e. f−1(P )) of A. Since P ∩ A is prime in A, we then get a

map Spec(B) −→ Spec(A), which is denoted by f∗. The map f∗ is continuous,

as one can easily check. It does not necessarily map Ω(B) into Ω(A). When

P ∈ Spec(B) and p = P ∩A, we say that P lies over p.

(1.B) Let A be a ring, and let I, p1, . . . , pr be ideals in A. Suppose that all but

possibly two of the pi’s are prime ideals. Then, if I ̸⊆ pi for each i, the ideal I is

not contained in the set-theoretical union
⋃
i pi.

Proof. Omitting those pi which are contained in some other pj , we may suppose

that there are no inclusion relations between the pi’s. We use induction on r.

When r = 2, suppose I ⊆ p1 ∪ p2. Take x ∈ I − p2 and s ∈ I − p1. Then x ∈ p1,

hence s+ x /∈ p1, therefore both s and s+ x must be in p2. Then x ∈ p2 and we

get a contradiction.

When r > 2, assume that pr is prime. Then Ip1 · · · pr−1 ̸⊆ pr; take an element

x ∈ Ip1 · · · pr−1 which is not in pr. Put S = I−(p1∪· · ·∪pr−1). By the induction

hypothesis S is not empty. Suppose I ⊆ p1 ∪ · · · ∪ pr. Then S is contained in pr.

But if s ∈ S then s+ x ∈ S and therefore s and s+ x are in pr, hence x ∈ pr, a

contradiction.

Remark 1.1. When A contains an infinite field k, the condition that p3, . . . , pr

be prime is superfluous, because the ideals are k-vector spaces and I =
⋃
i(I ∩pi)

cannot happen if I ∩ pi are proper subspaces of I.

20



Section 1: General Rings

(1.C) Let A be a ring, and I1, . . . , Ir be ideals of A such that Ii+ Ij = A (i ̸=

j). Then I1 ∩ · · · ∩ Ir = I1I2 · · · Ir and

A/

(⋂
i

Ii

)
∼= (A/I1)× · · · × (A/Ir)

(1.D) Any ring A ̸= 0 has at least one maximal ideal. In fact, the set

M = {ideal J of A : 1 /∈ J} is not empty since (0) ∈ M , and one can apply

Zorn’s lemma to find a maximal element of M . It follows that Spec(A) is empty

iff A = 0.

If A ̸= 0, Spec(A) has also minimal elements (i.e. A has minimal prime

ideals). In fact, any prime p ∈ Spec(A) contains at least one minimal prime.

This is proved by reversing the inclusion-order of Spec(A) and applying Zorn’s

lemma.

If J ̸= A is an ideal, the map Spec(A/J) −→ Spec(A) obtained from the nat-

ural homomorphism A −→ A/J is an order-preserving bijection from Spec(A/J)

onto V (J) = {p ∈ Spec(A) : p ⊇ J}. Therefore V (J) has maximal as well as

minimal elements. We shall call a minimal element of V (J) a minimal prime

over-ideal of J .

(1.E) A subset S of a ring A is called a multiplicative subset of A if 1 ∈ S

and if the products of elements of S are again in S.

Let S be a multiplicative subset of A not containing 0, and let M be the set

of the ideals of A which do not meet S. Since (0) ∈ M the set M is not empty,

and it has a maximal element p by Zorn’s lemma. Such an ideal p is prime; in

fact, if x /∈ p and y /∈ p, then both Ax+ p and Ay + p meet S, hence there exist

a, b ∈ A and s, s′ ∈ S such that ax ≡ s, by ≡ s′ (mod p). Then abxy ≡ ss′

(mod p), ss′ ∈ S, therefore ss′ /∈ p and hence xy /∈ p, Q.E.D. A maximal element

of M is called a maximal ideal with respect to the multiplicative set S.
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Chapter 1: Elementary Results

We list a few corollaries of the above result.

(i) If S is a multiplicative subset of a ring A and if 0 /∈ S, then there exists a

prime p of A with p ∩ S ̸= ∅.

(ii) The set of nilpotent elements in A,

nil(A) = {a ∈ A | an = 0 for some n > 0}

is the intersection of all prime ideals of A (hence also the intersection of all

minimal primes of A by (1.D)).

(iii) Let A be a ring and J a proper ideal of A. Then the radical of J is the

intersection of prime ideals of A containing J .

Proof. (i) is already proved. (ii): Clearly any prime ideal contains nil(A). Con-

versely, if a /∈ nil(A), then S =
{
1, a, a2, . . .

}
is multiplicative and 0 /∈ S, there-

fore there exists a prime p with a /∈ p. (iii) is nothing but (ii) applied to A/J .

We say a ring A is reduced if it has no multiplicative elements except 0, i.e.

if nil(A) = (0). This is equivalent to saying that (0) is an intersection of prime

ideals. For any ring A, we put Ared = A/ nil(A). The ring Ared is of course

reduced.

(1.F) Let S be a multiplicative subset of a ring A. Then the localization (or

quotient ring or ring of fractions) of A with respect to S, denoted by S−1A

or by AS , is the ring

S−1A =
{a
s
: a ∈ A, s ∈ S

}
where equality is defined by

a

s
=
a′

s′
⇐⇒ s′′(s′a− sa′) = 0 for some s′′ ∈ S
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Section 1: General Rings

and the addition and multiplication are defined by the usual formulas about

fractions. We have S−1A = 0 iff 0 ∈ S. The natural map ϕ : A −→ S−1A given

by ϕ(a) = a/1 is a homomorphism, and its kernel is {a ∈ A | ∃s ∈ S : sa = 0}.

The A-algebra S−1A has the following universal mapping property: if f : A −→ B

is a ring homomorphism such that the images of the elements of S are invertible

in B, then there exists a unique homomorphism fS : S−1A −→ B such that

f = fS ◦ ϕ, where ϕ : A −→ S−1A is the natural map. Of course, one can use

this property as a definition of S−1A. It is the basis of all functorial properties

of localization.

If p is a prime (resp. primary) ideal of A such that p∩S = ∅, then p(S−1A) is

prime (resp. primary). Conversely, all the prime and the primary ideals of S−1A

are obtained in this way. For any ideal I of S−1A we have I = (I ∩ A)(S−1A).

If J is an ideal of A, then we have J(S−1A) = S−1A iff J ∩ S ̸= ∅. The

canonical map Spec(S−1A) −→ Spec(A) is an order-preserving bijection and

homomorphism from Spec(S−1A) onto the subset {p ∈ Spec(A) : p ∩ S = ∅} of

Spec(A).

(1.G) Let S be a multiplicative subset of a ring A and let M be an A-module.

One defines S−1M =
{
x
s : x ∈M, s ∈ S

}
in the same way as S−1A. The set

S−1M is an S−1A-module, and there is a natural isomorphism of S−1A-modules

S−1M ∼= S−1A⊗AM

given by x/s 7→ (1/s)⊗ x.

If M and N are A-modules, we have

S−1(M ⊗A N) = (S−1M)⊗S−1A (S−1N).

When M is of finite presentation, i.e. when there is an exact sequence of the

23



Chapter 1: Elementary Results

form Am −→ An −→M −→ 0, we have also

S−1(HomA(M,N)) = HomS−1A(S
−1M,S−1N)

(1.H) When S = A− p with p ∈ Spec(A), we write Ap, Mp for S−1A, S−1M .

Lemma 1.1. If x ∈ M is mapped to 0 ∈ Mp for all p ∈ Ω(A), then x = 0. In

other words, the natural map

M −→
∏

all max. p

Mp

is injective.

Proof. x = 0 in Mp ⇐⇒ s ∈ A − p such that sx = 0 in M ⇐⇒ Ann(x) =

{a ∈ A : ax = 0} ̸⊆ p. Therefore, if x = 0 inMp for all maximal ideals p, the anni-

hilator Ann(x) of x is not contained in any maximal ideal and hence Ann(x) = A.

This implies x = 1 · x = 0.

Lemma 1.2. When A is an integral domain with quotient field K, all localiza-

tions of A can be viewed as subrings of K. In this sense, we have

A =
⋂

all max. p

Ap.

Proof. Given x ∈ K, we put D = {a ∈ A : ax ∈ A}; we might call D the ideal of

denominators of x. Then x ∈ A iff D = A, and x ∈ Ap iff D ̸⊆ p. Therefore, if

x /∈ A, there exists a maximal ideal p such that D ⊆ p, and x /∈ Ap for this p.

(1.I) Let f : A −→ B be a ring homomorphism and S a multiplicative subset

of A; put S′ = f(S). Then the localization S−1B of B as an A-module coincides

with S′−1B:

S′
−1
B = S−1B = (S−1A)⊗A B (1.1)
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Section 1: General Rings

In particular, if I is an ideal of A and if S′ is the image of S in A/I, one obtains

S′
−1

(A/I) = S−1A/I(S−1A) (1.2)

In this sense, dividing by I commutes with localization.

(1.J) Let A be a ring and S a multiplicative subset of A; let A f−→ B
g−→ S−1A

be homomorphisms such that g ◦ f is the natural map and for any b ∈ B there

exists s ∈ S with f(s)b ∈ f(A). Then S−1B = f(S)−1B = S−1A, as one can

easily check. In particular, let A be a domain, p ∈ Spec(A) and B a subring of

Ap such that A ⊆ B ⊆ Ap. Then Ap = BP ∼= Bp, where P = pAp ∩ B and

Bp = B ⊗Ap.

(1.K) A ring A which has only one maximal ideal m is called a local ring,

and A/m is called the residue field of A. When we say that “(A,m) is a local

ring” or “(A,m, k) is a local ring”, we mean that A is a local ring, that m is the

unique maximal ideal of A and that k is the residue field of A. When A is an

arbitrary ring and p ∈ Spec(A), the ring Ap is a local ring with maximal ideal

pAp. The residue field of Ap is denoted by κ(p). Thus κ(p) = Ap/pAp, which is

the quotient field of the integral domain A/p by (1.2).

If (A,m, k) and (B,m′, k′) are local rings, a homomorphism ψ : A −→ B is

called a local homomorphism if ψ(m) ⊆ m′. In this case ψ induces a homomor-

phism k −→ k′.

Let A and B be rings and ψ : A −→ B a homomorphism. Consider the map

ψ∗ : Spec(B) −→ Spec(A). If P ∈ Spec(B) and ψ∗(P ) = P ∩ A = p, we have

ψ(A− p) ⊆ B − P , hence ψ induces a homomorphism ψP : Ap −→ BP , which is

a local homomorphism since ψP (pAp) ⊆ ψ(p)BP ⊆ PBP . Note that ψP can be
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Chapter 1: Elementary Results

factored as

Ap −→ Bp = Ap ⊗A B −→ BP

and BP is the localization of Bp by PBP ∩Bp. In general, Bp is not a local ring,

and the maximal ideals of Bp which contain pBp correspond to the pre-images

of p in Spec(B). (Bp can have maximal ideals other than these.) But if Bp is a

local ring, then Bp = BP , because if (R,m) is a local ring then R −m is the set

of units of R and hence Rm = R.

(1.L) Definition. Let A ̸= 0 be a ring. The Jacobson radical of A, rad(A),

is the intersection of all maximal ideals of A.

Thus, if (A,m) is a local ring then m = rad(A). We say that a ring A ̸= 0 is a

semi-local ring if it has only a finite number of maximal ideals, say m1, . . . ,mr.

(We express this situation by saying “(A,m1, . . . ,mr) is a semi-local ring”.) In

this case, rad(A) = m1 ∩ · · · ∩mr =
∏
imi by (1.C).

Any element of the form 1 + x, x ∈ rad(A), is a unit in A, because 1 + x is

not contained in any maximal ideal. Conversely, if I is an ideal and if 1 + x is a

unit for each x ∈ I, we have I ⊆ rad(A).

(1.M) Lemma 1.3 (NAK). ∗ Let A be a ring, M a finite A-module and I

an ideal of A. Suppose that IM = M . Then there exists a ∈ A of the form

a = 1 + x, x ∈ I, such that aM = 0. Moreoever, if I ⊆ rad(A), then M = 0.

Proof. Let M = Aw1 + · · · + Aws. We use induction on s. Put M ′ = M/Aws.

By induction hypothesis, there exists x ∈ I such that (1 + x)M ′ = 0, i.e.,

(1 + x)M ⊆ Aws (when s = 1, take x = 0). Since M = IM , we have

(1 + x)M = I(1 + x)M ⊆ I(Aws) = Iws

∗This simple but important lemma is due to T. Nakayama, G. Azumaya and W. Krull. Pri-
ority is obscure, and although it is usually called the Lemma of Nakayama, late Prof. Nakayama
did not like the name.
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hence we can write (1+x)ws = yws for some y ∈ I. Then (1+x−y)(1+x)M = 0,

and (1 + x − y)(1 + x) ≡ 1 (mod I), proving the first assertion. The second

assertion follows from this and from (1.L).

This lemma is often used in the following form.

Corollary 1.1. Let A be a ring, M an A-module, N and N ′ be submodules of

M , and I an ideal of A. Suppose that M = N + IN ′, and that either (a) I is

nilpotent, or (b) I ⊆ rad(A) and N ′ is finitely generated. Then M = N .

Proof. In case (a) we have

M/N = I(M/N) = I2(M/N) = · · · = 0

In case (b), apply lemma 1.3 to M/N .

(1.N) In particular, let (A,m, k) be a local ring and M an A-module. Suppose

that either m is nilpotent or M is finite. Then G ⊆M generates M iff its image

G in M/mM =M ⊗k generates M ⊗k. In fact, if N is the submodule generated

by G, and if G generates M ⊗ k, then M = N + mM , whence M = N by the

corollary. Since M ⊗ k is a vector space over the field k, it has a basis, say G,

and if we lift G arbitrarily to G ⊆M (i.e. choose a pre-image for each element of

G), then G is a system of generators of M . Such a system of generators is called

a minimal basis of M . Note that a minimal basis is not necessarily a basis of

M (but it is so in an important case, cf. (3.G)).

(1.O) Let A be a ring and M an A-module. An element a ∈ A is said to be

M-regular if it is not a zero-divisor on M , i.e., if M −→ aM is injective. The

set of M -regular elements is a multiplicative subset of A.
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Let S0 be the set of A-regular elements. Then S−10 A is called the total

quotient ring of A. In this book, we shall denote it by ΦA. When A is an

integral domain, ΦA is nothing but the quotient field of A.

(1.P) Let A be a ring and α : Z −→ A be the canonical homomorphism from

the ring of integers Z to A. Then Ker(α) = nZ for some n ⩾ 0. We call n

the characteristic of A and denote it by ch(A). If A is local, the characteristic

ch(A) is either 0 or a power of a prime number.

2 Noetherian Rings and Artinian Rings

(2.A) A ring is called Noetherian (resp. Artinian) if the ascending chain

condition (resp. descending chain condition) for ideals holds in it. A ring A is

Noetherian iff every ideal of A is a finite A-module.

If A is a Noetherian ring and M a finite A-module, then the ascending chain

condition for submodules holds in M and every submodule of M is a finite A-

module. From this, it follows easily that a finite module M over a Noetherian

ring has a projective resolution

· · · −→ Xi −→ Xi−1 −→ · · · −→ X0 −→M −→ 0

such that each Xi is a finite free A-module. In particular, M is of finite presen-

tation.

A polynomial ring A[X1, . . . , Xn] over a Noetherian ring A is again Noethe-

rian. Similarly for a formal power series ring A[[X1, . . . , Xn]]. If B is an A-algebra

of finite type and if A is Noetherian, then B is Noetherian since it is a homomor-

phic image of A[X1, . . . , Xn] for some n.
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(2.B) Any proper ideal I of a Noetherian ring has a primary decomposition,

i.e., I = q1 ∩ · · · ∩ qr with primary ideals qi. (We shall discuss this topic again in

Chap. 5)

(2.C) Proposition. A ring A is Artinian iff the length of A as A-module is

finite.

Proof. If lengthA(A) < ∞ then A is certainly Artinian (and Noetherian). Con-

versely, suppose A is Artinian. Then A has only a finite number of maximal

ideals. Indeed, if there were an infinite sequence of maximal ideals p1, p2, . . .

then

p1 ⊃ p1p2 ⊃ p1p2p3 ⊃ · · ·

would be a strictly descending infinite chain of ideals, contradicting the hypoth-

esis. Let p1, . . . , pr be all the maximal ideals of A (we may assume A ̸= 0, so

r > 0), and put I = p1 · · · pr. The descending chain

I ⊇ I2 ⊇ I3 ⊇ · · ·

stops, so there exists s > 0 such that Is = Is+1. Put ((0) : Is) = J . Then

(J : I) = (((0) : Is) : I) = ((0) : Is+1) = J.

We claim J = A. Suppose the contrary, and let J ′ be a minimal member of

the set of ideals strictly containing J . Then J ′ = Ax + J for any x ∈ J ′ \ J .

Since I = rad(A), the ideal Ix+ J is not equal to J ′ by NAK. So we must have

Ix + J = J by the minimality of J ′, hence Ix ⊆ J and x ∈ (J : I) = J , a

contradiction. Thus J = A, i.e. 1 · Is ⊆ (0), i.e. Is = (0).
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Consider the descending chain

A ⊇ p1 ⊇ p1p2 ⊇ · · · ⊇ p1 · · · pr−1 ⊇ I ⊇ Ip1 ⊇ Ip1p2 ⊇ · · · ⊇ I2 ⊇ I2p1 ⊇ · · · ⊇ Is = (0).

Each factor module of this chain is a vector space over the field A/pi = ki for

some i, and its subspaces correspond bijectively to the intermediate ideals. Thus,

the descending chain condition in A implies that this factor module is of finite

dimension over ki, therefore it is of finite length as A-module. Since lengthA(A)

is the sum of the length of the factor modules of the chain above, we see that

lengthA(A) is finite.

A ring A ̸= 0 is said to have dimension zero if all prime ideals are maximal

(cf. (12.A)).

Corollary. A ring A ̸= 0 is Artinian iff it is Noetherian and of dimension zero.

Proof. If A is Artinian, then it is Noetherian since lengthA(A) < ∞. Let p be

any prime ideal of A. In the notation of the above proof, we have (p1 · · · pr)s =

Is = (0) ⊆ p, hence p = pi for some i. Thus A is of dimension zero. To prove the

converse, let (0) = q1 ∩ · · · ∩ qr be a primary decomposition of the zero ideal in

A, and let pi = the radical of qi. Since pi is finitely generated over A, there is a

positive integer n such that pni ⊆ qi (1 ⩽ i ⩽ r). Then (p1 · · · pr)n = (0). After

this point we can imitate the last part of the proof of the proposition to conclude

that lengthA(A) <∞.

(2.D) I.S. Cohen proved that a ring is Noetherian iff every prime ideal is finitely

generated (cf. [Nag75], p.8). Recently P.M. Eakin [Eak68] proved that, if A is

a ring and A′ is a subring over which A is finite, then A′ is Noetherian if (and

of course only if) A is so. (The theorem was independently obtained by Nagata,

but the priority is Eakin’s.)
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Exercises to Chapter 1.

(i) Let I and J be ideals of a ring A. What is the condition for V (I) and V (J)

to be disjoint?

(ii) Let A be a ring and M an A-module. Define the support of M , Supp(M),

by

Supp(M) = {p ∈ Spec(A) |Mp ̸= 0}.

If M is finite over A, we have Supp(M) = V (Ann(M)) so that the support

is closed in Spec(A).

(iii) Let A be a Noetherian ring and M a finite A-module. Let I be an ideal of

A such that Supp(M) ⊆ V (I). Then InM = 0 for some n > 0.
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3 Flatness

(3.A) Definition. Let A be a ring and M an A-module; when

S : · · · −→ N −→ N ′ −→ N ′′ −→ · · ·

is any sequence of A-modules (and of A-linear maps), let S ⊗ M denote the

sequence

· · · −→ N ⊗M −→ N ′ ⊗M −→ N ′′ ⊗M −→ · · ·

obtained by tensoring S with M . We say that M is flat over A, or A-flat, if

S⊗M is exact whenever S is exact. We say that M is faithfully flat (f.f.) over

A, if S ⊗M is exact iff S is exact.

Example 3.1. Projective modules are flat. Free modules are f.f.. If B and C

are rings and A = B × C, then B is projective module (hence flat) over A but

not f.f. over A.

Theorem 1. The following conditions are equivalent:

(1) M is a A-flat;

(2) if 0 −→ N ′ −→ N is an exact sequence of A-modules, then

0 −→ N ′ ⊗M −→ N ⊗M is exact;
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(3) for any finitely generated ideal I of A, the sequence 0 −→ I ⊗M −→M is

exact, in other words we have I ⊗M ∼= IM ;

(4) TorA1 (M,A/I) = 0 for any finitely generated ideal I of A;

(5) TorA1 (M,N) = 0 for any finite A-module N ;

(6) if ai ∈ A, xi ∈M (1 ⩽ i ⩽ r) and
∑r

1 aixi = 0, then there exist an integer

s and elements bij ∈ A and yj ∈ M (1 ⩽ j ⩽ s) such that
∑
i aibij = 0

for all j and xi =
∑
bijyj for all i.

Proof. The Equivalence of the conditions (1) through (5) is well known; one uses

the fact that the inductive limit (=direct limit) in the category of A-Modules

preserves exactness and commutes Tori. We omit the detail. As for (6), first

suppose that M is flat and
∑r

1 aixi = 0. Consider the exact sequence

K
g−→ Ar

f−→ A

where f is defined by f(b1, . . . , br) =
∑
aibi (bi ∈ A), K = ker f and g is the

inclusion map. Then K ⊗M −→Mr fM−−→M is exact, where

fM (t1, . . . , tr) =
∑
aiti (ti ∈ M); therefore (x1, . . . , xr) =

∑s
1 βj ⊗ yj with

βj ∈ K, yj ∈ M . Writing βj = (bij , . . . , brj) (bij ∈ A), we get the wanted

result.

Next let us prove (6) =⇒ (3). Let a1, . . . , ar ∈ I and x1, . . . , xr ∈ M be

such that
∑
aixi = 0. Then by assumption xi =

∑
bijyj ,

∑
aibij = 0. Then

by assumption xi =
∑
bijyj ,

∑
aibij = 0, hence in I ⊗M we have

∑
i

ai ⊗ xi =
∑
i

ai ⊗
∑
j

bijyj =
∑
j

(∑
i

aibij ⊗ yj
)

= 0.
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(3.B) (Transitivity) Let ϕ : A −→ B be a homomorphism of rings and suppose

that ϕ makes B a flat A-module. (In this case we shall say that ϕ is a flat

homomorphism.) Then a flat B-module N is also flat over A.

Proof. Let S be a sequence of A-module Then

S ⊗A N = S ⊗A (B ⊗B N) = (S ⊗A B)⊗B N.

Thus, S is exact =⇒ S ⊗A B is exact =⇒ S ⊗A N is exact.

(3.C) (Change of Basis) Let ϕ : A −→ B be any homomorphism of rings and

let M be a flat A-module. Then M(B) =M ⊗A B is a flat B-module.

Proof. Let S be a sequence of B-modules. Then S ⊗B (B ⊗A M) = S ⊗A M ,

which is exact if S is exact.

(3.D) (Localization) Let A be a ring, and S a multiplicative subset of A. Then

S−1A is flat over A.

Proof. Let M be an A-module and N a submodule. We have M⊗S−1A = S−1M

and N⊗S−1A = S−1N. A typical element of S−1N is of the form s/x, x ∈ N, s ∈

S; if x/s = 0 in s−1M, this means that there exists s′ ∈ S with s′x = 0 in M,

which is equivalent to saying that s′x = 0 in N, hence x/s = 0 in S−1N. Thus

0 −→ S−1N −→ S−1N is exact.

(3.E) Let ϕ : A −→ B be a flat homomorphism of rings, and let M and N be

A-modules. Then TorAi (M,N) ⊗A B = TorBi (M(B), N(B)). If A is Noetherian

and M is finite over A, we also have ExtiA(M,N)⊗A B = ExtiB(M(B), N(B)).

Proof. Let

· · · −→ X1 −→ X0 −→M −→ 0
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be a projective resolution of the A-module M . Then, since B is flat, the sequence

. . . −→ X1(B) −→ X0(B) −→M(B) −→ 0 (3.*)

is a projective resolution of M(B). We have therefore

TorAi (M,N) = Hi(X,⊗N),

TorBi (M(B), N(B)) = Hi(X,⊗AN ⊗A B),

But the exact functor −⊗A B commutes with taking homology, so that

Hi(X.⊗A N ⊗A B) = Hi(X.⊗A N)⊗A B = TorAi (M,N)⊗A B.

If A is Noetherian and M is finite over A, we can assume that the Xi’s are finite

free A-modules.Then

HomB(Xi ⊗B,N ⊗B) = HomA(Xi, N)⊗A B,

and so the same reasoning as above proves the formula for Ext.

In particular, for p ∈ Spec(A), we have

Tor
Ap

i (Mp, Np) = TorAi (M,N)p,

ExtiAp
(Mp, Np) = ExtiA(M,N)p,

the latter being valid for A Noetherian and M finite.

(3.F) Let A be a ring and M a flat A-module. Then an A-regular element

a ∈ A is also M -regular.
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Proof. As 0 −→ A
a−→ A is exact, so is 0 −→M

a−→M .

(3.G) Proposition 3.1. Let (A,m, k) be a local ring and M an A-module.

Suppose that either m is nilpotent or M is finite over A. Then

M is free ⇐⇒ M is projective ⇐⇒ M is flat.

Proof. We have only to prove that if M is flat then it is free. We prove that any

minimal basis ofM (c.f. (1.N)) is a basis of M. For that purpose it suffices to prove

that, if x1, . . . , xn ∈M are such that their images x1, . . . , xn in M/m =M ⊗A k

are linearly independent over k, then they are linearly independent over A. We

use induction on n. When n = 1, let ax = 0. Then there exist y1, . . . , yr ∈ M

and b1, . . . , br ∈ A such that abi = 0 for all i and such that x =
∑
biyi. Since

x ̸= 0 in M/m, not all bi are in m. Suppose b1 ̸∈ m. Then b1 is a unit in A and

ab1 = 0, hence a = 0.

Suppose n > 1 and
∑1
n aixi = 0. Then there exists y1, . . . yr ∈M and

bij ∈ A (1 ⩽ j ⩽ r) such that xi =
∑
j bijyj and

∑
i aibij = 0. Since xn ̸∈ m

for at least one j. Since a1b1j , . . . , anbnj = 0 and bnj is a unit, we have

an =

n−1∑
1

ciai (ci = −bij/bnj).

Then

0 =

n∑
1

aixi = a1(x1 + c1xn) + · · ·+ an−1(xn−1 + cn−1xn).

Since the elements x1+ c1xn, . . . , xn−1+ cn−1xn are linearly independent over k,

by the induction hypothesis we get

a1 = · · · = an−1 = 0, and an =

n−1∑
1

ciai = 0.
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Remark. If M is flat but not finite, it is not necessarily free (e.g. A = Z(p)

and M = Q). On the other hand, any projective module over a local ring is free

[Kap58]. For more general rings, it is known that non-finitely generated projective

modules are, under very mild hypotheses, free, (Cf. [Bas63], and [Hin63]).

(3.H) Let A −→ B be a flat homomorphism of rings, and let I1 and I2 be ideals

of A. Then

(1) (I1 ∩ I2)B = I1B ∩ I2B.

(2) (I1 : I2)B = I1B : I2B if I2 is finitely generated.

Proof. (1) Consider the exact sequence of A-modules

I1 ∩ I2 −→ A −→ A/I1 ⊗A/I2.

Tensoring it with B, we get an exact sequence.

(I1 ∩ I2)⊗A B = (I1 ∩ I2)B −→ B −→ B/I1B ⊗B/I2B.

This means (I1 ∩ I2)B = I1B ∩ I2B.

(2) When I2 is a principal ideal aA, we use the exact sequence.

(I1 : aA)
i−→ A

f−→ A/I1

where i is the injection and f(x) = ax mod I1. Tensoring it with B we

get the formula (I1 : aA)B = (I1B : aB). In the general case, if I2 =

aA+ · · ·+ anA, we have (I1 : I2) =
⋂
i(I1 : ai) so that by (1)

(I1 : I2)B =
⋂

(I1 : aiA)B =
⋂

(I1B : aiB) = (I1B : I2B).
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(3.I) Example 3.2. Let A = k[x, y] be a polynomial ring over a field k, and

put B = A/xA ∼= k[y]. Then B is not flat over A by (3.F). Let I1 = (x + y)A

and I2 = yA. Then

• I1 ∩ I2 = (xy + y2)A,

• I1B = I2B = yB,

• (I1 ∩ I2)B = y2B ̸= I1B ∩ I2B.

Example 3.3. Let k, x, y be as above and put z = y/x, A = k[x, y], B =

k[x, y, z] = k[x, z]. Let I1 = xA, I2 = yA. Then

• I1 ∩ I2 = xyA,

• (I1 ∩ I2)B = x2zB,

• I1B ∩ I2B = xzB.

Thus. B is not flat over A. The map Spec(B) −→ Spec(A) corresponds to the

projection to (x, y)-plane of the surface F : xz = y in the (x, y, z)-space. Note F

contains the whole z-axis and hence does not look ‘flat’ over the (x, y)-plane.

Example 3.4. Let A = k[x, y] be as above and B = k[x, y, z] with

z2 = f(x, y) ∈ A. Then B = A ⊗ Az as an A-module, so that B is free, hence

flat, over A. Geometrically, the surface z2 = f(x, y) appears indeed to lie rather

flatly over the (x, y)-plane. A word of caution: such intuitive pictures are not

enough to guarantee flatness.

(3.J) Let A −→ B be a homomorphism of rings. Then the following conditions

are equivalent:

(1) B is flat over A
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(2) Bp is flat over Ap (p = P ∩A) for all P ∈ SpecB;

(3) Bp is flat over Ap (p = P ∩A) for all P ∈ Ω(B).

Proof.

(1) =⇒ (2) the ring Bp = B ⊗ Ap is flat over Ap (base change), and Bp is a

localization of Bp, so that Bp is flat over Ap by transitivity.

(2) =⇒ (3) trivial.

(3) =⇒ (1) it suffices to show that TorA1 (B,N) = 0 for any A-module N .

We use the following

Lemma 3.1. Let B be an A-algebra, P a prime ideal of B, p = P ∩ A and N

an A-module. Then

(TorAi (B,N))P = Tor
Ap

i (BP , Np)

Proof. Let

X• : · · · −→ X1 −→ X0(−→ N −→ 0)

be a free resolution of the A-module N . We have

TorAi (B,N) = Hi(X• ⊗A B),

TorAi (B,N)⊗B BP = Hi(X• ⊗A B ⊗B BP )

= Hi(X• ⊗A BP ) = Hi(X• ⊗A Ap ⊗Ap
BP ),

and X• ⊗Ap is a free resolution of the A-module Np, hence the least expression

is equal to Tor
Ap

i (BP , Np). Thus the lemma is proved.

Now, if BP is flat over Ap for all P ∈ Ω(B), then (TorA1 (B,N))P = 0 for all

P ∈ Ω(B) by the lemma, therefore TorA1 (B,N) = 0 by (1.H) as wanted.
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4 Faithful Flatness

(4.A) Theorem 2. Let A be a ring and M an A-module. The following

conditions are equivalent:

(i) M is faithfully flat over A;

(ii) M is flat over A, and for any A-module N ̸= 0 we have N ⊗M ̸= 0;

(iii) M is flat over A, and for any maximal ideal m of A we have mM ̸=M .

Proof.

(i) =⇒ (ii) Suppose N ⊗M = 0. Let us consider the sequence 0 −→ N −→ 0.

As 0 −→ N ⊗M −→ 0 is exact, so is 0 −→ N −→ 0. Therefore N = 0.

(ii) =⇒ (iii) Since A/m ̸= 0, we have (A/m)⊗M =M/mM ̸= 0 by hypothesis.

(iii) =⇒ (ii) Take an element x ∈ N , x ̸= 0. The submodule Ax is a homomor-

phic image of A as A-module, hence Ax ∼= A/I for some ideal I ̸= A. Let

m be a maximal ideal of A containing I. Then M ⊃ mM ⊇ IM , therefore

(A/I)⊗M =M/IM ̸= 0. By flatness

0 −→ (A/I)⊗M −→ N ⊗M

is exact, hence N ⊗M ̸= 0.

(ii) =⇒ (i) Let S : N ′ −→ N −→ N ′′ be a sequence of A-modules, and suppose

that

S ⊗M : N ′ ⊗M fM−−→ N ⊗M gM−−→ N ′′ ⊗M

is exact. As M is flat, the exact functor ⊗M transforms kernel into kernel

and image into image. Thus Im(g ◦ f)⊗M = Im(gM ◦ fM ) = 0, and by the

assumption we get Im(g ◦ f) = 0, i.e. g ◦ f = 0. Hence S is a complex, and
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if H(S) denotes its homology (at N), we have H(S)⊗M = H(S⊗M) = 0.

Using again the assumption (ii) we obtain H(S) = 0, which implies that S

is exact.

Corollary 4.1. Let A and B be local rings, and ψ : A −→ B a local homomor-

phism. Let M ( ̸= 0) be a finite B-module. Then

M is flat over A ⇐⇒ M is f.f. over A.

In particular, B is flat over A iff it is f.f. over A.

Proof. Let m and n be the maximal ideals of A and B respectively. Then

mM ⊆ nM since ψ is local, and nM ̸= M by NAK, hence the assertion follows

from the theorem.

(4.B) Just as flatness, faithful flatness is transitive (B is f.f. A-algebra and

M is f.f. B-module =⇒ M is f.f. over A) and is preserved by change of basis

(M is f.f. A-modules and B is any A-algebra =⇒ M ⊗A B is f.f. B-module).

Faithful flatness has, moreover, the following descent property: if B is an

A-algebra and if M is a f.f. B-module which is also f.f. over A, then B is f.f. over

A.

Proofs are easy and left to the reader.

(4.C) Faithful flatness is particularly important in the case of a ring extension.

Let ψ : A −→ B be a f.f. homomorphism of rings. Then:

(i) For any A-module N , the map N −→ N ⊗ B defined by x 7→ x ⊗ 1 is

injective. In particular ψ is injective and A and be viewed as a subring of

B.
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(ii) For any ideal I of A, we have IB ∩A = I.

(iii) ψ∗ : Spec(B) −→ Spec(A) is surjective.

Proof. (i) Let 0 ̸= x ∈ N . Then 0 ̸= Ax ⊆ N , hence Ax ⊗ B ⊆ N ⊗ B by

flatness of B. Then Ax⊗B = (x⊗ 1)B, therefore x⊗ 1 ̸= 0 by theorem 2.

(ii) By change of base, B⊗A (A/I) = B/IB is f.f. over A/I. Now the assertion

follows from (i).

(iii) Let p ∈ Spec(A). The ring Bp = B ⊗ Ap is f.f. over Ap, hence pBp ̸= Bp.

Take a maximal ideal m of Bp which contains pBp. Then m ∪ Ap ⊇ pAp,

therefore m ∩ Ap = pAp because pAp is maximal. Putting P = m ∩ B, we

get

P ∩A = (m ∩B) ∩A = m ∩A = (m ∩Ap) ∩A = pAp ∩A = p.

(4.D) Theorem 3. Let ψ : A −→ B be a homomorphism of rings. The

following conditions are equivalent:

(1) ψ is faithfully flat;

(2) ψ is flat, and ψ∗ : Spec(B) −→ Spec(A) is surjective;

(3) ψ is flat, and for any maximal ideal m of A there exists a maximal ideal m′

of B lying over m.
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Proof.

(1) =⇒ (2) Already proved.

(2) =⇒ (3) By assumption there exists p′ ∈ Spec(B) with p′ ∩A = m. If m′ is

any maximal ideal of B containing p′, we have m′∩A = m as m is maximal.

(3) =⇒ (1) The existence of m′ implies mB ̸= B. Therefore B is f.f. over A

by theorem 2.

Remark 4.1. In algebraic geometry one says that a morphism f : X −→ Y

of preschemes is faithfully flat if f is flat (i.e. for all x ∈ X the associated

homomorphisms OY,f(x) −→ OX,x are flat) and surjective.

(4.E) Let A be a ring and B a faithfully flat A-algebra. Let M be an A-module.

Then:

(i) M is flat (resp. f.f.) over A ⇐⇒ M ⊗A B is so over B,

(ii) when A is local and M is finite over A we have M is A-free ⇐⇒ M ⊗A B

is B-free.

Proof.

(i) =⇒ This is nothing but a change of base ((3.C) and (4.B)).

⇐= This follows from the fact that, for any sequence of S of A-modules,

we have

(S ⊗AM)⊗A B = (S ⊗A B)⊗B (M ⊗A B).

(ii) =⇒ This is trivial.
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⇐= follows from (i) because, under the hypothesis, freeness of M is

equivalent to flatness as we saw in (3.G).

(4.F) Remark 4.2. Let V be an algebraic variety over C and let x ∈ V (or

more generally, let V be an algebraic scheme over C and let x be a closed point on

V ). Let V h denote the complex space obtained from V (for the precise definition

see [SA56]), and let O and Oh be the local rings of x on V and on V h respectively.

Locally, one can assume that V is an algebraic subvariety of the affine n-space An.

Then V is defined by an ideal I of R = C[X1, . . . , Xn], and taking the coordinate

system in such a way that x is the origin we have I ⊆ m = (X1, . . . , Xn) and

O = Rm/IRm. Furthermore, denoting the ring of convergent power series in

X1, . . . , Xn by S = C{{X1, . . . , Xn}}, we have Oh = S/IS by definition. Let F

denote the formal power series ring: F = C[[X1, . . . , Xn]]. It has been known

long since that O and Oh are Noetherian local rings. J.-P. Serre observed that

the completion (Oh)ˆ (cf. 3) of Oh is the same as the completion Ô = F/IF of O,

and that Ô is faithfully flat over O as well as over Oh. It follows by descent that

Oh is faithfully flat over O, and this fact was made the basis of Serre’s famous

paper GAGA [SA56]∗. It was in the appendix to this paper that the notions of

flatness and faithful flatness were defined and studied for the first time.

Exercise 4.1. Let A be an integral domain and B an integral domain containing

A and having the same quotient field as A. Prove that B is f.f. over A only when

B = A. (Geomtetrically, this means that if a birational morphism f : X −→ Y

is flat at a point x ∈ X, then it is biregular at x.)

∗This is a translated version of the famous paper, see [Ser56] for the paper in original french.
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5 Going-up Theorem and Going-down Theorem

(5.A) Let ϕ : A −→ B be a homomorphism of rings. We say that the going-up

theorem holds for ϕ if the following condition is satisfied:

(GU) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ∈ Spec(B) lying

over p, there exists P ′ ∈ Spec(B) lying over p′ such that P ⊂ P ′.

Similarly, we say that the going-down theorem holds for ϕ if the following

condition is satisfied:

(GD) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ′ ∈ Spec(B) lying

over p′, there exists P ∈ Spec(B) lying over p such that P ⊂ P ′.

(5.B) The condition (GD) is equivalent to:

(GD’) for any p ∈ Spec(A), and for any minimal prime over-ideal P of pB, we

have P ∩A = p.

Proof.

(GD) =⇒ (GD’) let p and P be as in (GD’). Then P ∩A ⊇ p since P ⊇ pB. If

P ∩ A ̸= p, by (GD) there exists P1 ∈ Spec(B) such that P1 ∩ A = p and

P ⊃ P1. Then P ⊃ P1 ⊇ pB, contradicting the minimality of P .

(GD’) =⇒ (GD) left to the reader.

Remark 5.1. Put X = Spec(A), Y = Spec(B), f = ϕ∗ : Y −→ X, and

suppose B is Noetherian. Then (GD’) can be formulated geometrically as follows:

let p ∈ X, put X ′ = V (p) ⊆ X and let Y ′ be an arbitrary irreducible component

of f−1(X ′). Then f maps Y ′ generically onto X ′ in the sense that the generic

point of Y ′ is mapped to the generic point p of X ′. †

†See (6.A) and (6.D) for the definitions of irreducible component and of generic point.
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(5.C) Example 5.1. Let k[x] be a polynomial ring over a field k, and put

x1 = x(x − 1), x2 = x2(x − 1). Then k(x) = k(x1, x2), and the inclusion

k[x1, x2] ⊆ k[x] induces a birational morphism

f : C = Spec(k[x]) −→ C ′ = Spec(k[x1, x2])

where C is the affine line and C ′ is the affine curve x31 − x22 + x1x2 = 0. The

morphism f maps the points Q1 : x = 0 and Q2 : x = 1 of C to the same

point P = (0, 0) of C ′, which is an ordinary double point of C ′, and f maps

C − {Q1, Q2} bijectively onto C − {P}

Let y be another indeterminate, and put B = k[x, y], A = k[x1, x2, y]. Then

Y = Spec(B) is a plane andX = Spec(A) is C ′× line; X is obtained by identifying

the lines L1 : x = 0 and L2 : x = 1 on Y · Let L3 ⊂ Y be the line defined by

y = ax, a ̸= 0. Let g : Y −→ X be the natural morphism. Then g(L3) = X ′ is

an irreducible curve on X, and

g−1(X ′) = L3 ∪ {(0, a), (1, 0)}

Therefore the going-down theorem does not hold for A ⊂ B.

(5.D) Theorem 4. Let ϕ : A −→ B be a flat homomorphism of rings. Then

the going-down theorem holds for ϕ.

Proof. Let p and p′ be prime ideals in A with p′ ⊂ p, and let P be a prime ideal

of B lying over p. Then BP is flat over Ap by (3.J), hence faithfully flat since

Ap −→ BP is local. Therefore Spec(BP ) −→ Spec(Ap) is surjective. Let P ′∗ be

a prime ideal of BP lying over p′Ap. Then P ′ = P ′∗ ∩ B is a prime ideal of B

lying over p′ and contained in P .
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(5.E) Theorem 5. ‡ Let B be a ring and A a subring over which B is integral.

Then:

i) The canonical map Spec(B) −→ Spec(A) is surjective.

ii) There is no inclusion relation between the prime ideals of B lying over a

fixed prime ideal of A.

iii) The going-up theorem holds for A ⊂ B.

iv) If A is a local ring and p is its maximal ideal, then the prime ideals of B

lying over p are precisely the maximal ideals of B.

Suppose furthermore that A and B are integral domains and that A is

integrally closed (in its quotient field ΦA ). Then we also have the following.

v) The going-down theorem holds for A ⊂ B.

vi) If B is the integral closure of A in a normal extension field L of K = ΦA,

then any two prime ideals of B lying over the same prime p ∈ Spec(A) are

conjugate to each other by some automorphism of L over K.

Proof. iv) First let M be a maximal ideal of B and put m = M ∩ A. Then

B = B/M is a field which is integral over the subring A = A/m. Let

0 ̸= x ∈ A. Then 1/x ∈ B, hence

(1/x)n + a1(1/x)
n−1 + · · ·+ an = 0 for some a1 ∈ A0

Multiplying by xn−1 we get

1/x = −(a1 + a2x+ · · ·+ anx
n−1) ∈ A.

‡This theorem is due to Krull, but is often called the Cohen-Seidenberg theorem
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Therefore A is a field, i.e. m = M ∩ A is the maximal ideal p of A. Next,

let P be a prime ideal of B with P ∩ A = p. Then B = B/P is a domain

which is integral over the field A = A/p. Let 0 ̸= y ∈ B; let

yn + a1y
n−1 + · · ·+ an = 0 (ai ∈ A)

be a relation of integral dependence for y, and assume that the degree n is

the smallest possible. Then an ̸= 0 (otherwise we could divide the equation

by y to get a relation of degree n− 1). Then

y−1 = −(yn−1 + a1y
n−2 + · · ·+ an−1)/an ∈ B,

hence B is a field and P is maximal.

i) and ii) Let p ∈ Spec(A). Then

Bp = B ⊗A Ap = (A− p)−1B

is integral over Ap and contains it as a subring. The prime ideals of B

lying over p correspond to the prime ideals of Bp lying over pAp, which

are the maximal ideals of Bp by iv). Since Ap ̸= 0, Bp is not zero and has

maximal ideals. Of course there is no inclusion relation between maximal

ideals. Thus i) and ii) are proved.

iii) Let p ⊂ p′ be in Spec(A) and P be in Spec(B) such that P ∩A = p. Then

B/P contains, and is integral over, A/p. By i) there exists a prime P ′/P

lying over p′/p. Then P ′ is a prime ideal of B lying over p′.

vi) Put G = Aut (L/K) = the group of automorphisms of L over K. First

assume L is finite over K. Then G is finite: G = {σ1, . . . , σn}. Let P and

P ′ be prime ideals of B such that P ∩A = P ′ ∩A. Put σi(P ) = Pi. (Note
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that σi(B) = B so that Pi ∈ Spec(B).) If P ′ ̸= Pi for i = 1, . . . , n, then

P ′ ⊈ Pi by ii), and there exists an element x ∈ P ′ which is not in any Pi

by (1.B). Put y = (
∏
i σi(x))

q, where q = 1 if ch(K) = 0 and q = pν with

sufficiently large ν if ch(K) = p. Then y ∈ K, and since A is integrally

closed and y ∈ B we get y ∈ A. But y /∈ P (for, we have x /∈ σ−1i (P ) hence

σi(x) /∈ P ) while y ∈ P ′ ∩A = P ∩A, contradiction.

When L is infinite over K, let K ′ be the invariant subfield of G; then L

is Galois over K ′, and K ′ is purely inseparable over K. If K ′ ̸= K, let

p = ch(K). It is easy to see that the integral closure B′ of A in K ′ has one

and only one prime p′ which lies over p, namely p′ = {x ∈ B′ | ∃q = pν .

such that xq ∈ p}. Thus we can replace K by K ′ and p by p′ in this case.

Assume, therefore, that L is Galois over k. Let P and P ′ be in Spec(B)

and let P ∩ A = P ′ ∩ A = p. Let L be any finite Galois extension of K

contained in L, and put

F (L′) = {σ ∈ G = Aut(I/K) | σ(P ∩ L′) = P ′ ∩ L′}

This set is not empty by what we have proved, and is closed in G with

respect to the Krull topology (for the Krull topology of an infinite Galois

group, see [Lan12, p.233 exercise 19.]) Clearly F (L′) ⊇ F (L′′) if L′ ⊆ L′′.

For any finite number of finite Galois extensions L′i (1 ⩽ i ⩽ n) there

exists a finite Galois extension L′′ containing all L′i, therefore⋂
i F (L

′
i) ⊇ F (L′′) ̸= ∅. As G is compact this means

⋂
all L′ F (L′) ̸= ∅. If

σ belongs to this intersection we get σ(P ) = P ′.

v) Let

• L1 = ΦB,

• K = ΦA,
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• L be a normal extension of K containing L1

• C denote the integral closure of A (hence also of B ) in L.

• P ∈ Spec(B),

• p = P ∩A,

• p′ ∈ Spec(A) and

• p′ ⊂ p.

Take a prime ideal Q′ ∈ Spec(C) lying over p′, and, using the going-up

theorem for A ⊂ C, take Q1 ∈ Spec(C) lying over p such that Q′ ⊂ Q1.

Let Q be a prime ideal of C lying over P . Then by vi) there exists

σ ∈ Aut(L/K) such that σ(Q1) = Q. Let Q be a prime ideal of C lying

over P . Then by vi) there exists σ ∈ Aut(L/K) such that σ(Q1) = Q. Put

P ′ = σ(Q′) ∩B. Then P ′ ⊂ P and

P ′ ∩A = σ(Q′) ∩A = Q′ ∩A = p′.

Remark 5.2. In the example of (5.C), the ring B = k[x, y] is integral over

A = k[x1, x2, y] since x2 − x− x1 = 0. Therefore the going-up theorem holds for

A ⊂ B while the going-down does not.

Exercise. 1. Let A be a ring and M an A-module. We shall say that M is

surjectively-free over A if A =
∑
f(M) where sum is taken over

f ∈ HomA(M,A). Thus, free =⇒ surjectively free. Prove that:

• If B is a surjectively free A-algebra, then

(i) for any ideal I of A we have IB ∩A = I, and

(ii) the canonical map Spec(B) −→ Spec(A) is surjective.
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• Prove also that, if B is an A-algebra with retraction (i.e. an A-linear

map r : B −→ A such that r ◦ i = idA (where i : A −→ B is the

canonical map) is surjectively-free over A.

2. Let k be a field and t and X be two independent indeterminates. Put

A = k[t](t). Prove that A[X] is free (hence faithfully flat) over A but that

the going-up theorem does not hold for A ⊂ A[X]. Hint: consider the prime

ideal (tX − 1)

3. Let B be a ring, A be a subring and p ∈ Spec(A). Suppose that B is

integral over A and that there is only one prime ideal P of B lying over p.

Then BP = Bp. (By Bp we mean the localization of the A-module B at p,

i.e. Bp = B⊗AAp. Show that Bp is a local ring with maximal ideal PBp.)

6 Constructible Sets

(6.A) A topological space X is said to be Noetherian if the descending chain

condition holds for the closed sets in X. The spectrum Spec(A) of a Noetherian

ring A is Noetherian. If a space is covered by a finite number of Noetherian sub-

spaces then it is Noetherian. Any subspace of a Noetherian space is Noetherian.

A Noetherian space is quasi-compact.

A closed set Z in a topological space X is irreducible if it is not expressible

as the sum of two proper closed subsets. In a Noetherian space X any closed

set Z is uniquely decomposed into a finite number of irreducible closed sets:

Z = Z1 ∪ · · · ∪ Zr such that Zi ̸⊆ Zj for i ̸= j. This follows easily from the

definitions. The Zi’s are called the irreducible components of Z.

(6.B) Let X be a topological space and Z a subset of X. We say Z is locally

closed in X if, for every point z of Z, there exists an open neighborhood U of z

in X such that U ∩ Z is closed in U . It is easy to see that Z is locally closed in
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X iff it is expressible as the intersection of an open set in X and a closed set in

X.

Let X be a Noetherian space. We say a subset Z of X is a constructible

set in X if Z is a finite union of locally closed sets in X:

Z =

m⋃
i=1

(Ui ∩ Fi), Ui open, Fi closed.

(When X is not Noetherian, the definition of a constructible set is more compli-

cated, cf. [Gro63].)

If Z and Z ′ are constructible in X, so are Z ∪Z ′, Z ∩Z ′ and Z −Z ′. This is

clear for Z ∪ Z ′. Repeated use of the formula

(U ∩ F )− (U ′ ∩ F ′) = U ∩ F ∩ ((U ′)C ∪ (F ′)C)

= (U ∩ (F ∩ (U ′)C) ∪ ((U ∩ (F ′)C) ∩ F ),

where UC denotes the complement of U in X, shows that Z−Z ′ is constructible.

Taking Z = X we see the complement of a constructible set is is constructible.

Finally Z ∩ Z ′ = (ZC ∪ (Z ′)C)C is constructible.

We say a subset Z of a Noetherian space X is pro-constructible (resp. ind-

constructible) if it is the intersection (resp. union) of an arbitrary collection of

constructible sets in X.

(6.C) Proposition 6.1. Let X be a Noetherian space and Z a subset of X.

Then Z is constructible in X iff the following condition is satisfied.

(6.∗) For each irreducible closed set X0 in X, either X0 ∩ Z is not dense in X0,

or X0 ∩ Z contains a non-empty open subset of X0.
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Proof. (Necessity.) If Z is constructible we can write

X0 ∩ Z =

m⋃
i=1

(Ui ∩ Fi),

where Ui is open in X, Fi is closed and irreducible in X and Ui ∩Fi is not empty

for each i. Then Ui ∩ Fi = Fi since Fi is irreducible, therefore X0 ∩ Z =
⋃
i Fi.

If X0 ∩Z is dense in X0, we have X0 =
⋃
i Fi so that some Fi, say F1, is equal to

X0. Then U1 ∩X0 = U1 ∩F1 is a non-empty open set of X0 contained in X0 ∩Z.

(Sufficiency.) Suppose (6.∗) holds. We prove the constructibility of Z by

induction on the smallness of Z, using the fact that X is Noetherian. The empty

set being constructible, we suppose that Z ̸= ∅ and that any subset Z ′ of Z

which satisfies (6.∗) is constructible. Let Z = F1 ∪ · · · ∪Fr be the decomposition

of Z into the irreducible components. Then F1∩Z is dense in F1 as one can easily

check, whence there exists, by (6.∗), a proper closed subset F ′ of F1 such that

F1−F ⊆ Z. Then, putting F ∗ = F ′∪F2∪· · ·∪Fr, we have Z = (F1−F ′)∪(Z∩F ∗).

The set F1 − F ∗ is locally closed in X. On the other hand Z ∩ F ∗ satisfies the

condition (6.∗) because, if X0 is irreducible and if Z ∩ F ∗ ∩X0 = X0, the closed

set F ∗ must contain X0 and so Z ∩ F ∗ ∩X0 = Z ∩X0. Since Z ∩ F ∗ ⊆ F ∗ ⊂ Z,

the set Z ∩ F ∗ is constructible by the induction hypothesis. Therefore Z is

constructible.

(6.D) Lemma 6.1. Let A be a ring and F a closed subset of X = Spec(A).

Then F is irreducible iff F = V (p) for some prime ideal p. This p is unique and

is called the generic point of F .

Proof. Suppose that F is irreducible. Since it is closed it can be written F = V (I)

with I =
⋂

p∈F p. If I is not prime we would have elements a and b of A− I such

that ab ∈ I. Then F ̸⊆ V (A), F ̸⊆ V (b), and F ⊆ V (a) ∩ V (b) = V (ab), hence

F = (F ∩ V (a)) ∪ (F ∩ V (b)), which contradicts the irreducibility. The converse
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is proved by noting p ∈ V (p). The uniqueness comes from the fact that p is the

smallest element of V (p).

Lemma 6.2. Let ϕ : A −→ B be a homomorphism of rings. Put X = Spec(A),

Y = Spec(B) and f = ϕ∗ : Y −→ X. Then f(Y ) is dense in X iff

Ker(ϕ) ⊆ nil(A). If, in particular, A is reduced, f(Y ) is dense in X iff ϕ is

injective.

Proof. The closure f(Y ) in Spec(A) is the closed set V (I) defined by the ideal

I =
⋂
p∈Y

ϕ−1(p) = ϕ−1
( ⋂

p∈Y
p

)
,

which is equal to ϕ−1(nil(B)) by (1.E). Clearly Ker(ϕ) ⊆ I. Suppose that f(Y )

is dense in X. Then V (I) = X, whence I = nil(A) by (1.E). Therefore

Ker(ϕ) ⊆ nil(A). Conversely, suppose Ker(ϕ) ⊆ nil(A). Then it is clear that

I = ϕ−1(nil(B)) = nil(A),

which means f(Y ) = V (I) = X.

(6.E) Theorem 6. (Chevalley). Let A be a Noetherian ring and B an A-

algebra of finite type. Let ϕ : A −→ B be the canonical homomorphism; put

X = Spec(A), Y = Spec(B) and f = ϕ∗ : Y −→ X. Then the image f(Y ′) of a

constructible set Y ′ in Y is constructible in X.

Proof. First we show (6.C) can be applied to the case when Y ′ = Y . Let X0

be an irreducible closed set in X. Then X0 = V (p) for some p ∈ Spec(A). Put

A′ = A/p, and B′ = B/pB. Suppose that X0 ∩ f(Y ) is dense in X0. The map

ϕ′ : A′ −→ B′ induced by ϕ is then injective by Lemma 6.2. We want to show

X0 ∩ f(Y ) contains a non-empty open subset of X0. By replacing A,B and ϕ by

A′, B′ and ϕ′ respectively, it is enough to prove the following assertion:
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(6.†) if A is a Noetherian domain, and if B is a ring which contains A and which

is finitely generated over A, there exists 0 ̸= a ∈ A such that the elementary

open set D(a) of X = Spec(A) is contained in f(Y ), where Y = Spec(B)

and f : Y −→ X is the canonical map.

Write B = A[x1, . . . , xn], and suppose that x1, . . . , xr are algebraically in-

dependent over A while each xj (r < j ⩽ n) satisfies algebraic relations over

A[x1, . . . , xr]. Put A∗ = A[x1, . . . xr], and choose for each r < j ⩽ n a relation

gj0(x) · x
dj
j + gj1(x) · x

dj−1
j + · · · = 0

where gjv(x) ∈ A∗, gj0(x) ̸= 0. Then
∏n
j=r+1 gj0(x1, . . . , xr) is a non-zero poly-

nomial in x1, . . . , xr with coefficients in A. Let a ∈ A be any of the non-zero

coefficients of this polynomial. We claim that this element satisfies the require-

ment. In fact, suppose p ∈ Spec(A), a ̸∈ p, and put p∗ = pA∗ = p[x1, . . . , xr].

Then Πgj0 ̸∈ p∗, so that Bp∗ is integral over A∗p∗ . Thus there exists a prime P of

Bp∗ lying over p∗A∗p∗ . We have

P ∩A = P ∩A∗ ∩A = p[x1, . . . , xr] ∩A = p,

therefore

p = P ∩A = (P ∩B) ∩A ∈ f(Spec(B)).

Thus (6.†) is proved.

The general case follows from the special case treated above and from the

following

Lemma 6.3. Let B be a Noetherian ring and let Y ′ be a constructible set in

Y = Spec(B). Then there exists a B-algebra of finite type B′ such that the image

of Spec(B′) in Spec(B) is exactly Y ′.
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Proof. First suppose Y ′ = U ∩F , where U is an elementary open set U = D(B),

b ∈ B, and F is a closed set V (I) defined by an ideal I of B. Put S = {1, b, b2, . . . }

and B′ = S−1(B/I). Then B′ is a B-algebra of finite type generated by 1/b,

where b = the image of b in B′, and the image of Spec(B′) in Spec(B) is clearly

U ∩ F .

When Y ′ is an arbitrary constructible set, we can write it as a finite union of

locally closed sets Ui∩Fi (1 ⩽ i ⩽ m) with Ui elementary open, because any open

set in the Noetherian space Y is a finite union of elementary open sets. Choose

a B-algebra B′i of finite type such that Ui ∩ Fi is the image of Spec(B′i) for each

i, and put B′ = B′1× · · ·×B′m. Then we can view Spec(B′) as the disjoint union

of Spec(B′i)’s, so the image of Spec(B) in Y is Y ′ as wanted.

(6.F) Proposition 6.2. Let A be a Noetherian ring, ϕ : A −→ B a homo-

morphism of rings, X = Spec(A), Y = Spec(B), and f = ϕ∗ : Y −→ X. Then

f(Y ) is pro-constructible in X.

Proof. We have B = lim−→Bλ, where the Bλ’s are the subalgebras of B which

are finitely generated over A. Put Yλ = Spec(Bλ) and let gλ : Y −→ Yλ and

fλ : Yλ −→ X denote the canonical maps. Clearly f(Y ) ⊆
⋂
λ fλ(Yλ). Actually

the equality holds, for suppose that p ∈ X−f(Y ). Then pBp = Bp, so that there

exist elements πα ∈ p, bα ∈ B (1 ⩽ α ⩽ m) and s ∈ A− p such that

m∑
α=1

πα(bα/s) = 1

in Bp, i.e.,

s′
( m∑
α=1

παbα − s
)

= 0

in B for some s′ ∈ A−p. If Bλ contains b1, . . . , bm we have 1 ∈ p(Bλ)p, therefore

p ̸∈ fλ(Yλ) for such λ. Thus we have proved f(Y ) =
⋂
fλ(Yλ). Since each fλ(Yλ)
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is constructible by 6, f(Y ) is pro-constructible.

(Remark. [Gro64] contains many other results on constructible sets, including

generalization to non-Noetherian case.)

(6.G) Let A be a ring and let p, p′ ∈ Spec(A). We say that p′ is a special-

ization of p and that p is a generalization of p′ iff p ⊆ p′. If a subset Z of

Spec(A) contains all specializations (resp. generalizations) of its points, we say

Z is stable under specialization (resp. generalization). A closed (resp. open) set

in Spec(A) is stable under specialization (resp. generalization).

Lemma 6.4. Let A be a Noetherian ring and X = Spec(A). Let Z be a

pro-constructible set in X stable under specialization. Then Z is closed in X.

Proof. Let Z =
⋂
Eλ with Eλ constructible in X. Let W be an irreducible

component of Z and let x be its generic point. Then W ∩Z is dense in W , hence

a fortiori W ∩ Eλ is dense in W . Therefore W ∩ Eλ contains a non-empty open

set of W by (6.C), so that x ∈ Eλ. Thus x ∈
⋂
Eλ = Z. This means W ⊆ Z by

our assumption, and so we obtain Z = Z.

(6.H) Let ϕ : A −→ B be a homomorphism of rings, and put X = Spec(A),

Y = Spec(B) and f = ϕ∗ : Y −→ X. We say that f is (or: ϕ is) submersive if f

is surjective and if the topology of X is the quotient of that of Y (i.e. a subset of

X ′ is closed in X iff f−1(X ′) is closed in Y ). We say f is (or: ϕ is) universally

submersive if, for any A-algebra C, the homomorphism ϕC : C −→ B ⊗A C

is submersive. (Submersiveness and universal submersiveness for morphisms of

preschemes are defined in the same way, [Gro64] (15.7.8).)

Theorem 7. Let A,B, ϕ,X, Y and f be as above. Suppose that

(1) A is Noetherian,
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(2) f is surjective and

(3) the going-down theorem holds of ϕ : A −→ B.

Then ϕ is submersive.

Remark 6.1. The conditions (2) and (3) are satisfied, e.g., in the following

cases:

(α) when ϕ is faithfully flat, or

(β) when ϕ is injective, assume B is an integral domain over A and A is an

integrally closed domain.

In the case (α), ϕ is even universally submersive since faithful flatness is preserved

by change of base.∗

Proof of Th. 7. Let X ′ ⊆ X be such that f−1(X ′) is closed. We have to prove X ′

is closed. Take an ideal J of B such that f−1(X ′) = V (J). As X ′ = f(f−1(X ′))

by (2), application of (6.F) to the composite map A
ϕ−→ B −→ B/J shows X ′

is pro-constructible. Therefore it suffices, by (6.G), to prove that X ′ is stable

under specialization. For that purpose, let p1, p2 ∈ Spec(A), p1 ⊃ p2 ∈ X ′. Take

P1 ∈ Y lying over p1 (by (2)) and P2 ∈ Y lying over p2 such that P1 ⊃ P2 (by

(3)). Then P2 is in the closed set f−1(X ′), so P1 is also in f−1(X ′). Thus

p1 = f(P1) ∈ f(f−1(X ′)) = X ′,

as wanted.

(6.I) Theorem 8. Let A be a Noetherian ring and B an A-algebra of finite

type. Suppose that the going-down theorem holds between A and B. Then the
∗In algebraic geometry, there are two important classes of universally submersive mor-

phisms. Namely, the faithfully flat morphisms and the proper and surjective ones. The univer-
sal submersiveness of the latter is immediate from the definitions, while that of the former is
essentially what we just proved.
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canonical map f : Spec(B) −→ Spec(A) is an open map (i.e. sends open sets to

open sets).

Proof. Let U be an open set in Spec(B). Then f(U) is a constructible set 6.

On the other hand the going-down theorem shows that f(U) is stable under

generalisation. Therefore, applying (6.G) to Spec(A)− f(U) we see that f(U) is

open.

(6.J) Let A and B be rings and ϕ : A −→ B a homomorphism. Suppose B is

Noetherian and that the going-up theorem holds for ϕ. Then

ϕ∗ : Spec(B) −→ Spec(A) is a closed map (i.e. sends closed sets to closed sets).

Proof. Left to the reader as an easy exercise. (It has nothing to do with con-

structible sets.)
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In this chapter we only consider Noetherian rings only.

7 Ass(M)

(7.A) Throughout this section let A denote a Noetherian ring and M an A-

module. We say a prime ideal p of A is an associated prime of M , if one of the

following equivalent conditions holds:

(i) there exists an element x ∈M with Ann(x) = p;

(ii) M contains a submodule isomorphic to A/p.

The set of the associated primes of M is denoted by AssA(M) or by Ass(M).

(7.B) Proposition 7.1. Let p be a maximal element of the set of ideals

{Ann(x) | x ∈M,x ̸= 0}. Then p ∈ Ass(M).

Proof. We have to show that p is prime. Let p = Ann(x), and suppose ab ∈ p,

b /∈ p. Then bx ̸= 0 and abx = 0. Since Ann(bx) ⊇ Ann(x) = p, we have

Ann(bx) = p by the maximality of p. Thus a ∈ p.

Corollary 7.1. Ass(M) = ∅ ⇐⇒ M = 0.

Corollary 7.2. The set of the zero-divisors for M is the union of the associated

primes of M .
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(7.C) Lemma 7.1. Let S be a multiplicative subset of A, and put A′ = S−1A,

M ′ = S−1M . Then

AssA(M
′) = f(AssA′(M ′)) = AssA(M) ∩ {p | p ∩ S = ∅},

where f is the natural map Spec(A′) −→ Spec(A).

Proof. Left to the reader. One must use the fact that any ideal of A is finitely

generated.

(7.D) Theorem 9. Let A be a Noetherian ring and M an A-module. Then

Ass(M) ⊆ Supp(M), and any minimal element of Supp(M) is in Ass(M).

Proof. If p ∈ Ass(M) there exists an exact sequence 0 −→ A/p −→ M , and

since Ap is flat over A the sequence 0 −→ Ap/pAp −→ Mp is also exact. As

Ap/pAp ̸= 0, we haveMp ̸= 0, i.e. p ∈ Supp(M). Next let p be a minimal element

of Supp(M). By (7.C), p ∈ Ass(M) iff pAp ∈ AssAp
(Mp), therefore replacing A

and M by Ap and Mp, we can assume that (A, p) is a local ring, that M ̸= 0 and

that Mp = 0 for any prime q ⊂ p. Thus Supp(M) = {p}. Since Ass(M) is not

empty and is contained in Supp(M), we must have p ∈ Ass(M).

Corollary 7.3. Let I be an ideal. Then the minimal associated primes of the

A-module A/I are precisely the minimal prime over-ideals of I.

Remark 7.1. By the above theorem the minimal associated primes of M are

the minimal elements of Supp(M). Associated primes which are not minimal are

called embedded primes.

(7.E) Theorem 10. Let A be a Noetherian ring and M a finite A-module,

M ̸= 0. Then there exists a chain of submodules

(0) =Mn ⊂ · · · ⊂Mn−1 ⊂Mn =M
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such that Mi/Mi−1 ∼= A/pi, for some pi ∈ Spec(A) (1 ⩽ i ⩽ n).

Proof. Since M ̸= 0 we can choose M1 ⊆ M such that M1 = A/p1, for some

p1 ∈ Ass(M). If M1 ̸= M then we apply the same procedure to M/M1 to find

M2, and so on. Since the ascending chain condition for submodules holds in M ,

the process must stop in finite steps.

(7.F) Lemma 7.2. If 0 −→ M ′ −→ M −→ M ′′ is an exact sequence of

A-modules, then Ass(M) ⊆ Ass(M ′) ∪Ass(M ′′).

Proof. Take p ∈ Ass(M) and choose a submodule N of M isomorphic to A/p. If

N ∩M ′ = (0) then N is isomorphic to a submodule of M ′′, so that p ∈ Ass(M ′′).

If N ∩M ′ ̸= (0), pick 0 ̸= x ∈ N ∩M ′. Since N ∼= A/p and since A/p is a domain

we have Ann(x) = p, therefore p ∈ Ass(M ′).

(7.G) Proposition 7.2. Let A be a Noetherian ring andM a finite A-module.

Then Ass(M) is a finite set.

Proof. Using the notation of Th.10, we have

Ass(M) ⊆ Ass(M1) ∪Ass(M2/M1) ∪ · · · ∪Ass(Mn/Mn−1)

by lemma 7.2. On the other hand we have Ass(Mi/Mi−1) = Ass(A/pi) = {pi},

therefore Ass(M) ⊆ {p1, . . . , pn}.

8 Primary Decomposition

As in the preceding section, A denotes a Noetherian ring

and M an A-module

(8.A) Definition. An A-module is said to be co-primary if it has only one

associated prime, A submodule N of M is said to be a primary submodule of
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M if M/N is co-primary. If Ass(M/N) = {p}, we say N is p-primary or that N

belongs to p.

(8.B) Proposition 8.1. The following are equivalent:

(1) the module M is co-primary;

(2) M ̸= 0, and if a ∈ A is a zero-divisor for M then a is locally nilpotent on

M (by this we mean that, for each x ∈ M , there exists an integer n > 0

such that anx = 0).

Proof.

(1) =⇒ (2) Suppose Ass(M) = {p}. If 0 ̸= x ∈ M , then Ass(Ax) = {p} and

hence p is the unique minimal element of Supp(Ax) = V (Ann(x)) by (7.D).

Thus p is the radical of Ann(x), therefore a ∈ p implies anx = 0 for some

n > 0.

(2) =⇒ (1) Put p = {a ∈ A | a is locally nilpotent on M}. Clearly this is

an ideal. Let q ∈ Ass(M). Then there exists an element x of M with

Ann(x) = q, therefore p ⊆ q by the definition of p. Conversely, since p

coincides with the union of the associated primes by assumption, we get

q ⊆ p. Thus p = q and Ass(M) = {p}, so that M is co-primary.

Remark 8.1. When M = A/q, the condition (2) reads as follows:

(2’) all zero-divisors of the ring A/q are nilpotent. This is precisely the clas-

sical definition of a primary ideal q, cf. (1.A).

Exercise 8.1. Prove that, if M is a finitely generated co-primary A-module

with Ass(M) = {p}, then the annihilator Ann(M) is a p-primary ideal of A.
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(8.C) Let p be a prime of A, and let Q1 and Q2 be p-primary submodules of

M . Then the intersection Q1 ∩Q2 is also p-primary.

Proof. There is an obvious monomorphism M/Q1 ∩ Q2 −→ M/Q1 ⊕ M/Q2.

Hence

∅ ̸= Ass(M/Q1 ∩Q2) ⊆ Ass(M/Q1) ∪Ass(M/Q2) = {p}.

(8.D) Let N be a submodule of M. A primary decomposition of N is an

equation N = Q1 ∩ · · · ∩ Qr with Qi primary in M . Such a decomposition is

said to be irredundant if no Qi can be omitted and if the associated primes of

M/Qi (1 ⩽ i ⩽ r) are all distinct. Clearly any primary decomposition can be

simplified to an irredundant one.

(8.E) Lemma 8.1. If N = Q1 ∩ · · · ∩ Qr is an irredundant primary decom-

position and if Qi belongs to pi, then we have

Ass(M/N) = {p1, . . . , pr}.

Proof. There is a natural monomorphism M/N −→M/Q1⊕· · ·⊕M/Qr, whence

Ass(M/N) ⊆
⋃
i

Ass(M/Qi) = {p1, . . . , pr}.

Conversely, (Q2 ∩ · · · ∩Qr)/N is isomorphic to a non-zero submodule of M/Q1,

so that Ass(Q2∩ · · ·∩Qr/N) = {p1}, and since Q2∩ · · ·∩Qr/N =M/N we have

pi ∈ Ass(M/N). Similarly for other pi’s.

(8.F) Proposition 8.2. Let N be a p-primary submodule of an A-module M ,

and let p′ be a prime ideal. Put M ′ = Mp′ and N ′ = Np′ and let ν : M −→ M ′

be the canonical map. Then
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(i) N ′ =M ′ if p ⊈ p′,

(ii) N = ν−1(N ′) if p ⊆ p′ (symbolically one may write N =M ∩N ′).

Proof. (i) We have M ′/N ′ = (M/N)p and

AssA(M
′/N ′) = AssA(M/N) ∩ {primes contained in p′} = ∅.

Hence M ′/N ′ = 0.

(ii) Since Ass(M/N) = {p} and since p ⊆ p′, the multiplicative set A− p′ does

not contain zero-divisors for M/N . Therefore the natural map M/N −→

(M/N)p =M ′/N ′ is injective.

Corollary 8.1. Let N = Q1∩· · ·∩Qr be an irredundant primary decomposition

of a submodule N of M , let Q1 be p1-primary and suppose p1 is minimal in

Ass(M/N). Then Q1 = M ∩Np1
, hence the primary component Q1 is uniquely

determined by N and by p1.

Remark 8.2. If pi is an embedded prime of M/N then the corresponding

primary component Qi, is not necessarily unique.

(8.G) Theorem 11. Let A be a Noetherian ring and M an A-module, Then

one can choose a p-primary submodule Q(p) for each p ∈ Ass(M) in such a way

that (0) =
⋂

p∈Ass(M)

Q(p).

Proof. Fix an associated prime p of M , and consider the set of submodules

N = {N ⊆M | p /∈ Ass(N)}. This set is not empty since (0) is in it, and if

N ′ = {Nλ}λ is a linearly ordered subset of N then
⋃
Nλ is an element of N

(because Ass(
⋃
Nλ) =

⋃
Ass(Nλ) by the definition of Ass). Therefore N has

maximal elements by Zorn; choose one of them and call it Q = Q(p). Since p
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is associated to M and not to Q we have M ̸= Q. On the other hand, if M/Q

had an associated prime p′ other than p, then M/Q would contain a submodule

Q′/Q ∼= A/p′ and then Q′ would belong to N contradicting the maximality of

Q. Thus Q = Q(p) is a p-primary submodule of M . As

Ass(
⋂
p

Q(p)) =
⋂

Ass(Q(p)) = ∅

we have
⋂
Q(p) = (0).

Corollary 8.2. If M is finitely generated then any submodule N of M has a

primary decomposition.

Proof. Apply the theorem to M/N and notice that Ass(M/N) is finite.

(8.H) Let p be a prime ideal of a Noetherian ring A, and let n > 0 be an

integer. Then p is the unique minimal prime over-ideal of pn, therefore the p-

primary component of pn is uniquely determined; this is called the n-th symbolic

power of p and is denoted by p(n). Thus p(n) = pnAp ∩ A. It can happen that

pn ̸= p(n). Example: let k be a field and B = k[x, y] the polynomial ring in the

indeterminates x and y. Put A = k[x, xy, y2, y3] and

p = yB ∩A = (xy, y2, y3).

Then p2 = (x2y2, xy3, y4, y5). Since y = xy/x ∈ Ap, we have B = k[x, y] ⊆ Ap

and hence Ap = ByB . Thus

p(2) = y2ByB ∩A = y2B ∩A = (y2, y3) ̸= p2.
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An irredundant primary decomposition of p2 is given by

p2 = (y2, y3) ∩ (x2, xy3, y4, y5).

9 Homomorphisms and Ass

(9.A) Proposition 9.1. Let ϕ : A −→ B be a homomorphism of Noetherian

rings and M a B-module. We can view M as an A-module by means of ϕ. Then

AssA(M) = ϕ∗(AssB(M)).

Proof. Let P ∈ AssB(M). Then there exists an element x of M such that

AnnB(x) = P . Since

AnnA(x) = AnnB(x) ∩A = P ∩A

we have P ∩ A ∈ AssA(M). Conversely, let p ∈ AssA(M) and take an element

x ∈ M such that AnnA(x) = p. Put AnnB(x) = I, let I = Q1 ∩ · · · ∩ Qr be

an irredundant primary decomposition of the ideal I and let Qi be Pi-primary.

Since M ⊇ Bx ∼= B/I the set Ass(M) contains Ass(B/I) = {P1, . . . , Pr}. We

will prove Pi ∩ A = p for some i. Since I ∩ A ̸= p we have Pi ∩ A ⊇ p for all i.

Suppose Pi ∩ A ̸= p for all i. Then there exists ai ∈ Pi ∩ A such that ai ∈ p, for

each i. Then ami ∈ Qi for all i if m is sufficiently large, hence

a =
∏
i

ami ∈ I ∩A = p,

contradiction, Thus Pi ∩A = p for some i and p ∈ ϕ∗(AssB(M)).

(9.B) Theorem 12 (Bourbaki). Let ϕ : A −→ B be a homomorphism of

Noetherian rings, E an A-module and F a B-module. Suppose F is flat as an
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A-module. Then:

(i) for any prime ideal p of A,

ϕ∗(AssB(F/pF )) = AssA(F/pF ) =

{p} if F/pF ̸= 0

∅ if F/pF = 0

.

(ii) AssB(E ⊗A F ) =
⋃

p∈Ass(E)

AssB(F/pF ).

Corollary 9.1. Let A and B be as above and suppose B is A-flat. Then

AssB(B) =
⋃

p∈Ass(A)

AssB(B/pB),

and ϕ∗(AssB(B)) = {p ∈ Ass(A) | pB ̸= B}. We have ϕ∗(AssB(B)) = Ass(A) if

B is faithfully flat over A.

Proof of Theorem 12. (i) The module F/pF is flat over A/p (base change),

and A/p is a domain, therefore F/pF is torsion-free as an A/p-module by

(3.F). The assertion follows from this.

(ii) The inclusion ⊇ is immediate: if p ∈ Ass(E) then E contains a submodule

isomorphic to A/p, whence E ⊗ F contains a submodule isomorphic to

(A/p)⊗A F = F/pF by the flatness of F . Therefore

AssB(F/pF ) ⊆ AssB(E ⊗ F ). To prove the other inclusion ⊆ is more

difficult.

Step 1. Suppose E is finitely generated and coprimary with Ass(E) = {p}. Then

any associated prime P ∈ AssB(E ⊗F ) lies over p. In fact, the elements of

p are locally nilpotent (on E, hence) on E ⊗ F , therefore p ⊆ P ∩ A. On

the other hand the elements of A − p are E-regular, hence E ⊗ F -regular
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by the flatness of F . Therefore A− p does not meet P , so that P ∩A = p.

Now, take a chain of submodules

E = E0 ⊃ E1 ⊃ · · · ⊃ Er = (0)

such that Ei/Ei+1
∼= A/pi for some prime ideal pi. Then

E ⊗ F = E0 ⊗ F ⊇ E1 ⊗ F ⊇ · · · ⊇ Er ⊗ F = (0)

and Ei ⊗ F/Ei+1 ⊗ F ∼= F/piF , so that

AssB(E ⊗ F ) ⊆
⋃
i

AssB(F/piF ).

But if P ∈ AssB(F/piF ) and if pi ̸= p then P ∩A = pi ̸= p (by (i)), hence

P /∈ AssB(E ⊗ F ) by what we have just proved. Therefore

AssB(E ⊗ F ) ⊆ AssB(F/pF ) as wanted.

Step 2. Suppose E is finitely generated. Let (0) = Q1 ∩ · · · ∩Qr be an irredundant

primary decomposition of (0) in E. Then E is isomorphic to a submodule

of E/Q1 ⊕ · · · ⊕ E/Qr and so E ⊗ F is isomorphic to a submodule of the

direct sum of the E/Qi ⊗ F ’s. Then

AssB(E ⊗ F ) ⊆
⋃

AssB(E/Qi ⊗ F ) =
⋃

AssB(F/piF ).

Step 3. General case. Write E =
⋃
λEλ, with finitely generated submodules Eλ.

Then it follows from the definition of the associated primes that

Ass(E) =
⋃
Ass(Eλ) and

Ass(E ⊗ F ) = Ass
(⋃

Eλ ⊗ F
)
=

⋃
Ass(Eλ ⊗ F ).
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Therefore the proof is reduced to the case of finitely generated E.

(9.C) Theorem 13. Let A −→ B be a flat homomorphism of Noetherian

rings; let q be a p-primary ideal of A and assume that pB is prime. Then qB is

pB-primary.

Proof. Replacing A by A/q and B by B/qB, one may assume q = (0). Then

Ass(A) = {p}, whence

Ass(B) = AssB(B/pB) = {pB}

by the preceding theorem.

(9.D) We say a homomorphism ϕ : A −→ B of Noetherian rings is non-

degenerate if ϕ∗ maps Ass(B) into Ass(A). A flat homomorphism is non-

degenerate by the corollary 9.1.

Proposition 9.2. Let f : A −→ B and g : A −→ C be homomorphisms of

Noetherian rings. Suppose

1) B ⊗A C is Noetherian,

2) f is flat and

3) g is non-degenerate.

Then 1B ⊗ g : B −→ B ⊗ C is also non-degenerate. (In short, the property of

being non-degenerate is preserved by flat base change.)

Proof. Left to the reader as an exercise.
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10 Graded Rings and Modules

(10.A) A graded ring is a ring A equipped with a direct decomposition of the

underlying additive group, A =
⊕

n⩾0An, such that AnAm ⊆ An+m. A graded

A-module is an A-module M , together with a direct decomposition as a group

M =
⊕

n∈ZMn such that AnMm ⊆ Mn+m. Elements of An (or Mn) are called

homogeneous elements of degree n. A submodule N of M is said to be a graded

(or homogeneous) submodule if N =
⊕

(N ∩Mn). It is easy to see that this

condition is equivalent to

(10.∗) N is generated over A by homogeneous elements,

and also to

(10.∗∗) if x = xr + xr+1 + · · ·+ xs ∈ N (all i), then each xi is in N .

If N is a graded submodule of M , then M/N is also a graded A-module, in

fact M/N =
⊕
Mn/N ∩Mn.

(10.B) Proposition 10.1. Let A be a Noetherian graded ring, and M a

graded A-module. Then

i) any associated prime p of M is a graded ideal, and there exists a homoge-

neous element x of M such that p = Ann(x);

73



Chapter 4: Graded Rings

ii) one can choose a p-primary graded submodule Q(p) for each p ∈ Ass(M)

in such a way that (0) =
∏

p∈Ass(M)

Q(p).

Proof. i) Let p ∈ Ass(M). Then p = Ann(x) for some x ∈M . Write

x = xe + xe−1 + · · ·+ x0 (xi ∈Mi).

Let

f = fr + fr−1 + · · ·+ f0 ∈ p (fi ∈ Ai).

We shall prove that all fi are in p. We have

0 = fx = frxe + (fr−1xe + frxe−1) + · · ·+
( ∑
i+j=p

fixj

)
+ · · ·+ f0x0.

Hence

frxe = 0, fr−1xe + frxe−1 = 0, . . . , fr−exe + · · ·+ frx0 = 0

(we put fi = 0 for i < 0). It follows that ferxi = 0 for 0 ⩽ i ⩽ e. Hence

ferx = 0, fer ∈ p, therefore fr ∈ p. By descending induction we see that all

fi are in p, so that p is a graded ideal. Then p ∈ Ann(xi) for all i, and

clearly p =
⋂e
i=0 Ann(xi). Since p is prime this means p = Ann(xi) for

some i.

ii) A slight modification of the proof of (8.G) Th.11 proves the assertion. Al-

ternatively, we can derive it from Th.11 and from the following Lemma:

Lemma 10.1. Let p be a graded ideal and let Q ⊂ M be a p-primary

submodule. Then the largest graded submodule Q′ contained in Q (i.e. the

submodule generated by the homogeneous elements inQ) is again p-primary
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Proof. let p′ be an associated prime of M/Q′. Since both p and p′ are

graded, p′ = p iff p′ ∩ H = p ∩ H where H is the set of homogeneous

elements of A. If a ∈ p ∩H then a is locally nilpotent on M/Q′. If a ∈ H,

a /∈ p, then for x ∈ M satisfying ax ∈ Q′, x =
∑
xi (xi ∈ Mi), we have

axi ∈ Q′ ⊆ Q for each i, hence xi ∈ Q for each i, hence x ∈ Q′. Thus

a /∈ p′.

(10.C) In this book we define a filtration of a ring A to be a descending

sequence of ideals

A = J0 ⊇ J1 ⊇ J2 ⊇ · · · (10.†)

satisfying JnJm ⊆ Jn+m. Given a filtration (∗), we construct a graded ring

A′ as follows. The underlying additive group is

A′ =

∞⊕
n=0

Jn/Jn+1,

and if ξ ∈ A′n = Jn/Jn+1 and η ∈ A′m = Jm/Jm+1, then choose x ∈ Jn and

y ∈ Jm such that ξ = x mod Jn+1 and η = y mod Jm+1 and put ξη = xy

mod Jn+m+1. This multiplication is well defined and makes A′ a graded ring.

When I is an ideal of A, its powers define a filtration A = I0 ⊇ I ⊇ I2 ⊇ · · · .

This is called the I-adic filtration, and its associated graded ring is denoted by

grI(A).

(10.D) Proposition 10.2. If A is a Noetherian ring and I an ideal, then

grI(A) is Noetherian.

Proof. Write grI(A) =
⊕∞

n=0A
′
n, A′n = In/In+1. Then A′0 = A/I is a Noethe-

rian ring. Let I = a1A + · · · + arA and let ai denote the image of ai in I/I2.

Then grI(A) is generated by a1, . . . , ar over A′0, therefore is Noetherian.
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(10.E) Let A be an Artinian ring, and B = A[X1, . . . , Xm] the polynomial ring

with its natural grading. Let M =
⊕∞

n=0Mn be a finitely generated, graded

B-module. Put FM (n) = ℓ(Mn) for n ⩾ 0, where ℓ( · ) denotes the length of A-

module. The numerical function FM measures the largeness of M . The number

FM (n) is finite for any n, because there exists a degree-preserving epimorphism

of B-modules
p⊕
i=1

B(di)
f−→M

where B(d) = B as a module but B(d)n = Bn−d (in fact, if M is generated

over B by homogeneous elements ξ1, . . . , ξp with deg(ξi) = di then the map

f :
⊕
B(di) −→ M such that f(b1, . . . , bp) =

∑
biξi satisfies the requirement),

so that

ℓ(Mn) ⩽
∑

ℓ(Bn−di) <∞.

Note that, since the number of the monomials of degree n in X1, . . . , X is(
n+m−1
m−1

)
, we have FB(n) = ℓ(Bn) =

(
n+m−1
m−1

)
ℓ(A).

(10.F) Theorem 14. Let A,B and M be as above. Then there is a polyno-

mial fM (x) in one variable with rational coefficients such that FM (n) = fM (n)

for n≫ 0 (i.e. for all sufficiently large n)

Proof. Let P (M) denote the assertion forM . We consider the graded submodules

N of M and we will prove P (M/N) by induction on the largeness of N (note that

M satisfies the maximum condition for submodules). For N =M the assertion is

obvious. Supposing P (M/N ′) is true for any graded submodule N ′ of M properly

containing N , we prove P (M/N).

Case 1. If N = N1 ∩N2 with Ni ⊃ N (i = 1, 2), then using N1 +N2/N1
∼= N2/N

we get
FM/N = FM/N2

+ FN1+N2/N1

= FM/N2
+ FM/N1

− FM/N1+N2
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and the assertion P (M/N) follows from P (M/N1), P (M/N2) and

P (M/N1 +N2)

Case 2. If N is irreducible (in the sense that it is not the intersection of two larger

submodules) then N is a primary submodule of M ; let Ass(M/N) = {p}.

Put I = X1B + · · · + XmB and M ′ = M/N . If I ⊆ p then we claim

that M ′n = 0 for large n. In fact, if {ξ1, . . . , ξp} is a set of homogeneous

generators of M ′ over B and if d = max(deg ξi), then M ′d+n = InM ′d. On

the other hand we have ppM ′ = (0) for some p > 0. Thus M ′n = 0 for

n > p + d, and P (M ′) holds with fM ′ = 0. It remains to show the case

I ⊈ p. We may suppose that X1 /∈ p. Then the sequence

0 −→ (M/N)n−1
X1−−→ (M/N)n −→ (M/(N +X1M))n −→ 0

is exact for n > 0. Since N +X1M ⊃ N there is a polynomial

f(x) = adx
d+· · ·+a0 with rational coefficients satisfying P (M/(N+X1M)).

Thus there is an integer n0 > 0 such that

FM/N (n)− FM/N (n− 1) = adn
d + · · ·+ a0 (n > n0).

Then

FM/N (n) =ad

( n∑
i=n0+1

id
)
+ ad−1

( n∑
i=n0+1

id−1
)
+

· · ·+ a0(n− n0) + FM/N (n0) (n > n0),

which means (cf. the remark below) that FM/N (n) is a polynomial of degree

d+ 1 in n for r > n0, as wanted.
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Remark 10.1. Put

(
x

r

)
=
x(x− 1) · · · (x− r + 1)

r!
,

(
x

0

)
= 1.

Then any polynomial f(x) of degree d in Q[x] can be written

f(x) = cd

(
x+ d

d

)
+ cd−1

(
x+ d− 1

d− 1

)
+ · · ·+ c0

(
x

0

)
(ci ∈ Q).

Moreover, since
(
x+ r

r

)
−
(
x+ r − 1

r

)
=

(
x+ r − 1

r − 1

)
, we have

f(x)− f(x− 1) = cd

(
x+ d− 1

d− 1

)
+ · · ·+ c1

(
x

0

)
.

It follows by induction on d that, if f(n) ∈ Z for n ≫ 0, we have ci ∈ Z for all

i (and so f(n) ∈ Z for all n ∈ Z). It also follows that, if F (n) is a numerical

function such that

F (n)− F (n− 1) = f(n) for n > n0,

then F (n) = cd

(
n+ d+ 1

d+ 1

)
+ · · ·+ c0

(
n+ 1

1

)
+ const for n > n0.

Remark 10.2. The polynomial fM (x) of the theorem is called the Hilbert

polynomial or the Hilbert characteristic function of M .

11 Artin-Rees Theorem

(11.A) Let A be a ring, I an ideal of A and M an A-module. We define a

filtration of M to be a descending sequence of submodules

M =M0 ⊇M1 ⊇M2 ⊇ · · · (11.*)
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The filtration is said to be I-admissible if IMi ⊆ Mi+1 for all i, I-adic if

M1 = IiM , and essentially I-adic if it is I-admissible and if there is an integer

i0 such that IMi =Mi+1 for i > i0

Given a filtration (11.*), we can define a topology on M by taking

{x+Mn | n = 1, 2, . . . } as a fundamental system of neighborhoods of x for each

x ∈ M . This topology is separated iff
⋂∞

Mn = (0). The topology defined by

the I-adic filtration is called the I-adic topology of M . An essentially I-adic

filtration defines the I-adic topology on M , since

IiM ⊆Mi ⊆ Ii−i0Mi0 ⊆ Ii−i0M.

(11.B) Lemma 11.1. Let A, I and M be as above. Let M = M0 ⊇ M1 ⊇

M2 ⊇ · · · be an I-admissible filtration such that all Mi are finite A-modules, let

X be an indeterminate and put A′ =
∑
InXn and M ′ =

∑
MnX

n. Then the

filtration is essentially I-adic iff M ′ is finitely generated over A′.

Proof. A′ is a graded subring of A[X] and M ′ is a subgroup of M ⊗A A[X] such

that A′M ′ ⊆M ′, hence M ′ is a graded A′-module. If

M ′ = A′ξ1+· · ·+A′ξr (ξi ∈M ′di), then M ′n = (IX)M ′n−1 (hence Mn = IMn−1)

for n > max di. Conversely, if Mn = IMn−1 for n > d, then M ′ is generated

over A′ by Md−1X
d−1+ · · ·+M1X +M0, which is, in turn, generated by a finite

number of elements over A.

(11.C) Theorem 15 (Artin-Rees). Let A be a Noetherian ring, I an ideal,

M a finite A-module and N a submodule. Then there exists an integer r > 0

such that

InM ∩N = In−r(IrM ∩N) for n > r.

Proof. In other words, the theorem asserts that the filtration

InM ∩ N (n = 0, 1, 2, . . . ) of N (induced on N by the I-adic filtration of M)
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is essentially I-adic. The filtration is I-admissible, and N ′ =
∑

(InM ∩ N)Xn

is a submodule of the finite A′-module M ′ =
∑
InMXn, where A′ =

∑
InXn.

If I = a1A + · · · + arA then A′ = A[a1X, . . . , arX], so that A′ is Noetherian.

Therefore N ′ is finite over A′. Thus the assertion follows from the preceding

lemma.

Remark 11.1. It follows that the I-adic topology on M induces the I-adic

topology on N . This is not always true if M is infinite over A.

(11.D) Theorem 16 (Intersection theorem). Let A, I and M be as in the

preceding theorem, and put N =
⋂∞

InM , Then we have IN = N .

Proof. For sufficiently large n we get

N = InM ∩N = In−r(IrM ∩N) ⊆ IN ⊆ N.

Corollary 11.1. If I ⊆ rad(A) then
∞⋂
InM = (0). In other words M is

I-adically separated in that case.

Corollary 11.2 (Krull). Let A be a Noetherian ring and I = rad(A). Then

In = (0).

Corollary 11.3 (Krull). Let A be a Noetherian domain and let I be any proper

ideal. Then
∞⋃
In = (0).

Proof. Putting N =
⋂
In we have IN = N , whence there exists x ∈ I such that

(1 + x)N = (0) by (1.M). Since A is an integral domain and since 1 + x ̸= 0, we

have N = (0).
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(11.E) Proposition 11.1. Let A be a Noetherian ring, M a finite A-module,

I and ideal, and J an ideal generated by M -regular elements. Then there exists

r > 0 such that

InM : J = In−r(IrM : J) for n > r.

Proof. Let J = a1A+ · · ·+apA where ai are M -regular. Let S be the multiplica-

tive subset of A generated by a1, . . . , ap, and consider the A-submodules a−1j M

of S−1M . Put L = a−11 M ⊕· · ·⊕a−1p M and let ∆M be the image of the diagonal

map x 7→ (x, x, . . . , x) from M to L. Then M ∼= ∆M , and

InM : J =
⋂
j

(InM : aj) =
⋂

(Ina−1j M ∩M) ∼= InL ∩∆M ,

so that the assertion follows from the Artin-Rees theorem applied to L and ∆M .
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5. Dimension

12 Dimension

(12.A) Let A be a ring, A ̸= 0. A finite sequence of n+ 1 prime ideals

p0 ⊃ p1 ⊃ · · · ⊃ pn is called a prime chain of length n. If p ∈ Spec(A), the

supremum of the lengths of the prime chains with p = p0 is called the height of

p and denoted by ht(p). Thus ht(p) = 0 means that p is a minimal prime of A.

Let I be a proper ideal of A. We define the height of I to be the minimum

of the heights of the prime ideals containing I: ht(I) = inf{ht(p) | p ⊇ I}.

The dimension of A is defined to be the supremum of the heights of the

prime ideals in A:

dim(A) = sup{ht(p) | p ∈ Spec(A)}.

It is also called the Krull dimension of A. If dim(A) is finite then it is equal

to the length of the longest prime chains in A. For example, a principal ideal

domain has dimension one.

It follows from the definition that

ht(p) = dim(Ap) (p ∈ Spec(A)),
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and that, for any ideal I of A,

dim(A/I) + ht(I) ⩽ dim(A).

(12.B) Let M ̸= 0 be an A-module. We define the dimension of M by

dim(M) = dim(A/Ann(M)).

(When M = 0 we put dim(M) = −1.) Under the assumption that A is Noethe-

rian and M ̸= 0 is finite over A, the following conditions are equivalent:

(1) M is an A-module of finite length,

(2) the ring A/Ann(M) is Artinian,

(3) dim(M) = 0

In fact, (3) ⇐⇒ (2) =⇒ (1) is obvious by (2.C). Let us prove

(1) =⇒ (3). We suppose ℓ(M) is finite, and replacing A by A/Ann(M) we

assume that Ann(M) = (0). If dim(A) > 0, take a minimal prime p of A which

is not maximal. Since M is finite over A and since Ann(M) = (0), we easily see

that Mp ̸= 0. Hence p is a minimal member of Supp(M), so that p ∈ Ass(M).

Then M contains a submodule isomorphic to A/p, and since dim(A/p) > 0 we

have ℓ(A/p) =∞, contradiction. Therefore dim(A) (= dim(M)) = 0.

(12.C) Let A be a Noetherian semi-local ring, and m = rad(A). An ideal I is

called an ideal of definition or A if mν ⊆ I ⊆ m some ν > 0. This is equivalent

to saying that

I ⊆ m, and A/I is Artinian.
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Let I be an ideal of definition and M a finite A-module. Put

A∗ = grI(A) =
⊕

In/In+1,

and M∗ = grI(M) =
⊕

InM/In+1M.

Let I = Ax1 + · · · + Axr. Then the graded ring A∗ is a homomorphic image

of B = (A/I)[X1, . . . , Xr], and M∗ is a finite, graded A∗-module, Therefore

FM∗(n) = ℓ(InM/In+1M) is a polynomial in n, of degree ⩽ r − 1, for n≫ 0. It

follows that the function

χ(M, I;n) =
def

ℓ(M/InM) =

n−1∑
j=0

FM∗(j)

is also a polynomial in n, of degree ⩽ r, for n ≫ 0. The polynomial which

represents χ(M, I;n) for n ≫ 0 is called the Hilbert polynomial of M with

respect to I. If J is another ideal of definition of A, then Js ⊆ I for some s > 0,

so that we have χ(M, I;n) ⩽ χ(M,J ; sn). Thus, if χ(M, I;n) = adn
d + · · ·+ a0

and χ(M,J ;n) = bd′n
d′ + · · · + b0, then d ⩽ d′. By symmetry we get d = d′.

Thus the degree d of the Hilbert polynomial is independent of the choice of I.

We denote it by d(M). Remember that, if there exists an ideal of definition of A

generated by r elements, then d(M) ⩽ r.

(12.D) Proposition 12.1. Let A be a Noetherian semi-local ring, I an ideal

of definition of A and

0 −→M ′ −→M −→M ′′ −→ 0

an exact sequence of finite A-modules. Then d(M) = max(d(M ′),d(M ′′)). More-

over, χ(M, I;n) − χ(M ′, I;n) − χ(M ′′, I;n) is a polynomial of degree < d(M ′)

for n≫ 0.
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Proof. Since

ℓ(M ′′/InM ′′) = ℓ(M/M ′ + InM) ⩽ ℓ(M/InM),

we get

d(M ′′) ⩽ d(M). Furthermore,

χ(M, I;n)− χ(M ′′, I;n) = ℓ(M/InM)− ℓ(M/M ′ + InM)

= ℓ(M ′ + InM/InM)

= ℓ(M ′/M ′ ∩ InM),

and there exists r > 0 such that M ′ ∩ InM ⊆ In−rM ′ for n > r by Artin-Rees.

Thus

ℓ(M ′/InM ′) ⩾ ℓ(M ′/M ′ ∩ InM) ⩾ ℓ(M ′/In−rM ′).

This means that χ(M, I;n) − χ(M ′′, I;n) and χ(M ′, I;n) have the same degree

and the same leading term.

(12.E) Lemma 12.1. Let A be a Noetherian semi-local ring. Then d(A) ⩾

dim(A)

Proof. Induction on d(A). If d(A) = 0 then mν = mν+1 = . . . for some ν > 0.

By the intersection theorem ((11.D) Cor.11.1), this implies mν = (0). Hence ℓ(A)

is finite and dim(A) = 0. Suppose d(A) > 0. As the case dim(A) = 0 is trivial,

we assume dim(A) > 0. Let

p0 ⊃ · · · ⊇ pe−1 ⊃ pe = p

be a prime chain of length e > 0, and take an element x ∈ pe−1 such that x /∈ p.

Then dim(A/(xA+ p)) ⩾ e− 1. Applying the preceding proposition to the exact
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sequence

0 −→ A/p
x−→ A/p −→ A/(xA+ p) −→ 0

we have d(A/(xA+ p)) < d(A/p) ⩽ d(A). Thus, by induction hypothesis we get

e− 1 ⩽ dim(A/(xA+ p)) ⩽ d(A/(xA+ p)) < d(A).

Hence e ⩽ d(A), therefore dim(A) ⩽ d(A).

Remark 12.1. The lemma shows that the dimension of A is finite. When A is

an arbitrary Noetherian ring and p is a prime ideal, we have ht(p) = dim(Ap) so

that ht(p) is finite. (This was first proved by Krull by a different method.) Thus

the descending chain condition holds for prime ideals in a Noetherian ring. On

the other hand, there are Noetherian rings with infinite dimension.

(12.F) Lemma 12.2. Let A be a Noetherian semi-local ring, M ̸= 0 a finite

A-module, and x ∈ rad(A). Then

d(M) ⩾ d(M/xM) ⩾ d(M)− 1.

Proof. Let I be an ideal of definition containing x. Then

χ(M/xM, I;n) = ℓ(M/(xM + InM)) = ℓ(M/InM)− ℓ((xM + InM)/InM)

and

(xM + InM)/InM ∼= xM/(xM ∩ InM) ∼=M/(InM : x)

and In−1M ⊆ (InM : x), therefore

χ(M/xM, I;n) ⩾ ℓ(M/InM)− ℓ(M/In−1M)

= χ(M, I;n)− χ(M, I;n− 1).
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It follows that d(M/xM) ⩾ d(M)− 1.

(12.G) Lemma 12.3. Let A and M be as above, and let dim(M) = r. Then

there exist r elements x1, . . . , xr of rad(A) such that

ℓ(M/(x1M + · · ·+ xrM)) <∞.

Proof. Let I be an ideal of definition of A. When r = 0 we have ℓ(M) <∞ and

the assertion holds. Suppose r > 0 and let p1, . . . , pt be those minimal prime

over-ideals of Ann(M) which satisfy dim(A/pi) = r. Then no maximal ideals are

contained in any pi, hence rad(A) ⊈ pi (1 ⩽ i ⩽ t). Thus by (1.B) there exists

x1 ∈ rad(A) which is not contained in any pi. Then dim(M/x1M) ⩽ r − 1, and

the assertion follows by induction on dim(M).

(12.H) Theorem 17. Let A be a Noetherian semi-local ring, m = rad(A)

and M ̸= 0 a finite A-module. Then d(M) = dimM = the smallest integer r such

that there exist elements x1, . . . , xr of m satisfying ℓ(M/(x1M+· · ·+xrM)) <∞.

Proof. If ℓ(M/(x1M + · · · + xrM)) < ∞ we have d(M) ⩽ r by Lemma 12.2.

When r is the smallest possible we have r ⩽ dim(M) by Lemma 12.3. It remains

to prove dim(M) ⩽ d(M). Take a sequence of submodules M = M1 ⊃ M2 ⊃

· · · ⊃Mk+1 = (0) such that

Mi/Mi+1
∼= A/pi, pi ∈ Spec(A).

Then pi ⊇ Ann(M) and Ass(M) ⊆ {p1, . . . , pk}. Since Supp(M) ̸= V (Ann(M))

all the minimal over-ideals of Ann(M) are in Ass(M) (hence also in {p1, . . . , pk})

88



Section 12: Dimension

by (7.D). Therefore

d(M) = maxd(A/pi) by (12.D)

⩾ maxdim(A/pi) by Lemma 12.1

= dim(A/Ann(M)) = dim(M),

which completes the proof.

(12.I) Theorem 18. Let A be a Noetherian ring and I = (a1, . . . , ar) be

an ideal generated by r elements. Then any minimal prime over-ideal p of I has

height ⩽ r. In particular, ht(I) ⩽ r.

Proof. Since pAp is the only prime ideal of Ap containing IAp, the ring

Ap/IAp = Ap/(a1Ap + · · ·+ arAp)

is Artinian. Therefore ht(p) = dim(Ap) ⩽ r by Th.17.

(12.J) Let (A,m, k) be a Noetherian local ring of dimension d. In this case,

an ideal of definition of A and a primary ideal belonging to m are the same

thing. We know (Th.17) that no ideals of definition are generated by less than d

elements, and that there are ideals of definition generated by exactly d elements.

If (x1, . . . , xd) is an ideal of definition then we say that {x1, . . . , xd} is a system

of parameters of A. If there exists a system of parameters generating the

maximal ideal m, then we say that A is a regular local ring and we call such a

system of parameters a regular system of parameters. Since the number of

elements of a minimal basis of m is equal to rank m/m2, we have in general

dim(A) ⩽ rankk m/m
2,
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and the equality holds iff A is regular.

(12.K) Proposition 12.2. Let (A,m) be a Noetherian local ring and x1, . . . , xd

a system of parameters of A. Then

dim(A/(x1, . . . , xi)) = d− i = dim(A)− i

for each 1 ⩽ i ⩽ d.

Proof. Put A = A/(x1, . . . , xi). Then dim(A) ⩽ d− i since xi+1, . . . , xd generate

an ideal of definition of A. On the other hand, if dim(A) = p and if y1, . . . , yp
is a system of parameters of A, then x1, . . . , xi, y1, . . . , yp generate an ideal of

definition of A so that p+ i ⩾ d, that is, p ⩾ d− i.

13 Homomorphisms and Dimension

(13.A) Let ϕ : A −→ B be a homomorphism of rings. Let p ∈ Spec(A), and

put κ(p) = Ap/pAp. Then Spec(B ⊗A κ(p)) is called the fibre over p (of the

canonical map ϕ∗ : Spec(B) −→ Spec(A)). There is a canonical homeomorphism

between (ϕ∗)−1(p) and Spec(B ⊗ κ(p)). If P is a prime ideal of B lying over p,

the corresponding prime of B ⊗ κ(p) = Bp/pBp is PBp/pBp; denote it by P ∗.

Then the local ring (B⊗A κ(p))P∗ can be identified with Bp/pBp = BP ⊗A κ(p);

in fact, we have (Bp)PBp
= BP and so

(B ⊗ κ(p))P∗ = (Bp/pBp)PBp/pBp
= BP /pBP

by (1.I). Now we have the following theorem.

(13.B) Theorem 19. Let ϕ : A −→ B be a homomorphism of Noetherian

rings; let P ∈ Spec(B) and p = P ∩A. Then
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(1) ht(P ) ⩽ ht(p) + ht(P/pB), in other words

dim(BP ) ⩽ dim(Ap) + dim(BP ⊗ κ(p))

(2) the equality holds in (1) if the going-down theorem holds for ϕ (e.g. if ϕ is

flat);

(3) if ϕ∗ : Spec(B) −→ Spec(A) is surjective and if the going-down theorem

holds, then we have i) dim(B) ⩾ dim(A), and ii) ht(I) = ht(IB) for any

ideal I of A.

Proof. (1) Replacing A and B by Ap and BP , we may suppose that (A, p) and

(B,P ) are local rings such that P ∩A = p. We have to prove

dim(B) ⩽ dim(A) + dim(B/pB).

Let a1, . . . , ar be a system of parameters of A and put I =
∑
aiA. Then

pn ⊆ I for some n > 0, so that pnB ⊆ IB ⊆ pB. Thus the ideals pB

and IB have the same radical. Therefore it follows from the definition

that dim(B/pB) = dim(B/IB). If dim(B/IB) = s and if {b1, . . . , bs} is a

system of parameters of B/IB, then b1, . . . , bs, a1, . . . , ar generate an ideal

of definition of B. Hence dim(B) ⩽ r + s.

(2) We use the same notation as above. If ht(P/pB) = s there exists a prime

chain of length s, P = P0 ⊃ P1 ⊃ · · ·Ps, such that Ps ⊇ pB. As

p = P ∩A ⊇ Pi ∩A ⊇ p,

all the Pi lie over p. If ht(p) = r then there exists a prime chain p ⊃ p1 ⊃

· · · ⊃ pr in A, and by going-down there exists a prime chain Ps = Q0 ⊃
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Q1 ⊃ · · · ⊃ Qr of B such that Qi ∩A = pi. Thus

P = P0 ⊃ P1 ⊃ · · · ⊃ Ps ⊃ Q1 ⊃ · · · ⊃ Qr

is a prime chain of length r + s, therefore ht(P ) ⩾ r + s.

(3) i) follows from (2).

ii) Take a minimal prime over-ideal P of IB such that

ht(P ) = ht(IB), and put p = P ∩ A. Then ht(P/pB) = 0, hence by

(2) we get

ht(IB) = ht(P ) = ht(p) ⩾ ht(I).

Conversely, let p be a minimal prime over-ideal of I such that ht(p) =

ht(I), and take a prime P of B lying over p. Replacing P if necessary

we may suppose that P is a minimal prime over-ideal of pB. Then

ht(I) = ht(p) = ht(P ) ⩾ ht(IB).

(13.C) Theorem 20. Let B be a Noetherian ring, and let A be a Noetherian

subring over which B is integral. Then

(1) dim(A) = dim(B),

(2) for any P ∈ Spec(B) we have ht(P ) ⩽ ht(P ∩A),

(3) if, moreover, the going-down theorem holds between A and B, then for any

ideal J of B we have ht(J) = ht(J ∩A).

Proof. Since P1 ⊂ P2 implies P1 ∩A ⊂ P2 ∩A by (5.E) ii), we have

dim(B) ⩽ dim(A). On the other hand the going-up theorem proves
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dim(B) ⩾ dim(A). Thus dim(B) = dim(A). The inequality ht(P ) ⩽ ht(P ∩ A)

follows from Th.19 (1), since ht(P/(P ∩ A)B) = 0 by (5.E) ii). To prove (3),

first take prime ideal P of B containing J such that ht(P ) = ht(J). Then

ht(P ) = ht(P ∩A) by Th.19 (3), so that

ht(J) = ht(P ) = ht(P ∩A) ⩾ ht(J ∩A).

Next let p be a prime ideal of A containing J∩A such that ht(p) = ht(J∩A). Since

B/J is integral over the subring A/J ∩A, there exists a prime P of containing J

and lying over p. Then

ht(J ∩A) = ht(p) = ht(P ) ⩾ ht(J).

(13.D) Theorem 21. Let ϕ : A −→ B be a homomorphism of Noetherian

rings and suppose that the going-up theorem holds for ϕ. Let p and q be prime

ideals of A such that p ⊃ q. Then dim(B ⊗A κ(p)) ⩾ dim(B ⊗A κ(q)).

Proof. Put r = dim(B ⊗A κ(q)) and s = ht(p/q).
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B Qr+s ⊃ · · · ⊃ Qr

⊂

...

⊂

Q0

A p = ps ⊃ · · · ⊃ q

Take a prime chain Q0 ⊂ · · · ⊂ Qr in B such that Qi ∩A = q for all i, and a

prime chain q = p0 ⊂ p1 ⊂ · · · ⊂ ps = p in

A. By going-up we can find a prime chain

Qr ⊂ Qr+1 ⊂ · · · ⊂ Qr+s in B such that

Qr+j ∩ A = pj Then Qr+s lies over p and

ht(Qr+s/Q0) ⩾ r + s. Applying Th.19 (1)

to A/p −→ B/Q0 we get

ht(Qr+s/Q0) ⩽ s+ ht(Qr+s/(Q0 + pB))

⩽ s+ ht(Qr+s/pB)

⩽ s+ dim(B ⊗ κ(p))

.

Thus r ⩽ dim(B ⊗ κ(p)).

(13.E) Remark 13.1. The local form of theorem 21 is inconvenient for ap-

plications in algebraic geometry. The global counterpart of the going-up theorem

is the closedness of a morphism. Thus, we have the following geometric theo-

rem: Let f : X −→ Y be a closed morphism (e.g. a proper morphism) between

Noetherian schemes, and let y and y′ be points of Y such that y′ is a specializa-

tion of y. Then dim f−1(y′) ⩾ dim f−1(y). The proof is essentially the same as

above.

14 Finitely Generated Extensions

(14.A) Theorem 22. Let A be a Noetherian ring and let A[X1, . . . , Xn] be

a polynomial ring in n variables. Then

dimA[X1, . . . , Xn] = dimA+ n.
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Proof. Enough to prove the case n = 1. Put B = A[X]. Let p be a prime ideal of

A and let P be a prime ideal of B which that ht(P/pB) = 1. In fact, localizing A

and B by the multiplicative set A−p we can assume that p is a maximal ideal, and

then B/pB = (A/p)[X] is a polynomial ring in one variable over a field. Therefore

B/pB is a principal ideal domain and every maximal ideal has height one. Thus

ht(P/pB) = 1 Since B is free over A we have ht(P ) = ht(p)+1 by Th.19 (2). As

the map Spec(B) −→ Spec(A) is surjective, we obtain dimB = dimA+ 1.

Corollary 14.1. Let k be a field. Then dim k[x1, . . . , xn] = n, and the ideal

(X1, . . . , Xi) is a prime ideal of height i, for 1 ⩽ i ⩽ n.

Proof. Since

(0) ⊂ (X1) ⊂ (X1, X2) ⊂ · · · ⊂ (X1, . . . , Xi) ⊂ · · · ⊂ (X1, . . . , Xn)

is a prime chain of length n and since dim k[X1, . . . , Xn] = n, the assertion is

obvious.

(14.B) A ring A is said to be catenary if, for each pair of prime ideals p, q

with p ⊃ q, ht(p/q) is finite and is equal to the length of any maximal prime

chain between p and q. (When A is Noetherian, the condition ht(p/q) <∞ is au-

tomatically satisfied.) Thus if A is a Noetherian domain the following conditions

are equivalent:

(1) A is catenary,

(2) for any pair of prime ideals p, q such that p ⊃ q, we have

ht(p) = ht(q) + ht(p/q),

(3) for any pair of prime ideals p, q such that p ⊃ q with ht(p/q) = 1, we have

ht(p) = ht(q) + 1.
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If A is catenary, then clearly any localization S−1A and any homomorphic

image A/I of A are also catenary.

A ring A is said to be universally catenary (u.c. for short) if A is Noetherian

and if every A-algebra of finite type is catenary. Since any A-algebra of finite

type is a homomorphic image of A[X1, . . . , Xn] for some n, a Noetherian ring A

is universally catenary iff A[X1, . . . , Xn] is catenary for every n ⩾ 0.

If A is u.c., so are the localizations of A, the homomorphic images of A and

any A-algebras of finite type.

(14.C) Theorem 23. Let A be a Noetherian domain, and let B be a finitely

generated overdomain of A. Let P ∈ Spec(B) and p = P ∩A. Then we have

ht(P ) ⩽ ht(p) + tr.degκ(p) κ(P ) (14.*)

And the equality holds if A is universally catenary, or if B is a polynomial ring

A[X1, . . . , Xn], (Here, tr.degAB means the transcendence degree of the quotient

field of B over that of A, and κ(P ) is the quotient field of B/P .)

Proof. Let B = A[x1, . . . , xn]. B y induction on n it is enough to consider the case

n = 1. So letB = A[x]. ReplacingA byAp, andB byBp = Ap[x], we assume that

(A, p) is a local ring. Put k = κ(p) = A/p and I = {f(X) ∈ A[X] | f(x) = 0}.

Thus B = A[X]/I.

Case 1. I = (0). Then B = A[X], tr.degAB = 1 and B/pB = k[X]. Therefore

ht(P/pB) = 1 or 0 according as P ⊃ pB (then tr.degk κ(P ) = 0) or P = pB

(then tr.degk κ(P ) = 1). In other words ht(P/pB) = 1− tr.degk κ(P ). On

the other hand, ht(P ) = ht(p) + ht(P/pB) by Th.19. Thus the equality

holds in 14.*.

Case 2. I ̸= (0). Then tr.degAB = 0. Let P ∗ be the inverse image of P in A[X],

so that P = P ∗/I and κ(P ) = κ(P ∗). Since A is a subring of B = A[X]/I
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we have A ∩ I = (0). Therefore, if K denotes the quotient field of A then

ht(I) = ht(IK[X]) ⩽ dimK[X] = 1.

Since I ̸= (0) we have ht(I) = 1. Hence ht(P ) ⩽ ht(P ∗)−ht(I) = ht(P ∗)−

1, where the equality holds if A is u.c.. On the other hand we have

ht(P ∗) = ht(p) + 1 tr.degk κ(P
∗)

by case 1, and κ(P ∗) = κ(P ). Our assertions follow immediately from

these.

Definition. We shall call the inequality (∗) the dimension inequality. If B

is a finitely generated overdomain of A and if the equality in (∗) holds for any

prime ideal of B then we say that the dimension formula holds between A

and B.

(14.D) Corollary 14.2. A Noetherian ring A is universally catenary iff the

following is true: A is catenary, and for any prime p of A and for any finitely

generated over-domain B of A/p, the dimension formula holds between A/p and

B.

Proof. If A (hence A/p) is u.c., then the condition holds by the theorem. Con-

versely, suppose the condition holds. Let B be any A-algebra of finite type and

let Q′ ⊃ Q be prime ideals of B. We have to show that all maximal prime

chains between Q′ and Q have the same length. Replacing B by B/Q and A by

A/A ∩Q we can assume that B is a finitely generated overdomain of A. We are

going to prove that for any prime ideals P and P ′ of B such that P ⊃ P ′ we

have ht(P ) = ht(P ′)+ht(P/P ′). Put p = P ∩A, p′ = P ′∩A and n = tr.degAB.
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Then

ht(P ) = ht(p) + n− tr.degκ(p) κ(P ), ht(P
′) = ht(p′) + n− tr.degκ(p′) κ(P

′),

and by the assumption applied to B/P ′ and A/p′, we also have

ht(P/P ′) = ht(p/p′) + tr.degκ(p′) κ(P
′)− tr.degκ(p) κ(P ).

Since A is catenary we have ht(p) = ht(p′) + ht(p/p′). It follows that

ht(P ) = ht(P ′) + ht(P/P ′).

(14.E) Example 14.1. All Noetherian rings that appear in algebraic geome-

try are catenary. And many algebraists had in vain tried to know if all Noetherian

rings are catenary, untill Nagata constructed counterexamples in 1956 (cf.[Nag75,

p.203, Example 2]). In particular, he produced a Noetherian local domain which

is catenary but not universally catenary. We will sketch here his construction in

its simplest form.

Let k be a field and let S = k[[x]] be the formal power series ring over k

in one variable x. Take an element z =
∑∞
i=1 aix

i of S which is algebraically

independent over κ(x). (It is well known that the quotient field of S has an

infinite transcendence degree over κ(x). Cf. e.g. [ZS14, Commutative Algebra,

Vo1.II, p.220.]) Put

zj =

(
z −

∑
i<j

aix
i

)
xj−1

for j = 1, 2, . . . ,

(note that z1 = z), and let R be the subring of S which is generated over k by

x and by all the zj ’s: R = k[x, z1, z2, . . . ]. Consider the ideals m = (x) and

n = (x− 1, z1, z2, . . . ) of R. Since x(zj+1 + aj) = zj we have zj ∈ m in for all j,
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and m is a maximal ideal of R with R/m = k. The local ring Rm is a subring of

S and mRm = xRm ⊂ xS. Hence
⋂
n x

nR ⊆
⋂
n x

nS = (0). Then it is easy to

see that any ideal ( ̸= (0)) of Rm is of the form xiRm. Thus Rm is Noetherian,

and is a regular local ring of dimension 1. On the other hand, R is a subring of

the rational function field in two variables k(x, z), and so we have

R/(x− 1) = k[x, z1, z2, . . . ]/(x− 1) ∼= k[z],

hence n = (x−1, z) and R/n ∼= k. The local ring Rn contains x−1 and hence it is

a localization of the ring R[x−1] = k[x, x−1, z]. This shows that Rn is Noetherian.

Clearly Rn is a regular local ring of dimension 2. Let B be the localization of R

with respect to the multiplicatively closed subset (R − m) ∩ (R − n). Then mB

and nB are the only maximal ideals of B by (1.B), and the local rings BmB = Rm

and BnB = Rn are Noetherian. It follows easily (using (1.H)) that any ideal of B

is finitely generated. Thus B is a semi-local Noetherian domain. Put I = rad(B)

and A = k + I. Then A is a subring of B, and it is easy to see that (A, I) is a

local ring. As

B/I ∼= B/mB ⊕B/nB ∼= k ⊕ k

the ring B is a finite A-module. It follows (e.g. by Eakin’s theorem cited in

(2.D)) that A is also Noetherian. We have ht(mB) = 1 and ht(nB) = 2, hence

dimA = dimB = 2 by (13.C) Th.20 (1). If A were u.c. then we would have

ht(mB) = ht(mB ∩A) = htA(I) = dimA = 2

by the dimension formula. Therefore A is not u.c.. But A is catenary because it

is a local domain of dimension 2.

(14.F) Theorem 24. Let A = k[X1, . . . , Xn] be a polynomial ring over a field

k, and let I be an ideal of A with ht(I) = r. Then we can choose Y1, . . . , Yn ∈ A
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in such a way that

1) A is integral over k[Y ] = k[Y1, . . . , Yn], and

2) I ∩ k[Y ] = (Y1, . . . , Yr),

Proof. Induction on r. If r = 0 then I = (0) and we can take Yi = Xi. When

r = 1, let Y1 = f(X) be any non-zero element of I. Write f(x) =
∑s
i=1 aiMi(X),

where 0 ̸= ai ∈ k and Mi(X) are distinct monomials in X1, . . . , Xn and take n

positive integers d1 = 1, d2, . . . , dn. If M(X) =
∏
Xai
i then let us call the integer∑

aidi the weight of the monomial M(X). By a suitable choice of d2, . . . , dn we

can see to it that no two of the monomials M1, . . . ,Ms that appear in f(X) have

the same weight. (If p is a given prime number, we can take d2 = pν2 , . . . , ds = pνs

where νi − νi−1 (i = 2, . . . , s; ν1 = 0) are large integers. This remark will be

useful for some applications.) Put Yi = Xi −Xdi
1 (i = 2, . . . , n). Then

Y1 = f(X) = f(X1, Y2 +Xd2
1 , . . . , Yn +Xdn

1 ) = aiX
e
1 + g(X1, . . . , Y2, . . . , Yn)

where g is a polynomial whose degree in X1 is less than e and ai is the coefficient

of the term with highest weight in f(X). Then X1 is integral over k[Y ], and

hence Xi = Yi +Xdi
1 (i = 2, ..., n) are also integral over k[Y ]. The ideal (Y1) of

k[Y ] is prime of height 1, (Y1) ⊆ I ∩ k[Y ], and ht(I ∩ k[y]) = ht(I) = 1 by Th.20

(3). (Note that k[Y ] is integrally closed and so the going-down theorem holds

between k[X] and k[Y ].) Therefore (Y1) = I ∩ k[Y ], as wanted. When r > 1, let

J be an ideal of k[X] such that J ⊂ I, ht(J) = r − 1. (The existence of such

J is easy to prove for any Noetherian ring and for any ideal I of height r. Take

f1 ∈ I from outside of the minimal prime ideals, and f2 ∈ I from outside of the

minimal prime over-ideals of (f1), and f3 ∈ I from outside of the minimal prime

over-ideals of (f1, f2), and so on, and put J = (f1, . . . , fr−1). Th.18 is the basis

of this construction.) By induction hypothesis there exist Z1, . . . , Zn ∈ k[X]
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such that k[X] is integral over k[Z] and that k[Z] ∩ J = (Z1, . . . , Zr−1). Put

I ′ = I ∩ k[Z]. Then ht(I ′) = ht(I) = r, and so I ′ ⊃ (Z1, . . . , Zr−1). Thus we can

choose an element 0 ̸= f(Zr, . . . , Zn) of I ′. Following the method we used for the

case r = 1, we put

Yi = Zi (i < r), Yr = f(Zr, . . . , Zn), Yr+j = Zr+j−Zrkr (1 ⩽ j ⩽ n−r).

Then, for a suitable choice of e1, . . . , en−r, k[Z] is integral over k[Y ]. Moreover,

I ∩ k[Y ] contains the prime ideal (Y1, . . . , Yr) of height r and so coincides with

it. The proof is completed.

Remark 14.1. The above proof shows that we can choose the Y,i’s in such a

way that Yr+1, . . . , Yn have the form Yr+j = Xr+j + Fj(X1, . . . , Xr), where Fj

is a polynomial with coefficients in the prime subring k0 of k (i.e. the canonical

image of Z in k). If ch(k) = p > 0 then we can see to it that

Fj(X1, . . . , XR) ∈ k0[Xp
1 , . . . , X

p
r ] for all j.

(14.G) Corollary 14.3 (Normalization theorem of E.Noether). Let

A = k[x1, . . . , xn] be a finitely generated algebra over a field k. Then there

exist y1, . . . , yr ∈ A which are algebraically independent over k such that A is

integral over k[y1, . . . , yr]. We have r = dimA. If A is a domain we also have

r = tr.degk A.

Proof. Write A = k[X1, . . . , Xn]/I, and put ht(I) = n − r. According to the

theorem there exist elements Y1, . . . , Yn of k[X1, . . . , Xn] such that k[X] is integral

over k[Y ] and that I ∩ k[Y ] = (Yr+1, . . . , Yn). Putting

yi = Yi mod I (1 ⩽ i ⩽ r)

we get the required result. The equality r = dimA follows from Th.20. The last
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assertion is obvious, as A is algebraic over k(y1, . . . , yr).

Corollary 14.4. Let k be an algebraically closed field. Then any maximal ideal

m of k[X1, . . . , Xn] is of the form m = (X1 − a1, . . . , Xn − an) (ai ∈ k).

Proof. Since 0 = dim(A/m) = tr.degk A/m, we get A/m ∼= k. Hence

Xi = ai (mod m) for some ai ∈ k for each i. Since (X1 − a1, . . . , Xn − an) is

obviously a maximal ideal, it is m.

(14.H) Corollary 14.5. Let A be a finitely generated algebra over a field k.

Then

(1) if A is an integral domain, we have dim(A/p)+ht(p) = dimA for any prime

ideal p of A, and

(2) A is universally catenary.

Proof. (1) Take y1, . . . , yr ∈ A as in Cor.14.3, and put p′ = p ∩ k[y]. Then

dimA = r, dim(A/p) = dim(k[y]/p′) and ht(p) = ht(p′). As k[y] is isomor-

phic to the polynomial ring in r variables, we have ht(p′)+dim(k[y]/p′) = r

by the theorem.

(2) It suffices to prove that k is universally catenary. This is a consequence

of (1) and (14.D), but we will give a direct proof. We are going to prove

k[X1, . . . , Xn] is catenary. Let P ⊃ Q be prime ideals of k[X] = k[X1, . . . , Xn].

Then we have

ht(P ) = n− dim(k[X]/P )

ht(Q) = n− dim(k[X]/Q),

and by (1) ht(P/Q) = dim(k[X]/Q)− dim(k[X]/P ).

Therefore ht(P/Q) = ht(P )− ht(Q).
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(14.I) Corollary 14.6 (Dimension of intersection in an affine space). Let p1

and p2 be prime ideals in a polynomial ring R = k[X1, . . . , Xn] over a field k,

with dim(R/p1) = r, dim(R/p2) = s. Let q be any minimal prime over-ideal

of p1 + p2. Then dim(R/q) ⩾ r + s − n. (In geometric terms this means that,

if V1 and V2 are irreducible closed sets of dimension r and s respectively, in an

affine n-space Spec(k[X1, . . . , Xn]). Then any irreducible component of V1 ∩ V2
has dimension not less than r + s− n.)

Proof. Let Y1, . . . , Yn be another set of n indeterminates and let p′2 be the image

of p2 in k[Y1, . . . , Yn] by the isomorphism k[X] ∼= k[Y ] over k which maps Xi

to Yi (1 ⩽ i ⩽ n). Let I be the ideal of k[X,Y ] = k[X1, . . . , Xn, Y1, . . . , Yn]

generated by p1 and p′2 and D the ideal (X1−Y1, . . . , Xn−Yn) of k[X,Y ]. Then

k[X,Y ]/I ∼= (R/p1)⊗k (R/p2), k[X,Y ]/D ∼= k[X].

Take ξ1, . . . , ξr ∈ R/p1, and η1, . . . , ηs ∈ R/p2 such that R/p1 (resp. R/p2) is

integral over k[ξ] (resp. over k[η]). Then k[X,Y ]/I is integral over k[ξ, η] which

is a polynomial ring in r + s variables. Thus

dim(k[X,Y ]/I) = dim k[ξ, η] = r + s.

Writing k[X,Y ]/I = k[x, y] we have

k[X,Y ]/(D + I) = k[x, y]/(x1 − y1, . . . , xn − yn).

Since

k[X,Y ]/(I +D) ∼= k[X]/(p1 + p2),
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the prime q of k[X] corresponds to a minimal prime over-ideal Q of I + D in

k[X,Y ] such that k[X]/q ∼= k[X,Y ]/Q. Then Q/I is a minimal prime over-ideal

of (x1 − y1, . . . , xn − yn) of k[x, y], hence ht(Q/I) ⩽ n by Th.18. Therefore

dim k[X]/q = dim k[x, y]/(Q/I) = dim k[x, y]− ht(Q/I) ⩾ r + s− n

by the preceding corollary.

(14.J) Theorem 25 (Zero-point theorem of Hilbert). Let k be a field, A be

a finitely generated k-algebra and I be a proper ideal of A. Then the radical of

I is the intersection of all maximal ideals containing I.

Proof. Let N denote the intersection of all maximal ideals containing I, and

suppose that there is an element a ∈ N which is not in the radical of I. Put

S = {1, a, a2, . . . } and A′ = S−1A. Then IA′ ̸= (1), so there is a maximal

ideal P ′ of A′ containing IA′. Since A′ is also finitely generated over k, we have

0 = dimA′/P ′ = tr.degk A
′/P ′. Putting A∩P ′ = P we have k ⊆ A/P ⊆ A′/P ′,

hence 0 = tr.degk A/P = dimA/P . Thus P is a maximal ideal of A containing

I, and a /∈ P , contradiction.

Remark 14.2. The theorem can be stated as follows: if A is a k-algebra of

finite type, then the correspondence which maps each closed set V (I) of Spec(A)

to V (I) ∩ Ω(A) is a bijection between the closed sets of Spec(A) and the closed

sets of Ω(A). When k is algebraically closed and A ∼= k[X1, . . . , Xn]/I one can

identify Ω(A) with the algebraic variety in kn defined by the ideal I (i.e. the set

of zero-points of I in kn).
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15 M-regular Sequences

(15.A) Let A be a ring, M be an A-module and a1, . . . , ar be a sequence of

elements of A. We write (a) for the ideal (a1, . . . , ar), and aM for the submodule∑
aiM = (a)M .

We say a1, . . . , ar is an M-regular sequence (or simply M -sequence) if the

following conditions are satisfied:

(1) for each 1 ⩽ i ⩽ r, ai is not a zero-divisor on M/(a1, . . . , ai−1)M , and

(2) M ̸= aM .

When all ai belong to an ideal I we say a1, . . . , ar is an M-regular sequence

in I. If, moreover, there is no b ∈ I such that a1, . . . , ar, b is M -regular, then

a1, . . . , ar is said to be a maximal M-regular sequence in I. Notice that

the notion of M -regular sequence depends on the order of the elements in the

sequence.

Lemma 15.1. Suppose that a1, . . . , ar is M -regular and

a1ξ1 + · · ·+ arξr = 0 (ξi ∈M).

Then ξi ∈ aM for all i.
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Proof. Induction on r. For r = 1, a1ξ1 = 0 implies ξ1 = 0. Let r > 1. Since ar is

M/(a1, . . . , ar−1)M -regular we have ξr =
∑r−1
i=1 aiηi, hence∑r−1

i=1 ai(ξi + arηi) = 0. By induction hypothesis, for i < r we get

ξi + arηi ∈ (a1, . . . , ar−1)M , so that ξi ∈ (a1, . . . , ar)M .

Theorem 26. Let A, M be as above and a1, . . . , ar ∈ A be an M -regular

sequence. Then for every sequence ν1, . . . , νr of integers > 0, the sequence

aν11 , . . . , a
νr
r is M -regular.

Proof. It suffices to prove that aν1 , a2, . . . , ar isM -regular, because then a2, . . . , ar

will be M/aν1M -regular and we can repeat the argument. We use induction

on ν, the case ν = 1 being true by assumption. Let ν > 1 and assume that

aν−11 , a2, . . . , ar is M -regular. aν1 is certainly M -regular. Let i > 1 and assume

that aν1 , a2, . . . , ai−1 is an M -regular sequence. Let

aiω = aν1ξ1 + a2ξ2 + · · ·+ ai−1ξi−1.

Then ω = aν−11 n1 + a2η2 + · · ·+ ai−1ηi−1 by the induction hypothesis. So

aν−11 (a1ξ1 − aiη1) + a2(ξ2 − aiη2) + · · ·+ ai−1(ξi−1 − aiηi−1) = 0,

hence a1ξ1 − aiη1 ∈ (aν−11 , a2, . . . , ai−1)M by Lemma 15.1. It follows that

aiη1 ∈ (a1, a2, . . . , ai−1)M , hence η1 ∈ (a1, . . . , ai−1)M and so ω ∈ (aν1 , a2, . . . , ai−1)M .

(15.B) Let A be a ring, X1, . . . , Xn be indeterminates over A and M be

an A-module. An element of M ⊗A A[X1, . . . , Xn] can be viewed as a poly-

nomial F (X) = F (X1, . . . , Xn) with coefficients in M . Therefore we write

M [X1, . . . , Xn] for M ⊗A A[X1, . . . , Xn]. If a1, . . . , an ∈ A then F (a) ∈M .
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Let a1, . . . , an ∈ A, I = (a). We say that a1, . . . , an is an M-quasiregular

sequence if the following condition is satisfied.

(15.∗) For every ν > 0 and for every homogeneous polynomial F (X) ∈M [X1, . . . , Xn]

of degree ν such that F (a) ∈ Iν+1M , we have F ∈ IM [X]

Obviously this concept does not depend on the order of the elements. But

a1, . . . , ai (i < n) need not be M -quasiregular. The condition (∗) can be stated

in the following form.

(15.∗∗) If F (X) ∈ M [X1, . . . , Xn] is homogeneous and F (a) = 0, then the coeffi-

cients of F are in IM .

Define a map

ϕ : (M/IM)[X1, . . . , Xn] −→ grIM =
⊕
ν⩾0

IνM/Iν+1M

as follows. If F (X) ∈ M [X] is homogeneous of degree ν, let ψ(F ) = the image

of F (a) in IνM/Iν+1M . Then ψ is a degree-preserving additive map from M [X]

to grI(M), and since it maps IM [X] to 0 it induces ϕ : (M/IM)[X] −→ grI(X).

This is clearly surjective, and (∗) is equivalent to

(15.∗ ∗ ∗) ϕ is an isomorphism: (M/IM)[X1, . . . , Xn] ∼= grI(M).

Theorem 27. Let A be a ring, M an A-module, a1, . . . , an ∈ A and I = aM .

Then

(i) if a1, . . . , an is M -quasiregular and x ∈ A, IM : x = IM , then

IνM : x = IνM for all ν > 0,

(ii) if a1, . . . , an is M -regular then it is M -quasiregular;

(iii) if M , M/a1M , M/(a1, a2)M, . . . ,M/(a1, . . . , an−1)M are separated in the

I-adic topology, then the converse of ii) is also true.
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Remark 15.1. The separation condition of iii) is satisfied in either of the

following cases:

(α) A is Noetherian, M is finitely generated and I ⊆ rad(A),

(β) A is a graded ring A =
⊕

ν⩾0Aν , M is a graded A-module M =
⊕

ν⩾0Mν

and each ai is homogeneous of degree > 0.

Proof. (i) Induction on ν. Let ν > 1, ξ ∈ M and suppose xξ ∈ IνM .

Then ξ ∈ Iν−1M , hence there exists a homogeneous polynomial F (X) ∈

M [X1, . . . , Xn] of degree ν − 1 such that ξ = F (a). Since

xξ = xF (a) ∈ IνM , the coefficients of F are in IM : x = IM . Therefore

ξ = F (a) ∈ IνM .

(ii) Induction on n. For n = 1 it is easy to check. Let n > 1. By induction

hypothesis is a1, . . . , an−1 is M -quasiregular. Let F (X) ∈ M [X1, . . . , Xn]

be homogeneous of degree ν such that F (a) = 0. We will prove F ∈ IM [X]

by induction on ν. Write

F (X) = G(x1, . . . , Xn−1) +XnH(X1, . . . , Xn).

Then G and H are homogeneous of degree ν and ν − 1, respectively. By i)

we have

H(a) ∈ (a1, . . . , an−1)
νM : an = (a1, . . . , an−1)

νM ⊆ IνM,

therefore by the induction hypothesis on ν we have H ∈ IM [X]. Since

H(a) ∈ (a1, . . . , an−1)
νM there exists h(X) ∈ M [X1, . . . , Xn−1] which is

homogeneous of degree ν such that H(a) = h(a). Putting

G(X1, . . . , Xn−1) + anh(X1, . . . , Xn−1) = g(X)
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we have g(a1, . . . , an−1) = 0, hence by the induction hypothesis on n we

have g ∈ IM [X], hence G ∈ IM [X] and so F ∈ IM [X].

(iii) If a1ξ = 0 then ξ ∈ IM , hence ξ =
∑
aiηi and

∑
a1aiηi = 0, hence ηi ∈ IM

and ξ ∈ I2M . In this way we see ξ ∈
⋂
ν I

νM = 0. Thus a1 is M -regular.

Put M1 = M/a1M . If a2, . . . , an is M1-quasiregular then our assertion

will be proved by induction on n. (M ̸= IM follows from the separation

condition.) Let F (X2, . . . , Xn) ∈M [X2, . . . , Xn] be homogeneous of degree

ν such that F (a2, . . . , an) ∈ a1M . Put F (a2, . . . , an) = a1ω, and assume

ω ∈ IiM . Then ω = G(a1, . . . , an) for some homogeneous polynomial of

degree i, and

(15.†) F (a2, . . . , an) = a1G(a1, . . . , an).

If i < ν − 1 then G ∈ IM [X] and so ω ∈ Ii+1. We thus conclude that

ω ∈ Iν−1M . If i = ν − 1 in (15.†), then F (X2, . . . , Xn) − X1G(X) ∈

IM [X], and since F does not contain X1 we have F ∈ IM [X]. Therefore

F mod a1M [X] ∈ (a2, . . . , an)M1[X].

The theorem shows that, under the assumptions of iii), any permutation of

an M -regular sequence is M -regular.

Example. (i) Let k be a field and A = k[X,Y, Z]. Put a1 = X(Y − 1),

a2 = Y and a3 = Z(Y − 1). Then a1, a2, a3 is an A-regular sequence, while

a1, a3, a2 is not.

(ii) There exists a non-Noetherian local ring (A,m) such that m = (x1, x2)

where x1, x2 is an A-regular sequence but x2 is a zero-divisor in A. (Cf.

[Die66])
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(15.C) If a1, a2, · · · ∈ A is an M -regular sequence then the sequence of sub-

modules a1M, (a1, a2)M, . . . is strictly increasing, hence the sequence of ideals

(a1), (a1, a2), . . . is also strictly increasing. If A is Noetherian such a sequence

must stop. Therefore each M -regular sequence in I can be extended to a max-

imal M -regular sequence in I. The next theorem shows that any two maximal

M -regular sequences in I have the same length if M is finitely generated.

Theorem 28. Let A be a Noetherian ring, M a finite A-module and I an ideal

of A with IM ̸=M . Let n > 0 be an integer. Then the following are equivalent:

(1) ExtiA(N,M) = 0 (i < n) for every finite A-module N with Supp(N) ⊆

V (I);

(2) ExtiA(A/I,M) = 0 (i < n);

(3) there exists a finite A-module N with Supp(N) = V (I) such that

ExtiA(N,M) = 0 (i < n);

(4) there exists an M -regular sequence a1, . . . , an of length n in I.

Proof.

(1) =⇒ (2) =⇒ (3) is trivial.

(3) =⇒ (4) We have Ext0A(N,M) = HomA(N,M) = 0. If no elements of I are

M -regular, then I is contained in the join of the associated primes of M ,

hence in one of them by (1.B): I ⊆ P for some P ∈ Ass(M). Then there

exists an injection A/P −→ M . Localizing at P we get HomAP
(k,MP ) ̸=

0, where k = AP /PAP . Since P ∈ V (I) = Supp(N), we have NP ̸=

0 and so NP /PP = N ⊗A k ̸= 0 by NAK. Then Homk(N ⊗ k, k) ̸= 0.

Therefore HomAP
(NP ,MP ) ̸= 0. But the left hand side is a localization of

HomA(N,M), which is 0. This is a contradiction, therefore there exists an
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M -regular element a1 ∈ I. If n > 1, put M1 = M/a1M . From the exact

sequence

0 −→M
a1−→M −→M1 −→ 0 (15.∗†)

we get the long exact sequence

· · · −→ ExtiA(N,M) −→ ExtiA(N,M1) −→ Exti+1
A (N,M) −→ · · ·

which shows that ExtiA(N,M1) = 0 (i < n − 1). So by induction on n

there exists an M1-regular sequence a2, . . . , an in I.

(4) =⇒ (1) Put M1 = M/a1M . Then ExtiA(N,M1) = 0 (i < n − 1) by

induction on n. From 15.∗† we get exact sequences

0 −→ ExtiA(N,M)
a1−→ ExtiA(N,M) (i < n).

But Supp(N) = V (Ann(N)) ⊆ V (I), hence I ⊆ radical of Ann(N), and

so ar1N = 0 for some r > 0. Therefore ar1 annihilates ExtiA(N,M) as well.

Thus we have ExtiA(N,M) = 0 (i < n).

Under the assumptions of the theorem, we call the length of the maximal

M -regular sequences in I the I-depth of M and denote it by depthI(M). The

theorem shows that

depthI(M) = min{i | ExtiA(A/I,M) ̸= 0}.

When (A,m) is a local ring we write depthM or depthAM for depthm(M) and

call it simply the depth of M . Thus depthM = 0 iff m ∈ Ass(M). If A is an
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arbitrary Noetherian ring and P ∈ Spec(A), we have

depthMP = 0 ⇐⇒ PAP ∈ AssAP
(MP ) ⇐⇒ P ∈ AssA(M) =⇒ depthP (M) = 0.

In general we have depthAP
(MP ) ⩾ depthP (M), because localization preserves

exactness. When IM = M we depthI(M) = ∞. For instance depthI(M) = 0 if

M = 0.

(15.D) D. Rees introduced the notion of grade, which is closely related to

depth, in 1957. ([Ree57]) Let A be a Noetherian ring, M ̸= 0 be a finite A-

module and I = Ann(M). Then he puts

gradeM = inf{i | ExtiA(M,A) ̸= 0}.

According to the above theorem, we have

gradeM = depthI(A), I = Ann(M).

Also, it follows from the definition that gradeM ⩽ proj.dimM. When I is an

ideal of A, grade(A/I) is called the grade of I. [Thus grade I can have two

meanings according to whether I is viewed as an ideal of as a module. When

confusion can arise, the depth notation should be used.] The grade of an ideal I is

depthI(A), the length of a maximal A-sequence in I. If a1, . . . , ar is an A-regular

sequence it is easy to see that ht(a1, . . . , ar) = r. Therefore grade I ⩽ ht I.

Proposition 15.1. Let A be a Noetherian ring, M (̸= 0) and N be finite

A-module, gradeM = k proj.dimN = l < k. Then

ExtiA(M,N) = 0 (i < k − l).
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Proof. Induction on l. If l = 0 then N is a direct summand of a free module.

Since our assertion holds for A by definition, it holds for N also. If l > 0 take an

exact sequence

0 −→ N ′ −→ L −→ N −→ 0

with L free. Then proj.dimN ′ = l− 1 and our assertion is proved by induction.

(15.E) Lemma 15.2 (Ischebeck). Let (A,m) be a Noetherian local ring and

M ̸= 0 and N ̸= 0 be finite A-modules. Put depthM = k, dimN = r. Then

ExtiA(N,M) = 0 (i < k − r).

Proof. Induction on r. If r = 0 then Supp(N) = {m} and the assertion follows

from Th.28. Let r > 0. By Th.10 we can easily reduce to the case N = A/P ,

P ∈ Spec(A). Since r = dimA/P > 0 we can pick x ∈ m− P , and then

0 −→ N
x−→ N −→ N ′ −→ 0

is exact, where N ′ = A/(P + Ax) has dimension < r. Then using induction

hypothesis we get exact sequences

0 −→ ExtiA(N,M)
x−→ ExtiA(N,M) −→ Exti+1

A (N ′,M) = 0

for i < k − r, and these Ext must vanish by NAK.

Theorem 29. Let (A,m) be a Noetherian local ring and let M ̸= 0 be a finite

A-module. Then we have

depthM ⩽ dim(A/P ) for every P ∈ Ass(M).
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Proof. If P ∈ Ass(M) then HomA(A/P,M) ̸= 0, hence depthM ⩽ dim(A/P ) by

Lemma 15.2.

(15.F) Lemma 15.3. Let A be a ring, and let E and F be finite A-modules.

Then Supp(E ⊗ F ) = Supp(E) ∩ Supp(F ).

Proof. For P ∈ Spec(A) we have

(E ⊗ F )P = (E ⊗A F )⊗A AP = EP ⊗AP
FP .

Therefore the assertion is equivalent to the following: Let (A,m, k) be a local

ring and E and F be finite A-modules. Then E⊗F ̸= 0 ⇐⇒ E ̸= 0 and F ̸= 0.

Now =⇒ is trivial. Conversely, if E ̸= 0 and F ̸= 0 then E⊗ k = E/mE ̸= 0 by

NAK. Similarly F ⊗ k ̸= 0. Since k is a field we get

(E ⊗ F )⊗ k = (E ⊗ k)⊗k (F ⊗ k) ̸= 0,

so E ⊗ F ̸= 0.

Lemma 15.4. Let A be a Noetherian local ring and M be a finite A-module.

Let a1, . . . , ar be an M -regular sequence. Then

dimM/(a1, . . . , ar)M = dimM − r.

Proof. We have dimM/aM ⩾ dimM − r by Th.17. On the other hand, suppose

f is an M -regular element. We have

Supp(M/fM) = Supp(M) ∩ Supp(A/fA) = Supp(M) ∩ V (f)

by Lemma 15.3, and f is not in any minimal element of Supp(M), in other

words V (f) does not contain any irreducible component of Supp(M). Hence
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dim(M/fM) < dimM . This proves dimM/aM ⩽ dimM − r.

Proposition 15.2. Let A be a Noetherian ring, M a finite A-module and I an

ideal. Then

depthI(M) = inf{depthMP | P ∈ V (I)}.

Proof. Let n denote the value of the right hand side. If n = 0 then depthMP = 0

for some P ⊇ I, and then I ⊆ P ∈ Ass(M). Thus depthI(M) = 0. If 0 < n <∞,

then I is not contained in any associated prime of M , and so there exists by (1.B)

an M -regular element a ∈ I. Put M ′ =M/aM Then

depth(M ′P ) = depthMP /aMP = depthMP − 1 for P ⊇ I,

and depthI(M
′) = depthI(M)−1. Therefore our assertion is proved by induction

on n. If n = ∞ then PMP = MP for all P ∈ V (I). If IM ̸= M we would have

(M/IM)P ̸= 0 for every

P ∈ Supp(M/IM) = V (I) ∩ Supp(M).

If P is a minimal element of Supp(M/IM) then SuppAP
(M/IM)P = {PAP },

hence the AP -module (M/IM)P =MP /IMP is coprimary in MP and

P sMP ⊆ IMP for some s > 0 by (8.B). Hence PMP ̸= MP , contradiction.

Therefore IM =M and depthI(M) =∞.

16 Cohen-Macaulay Rings

(16.A) Let (A,m) be a Noetherian local ring and M a finite A-module. We

know that depthM ⩽ dimM provided that M ̸= 0. We say that M is Cohen-

Macaulay (briefly, C.M.) if M = 0 or if depthM = dimM . If the local ring A

is C.M. as A-module then we call A a Cohen-Macaulay ring.
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Theorem 30. Let (A,m) be a Noetherian local ring and M a finite A-module.

Then:

i) if M is a C.M. module and P ∈ Ass(M), then we have depthM = dimA/P .

Consequently M has no embedded primes;

ii) if a1, . . . , ar is an M -regular sequence in m and M ′ =M/aM , then

M is C.M. ⇐⇒ M ′ is C.M.;

iii) if M is C.M., then for every P ∈ Spec(A) the AP -module Mp is C.M., and

if MP ̸= 0 we have

depthP (M) = depthAP
MP .

Proof. i) Since Ass(M) ̸= ∅, M is not 0 and so depthM = dimM . Since

P ∈ Supp(M) we have dimM ⩾ dimA/P , and dimA/P ⩾ depthM by

Th.29.

ii) By NAK we have M = 0 iff M ′ = 0, Suppose M ̸= 0. Then

dimM ′ = dimM − r by Lemma 15.4, and depthM ′ = depthM − r.

iii) We may assume that MP ̸= 0. Hence P ⊇ Ann(M). We know that

dimMP ⩾ depthAP
MP ⩾ depthP (M).

So we will prove depthP (M) = dimMP by induction on depthP (M). If

depth(M) = 0 then P is contained in some P ′ ∈ Ass(M), but

Ann(M) ⊆ P ⊆ P ′ and the associated primes of M are the minimal prime

over-ideals of Ann(M) by i). Hence P = P ′, and dimMP = 0. Next

suppose depthP (M) > 0; take an M -regular element a ∈ P and put
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M1 =M/aM . Since localization preserves exactness, the element a is MP -

regular. Therefore we have

dim(M1)P = dimMP /aMP = dimMP − 1

and depthP (M1) = depthP (M)− 1. Since M1 is C.M. by ii), by induction

hypothesis we have dim(M1)P = depthP (M1). We are done.

(16.B) Theorem 31. Let (A,m) be a C.M. local ring. Then:

i) for every proper ideal I of A, we have

ht I = depthI(A) = grade I, ht I + dimA/I = dimA;

ii) A is catenary;

iii) for every sequence a1, . . . , ar in m, the following conditions are equivalent:

(1) the sequence a1, . . . , ar is A-regular,

(2) ht(a1, . . . , ai) = 1 (1 ⩽ i ⩽ r),

(3) ht(a1, . . . , ar) = r,

(4) there exist ar+1, . . . , an (n = dimA) in m such that {a1, . . . , an} is a

system of parameters of A.

Proof.

iii) (1) =⇒ (2) is easy by Th.18.

(2) =⇒ (3) is trivial.

(3) =⇒ (4) trivial if dimA = r. If dimA > r then m is not a minimal

prime over-ideal of (a1, . . . , ar), so we can take ar+1 ∈ m which is
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not in any minimal prime over-ideal of (a1, . . . , ar). Then

ht(a1, . . . , ar+1) = r+1, and we can continue. [Thus these impli-

cations are true for any Noetherian local ring.]

(4) =⇒ (1) It suffices to show that every system of parameters x1, . . . , xn

of A is an A-regular sequence. If P ∈ Ass(A) then dimA/P = n,

hence x1 /∈ P . Therefore x1 is A-regular. Put A′ = A/(x1). Then

A′ is a C.M. local ring of dimension n−1 by Th.30, and the images

of x2, . . . , xn in A′ form a system of parameters of A′. Thus x2,

. . . , xn is A′-regular.

i) Let ht(I) = r. Then one can choose a1, . . . , ar ∈ I in such a way that

ht(a1, . . . , ai) = i holds for 1 ⩽ i ⩽ r. Then the sequence a1, . . . , ar is A-

regular by iii). Hence r ⩽ grade I. Conversely if b1, . . . , bs is an A-regular

sequence in I then ht(b1, . . . , bs) = s ⩽ ht I. Hence grade I = ht I. Since

ht I = inf{htP | P ∈ V (I)} and

dimA/I = sup{dimA/P | P ∈ V (I)},

if htP = dimA − dimA/P holds for all prime ideals P then we will have

ht I = dimA−dimA/I in general. So let P be a prime ideal. Put dimA =

depthA = n, htP = r. By Th.30 iii) AP is a C.M. ring and htP =

dimAP = depthP (A). So we can find an A-regular sequence a1, . . . , ar in

P . Then A/(a1, . . . , ar) is C.M. of dimension n − r, and P is a minimal

prime over-ideal of (a). Therefore dimA/P = n− r by Th.30 i).

ii) If P ⊃ Q are two prime ideals of A, since AP is C.M. we have

dimAP = htQAP + dimAP /QAP , i.e. htP − htQ = ht(P/Q).
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Therefore A is catenary.

(16.C) We say a Noetherian ring A is Cohen-Macaulay if AP is a C.M. local

ring for every prime ideal of A. By Th.30 this is equivalent to saying that Am is

a C.M. local ring for every maximal ideal m.

Let A be a Noetherian ring and I an ideal; let AssA(A/I) = {P1, . . . , Ps}. We

say that I is unmixed if ht(Pi) = ht(I) for all i. We say that the unmixedness

theorem holds in A if the following is true: if I = (a1, . . . , ar) is an ideal of

height r generated by r elements, where r is any non-negative integer, then I is

unmixed. (Note that such an ideal is unmixed iff A/I has no embedded primes.)

The condition implies in particular (for r = 0) that A has no embedded primes.

If I is as above and if it possesses an embedded prime P , let m be a maximal

ideal containing P . Then in Am the ideal IAm has PAm as embedded prime.

Therefore, the unmixedness theorem holds in A if it holds in Am for all maximal

ideals m.

Theorem 32. Let A be a Noetherian ring. Then A is C.M. iff the unmixedness

theorem holds in A.

Proof. Suppose the unmixedness theorem holds in A. Let P be a prime ideal

of height r. Then we can find a1, . . . , ar ∈ P such that ht(a1, . . . , a1) = i for

1 ⩽ i ⩽ r. The ideal (a1, . . . , ai) is unmixed by assumption, so ai+1 lies in no

associated primes of A/(a1, . . . , ai). Thus a1, . . . , ar is an A-regular sequence in

P , hence

r ⩽ depth(A) ⩽ depthAP ⩽ dimAP = r,

so that AP is a C.M. local ring.

Conversely, suppose A is C.M.. To prove the unmixedness theorem we may

localize, so we assume that A is a C.M. local ring. We know that the ideal (0)
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is unmixed. Let (a1, . . . , ar) be an ideal of height r > 0. Then a1, . . . , ar is

an A-regular sequence by Th.31, hence A/(a1, . . . , ar) is C.M. by Th.30 and so

(a1, . . . , ar) is unmixed.

(16.D) Theorem 33. Let A be a Cohen-Macaulay ring. Then the polynomial

ring A[x1, . . . , xn] is also Cohen-Macaulay. As a consequence, any homomorphic

image of a C.M. ring is universally catenary.

Proof. Enough to consider the case of n = 1. Let P be a prime ideal of B = A[X],

and put p = P ∩A. We want to prove that the local ring BP is C.M.. Since BP

is a localization of Ap[X] and since Ap is C.M., we may assume that A is a C.M.

local ring and p is the maximal ideal. Then B/pB = k[X], where k is a field.

Therefore we have either P = pB, or P = pB + fB where f = f(X) ∈ B is a

monic polynomial of positive degree. As B is flat over A, so is BP . It follows

that any A-regular sequence a1, . . . , ar (r = dimA) in P is also BP -regular. If

P = pB we have dimBP = dimA by (13.B) Th.19, and as depthBP ⩾ dimA

we see that BP is C.M.. If P = pB + fB then dimBP = dimA + 1 by Th.19,

and since any monic polynomial is a non-zero divisor in A/(a1, . . . , ar)[X] we

have depthBP ⩾ r + 1 = dimBP . Thus BP is C.M. in this case also. The last

assertion is obvious.

(16.E) Example 16.1. A polynomial ring k[x1, . . . , xn] over a field k is

C.M. by Th.33. (Macaulay proved the unmixedness theorem for polynomial rings

before 1916. Kaplansky says “In many aspects Macaulay was far ahead of his time,

and some aspects of his work won full appreciation only recently”.)

Example 16.2. Let A = k[x, y] be a polynomial ring in two variables x, y over

a field k, and put B = k[x2, xy, y2, x3, x2y, xy2, y3]. Then A and B have the same

quotient field and A is integral over B. Put m = (xA+ yA) ∩ B. Then we have
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x4 /∈ x3B and x4m ⊆ x3B, so that m ∈ AssB(B/x
3B). It follows that the local

ring Bm is not Cohen-Macaulay.

(16.F) Proposition 16.1. Let A be a C.M. ring, and J = (a1, . . . , ar) be an

ideal of height r. Then A/Jν is C.M., and hence Jν is unmixed, for every ν > 0.

Proof. We may assume that A is local. Let k be its residue field and put d =

dimA/J . Since a1, . . . , ar is an A-regular sequence, Jν/Jν+1 is isomorphic to a

free A/J-module by Th.27. Since A/J is C.M. with depthA/J = d, and since

depthA = A/J = depthA/J A/J,

we have ExtiA(k,A/J) = 0 (i < d). Then ExtiA(k, J
ν/Jν+1) = 0 (i < d) and

by induction on ν we get

Ext1A(k,A/J
ν) = 0 (i < d). Therefore depthA/Jν ⩾ d = dimA/Jν , so that

A/Jν is C.M..

Exercise 16.1. 1. Find an example of a Noetherian local ring A and a finite

A-module M such that depthM > depthA. Also find A,M and

P ∈ Spec(A) such that depthMP > depthP (M).

2. Show that, if A is a Noetherian local ring (or Noetherian graded ring) which

is a catenary domain, and if a1, . . . , ar are elements of the maximal ideal

(resp. homogeneous elements of positive degree) such that ht(a1, . . . , ar) =

r, then ht(a1, . . . , ai) = i for each 1 ⩽ i ⩽ r [The condition that A is a

domain is necessary. In fact, if

A = k[X,Y, Z]/(X,Y ) ∩ (Z) = k[x, y, z],

then ht(x, y + z) = 2 and ht(x) = 0 .]
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3. Let (A,m, k) be a local ring and u : M −→ N a homomorphism of finite

A-modules. We say that u is minimal if u ⊗ 1k : M ⊗ k −→ N ⊗ k is an

isomorphism. Show that

(a) u is minimal ⇐⇒ u is surjective and Ker(u) ⊆ mM ;

(b) for any finite A-module M there exists a minimal homomorphism u :

F −→M with F free;

(c) if 0 −→ K
v−→ F

u−→ M −→ 0 is exact with u minimal and with K

and F free, then the homomorphisms

v∗ : Ext
i
A(k,K) −→ ExtiA(k, F ) (i = 0, 1, 2, . . . )

induced by v are zero. [Hint: If k = An, F = Am and v is represented

by a n ×m matrix (cij), then cij ∈ m, and v∗ is represented by the

same matrix on ExtiA(k,K) ∼= ExtiA(k,A)
n .]

4. Let A be a Noetherian local ring and M be a finite A-module having finite

projective dimension. Then one has the following formula due to Auslander-

Buchsbaum:

proj.dimM + depthM = depthA.

[Hint: Use induction on proj.dimM . For the case proj.dimM = 1, use

exercise 3 above.]

5. Let A be as above and let P ∈ SpecA. Show that

(a) depthA ⩽ depthP (A) + dimA/P ,

(b) Put codepthA = dimA− depthA. Then

codepthA ⩾ codepthAp.
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Further References.:

The concept of depth has striking applications in unexpected areas:

1. [Har62]

For instance he proves that, if A is a Noetherian local ring and if Spec(A)−m

is disconnected, then depthA ⩽ 1.

2. [BE73]

They show that if C• : 0 −→ Fn −→ Fn−1 −→ · · ·F0 is a complex of finite

free modules over a Noetherian ring, and if Ei denote the matrix of the map

Fi −→ Fi−1, then the exactness of C• can be fully expressed in terms of the

ranks of the modules and maps and depth Ii, where Ii is the ideal generated

by certain minors of the matrix Ei (1 ⩽ i ⩽ n). For applications of their

theorem, cf. [Eis75]
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7. Normal Rings and Regular Rings

17 Classical Theory

(17.A) Let A be an integral domain, and K be its quotient field, We say that

A is normal if it is integrally closed in K. If A is normal, so is the localization

S−1A for every multiplicatively closed subset S of A not containing 0, Since

A =
⋂

all max pAp. by (1.H), the domain A is normal iff Ap is normal for every

maximal ideal p.

An element u of K is said to be almost integral over A if there exists

an element a of A (a ̸= 0) such that aun ∈ A for all n > 0. If u and v are

almost integral over A, so are u + v and uv. If u ∈ K is integral over A then

it is almost integral over A, The converse is also true when A is Noetherian. In

fact, if a ̸= 0 and aun ∈ A (n = 1, 2, . . . ), then A[u] is a submodule of the

finite A-module a−1A, whence A[u] itself is finite over A and u is integral over

A, We say that A is completely normal if every element u of K which is almost

integral over A belongs to A. For a Noetherian domain normality and complete

normality coincide. Valuation rings of rank (= Krull dimension) greater than one

(cf.[Nag75] and [ZS14]) are normal but not completely normal.

We say (in accordance with the usage of [Gro63]) that a ring B is normal if

Bp is a normal domain for every prime ideal p of B. A Noetherian normal ring

is a direct product of a finite number of normal domains.
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(17.B) Proposition 17.1. (1) LetA be a completely normal domain. Then

a polynomial ring A[X1, . . . , Xn] over A is also completely normal. Simi-

larly for a formal power series A[[X1, . . . , Xn]].

(2) Let A be a normal ring. Then A[X1, . . . , Xn] is normal.

Proof. (1) Enough to treat the case of n = 1. Let K denote the quotient field

of A, Then the quotient field of A[X] is K(X). Let u ∈ K(X) be almost

integral over A[X]. Since A[X] ⊆ K[X] and since K[X] is completely

normal (because of unique factorization), the element u must belong to

K[X]. Write

u = αrX
r + αr+1X

r+1 + · · ·+ αdX
d (αr ̸= 0)

Let

f(X) = bsX
s + bs+1X

s+1 + · · ·+ btX
t ∈ A[X]

be such that fum ∈ A[X] for all n. Then bsαnr ∈ A for all n so that αr ∈ A.

Then u− αrXr = αr+1X
r+1 + · · · is almost integral over A[X], so we get

αr+1 ∈ A as before, and so on. Therefore u ∈ A[X]. The case of A[[X]] is

proved similarly.

(2) Let P be a prime ideal and let p = P ∩A, Then A[X]P , is a localization of

Ap[X] and Ap is a normal domain. So we may assume that A is a normal

domain with quotient field K. Let u = P (X)/Q(X) (P,Q ∈ A[X]) be

such that

ud + f1(X)ud−1 + · · ·+ fd(X) = 0 with fi ∈ A[X]

In order to prove that u ∈ A[X], we consider the subring A0 of A generated

by 1 and by the coefficients of P,Q and all the fi(X). Then u is in the
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quotient field of A0[x] and is integral over A0[X]. The proof of (1) shows

that u is a polynomial in X: u = αrX
r + · · · + αdX

d, and that each

coefficient αi is almost integral over A0. As A0 is Noetherian,αi is integral

over A0 and a fortiori over A. Therefore αi ∈ A, as wanted.

Remark 17.1. There exists a normal ring A such that A[[X]] is not normal

([Sei66]).

(17.C) Let A be a ring and I an ideal with
⋂∞
n=1 I

n = (0). Then for each

non-zero element a of A there is an integer n ⩾ 0 such that a ∈ In and a /∈ In+1.

We then write n = ord(a) (or ordI(a)) and call it the order of a (with respect

to I). We have

ord(a+ b) ⩾ min(ord(a), ord(b)) and ord(ab) ⩾ ord(a) + ord(b).

Put

A′ = grI(A)⊕
⊕
n⩾0

In/In+1.

For an element a of A with ord(a) = n, we call the image of a in In/In+1 = A′n

the leading form of a and denote it by a∗. We define 0∗ = 0 (∈ A′). The map

a Ha⋆ is in general neither additive nor multiplicative, but if a∗b∗ ̸= 0 (i.e. if

ord(ab) = ord(a)+ ord (b)) then we have (ab)∗ = a∗b∗, and if ord(a) = ord(b)

and a∗ + b∗ ̸= 0 then we have (a + b)∗ = a∗ + b∗. It follows that, for any ideal

Q of A, the set Q∗ of the leading forms of the elements of Q is a graded ideal of

A′. Warning: if Q =
∑
aiA it does not necessarily follow that Q∗ =

∑
a∗iA

′.But

if Q is a principal ideal aA and if A′ is a domain, then we have Q∗ = a∗A′.

Put A = A/Q and I = (I + Q)/Q. Then it holds that grI(A) = grI(A)/Q∗.
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In fact, we have

I
n
/I
n+1

= (In+Q)/(In+1+Q) ∼= In/(In∩(In+1+Q)) = In/(In∩Q+In+1) = A′n/Q
∗
n.

(17.D) Theorem 34 (Krull). Let A, I and A′ be as above. Then

(i) if A′ is a domain, so is A;

(ii) suppose that A is Noetherian and that I ⊆ rad(A). Then, if A′ is a normal

domain, so is A.

Proof. (i) Let a and b be non-zero-elements of A. Then a∗ ̸= 0 and b∗ ̸= 0,

hence (ab)∗ = a∗b∗ ̸= 0 and so ab ̸= 0.

(ii) The ring A is a domain by 1). Tet a, b ∈ A, b ̸= 0, and suppose that a/b is

integral over A. We have to prove a ∈ bA. The A-module A/bA is separated

in the I-adic topology by (11.D), in other words bA =
⋂∞
n=1(bA + In).

Therefore it suffices to prove that a ∈ bA + In for all n. Suppose that

a ∈ bA + In−1 is already proved. Then a = br + a′ with r ∈ A and

a′ ∈ In−1, and a′/b = a/b − r is integral over A. So we can replace a by

a′ and assume that a ∈ In−1. We are to prove a ∈ bA + In. Since a/b

is almost integral over A there exists 0 ̸= c ∈ A such that cam ∈ bmA for

all m. As A′ is a domain the map a 7→ a∗ is multiplicative, hence we have

c∗a∗
m ∈ b∗mA′ for all m, and since A′ is Noetherian (by (10.D)) and normal

we have a∗ ∈ b∗A′. Let c ∈ A be such that a∗ = b∗c∗. Then

n− 1 < ord(a) < ord(a− bc),

whence, a− bc ∈ In so that a ∈ bA+ In.
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Remark 17.2. Even when A is a normal domain it can happen that A′ is not

a domain. Example:

A = k[x, y, z] = k[X,Y, Z]/(Z2 −X2 − Y 3),

where k is a field of characteristic ̸= 2, and I = (x, y, z). We have

A′ = grI(A) ≃ k[X,Y, Z]/(Z2 −X2),

so (x∗−z∗)(x∗+z∗) = 0. On the other hand A is normal. In general, a ring of the

form k[x1, . . . , xn, Z]/(Z
2 − f(X)) is normal provided that f(X) is square-free.

(17.E) Let (A,m, k) be a Noetherian local ring of dimension d. Recall that the

ring A is said to be regular if m is generated by d elements, or what amounts to

the same, if d = rankk m/m
2(cf. (12.J)). A regular local ring of dimension 0 is

nothing but a field. The formal power series ring k[[X1, . . . , Xd]] over a field k is

a typical example of regular local ring.

Theorem 35. Let (A,m, k) be a Noetherian local ring. Then A is regular iff the

graded ring gr(A) =
⊕

mn/mn+1 associated to the m-adic filtration is isomorphic

(as a graded k-algebra) to a polynomial ring k[X1, . . . , Xd].

Proof. Suppose A is regular, and let {x1, . . . , xd} be a regular system of param-

eters. Then gr(A) = k[x∗1, . . . , x
∗
d], hence gr(A) is of the form k[X1, . . . , Xd]/I

where I is a graded ideal. If I contains a homogeneous polynomial F (X) ̸= 0 of

degree n0 then we would have, for n > n0,

ℓ(A/mn+1) ⩽

(
n+ d

d

)
−
(
n− n0 + d

d

)
= a polynomial of degree d− 1 in n

But the Hilbert function ℓ(Λ/mn) of A is a polynomial in n (for large n) of degree
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d by (12.H). Therefore the ideal I must be (0).

Conversely, suppose gr(A) ≃ k[X1, . . . , Xd]. Then we get dimA = d from the

consideration of the Hilbert polynomial, while

rankk m/m
2 = rankk(kx1 + · · ·+ kd) = d.

Thus A is regular.

(17.F) Theorem 36. Let A be a regular local ring and {x1, . . . , xd} a regular

system of parameters. Then:

(1) A is a normal domain;

(2) x1, . . . , xd is an A-regular sequence, and hence A is a Cohen-Macaulay local

ring;

(3) (x1, . . . , xi) = pi is a prime ideal of height i for each 1 ⩽ i ⩽ d, and A/pi is

a regular local ring of dimension d− i

(4) conversely, if p is an ideal of A and if A/p is regular and has dimension

d − i, then there exists a regular system of parameters {y1, . . . , yd} such

that p = (y1, . . . , yi).

Proof. (1) follows from 34 and 35.

(2) follows from 27 as well as from 3) below.

(3) We have dim(A/pi) = d − i by (12.K), while the maximal ideal m/p1 of

A/pi is generated by d− i elements xi+1, . . . , xd. Therefore A/pi is regular,

and hence pi is a prime by 1).

(4) Put m = m/p. Then

d−i = rankk(m/m
2) = rankk m/(m

2+p) = rankk m/m
2 = rankk(m

2+p)/m2
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hence i = rankk(m
2 + p)/m2. Thus we can choose i elements y1, . . . , yi of

p which spans p+m2 mod m2 over k, and d− i elements yi+1, . . . , yd of m

which, together with y1, . . . , yi, span m mod m2 over k. Then {y1, . . . yd}

is a regular system of parameters of A, so that (y1, . . . , yi) = p′ is a prime

ideal of height i by 3). as p ⊇ p′ and dim(A/p) = d − i, we must have

p = p′.

(17.G) Let A be a regular local ring of dimension 1, and let P = aA be the

maximal ideal of A. Then the non-zero ideals of A are the powers Pn = anA.

(Proof: if I is an ideal and I ̸= 0, then there exists n ⩾ 0 such that I ⊆ Pn = anA

and I ⊈ Pn+1. Then a−nI is an ideal of A not contained in the maximal ideal

P , therefore a−nI = A, i.e. I = anA, as claimed.) Thus A is a principal ideal

domain. Furthermore, any fractional ideal (that is, finitely generated non-zero

A-submodule of the quotient field K of A) is equal to some anA (n ∈ Z). If

0 ̸= x ∈ K and xA = anA, then we write n = ord(x). Then x 7→ ord(x) is a

valuation of K with Z as the value group, and A is the ring of the valuation.

Conversely, let v be a valuation of K whose value group is discrete and of rank

1 (i.e. isomorphic to Z); then the valuation ring Rv of v is called a principal

valuation ring or a discrete valuation ring of rank 1, and is a regular local ring of

dimension 1. Thus a principal valuation ring and a one-dimensional regular local

ring are the same thing. On the contrary, no other kinds of valuation rings are

Noetherian.

In the next paragraph we shall learn another characterization (Th.37) of the

one-dimensional regular local rings.

(17.H) Let A be a Noetherian domain with quotient field K. For any non-zero

ideal I of A we put I−1 = {x ∈ K | xI ⊆ A}. We have A ⊆ I−1 and I − I−1 ⊆ A
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Lemma 17.1. Let 0 ̸= a ∈ A and P ∈ AssA(A/aA). Then P−1 ̸= A.

Proof. By the definition of the associated primes there exists b ∈ A such that

(aA : b) = P . Then (b/a)P ⊆ A and b/a /∈ A.

Lemma 17.2. Let (A,P ) be a Noetherian local domain such that P ̸= 0 and

PP−1 = A. Then P is a principal ideal, and so A is regular of dimension 1.

Proof. Since
⋂∞
n=1 P

n = (0) by (11.D) Cor.11.3, we have P ̸= P 2. Take

a ∈ P − P 2. Then aP−1 ⊆ A, and if aP−1 ⊆ P then aA = aP−1P ⊆ P 2,

contradicting the choice of a. Therefore we must have aP−1 = A, that is,

aA = aP−1P = P .

Theorem 37. Let (A,P ) be a Noetherian local ring of dimension 1. Then A is

regular iff it is normal.

Proof. Suppose A is normal (hence a domain). By Lemma 17.2 it suffices to show

PP−1 = A. Assume the contrary. Then PP−1 = P , and hence

P (P−1)n = P ⊆ A for any n > 0. Therefore all the elements of P−1 are

integral over A, whence P−1 = A by the normality. But, as dimA = 1, we have

P ∈ Ass(A/aA) for any non-zero element a of P so that P−1 ̸= A by Lemma

17.1. Thus PP−1 = P cannot occur.

Theorem 38. Let A be a Noetherian normal domain. Then any non-zero

principal ideal is unmixed, and it holds that

A =
⋂

ht(p)=1

Ap.

If dimA ⩽ 2 then A is Cohen-Macaulay.

Proof. Let a ̸= 0 be a non-unit of A and let P ∈ Ass(A/aA). Replacing A by AP

we may suppose that (A,P ) is local. Then we have P−1 ̸= A by Lemma 17.1,
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and if ht(P ) > 1 we would have a contradiction as in the preceding proof. Thus

ht(P ) = 1. This implies that aA is unmixed. The other assertions of the theorem

follow immediately from that.

(17.I) Let A be a Noetherian ring. Consider the following conditions about A

for k = 0, 1, 2, . . . :

(Sk) it holds depth(Ap) ⩾ inf(k,ht(p)) for all p ∈ Spec(A), and

(Rk) if p ∈ Spec(A) and ht(p) ⩽ k, then Ap is regular.

The condition (S0) is trivial. The condition (S1) holds iff Ass(A) has no embedded

primes. The condition (S2), which is probably the most important, is equivalent

to that not only Ass(A) but also Ass(A/fA) for every non-zero-divisor f of A

have no embedded primes. The ring A is C.M. iff it satisfies all (Sk).

If (R0) and (S1) are satisfied then A is reduced, and conversely, The following

theorem is due to Krull(1931) in the case A is a domain, and to Serre in the

general case.

Theorem 39 (Criterion of normality). A Noetherian ring is normal iff it satisfies

(S2) and (R1)

Proof. (After EGA IV 2 p.108 [Gro64]). Let A be a Noetherian ring. Suppose

first that A is normal, and let p be a prime ideal. Then Ap is a field for ht(p) = 0,

and regular for ht(p) = 1 by Th.37, hence the condition (R1). Since a normal

local ring is a domain, Th.37 implies that A satisfies (S2).

Next suppose that A satisfies (S2) and (R1). Then A is reduced. Let p1, . . . , pr

be the minimal prime ideals of A.Thus we have (0) = p1 ∩ · · · ∩ pr. The total

quotient ring ΦA (cf. (1.O)) of A is isomorphic to the direct productK1×· · ·×Kr,

where Ki is the quotient field of A/pi; this follows from (1.C) applied to ΦA.

We shall prove that A is integrally closed in ΦA. Suppose this is done; then the

unit element ei of Ki belongs to A since e2i −ei = 0, and we have 1 = e1+ · · ·+er

133



Chapter 7: Normal Rings and Regular Rings

and eiej = 0 (i ̸= j). Therefore A = Ae1 × · · · × Aer, and Aei is a normal

domain as it is integrally closed in Ki; thus A is a normal ring. So suppose

(a/b)n + c1(a/b)
n−1 + · · ·+ cn = 0 in ΦA

where a, b and the ci’s are elements of A and b is A-regular. This is equivalent

to an +
∑
cia

n−ib = 0. We want to prove a ∈ bA. Since bA is unmixed of height

1 by (S2), we have only to show that ap ∈ bpAp for all prime ideals p of height 1

(where ap and bp are the canonical images of a and b in Ap). But Ap is normal

by (R1) for such p, and we have

anp +
∑

(ci)pa
n−i
p bip = 0,

therefore ap ∈ bpAp.

(17.J) Theorem 40. Let A be a ring such that for every prime ideal p the

localization Ap is regular. Then the polynomial ring A[X1, . . . , Xn] over A has

the same property.

Proof. As in the proof of (16.D) Th.33, we are led to the following situation:

(A, p) is a regular local ring, n = 1 and P is a prime ideal of B = A[X] lying over

p. And we have to prove BP is regular. In this circumstance we have P ⊇ pB

and B/pB = k[X], where k = A/p is a field. Therefore either P = pB, or

P = pB+f(X)B with a monic polynomial f(X) in B. Put d = dimA. Then p is

generated by d elements, so P is generated by d elements over B if P = pB, and

by d+1 elements if P = pB+fB. Pn the other hand it is clear that ht(pB) ⩾ d,

so we have ht(P ) = d in the former case and ht(P ) = d+ 1 in the latter case by

(12.I) Th.18. Therefore BP is regular.

In particular, all local rings of a polynomial ring k[X1, . . . , Xn] over a fieid
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are regular.

18 Homological Theory

(18.A) Let A be a ring. The projective (resp. injective) dimension of an A-

module M is the length of a shortest projective (resp. injective) resolution of

M .

Lemma 18.1.

(i) An A-module is projective iff Ext1A(M,N) = 0 for all A-modules N .

(ii) M is injective iff Ext1A(A/I,M) = 0 for all ideals I of A.

Proof. Immediate from the definitions. In (ii) we use the fact (which is proven

by Zorn’s lemma) that if any homomorphism f : N −→ M can be extended to

any A-module N ′ containing N such that N ′ = N + Aξ for some ξ ∈ N ′, then

M is injective.

Lemma 18.2. Let A be a ring and n be a non-negative integer. Then the

following conditions are equivalent :

(1) proj.dimM ⩽ n for all A-modules M ,

(2) proj.dimM ⩽ n for all finite A-modules M ,

(3) inj.dimM ⩽ n for all A-modules M ,

(4) Extn+1
A (M,N) = 0 for all A-modules M and N .

Proof.

(1) =⇒ (2) trivial.
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(2) =⇒ (3) take an exact sequence

0 −→M −→ U0 −→ U1 −→ · · · −→ Un−1 −→ C −→ 0

with Uj injective for all j. Let I be any ideal. Then we have

Ext1A(A/I,C)
∼= Extn+1

A (A/I,M), which is zero by ii) since A/I is a finite

A-module.

(4) =⇒ (1) is proved similarly, with “projective” instead of “injective” and with

the arrows reversed.

(3) =⇒ (1) is trivial, as one can calculate Ext∗A(M,N) using an injective res-

olution of N .

By virtue of Lemma 18.2 we have

sup
M

(proj.dimM) = sup
M

(inj.dimM).

We call this common value (which may be ∞) the global dimension of A and

denote it by gl.dimA. (In EGA it is denoted by dim. coh(A).)

(18.B) Lemma 18.3. Let A be a Noetherian ring and M a finite A-module.

Then M is projective iff Ext1A(M,N) = 0 for all finite A-modules N .

Proof. Take a resolution

0 −→ R
i−→ F −→M −→ 0

with F finite and free. Then R is also finite, hence we have Ext1(M,R) = 0.

Thus Hom(F,R) −→ Hom(R,R) −→ 0 is exact, and so there exists s : F −→ R
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with s ◦ i = idR, i.e. the sequence

0 −→ R −→ F −→M −→ 0

splits. Then M is a direct summand of a free module.

Lemma 18.4. Let (A,m, k) be a Noetherian local ring, and M be a finite

A-module. Then

proj.dimM ⩽ n ⇐⇒ TorAn+1(M,k) = 0.

Proof. =⇒ trivial.

⇐= The general case is easily reduced to the case n = 0. If Tor1(M,K), let

0 −→ R −→ F
u−→M −→ 0

be exact with u minimal (cf. chapter 6 exercise 3.). Then

0 −→ R⊗ k −→ F ⊗ k u−→M ⊗ k −→ 0

is exact and u is an isomorphism, hence R ⊗ k = 0 and so R = 0 by NAK.

Therefore M is free, as wanted.

Lemma 18.5.

(I) Let A be a Noetherian ring and M a finite A-module. Then

(i) proj.dimM is equal to the supremum of proj.dimMp (as Ap-module)

for the maximal ideals p of A, and

(ii) we have proj.dimM ⩽ n iff TorAn+1(M,A/p) = 0 for all maximal ideals

p of A.
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(II) The following conditions about a Noetherian ring A are equivalent:

(1) gl. dimA ⩽ n,

(2) proj.dimM ⩽ n for all finite A-modules M ,

(3) inj.dimM ⩽ n for all finite A-modules M ,

(4) Extn+1
A (M,N) = 0 for all finite A-modules M and N ,

(5) TorAn+1(M,N) = 0 for all finite A-modules M and N .

(III) For any Noetherian ring A, we have

gl.dimA = sup
max .p

gl.dim(Ap).

Proof. (I) The assertion (i) follows from (3.E) and Lemma 18.2, while (ii) follows

from (i) and Lemma 18.4.

(II) We already saw (2) ⇐⇒ (1) ⇐⇒ (3) in Lemma 18.2, and (3) =⇒ (4)

and (2) =⇒ (5) are trivial. Moreover, (5) implies (2) by (1) above, and

(4) =⇒ (2) is easy to see by Lemma 18.3.

(III) follows from (I) and (II).

Theorem 41. Let (A,m, k) be a Noetherian local ring. Then

gl.dimA ⩽ n ⇐⇒ TorAn+1(k, k) = 0. Consequently, we have

gl.dimA = proj.dim k (as A-module).

Proof. Torn+1(k, k) = 0 =⇒ proj.dim k ⩽ n =⇒ Torn+1(M,k) = 0 for all

M =⇒ proj.dimM ⩽ n for all finite M =⇒ gl.dimA ⩽ n.

(18.C) Lemma 18.6. Let (A,m, k) be a Noetherian local ring and M a finite

A-module. If proj.dimM = r <∞ and if x is an M -regular element in m, then

proj.dim(M/xM) = r + 1.
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Proof. The sequence

0 −→M
x−→M −→M/xM −→ 0

is exact by assumption, therefore the sequences

0 −→ Tori(M/xM, k) −→ 0 (i > r + 1)

and

Torr+1(M,k) = 0 −→ Torr+1(M/xM, k) −→ Torr(M,k)
x−→ Torr(M,k)

are also exact. Since k = A/m is annihilated by x, the A-module Torr(M,k)

is also annihilated by x. Therefore Torr+1(M/xM, k) ∼= Torr(M,k) ̸= 0 and

Tori(M/xM, k) = 0 for i > r + 1. In view of 18.5 we then have

proj.dimM/xM = r + 1.

Theorem 42. Let (A,m, k) be a regular local ring of dimension n. Then

gl.dimA = n.

Proof. Let {x1, . . . , xn} be a regular system of parameters. Then the sequence

x1, . . . , xn is A-regular and k = A/Σx1A, hence we have proj.dim k = n by 18.6.

So the theorem follows from 41.

Corollary 18.1 (Hilbert’s Syzygy Theorem). Let A = k[X1, . . . , Xn] be a

polynomial ring over a field k. Then gl.dimA = n

Proof. Proof. This follows from Th.22, Th.40, Th.42 and Lemma 18.5.

We are going to prove a converse (due to Serre) of Th.42, namely that a

Noetherian local ring of finite global dimension is regular (Th.45). This is more
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important than Th.42, and its proof is also more difficult, Roughly speaking there

are two different proofs: one is due to Nagata (simplified by Grothendieck) and

uses induction on dim A. This proof is shorter and does not require big tools

(cf. EGA IV pp.46-48 [Gro64]). The other is due to Serre and uses Koszul

complex and minimal resolution; it has the merit of giving more information

about the homology groups Tori(k, k). Here we shall follow Serre’s proof. We

begin with explaining the necessary homological techniques, which are useful in

other situations also.

(18.D) Koszul Complex. Let A be a ring. A complex (or more precisely, a

chain complex) M• is a sequence

M• : . . . −→Mn
d−→Mn−1

d−→ . . .
d−→M0

d−→ 0

of A-modules and A-linear maps such that d2 = 0. The module Mi is called the

i-dimensional part of the complex and the map d is called the differentiation. If

L• and M• are two complexes, their tensor product L• ⊗M• is, by definition,

the complex such that

(L• ⊗M•)n =
⊕
p+q=n

Lp ⊗AMq

and such that d : (L• ⊗M•)n −→ (L• ⊗M•)n−1 is defined on Lp ⊗Mq by the

formula

d(x⊗ y) = dL(x)⊗ y + (−1)px⊗ dM (y).

Let x1, . . . , xn ∈ A, and let Aei be a free A-module of rank one with a specified

basis ei for i = 1, . . . , n. Let

K•(xi) : 0 −→ Aei
xi−→ A −→ 0
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denote the complex defined by

Kp(xi) =


0 , p ̸= 1, 0

Aei , p = 1

A p = 0

and by d(ei) = xi· Then H0(K•(xi)) = A/xiA and H1(K•(xi)) ≃ Ann(xi). For

any complex C•, we put

C•(x1, . . . , xn) = C• ⊗K•(x1)⊗ · · · ⊗K•(xn).

If M is an A-module we view it as a complex M. with Mn = 0 (n ̸= 0) and

M0 =M , and we put

K•(x1, . . . , xn,M) =M• ⊗K•(x1)⊗ · · · ⊗K•(xn).

If there is no danger of confusion we denote them by C•(x) and by K•(x,M) re-

spectively. These complexes are called Koszul complexes. We have kp(x1, . . . , xn,M) =

0 for n < p, while

Kp(x1, . . . , xn,M) =
⊕

p of the αi’s are =1
and the rest are =0

M ⊗ [Kα1
(x1)⊗ · · · ⊗Kαn

(xn)]

for 0 ⩽ p ⩽ n. Put ei1...ip = u1 ⊗ · · · ⊗ un, where

ui =

ei i ∈ {i1, . . . , ip}

1 otherwise
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Then

K0(x1, . . . , xn,M) =M,

Kp(x1, . . . , xn,M) =
⊕

1⩽i1<···<ip⩽n

Mei1...ip ≃M(np) (1 ⩽ p ⩽ n)

d(mei1 . . . ip) =

p∑
r=1

(−1)r−1xirei1...̂ir...ip (18.1)

(where m ∈ M1 and îr indicates that ir is omitted there). The formula 18.1 for

the operator d can be put into another form: let

∑
i1<···<ip

mi1...ipei1...ip

be an arbitrary element of Kp(x,M), and extend the mi1...ip ’s to an alternating

function of the indices (i.e. such that m...i...i... = 0 and m...i...j... = −m...j...i...).

Then we have

d

( ∑
i1<···<ip

mi1...ipei1...ip

)
=

n∑
j=1

xj

( ∑
i1<···<ip−1

mi1...ip−1
ei1...ip−1

)
(18.2)

There is another interpretation of the Koszul complex. Let

F = AX1 + · · ·+AXn

be a free A-module of rank n with a basis {X1, . . . , Xn}. Then the exterior

product
∧P

F is a free module of rank
(
n

p

)
with

{xi1 ∧ · · · ∧ xip | 1 ⩽ i1 < · · · < ip ⩽ n}
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as a basis, so that there is an isomorphism of A-modulesM⊗A
∧p

F −→ Kp(x,M)

which maps Xi1 ∧ · · · ∧ Xip to ei1...ip . Thus we can define K•(x,M) to be the

complex M ⊗ L• with Lp =
∧P

F and with

d(Xi1 ∧ · · · ∧Xip) =

p∑
r=1

(−1)r−1xirXi1 ∧ · · · ∧ X̂ir ∧ · · · ∧Xip

If we adopt this definition then we have to check d2 = 0 on L•, which is straight-

forward anyway.

For any x ∈ A, we have an exact sequence of complexes

0 −→ A −→ K•(x) −→ A′ −→ 0 (3)

where A′ is the factor complex K•(x)/A, therefore (A′)1 ≃ A and (A′)n = 0 for

n ̸= 1. Let C• be any complex. Then tensoring the exact sequence (3) with C•

we get

0 −→ C• −→ C•(x) −→ C ′• −→ 0 (C ′• = C• ⊗A′) (4)

which is again exact. The complex C ′ is obtained from C by increasing the

dimension by one: C ′p = Cp−1 and d′p = dp−1. Thus Hp(C
′) −→ Hp−1(C), and

we get a long exact sequence

. . . −→ Hp+1(C•) −→ Hp+1(C•(x)) −→ Hp(C•)
δp−→ Hp(C•) −→

. . .
δ1−→ H1(C•) −→ H1(C•(x)) −→ H0(C•)

δ0−→ H0(C•) −→ H0(C•(x)) −→ 0

One immediately checks that the connecting homomorphism δp is the multipli-

cation by (−1)px. Therefore we get

Lemma 18.7. If C• is a complex with Hp(C•) = 0 for all p > 0, then
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Hp(C•(x)) = 0 for all p > 1 and

0 −→ H1(C•(x)) −→ H0(C•)
x−→ H0(C•) −→ H0(C•(x)) −→ 0

is exact. If, in particular, x is H0(C•)-regular, then we have Hp(C•(x)) = 0 for

all p > 0 and H0(C•(x)) = H0(C)/xH0(C).

Theorem 43. Let A be a ring, M an A-module and x1, . . . , xn an M -regular

sequence in A. Then we have

Hp(K•(x,M)) = 0 (p > 0), H0(K•(x,M)) =M/

n∑
1

xiM1

Corollary 18.2. Let A be a ring and x1, . . . , xn be an A-regular sequence in

A. Then K•(x1, . . . , xn, A) is a free resolution of the A-module A/(x1, . . . , xn).

(18.E) Minimal Resolution. Let (A,m, k) be a Noetherian local ring. We

recall (chapter 6 exercise 3.) that a homomorphism u : L −→ M is called

minimal if

u = u⊗ idk : L = L⊗ k −→M =M ⊗ k

is an isomorphism, or equivalently, if u is surjective with Ker(u) ⊆ mL. Let M

be a finite A-module. A free resolution of M ,

· · · −→ Li
di−→ Li−1 −→ · · ·

d1−→ L0
d0−→M −→ 0

is called a minimal resolution if di : Li −→ Ker(di−1) is minimal for each i ⩾ 0.

In this case the complex

L• ⊗ k : · · · −→ Li
di−→ Li−1 −→ · · ·

d1−→ L0,
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where Li = Li⊗k = Li/mLi, has trivial differentiation (i.e. all d1 = 0). Therefore

we have TorA1 (M,k) ≃ L1 for all i, and so rank Li = rankk Tor
A
i (M,k). In

particular, all Li are finite over A.

Lemma 18.8. Let M be a finite module over a Noetherian local ring A. Then

a minimal resolution of M exists, and is unique up to (non-canonical) isomor-

phisms.

Proof. The existence is easy to see: one constructs a minimal resolution step by

step, using minimal basis. To prove the uniqueness, let L• −→M and L′• −→M

be two minimal resolutions of M . Since L• is a projective resolution there exists

a homomorphism f : L• −→ L′• of complexes over M. Since

L1 L0 M

L′1 L′0 M

f1

d1

f0

ε

id

ε′

is commutative and since ε and ε′ are minimal, the map f0 is an isomorphism.

Since both L0 and L′0 are free, the map f0 is then defined by a square matrix T

with detT /∈ m. Then f0 itself is an isomorphism. Repeating the same reasoning

we prove inductively that all fi are isomorphisms.

Exercise 18.1. Let L• −→ M be a minimal resolution and P• −→ M be an

arbitrary free resolution. Then we have P• ≃ L•⊕W• with some acyclic complex

W•.

Lemma 18.9. Let

· · · −→ L1
di−→ Li−1 −→ · · ·

d1−→ L0
ε−→M −→ 0
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be a minimal resolution of M , and

· · · −→ Fi
d′
i−→ Fi−1 −→ · · ·

d′
1−→ F0

be a complex with an augmentation ε′ : F0 −→M , such that

i) each Fi is finite and free over A,

ii) ε′ : F 0 −→M is injective, and

iii) d′i(Fi) ⊆ mFi−1 for each i > 0, and d′i induces an injection

F i −→ (m/m2)⊗ Fi−1.

Then there exists a homomorphism of complexes over M

f : F• −→ L•

such that each fi maps Fi isomorphically onto a direct summand of Li. Conse-

quently, we have

rankFi ⩽ rankLi = rankk Tor
A
i (M,k).

Proof. Since L• is a resolution and since each Fi is free, there exists a homomor-

phism f : F• −→ L• over M . We have to prove that, for each i, there exists

an A-linear map gi : Li −→ F with gifi = idFi . Since both Fi and Li are free,

we can easily see that such gi exists iff f i : F i −→ Li is injective. Using the

assumptions we prove inductively that f i is injective, for i = 0, 1, 2, . . . .

(18.F) Theorem 44. Let (A,m, k) be a Noetherian local ring and let

s = rankk m/m
2. Then we have

rankk Tor
A
1 (k, k) ⩾

(
s

1

)
for 0 ⩽ i ⩽ s
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Proof. Take a minimal basis {x1, . . . , xs} of m, and consider the Koszul complex

F• = K•(x1, . . . , xs, A). There is an obvious augmentation F0 = A −→ k = A/m,

which satisfies the condition ii) of Lemma 18.9. By the definition of

dp : Fp −→ Fp−1 it is clear that dp(Fp) ⊆ mFp−1. Moreover, we have

F p = k ⊗ Fp = Kp(x1, . . . , xs; k) and m/m2 ⊗A Fp−1 = m/m2 ⊗k Kp−1(x; k).

Since the residue classes of the xi’s modulo m2 form a k− basis of m/m2, the

formula (2) of (18.D) implies that dp induces an injection F p −→ m/m2 ⊗ Fp−1.

Thus the conditions of Lemma 18.9 are all satisfied. Therefore we have

(
s

p

)
= rankA Fp ⩽ rankk Tor

A
p (k, k)

(18.G) Theorem 45. A Noetherian local ring A is regular iff the global

dimension of A is finite.

Proof. We have already proved the ’only-if’ part in Th.42. So suppose that

(A,m, k) is a Noetherian local ring with gl.dimA = n <∞. Put rankk m/m2 = s.

Then TorAs (k, k) ̸= 0 by Th.44, hence gl.dimA ⩾ s. On the other hand, it follows

from the formula proj.dimM + depthM = depthA of Auslander-Buchsbaum

(chapter 6 exercise 4.) and from Th.41 that gl.dimA = proj.dim k = depthA.

Therefore we get

dimA ⩽ rankkm/m
2 ⩽ gl.dimA = depthA ⩽ dimA.

Whence dimA = rankk m/m
2, which means A is regular.

Corollary 18.3. If A is a regular local ring then Ap is regular for any p ∈

Spec(A).
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Proof. Let M be an Ap-module. As an A-module it has a projective resolution

of finite length:

0 −→ Pn −→ . . . −→ P0 −→M −→ 0, n ⩽ gl.dimA.

By f , latness of Ap the sequence

0 −→ (Pn)p −→ . . . −→ (P0)p −→Mp =M −→ 0

is exact, and gives a projective resolution of M as Ap-module. Hence

gl.dimAp ⩽ gl.dimA <∞.

Definition. A ring A is called a regular ring if Ap is a regular local ring for

every maximal ideal p of A. In view of the above Corollary, this is equivalent to

saying that Ap is a regular local ring for every p ∈ Spec(A).

(18.H) Theorem 46. Let A be a regular local ring, and B a domain con-

taining A which is a finite A-module. Then B is flat (hence free) over A iff B is

Cohen-Macaulay, In particular, if B is regular then it is a free A-module.

Proof. Suppose B is flat over A. Then B is C.M. as A is so. (For, if P is a maximal

ideal of B then dimBP ⩽ dimA by (13.C), while any A-regular sequence is also

BP -regular by the flatness and hence depth BP ⩾ depthA.) Conversely, suppose

B is Cohen-Macaulay. Since A is normal the going-down theorem holds between

A and B by (5.E), so if m is the maximal ideal of A we have ht(mB) = ht(m) by

Th.19(3). By the unmixedness theorem in B, any regular system of parameters

of A is a B-regular sequence. Therefore the depth of B as A-module is equal

to dimA = depthA, and by the formula of Auslander-Buchsbaum (chapter 6

exercise 4.) we have proj.dimdA = 0, i.e. B is A-free.

148



Section 19: Unique Factorization

19 Unique Factorization

(19.A) Let A be an integral domain. An element a ̸= 0 of A is said to be

irreducible if it is a non-unit of A and if it is not a product of two non-units of

A. The ring A is called a unique factorization domain (UFD) if every non-

zero element is a product of a unit and of a finite number of irreducible elements

and if such a representation is unique up to order and units, A Noetherian domain

in which every irreducible element generates a prime ideal is UFD.

Theorem 47. A Noetherian domain A is UFD iff every prime ideal of height 1

is principal.

Proof. Suppose that the condition holds. Let π be an irreducible element and

let p be a minimal prime overideal of πA. Then ht(p) = 1 by Th. 18, so that p

is principal: p = aA. Then π = au with some u, which must be a unit by the

irreducibility of π. Thus πA = p. As we remarked above, this means that A is

UFD. The converse is left to the reader.

(19.B) Lemma 19.1. Let A be a Noetherian domain and let x ̸= 0 be an

element such that xA is prime. Put Ax = S−1A, where S = {1, x, x2, . . . }. Then

A is UFD iff Ax is so.

Proof is easy and is left to the reader.

Theorem 48 (Auslander-Buchsbaum, 1959). A regular local ring (A,m) is

UFD.

Proof. (Kaplansky) We use induction on dimA. If dimA = 0 then A is a field,

and if dimA = 1 then A is a principal ideal domain. Suppose dimA > 1. Let

x ∈ m −m2. Then xA is prime, hence we have only to prove that Ax is UFD.

Let p′ be a prime ideal of height 1 in Ax and put p = p′ ∩ A. Then p′ = pA.
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Since A is a regular local ring, the A-module p has a resolution of finite length

0 −→ Fn −→ Fn−1 −→ . . . −→ F0 −→ p −→ 0 (19.1)

with Fi finite and free. If P is a prime ideal of Ax, the local ring (Ax)P = A(A∩P )

is a UFD by induction assumption. Therefore p′(Ax)P is principal. So we have

proj.dim p′ = sup
P

(proj.dim p′(Ax)P ) = 0

by (18.B) Lemma 18.5, i.e. p′ is projective. Localizing 19.1 with respect to

S = {1, x, x, . . . }, we see

0 −→ F ′n −→ F ′n−1 −→ . . . −→ F ′0 −→ p′ −→ 0 (19.2)

is exact, where F ′i = Fi ⊗ Ax are finite and free over Ax. If we decompose 18.5

into short exact sequences

0 K ′0 F ′0 p′ 0

0 K ′1 F ′1 K ′0 0

. . .

0 F ′n F ′n−1 K ′n−1 0

(19.3)

then each K ′i must be projective, Hence the short exact sequences of 19.3 split.

It follows that ⊕
i even

F ′i ≃
⊕
i odd

F ′i ⊕ p

Thus, we have finite free Ax-modules F and G such that F ≃ G ⊕ p′. Put
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rank G = r. Since p′ is a non-zero ideal of the integral domain Ax we have

rank p′ = 1 and rank F = r+1. From this we can conclude that p′ is free (hence

principal), in the following way. Take the (r + 1)-ple exterior products of F and

G+ p′, respectively. Then

Ax =

r+1∧
F ≃

r+1∧
(G⊕ p′) = p′

because
∧i

p′ = 0 for all i > 1 (this last assertion can be seen by localization: if

M is a projective module of rank 1 over a ring B, then

( i∧
M

)
P
=

i∧
MP ≃

i∧
BP = 0

for i > 1 and for all P ∈ Spec(B), so
∧i

M = 0.)

Remarks to Chapter 7

1 As Th.35 suggests, regular local rings are similar to polynomial rings or

power series rings in many aspects. In particular, the inequality on the

dimension (14.I) can be extended to an arbitrary regular local ring. Namely,

in the non-local form one has the following theorem (due to Serre): Let A

be a regular ring, Pi (i = 1, 2) prime ideals of A and Q a minimal prime

over-ideal of P1 + P2. Then

ht(Q) ⩽ ht(P1) + ht(P2).

For the proof see [SC00, Ch.V, p.18.]∗

2 A normal domain A is called a Krull ring if

∗The original book cites [SG09],the original french version of this.
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(1) for any non-zero element x of A, the number of prime ideals of A of

height one containing x is finite, and

(2) A =
⋂

ht(p)=1

Ap.

Noetherian normal rings are Krull, but not conversely. If A is a Noetherian

domain, then the integral closure of A in the quotient field of A is a Krull

ring (Theorem of Y. Mori, cf. [Nag75]). On Krull rings, cf. [Bou98].

3 P. Samuel has made an extensive study on the subject of unique factoriza-

tion. Cf.[Sam64]

4 We did not discuss valuation theory. On this topic the following paper

contains important results in connection with algebraic geometry: [Abh56].

152



8. Flatness II

20 Local Criteria of Flatness

(20.A) In (18.B) Lemma 18.4 we proved the following.

Let (A,M) be a Noetherian local ring and M a finite A-

module. Then M is flat iff Tor1(M,A/M) = 0.

The condition that M is finite over A is too strong; in geometric application it

is often necessary to prove flatness of infinite modules. In this section we shall

learn several criteria of flatness, due to Bourbaki, which are very useful.

Let A be a ring, I an ideal of A and M an A-module. We say that M is

idealwise separated (i.s. for short) for I if, for each finitely generated ideal q

of A, the A-module q⊗AM is separated in the I-adic topology.

Example 20.1. Let B be a Noetherian A-algebra such that IB ⊆ rad(B), and

let M be a finite B-module. Then M is i.s. for I as an A-module: since q⊗AM

is a finite B-module and since the I-adic topology on q ⊗M is nothing but the

IB-adic topology, we can apply (11.D) Cor. 11.1.

Example 20.2. When A is a principal ideal domain, any I-adically separated

A-module M is i.s. for I.

Example 20.3. Let M be an I-adically separated flat A-module. Then M is

i.s. for I. In fact we have q⊗M ∼= qM ⊆M .
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(20.B) Put

gr(A) = grI(A) =

∞⊕
n=0

In/In+1,

gr(M) = grI(M) =

∞⊕
n=0

InM/In+1M,

A0 = gr0(A) = A/I and M0 = gr0(M) = M/IM . Then gr(M) is a graded

gr(A)-module. There are canonical epimorphisms

γn : I
n/In+1 ⊗A0

M0 −→ InM/In+1M

for n = 0, 1, 2, . . . . In other words, there is a degree-preserving epimorphism

γ : gr(A)⊗A0
M0 −→ gr(M).

(20.C) Theorem 49 (Local criteria of flatness). Let A be a ring, I an ideal

of A and M an A-module. Assume that either

(α) I is nilpotent, or

(β) A is Noetherian and M is ideal-wise separated for I.

Then the following are equivalent:

(1) M is A-flat;

(2) TorA1 (N,M) = 0 for all A0-modules N ;

(3) M0 is A0-flat, and I ⊗AM ∼= IM by the natural map, (note that, if I is a

maximal ideal, the flatness over A0 is trivial);

(3′) M0 is A0-flat and TorA1 (A0,M) = 0;

(4) M0 is A0-flat, and the canonical maps

γn : I
n/In+1 ⊗A0 M0 −→ InM/In+1M
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are isomorphisms;

(5) Mn =M/In+1M is flat over An = A/In+1, for each n ⩾ 0.

(The implications (1) =⇒ (2) ⇐⇒ (3) ⇐⇒ (3′) =⇒ (4) =⇒ (5) are true

without any assumption on M .)

Proof. We first prove the equivalence of (1) and (5) under the assumption (α) or

(β).

(1) =⇒ (5) just a change of base (cf.(3.C)).

(5) =⇒ (1) The nilpotent case (α) is trivial (A = An for some n.) In the case

(β), we prove the flatness of M by showing that, for every ideal q of A,

the canonical map j : q ⊗M −→ M is injective. Since q ⊗M is I-adically

separated it suffices to prove that ker(j) ⊆ In(q⊗M) for all n > 0. Fix an n.

Then there exists, by Artin-Rees, an integer k > n such that q ∩ Ik ⊆ Inq.

Consider the natural maps

q⊗M f−→ q/(Ik ∩ q)⊗M g−→ q/Inq = (q⊗M)/In(q⊗M).

Since Mk−1 is Ak−1-flat, the natural map

q/(Ik ∩ q)⊗AM = q/(Ik ∩ q)⊗Ak−1
Mk−1 −→Mk−1

is injective. Therefore ker(j) ⊆ ker(f), and a fortiori

ker(j) ⊆ ker(gf) = In(q⊗M).

Thus our assertion is proved.

Next we prove (1) =⇒ (2) ⇐⇒ (3) ⇐⇒ (3′) =⇒ (4) =⇒ (5) for

arbitrary M . (1) =⇒ (2) is trivial.
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(2) =⇒ (3) Let 0 −→ N ′ −→ N −→ N ′′ −→ 0 be an exact sequence of A0-

modules. Then

0 = TorA1 (N
′′,M) −→ N ′ ⊗AM = N ′ ⊗A0

M0 −→ N ⊗AM = N ⊗A0
M0

is exact, so M0 is A0-flat. From the exact sequence 0 −→ I −→ A −→

A0 −→ 0 we get 0 = TorA1 (A0,M) −→ I ⊗M −→ M exact, which proves

I ⊗M ∼= IM .

(3) =⇒ (3′) Immediate.

(3′) =⇒ (2) Let N be an A0-module and take an exact sequence of A0-modules

0 −→ R −→ F0 −→ N −→ 0 where F0 is A0-free. Then

TorA1 (F0,M) = 0 −→ TorA1 (N,M) −→ R⊗A0 M0 −→ F0 ⊗A0 M0

is exact and M0 is A0-flat, hence TorA1 (N,M) = 0.

(2) =⇒ (4) Consider the exact sequences

0 −→ In+1 −→ In −→ In/In+1

and the commutative diagrams

0 In+1 ⊗M In ⊗M In/In+1 ⊗M 0

0 In+1M InM InM/In+1M 0

αn+1 αn γn

where α1, α2, . . . are the natural epimorphisms, the first row is exact by

(2) and the second row is of course exact. Since α1 is injective by (3) we

see inductively that all αn are injective. Thus they are isomorphisms, and
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consequently the γn are also isomorphisms.

Before proving (4) =⇒ (5) we remark the following fact: if (2) holds then,

for any n ⩾ 0 and for any An-module N , we have TorA1 (N,M) = 0. In fact, if N

is an An-module and n > 0, then IN and N/IN are An−1-modules, so that the

assertion is proved by induction on n.

(4) =⇒ (5) We fix an integer n ⩾ 0 and we are going to prove that Mn is An-

flat. For n = 0 this is included in the assumptions, so we suppose n > 0.

Put In = I/In+1. Consider the commutative diagrams with exact rows:

Ii+1/In+1 ⊗M Ii/In+1 ⊗M Ii/Ii+1 ⊗M 0

0 Ii+1Mn = Ii+1M/In+1M IiMn = IiM/In+1M IiM/Ii+1M 0

αi+1 αi γi

for i = 1, 2, . . . , n. Since the γi are isomorphisms by assumption, and since

αn+1 = 0, we see by descending induction on i that all αi are isomorphisms.

In particular,

α1 : I/I
n+1 ⊗M = IAn ⊗An Mn

I−→Mn

is an isomorphism. Therefore the condition (3) (hence also (2)) holds for

An, IAn, and Mn. From this and from what we have just remarked it

follows that TorAn
1 (N,Mn) = 0 for all An-modules N , hence Mn is An-flat.

(20.D) Application 20.1 (Hartshorne). Let (B, n) be a Noetherian local ring

containing a field k and let x1, . . . , xn be a B-regular sequence in n. Then the sub-

ring k[x1, . . . , xn] of B is isomorphic to the polynomial ring A = k[X1, . . . , Xn],

and B is flat over it.
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Proof. Considering the k-algebra homomorphism ϕ : A −→ B such that ϕ(Xi) =

xi, we view B as an A-algebra. It suffices to prove B is flat over A. In fact, any

non-zero element y of A is A-regular, so under the assumption of flatness it is

also B-regular, hence ϕ(y) ̸= 0.

We apply the criterion (3′) of 49 to A, I =
∑n

1 XiA and M = B. The A-

module B is idealwise separated for I as IB ⊆ rad(B). Since A/I = k is a field we

have only to prove TorA1 (k,B) = 0. Now the Koszul complex K.(X1, . . . , Xn;A)

is a free resolution of the A-module k = A/I by Cor. to 43 So we have

TorAi (k,B) = Hi(K.(X1, . . . , Xn;A)⊗A B) = Hi(K(x1, . . . , xn;B)),

which is zero for i > 0 as x1, . . . , xn is a B-regular sequence.

(20.E) Application 20.2 (EGA III (10.2.4)[Gro63]). . Let (A,m, k) and

(B, n, k′) be Noetherian local rings and A −→ B a local homomorphism. Let

u : M −→ N be a homomorphism of finite B-modules, and assume that N is

A-flat. Then the following are equivalent:

(a) u is injective, and N/u(M) is A-flat;

(b) u : M ⊗A k −→ N ⊗A k is injective.

Proof. (a) =⇒ (b). Immediate. (b) =⇒ (a). Let x ∈ ker(u). Then x ⊗ 1 = 0

in M ⊗ k = M/mM , therefore x ∈ mM . We will show x ∈
⋂
nm

nM = (0) by

induction. Suppose x ∈ mnM , let {a1, . . . , ap} be a minimal basis of the ideal mn

and write x =
∑
aixi, xi ∈M . Then u(x) =

∑
aiu(xi) = 0 in N . By flatness of

N there exists cij ∈ A and x′j ∈ N such that
∑
aicij = 0 (for all j) and such that

u(xi) =
∑
j cijx

′
j (for all i). By the choice of a1, . . . , ap all the cij must belong

to m. Thus u(xi) ∈ mN , in other words u(xi⊗ 1) = 0. Since u is injective we get
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xi ∈ mM , hence x ∈ mn+1M . Thus u is injective and we get an exact sequence

0 −→Mu −→ N −→ N/u(M) −→ 0.

From this and from the hypotheses it follows that TorA1 (k, n/u(M)) = 0m which

shows the flatness of N/u(M) by 49.

(20.F) Corollary 20.1. Let A be a Noetherian ring, B a Noetherian A-

algebra, M a finite B-module, and f ∈ B. Suppose that (i) M is A-flat, and (ii)

for each maximal ideal P of B, the element f is M/(P ∩ A)M -regular. Then f

is M -regular and M/fM is A-flat.

Proof. If K denotes the kernel of M f−→ M , then K = 0 iff KP = 0 for all

maximal ideals P of B. Similarly, by an obvious extension of (3.J), M/fM is

A-flat iff MP /fMP is flat over AP∩A for all maximal P . The assumptions are

also stable under localization. So we may assume that (A,m, k) and (B, n, k′) are

Noetherian local rings and A −→ B is a local homomorphism. Then the assertion

follows from (20.E).

(20.G) Corollary 20.2. Let A be a Noetherian ring and B = A[X1, . . . , Xn]

a polynomial ring over A. Let f(X) ∈ B such that its coefficients generate over

A the unit ideal A. Then f is not a zero-divisor of B, and B/fB is A-flat.

(20.H) Application 20.3. Let A −→ B −→ C be local homomorphisms of

Noetherian local rings and M be a finite C-module. Suppose B is A-flat. Let k

denote the residue field of A. Then M is B-flat ⇐⇒ M is A-flat and M ⊗A k

is B ⊗A k-flat.

Proof.

=⇒ Trivial.
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⇐= Use the criterion (4) of Th.49.

For more applications of Th.49, cf. EGA III [Gro63].

21 Fibres of Flat Morphisms

(21.A) Let ϕ : A −→ B be a homomorphism of Noetherian rings; let P ∈

Spec(B), p = P ∩A and κ(p) = the residue field of Ap. Then the ‘fibre over p’ is

Spec(B⊗A κ(p)), and ‘the local ring of P on the fibre’ is BP /pBP = BP ⊗A κ(p)

(cf. (13.A)). Suppose B is flat over A. Then we have

dim(BP ) = dim(Ap) + dim(BP ⊗ κ(p))

by (13.B) Th.19.

(21.B) Theorem 50. Let (A,m, k) and (B, n, k′) be Noetherian local rings,

and let A −→ B a local homomorphism. Let M be a finite A-module and N be

a finite B-module which is A-flat. Then

depthB(M ⊗A N) = depthAM + depthB⊗k(N ⊗ k)

Proof. Induction on n = depthM + depth(N ⊗ k).

Case 1. n = 0. Then m ∈ AssA(M) and n ∈ AssB(N ⊗ k), and we know (Th.12)

that

AssB(M ⊗A N) =
⋃

p∈AssA(M)

AssB(N ⊗A/p)

Hence n ∈ AssB(M ⊗N), i.e. depthB(M ⊗N) = 0.

Case 2. depthM > 0. Easy and left to the reader.
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Case 3. depth(N ⊗ k) > 0. Take y ∈ n which is (N ⊗ k)-regular. By (20.E) y is

N -regular and N/yN is A-flat. From the exact sequence

0 −→ N
y−→ N −→ N/yN −→ 0

it then follows that

0 −→M ⊗N y−→M ⊗N −→M ⊗ (N/yN) −→ 0

is exact. Putting N = N/yN we get depthB(M⊗N)−1 = depthB(M⊗N),

and depthB⊗k(N ⊗ k) − 1 = depthB⊗k(N ⊗ k). From these and from the

induction hypothesis on N we get the desired formula.

(21.C) Corollary 21.1. Let A −→ B be as above and suppose that B is

A-flat. Then we have

depthB = depthA+ depthB ⊗ k

and

B is C.M. ⇐⇒ A and B ⊗ k is C.M..

Corollary 21.2. Let A and B be Noetherian rings and A −→ B be a faithfully

flat homomorphism. Let i be a positive integer. Then

(1) if B satisfies the condition (Si) of (17.I), so does A;

(2) if A satisfies (Si) and if all fibres satisfy (Si) (i.e. B⊗κ(p) satisfies (Si) for

every p ∈ Spec(A)) then B satisfies (Si).

Proof. (1) Given p ∈ Spec(A) which is minimal among prime ideals of B lying
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over p, and put k = κ(p). Then

dimBP ⊗ k = depthBP ⊗ k = 0,

whence depthBP = depthAp and dimBP = dimAp. Therefore

depthAp = dimBP ⩾ inf(i,dimBP ) = inf(i,dimAp).

(2) Given P ∈ Spec(B), put p = P ∩A and k = κ(p). Then

depthBP = depthAp + depth(BP ⊗ k)

⩾ inf(i,dimAp) + inf(i,dim(BP ⊗ k))

⩾ inf(i,dimAp + dim(BP ⊗ k))

= dim(i,dimBP ).

(21.D) Theorem 51. Let (A,m, k) and (B, n, k′) be Noetherian local rings

and ϕ : A −→ B a local homomorphism. Then:

(i) if B is flat over A and regular, then A is regular.

(ii) if dimB = dimA + dimB ⊗ k holds, and if B ⊗ k = B/mB are regular,

then B is flat over A and regular.

Proof. (i) Since a flat base change commutes with homology, we have

TorAq (k, k)⊗A B = TorBq (k ⊗B, k ⊗B) = 0

for q > dimB. Since B is faithfully flat over A this implies TorAq (k, k) = 0,

hence gl.dimA is finite, i.e. A is regular.
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(ii) If {x1, . . . , xr} is a regular system of parameters of A and if y1, . . . , ys ∈ n is

such that their images form a regular system of parameters of B/mB, then

{ϕ(x1), . . . , ϕ(xr), y1, . . . , ys} generates n, and r+s = dimB by hypothesis.

Thus B is regular. To prove flatness it suffices, by the criterion (3’) of

Th.49, to prove TorA1 (k,B) = 0. The Koszul complex K•(x1, . . . , xr;A) is

a free resolution of the A-module k, hence we have

TorA1 (k,B) = H1(K•(x;A)⊗A B) = H1(K•(x;B)).

Since the sequence ϕ(x1), . . . , ϕ(xr) is a part of a regular system of param-

eters B it is a B-regular sequence. Hence we have H1(K•(x;B)) = 0 for all

i > 0, and we are done.

Remark 21.1. Even if B is regular and A-flat, the local ring B⊗k on the fibre

is not necessarily regular. Example: put k = a field,

k[x, y] = k[X,Y ]/((X − 1)2 + Y 2 − 1), B = k[x, y](x,y), A = k[x](x) and m = xA.

Then B ⊗ (A/m) ≃ k[Y ]/(Y 2) has nilpotent elements.

(21.E) Corollary 21.3. Let A and B be Noetherian rings and A −→ B be

a faithfully flat homomorphism. Then:

i) if B satisfies (Ri), so does A;

ii) if A and all fibres B⊗κ(p) (p ∈ Spec(A)) satisfy (Ri), then B satisfies (Ri);

iii) if B is normal (resp. C.M., resp. reduced), so is A. Conversely, if A and

all fibres are normal (resp. ...) then B is normal (resp. ...).
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Proof. i) and ii) are immediate from Th.51. As for iii), it is enough to recall

(17.I) that normal ⇐⇒ (R1) + (S2), C.M. ⇐⇒ all (Si), and reduced ⇐⇒

(R0) + (S1).

22 Theorems of Generic Flatness

(22.A) Lemma 22.1. Let A be a Noetherian domain, B an A-algebra of

finite type and M a finite B-module. Then there exists 0 ̸= f ∈ A such that

Mf = M ⊗A Af is Af -free (where Af is the localization of A with respect to{
1, f, f2, . . .

}
).

Proof. We may suppose that M ̸= 0. Then, by (7.E) Th. 10 there exists a

chain of submodules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M with Mi/Mi−1 ≃ B/pi,

pi ∈ Spec(B). Since an extension of free modules is again free, it suffices to prove

the lemma for the case that B is a domain and M = B, If the canonical map

A −→ B has a non-trivial kernel then Bf = 0 for any non-zero element f of the

kernel, and our assertion is trivial. So we may assume that A is a subring of the

domain B. Let K be the quotient field of A. Then B ⊗K = BK is a domain

(contained in the quotient field of B) and is finitely generated as an algebra over

K. Hence dimBK = tr.degK BK <∞. Put n = dimBK. We use induction on

n. By the normalization theorem ((14.G)), the ring BK contains n algebraically

independent elements y1, . . . , yn such that BK is integral over K[y]. We may

assume that yi ∈ B. Since B is finitely generated over A there exists 0 ̸= g ∈ A

such that Bg = B · Ag is integral over Ag[y]. Replacing A and B by Ag and

Bg respectively, and putting C = A[y], we have that B is a finite module over

the polynomial ring C. Let b1, . . . , bn be a maximal set of linearly independent

elements over C in B. Then we have an exact sequence

0 −→ Cm −→ B −→ B′ −→ 0
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where B′ is a finitely generated torsion C-module. Since (C/p) ⊗K = CK/pK

has a smaller dimension than n = dimCK for any non-zero prime ideal p of C,

there exists by the induction assumption a non-zero element f of A such that

B′f is Af -free.

An important special case of the lemma is the following:

Theorem 52. Let A be a Noetherian domain and B an A-algebra of finite

type. Suppose that the canonical map ϕ : A −→ B is injective. Then there exists

0 ̸= f ∈ A such that Bf is Af -free and ̸= 0. Thus, the map

ϕ∗ : Spec(B) −→ Spec(A) is faithfully flat over the non-empty open set

D(f) = Spec(A)− V (f) of Spec(A), that is, (ϕ∗)−1(D(f)) −→ D(f) is faithfully

flat.

(22.B) Lemma 22.2. Let B be a Noetherian ring and let U be a subset of

Spec(B). Then U is open iff the following conditions are satisfied.

(1) U is stable under generalization,

(2) if P ∈ U then U contains a non-empty open set of the irreducible closed

set V (P ).

Proof. Assume the conditions, and let F be the complement of U and

Pi (1 ⩽ i ⩽ s) be the generic points of the irreducible components of the closure

F of F . Then (2) implies that Pi cannot lie in U . Hence Pi ∈ F , and so F = F

by (1).

Theorem 53. Let A be a Noetherian ring, B an A-algebra of finite type and

M a finite B-module, Put U = {P ∈ Spec(B) |MP is flat over A}. Then U is

open in Spec(B).

Remark 22.1. The set U may be empty.
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Remark 22.2. It follows from (6.I) Th. 8 that a flat morphism of finite type

between Noetherian preschemes is an open map. Therefore the image of U in

Spec(A) is open in Spec(A).

Proof. Let P ⊃ Q be prime ideals of B with Mp flat over A. For any A-module

N we have N ⊗AMQ = (N ⊗AMQ)⊗B BQ therefore MQ is flat over A and the

condition (1) of Lemma 22.2 is verified for U . As for the condition (2), let P ∈ U

and put p = P ∩ A and A = A/p. Let Q ∈ V (P ). Then pBQ ⊆ rad(BQ), so we

can apply the local criterion of flatness that MQ is flat over A iff MQ/pMQ is flat

over A and TorA1 (MQ, A) = 0. Applying Lemma 22.1 to (A,B/pB,M/pM) we

see that there exists a neighborhood of P in V (pB) such that MQ/pMQ is flat

over A for each point Q in it. On the other hand, since

0 = TorA1 (MP , A) = TorA1 (M,A)⊗B BP

and since TorA1 (M,A) is a finite B-module, there exists a neighbourhood of P in

Spec(B) in which TorA1 (MQ, A) = 0. Therefore there exists a non-empty open

set of V (P ) in which MQ is A-flat for all points Q, in other words the set U in

question contains a non-empty open set of V (P ). Thus the theorem is proved.

(22.C) Let P be a property on Noetherian local rings and let P (A) denote the

set {p ∈ Spec(A) | Ap has the property P}. Consider the following statement.

(NC) If A is a Noetherian ring and if, for every p ∈ Spec(A), P (A/p) contains a

non-empty open set of Spec(A/p), then P (A) is open in Spec(A).

While Lemma 22.2 of (22.B) was topological, (NC) is ring-theoretical and its

validity of course depends on P . Both are inventions of Nagata (NC means

Nagata criterion), who proved (NC) for P = regular (cf. p.245). As an example

we prove
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Proposition. (NC) is valid for P = CM.

Proof. CM(A) is stable under generalization. We will prove (2) of Lemma 22.2.

If P ∈ CM(A) and htP = n, we can take an AP -regular sequence y1, . . . , yn

from P . Replacing A by Aa, with suitable a ∈ A − P , we may assume that

y1, . . . , yn is an A-regular sequence and I =
∑
yiA is a P -primary ideal. Then

for Q ∈ V (P ), AQ is CM iff AQ/IAQ is so. Hence we can replace A by A/I

and assume that (0) is P -primary. So we have P r = 0 for some r > 0. Since

P i/P i+1 is a finite A/P -module for each 0 ⩽ i < r, we may assume (replacing A

by some Aa) that the P i/P i+1 are free A/P -modules. Then it is easy to see that

a sequence x1, . . . , xn ∈ A is A-regular if it is A/P -regular. By the hypothesis of

(NC) we may assume further that A/P is CM. Then

depthAQ = depthAQ/PAQ = dimAQ/PAQ = dimAQ

hence Q ∈ CM(A).

Exercise. If A is a homomorphic image of a CM ring, then CM(A) is open.
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9. Completion

23 Completion

(23.A) Let A be a ring, and let F be a set of ideals of A such that for any two

ideals I1, I2 ∈ F there exists I3 ∈ F contained in I1 ∩ I2. Then one can define a

topology onA by taking {x+I | I ∈ F} as a fundamental system of neighborhoods

of x for each x ∈ A. One sees immediately that in this topology the addition,

the multiplication and the map x 7→ −x are continuous; in other words A is a

topological ring. A topology on a ring obtained in this matter is called a linear

topology. When M is an A-module one defined a linear topology on M in the

same way, the only difference being that ‘ideals’ are replaced by ‘submodules’.

Let M = {Mλ} be a set of sub-modules which defines the topology. Then M is

separated (i.e. Hausdorff) iff
⋂
λMλ = (0). A submodule N of M is closed in M

iff
⋂
(Mλ +N) = N , the left hand side being the closure of N .

(23.B) Let A be a ring, M an A-module linearly topologized by a set of sub-

modules {Mλ} and N a submodule of M . Let Mλ be the image of Mλ in M/N .

Then the linear topology on M/N defined by {Mλ} is nothing but the quotient

topology of the topology on M , as one can easily check. When we say “the quo-

tient module M/N ”, we shall always mean the module M/N with the quotient

topology. It is separated iff N is closed.
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(23.C) For simplicity, we shall consider in the following only such linear topolo-

gies that are defined by a countable set of submodules. This is equivalent to saying

that the topology satisfies the first axiom of countability. If a linear topology on

M is defined by {M1,M2, . . . }, then the set {M1,M1 ∩M2,M1 ∩M2 ∩M3, . . . }

defines the same topology. Therefore we can assume without loss of generality

that M1 ⊇ M2 ⊇ M3 ⊇ . . . (in other words, the topology defined by a filtration

of M , cf. p.78). A sequence (xn) of elements of M is a Cauchy sequence if, for

every open submodule N of M , there exists an integer n0 such that

xn − xM ∈ N for all n,m > n0. (23.*)

Since N is a submodule, the condition 23.* can also be written as

xn+1−xn ∈ N for all n > n0. Therefore a sequence (xn) is Cauchy iff xn+1−xn
converges to zero when n tends to infinity. A continuous homomorphism of

linearly topologized modules maps Cauchy sequences into Cauchy sequences. A

topological A-module M is said to be complete if every Cauchy sequence in

M has a limit in M . Note that the limit of a Cauchy sequence is not uniquely

determined if M is not separated.

(23.D) Proposition 23.1. Let A be a ring and let M be an A-module with

a linear topology defined by a filtration M1 ⊇ M2 ⊇ · · · ; let N be a submodule

of M . If M is complete, then the quotient module M/N is also complete.

Proof. Let (xn) be a Cauchy sequence in M/N . For each xn choose a pre-image

xn in M . We have xN+1 − xn ∈M i(n) with i(n)→∞, therefore we can write

xn+1 − xn = yn + zn (yn ∈Mi(n), zn ∈ N),

and the sequence (yn) converges to zero in M . Let s ∈ M be a limit of the

Cauchy sequence x1, x1 + y1, x1 + y1 + y2, . . . ; then its image s in M/N is a limit
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of the sequence (xn). Thus M/N is complete.

(23.E) Let A be a ring, I an ideal and M an A-module. The set of submodules

{InM | n = 1, 2, . . . } defines the I-adic topology of M . We also say that the

topology is adic and that I is an ideal of definition for the topology. Clearly,

any ideal J such that In ⊆ J and Jm ⊆ I for some n,m > 0 is an ideal of

definition for the same topology. When A and M are I-adically topologized, the

map (a, x) 7→ ax (a ∈ A, x ∈M) is a continuous map from A×M to M . When

A is a semi-local ring with rad(A) = m then it is viewed as an m-adic topological

ring, unless the contrary is explicitly stated.

(23.F) Let k be a ring, and let A and B be k-algebras with linear topology

defined by M = {In} and N = {Jm} respectively. Put C = A ⊗k B. Then a

linear topology can be defined on C by means of the set of ideals {InC+JmC}n,m.

This is called the topology of tensor product. If A has the I-adic topology and

B the J-adic topology, where I (resp. J) is an ideal of A (resp. B), then the

topology of tensor product on C is the (IC + JC)-adic topology, for we have

(IC + JC)n+m−1 ⊆ InC + JmC and InC + JnC ⊆ (IC + JC)n

(23.G) Proposition 23.2. Let A be a ring and I an ideal of A. Suppose

that A is complete and separated for the I-adic topology. Then any element of

the form u + x, where u is a unit in A and x is an element of I, is a unit in A.

The ideal I is contained in the Jacobson radical of A.

Proof. We have u + x = u(1 − y), where y = −u−1x ∈ I. The infinite series

1 + y + y2 + · · · converges in A, and we have (1− y)(1 + y + y2 + · · · ) = 1 since

A is separated. Thus 1− y (hence also u+ x) is a unit. The second assertion is

easy.
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(23.H) Let A be a ring and M a linearly topologized A-module. The com-

pletion of M is, by definition, an A-module M̂ with a complete separated linear

topology, together with a continuous homomorphism ϕ : M −→ M̂ , having the

following universal mapping property: for any A-module M ′ with a complete

separated linear topology and for any continuous homomorphism f :M −→M ′,

there exists a unique continuous homomorphism f̂ : M̂ −→M ′ satisfying f̂ϕ = f .

The completion of M exists, and is unique up to isomorphisms. In fact the

uniqueness is clear from the definition, while the existence can be proved by

several methods. First of all, note that, if K is the intersection of all open sub-

modules of M , the canonical map ϕ :M −→ M̂ must factor through Mh =M/K

(which is called the Hausdorffization of M) and hence M and Mh have the same

completion.

(i) Take the completion of the uniform space Mh and call it M̂ . The topo-

logical space M̂ becomes a linearly topologized A-module by extending the

A-module structure of Mh to M̂ by uniform continuity. The universal

mapping property of M̂ follows immediately, continuous homomorphisms

f :M −→M ′ being uniformly continuous.

(ii) Let W be the set of Cauchy sequences in M , and make it an A-module by

defining the addition and the scalar multiplication termwise. Then the set

W0 of the null sequences (i.e. the sequences which have zero as a limit)

is a submodule of W . Put M̂ = W/W0, and define the canonical map

ϕ : M −→ M̂ in the obvious way. For any open submodule N of M , let

N̂ denote the image in M̂ of the set of Cauchy sequences in N . Then N̂ is

a submodule of M̂ . The set of all such N̂ defines a linear topology in M̂

and N̂ is the closure of ϕ(N) in this topology. It is easy to see that M̂ is

complete and separated and has the universal mapping property.

(iii) Denote by M̂ the inverse limit of the discrete A-modules M/Mn, where
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(Mn) is a filtration of M defining the topology, and put the inverse limit

topology (i.e. the topology as a subspace of the product space
∏
M/Mn)

on it. Let ϕ : M −→ M̂ be defined in the obvious way, and let M̂n denote

the closure of ϕ(Mn) in M̂ . Then M̂n consists of those vectors of M̂ of

which the first n coordinates are zero, and the set of submodules

{M̂n | n = 1, 2, . . . } defines a complete separated linear topology on M̂ .

Let M ′ be an A-module with a complete separated linear topology and f :

M −→M ′ a continuous homomorphism. For any element x̂ = (x1, x2, . . . )

of M̂ (xn ∈M/Mn), choose a pre-image xn of xn in M for each n. Then

the sequence x1, x2, . . . is a Cauchy sequence in M , hence the image se-

quence f(x1), f(x2), . . . is a Cauchy sequence in M ′. Therefore lim
n→∞

f(xn)

exists in M ′, and this limit is easily seen to be independent of the choice of

the pre-images xn. Putting f̂(x̂) = lim f(xn) we obtain f̂ : M̂ −→ M ′ as

wanted.

These constructions show that ϕ :M −→ M̂ is injective if M is separated.

(23.I) If f : M −→ N is a continuous homomorphism of linearly topologized

A-modules M and N , and if ϕM : M −→ M̂ and ϕN : N −→ N̂ are the canoni-

cal homomorphisms into the completions, then there exists a unique continuous

homomorphism f̂ : M̂ −→ N̂ with ϕNf = f̂ϕM ; this is a formal consequence of

the definition. The map f̂ is called the completion of f . Taking completions is,

therefore, an additive covariant functor.

Proposition 23.3. Let M be a linearly topologized A-module, N a submodule

and ϕ :M −→M ′ the canonical map to the completion. Then

(i) the completion of N (for the topology induced from M) is the closure ϕ(N)

of ϕ(N) in M̂ , and
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(ii) the quotient module M̂/ϕ(N) is the completion of the quotient module

M/N .

Proof. (i) This follows, e.g., from the second construction of completion in

(23.H).

(ii) The quotient module M̂/ϕ(N) is separated by (23.B), and complete by

(23.D). The canonical map M −→ M̂ induces a map M/N −→ M̂/ϕ(N),

and the universal property of this map is easily proved by a formal argu-

ment.

Remark 23.1. Taking N =M we see that ϕ(M) is dense in M̂ .

Remark 23.2. If N is an open submodule of M then M/N is discrete, hence

complete and separated. Thus M/N ≃ M̂/ϕ(N).

Theorem 54. Let A be a Noetherian ring and I an ideal. Let

0 −→ L −→M −→ N −→ 0

be an exact sequence of finite A-modules, and let̂denote the I-adic completion.

Then the sequence

0 −→ L̂ −→ M̂ −→ N̂ −→ 0

is also exact.

Proof. By Artin-Rees theorem, the I-adic topology of L coincides with the topol-

ogy induced by the I-adic topology of M . Therefore the assertion follows from

the preceding proposition.

(23.J) Let A be a linearly topologized ring. Then the completion Â of A is not

only an A-module but also a ring, the multiplication in A being extended to Â
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by continuity. If ϕ : A −→ Â is the canonical map and I is an ideal of A, then

the closure ϕ(I) of ϕ(I) in Â is an ideal of Â. Thus Â is a linearly topologized

ring. Example: letk be a ring. Put A = k[X1, . . . , Xn] and I =
∑n

1 AXi. Then

the ring of formal power series k[[X1, . . . , Xn]] is the I-adic completion of A.

(23.K) Let A be a ring, I a finitely generated ideal of A, Â the I-adic com-

pletion of A and ϕ : A −→ Â the canonical map. Then for any element

x̂ in Â there exists a Cauchy sequence (xn) = (x0, x1, . . . ) in A such that

x̂ = limϕ(xn). Replacing (xn) by a suitable subsequence we may assume that

xn+1− xn ∈ In (n = 0, 1, 2 . . . ). Let a1, . . . , am generate I, and put a′i = ϕ(ai).

Then xn+1 − xn is a homogeneous polynomial of degree n in a1, . . . , am. Thus:

x̂ = ϕ(x0) +

∞∑
n=0

ϕ(xn+1 − xn)

has a power series expansion in a′1, . . . , a
′
m with coefficients in ϕ(A). Consider

the formal power series ring A[[X]] = A[[X1, . . . , Xm]]; let u(X) ∈ A[[X]], and let

u(X) denote the power series obtained by applying ϕ to the coefficients of u(X).

Since Â is complete and separated, the series u(a′) = u(a′1, . . . , a
′
m) converges

in Â. The map u(X) 7→ u(a′) defines a surjective homomorphism A[[X]] −→

Â. Thus Â ≃ A[[X]]/J with some ideal J of A[[X]]. As a consequence, Â is

Noetherian if A is so.

(23.L) Let A be a ring, I an ideal and M an A-module. Let ∗ denote the I-adic

completion. Then M̂ is an Â-module in a natural way, therefore there exists a

canonical map M ⊗A Â −→ M̂ .

Theorem 55. When A is Noetherian and M is finite over A, the map

M ⊗a Â −→ M̂ is an isomorphism.
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Proof. Take an exact sequence of A-modules Ap f−→ Aq
g−→M −→ 0. Since the

completion commutes with direct sum, we get a commutative diagram

Ap ⊗ Â Aq ⊗ Â M ⊗ Â 0

(Â)p (Â)q M̂ 0

v1 v2 v3

f̂ ĝ

where the vertical arrows v1 are the canonical maps and the horizontal se-

quences are exact by the right-exactness of tensor product and by Th.54. Since

v1 and v2 are isomorphisms v3 is also an isomorphism by the Five-Lemma.

Corollary 23.1. Let A be a Noetherian ring and I an ideal of A. Then the

I-adic completion Â of A is flat over A.

Corollary 23.2. Let A and I be as above and assume that A is I-adically

complete and separated. Let M be a finite A-module. Then M is complete and

separated, and any submodule N of M is closed in M , for the I-adic topology.

Proof. Since A = Â we have M̂ = M ⊗ Â = M , i.e. M is its own completion.

Similarly, a submodule N is complete in the I-adic topology, which coincides

with the induced topology by Artin-Rees. Since a complete subspace of M is

necessarily closed, we are done.

Corollary 23.3. Let A be a Noetherian ring, M a finite A-module, N a sub-

module of M and I an ideal of A. Let φ :M −→ M̂ be the canonical map to the

I-adic completion M̂ . Then we have N̂ ≃ φ(N) = φ(N)Â, where φ(N) is the

closure of φ(N) in M̂ .

Proof. Immediate from Th.54 and Th.55.

Corollary 23.4. Let A and I be as in Cor.23.3. Then the toplogy of the I-adic

completion Â of A is the IÂ-adic topology.
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Proof. By construction, the topology of Â is defined by the ideals (ϕ(In) in Â)

= InÂ = (IÂ)n.

Corollary 23.5. Let A, I and Â be as above and suppose that I =
m∑
1
aiA.

Then A ≃ A[[X1, . . . , Xm]]/(X1 − a1, . . . , Xm − am).

Proof. Put B = A[X1, . . . , Xm], I ′ =
∑
XiB and J =

∑
(Xi − ai)B. Then

B/J ≃ A, and the I ′-adic topology on the B-algebra B/J corresponds to the

I-adic topology on A. Denoting the I ′-adic completion by .̂ . ., we thus obtain:

Â ≃ B̂/J = B̂/Ĵ = B̂/JB̂ = A[[X1, . . . , Xm]]//(X1 − a1, . . . , Xm − am)

24 Zariski Rings

(24.A) Definition. A Zariski ring is a Noetherian ring equipped with an

adic topology, such that every ideal is closed in it.

Theorem 56. Let A be a Noetherian ring with an adic topology and let I be

an ideal of definition. Then the following are equivalent.

(1) A is a Zariski ring;

(2) I ⊆ rad(A);

(3) every finite A-module M is separated in the I-adic topology;

(4) in every finite A-module M , every submodule is closed in the I-adic topol-

ogy;

(5) the completion Â of A is faithfully flat over A.

Proof.
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(1) =⇒ (2) Suppose that a maximal ideal m does not contain I. Then Im ̸⊆ m

for all n > 0, so that m+ In = A and
⋂
n(m+ In) = A ̸= m. Therefore m

is not closed, contradiction.

(2) =⇒ (3) By the intersection theorem (11.D).

(3) =⇒ (4) If N is a submodule of M , them M/N is separated by assumption

so that N is closed in M .

(4) =⇒ (1) Trivial.

(2) =⇒ (5) Let m be a maximal ideal of A. Then m ⊇ I, hence m is open in

A and so Â/mÂ ≃ A/m. Thus mÂ ̸= Â. Since Â is flat over A by (23.L)

Cor.23.1, this implies by (4.A) Th.2 that Â is f.f. over A.

(5) =⇒ (2) If m is a maximal ideal of A then there exists, by assumption, a

maximal ideal m′ of Â lying over m. Since IÂ ⊆ m′ by (23.G), we have

I ⊆ IÂ ∩A ⊆ m′ ∩A = m.

Corollary 24.1. Let A be a Zariski ring and Â its completion. The (1) A is

a subring of Â, and (2) the map m 7→ mÂ is a bijection from the set Ω(A) of all

maximal ideals in A to Ω(Â), and we have A/m ≃ Â/mÂ and mÂ ∩A = m.

(24.B) A Noetherian semi-local ring is a Zariski ring. A Noetherian ring with

an adic topology which is complete and separated is also a Zariski ring.

Let A be an arbitrary Noetherian ring and I a proper ideal of A. Put

S = 1 + I = {1 + x | x ∈ I}, A′ = S−1A and I ′ = S−1I.
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Then all elements of 1 + I ′ are invertible in A′, and so I ′ ⊆ rad(A′). We equip

A with the I-adic topology and A′ with the I ′-adic (or what is the same, the

I-adic) topology. Then the canonical map ψ : A −→ A′ is continuous, and has

the universal mapping property for continuous homomorphisms from A to Zariski

rings. In fact, if f : A −→ B is such a homomorphism and if J is an ideal of

definition for B, then f(In) ⊆ J ⊆ rad(B) for some n, hence f(I) ⊆ rad(B)

and the elements of f(S) are invertible in B. Therefore f factors through A′. In

particular, the canonical map A −→ Â of A into the completion Â of A factors

through A′, and it follows immediately that Â is also the completion of A′.

For a prime ideal p of A we have p ∩ S = ∅ iff p+ I ̸= (1), i.e. iff

V (p) ∩ V (I) ̸= ∅. The localization A −→ A′ has, geometrically, the effect of

considering only the “sub–varieties” of Spec(A) which intersect the closed set

V (I). Since Â is faithfully flat over A′, the set {p ∈ Spec(A) | p + I ̸= (1)} (≃

Spec(A)) is also the image of Spec(Â) in Spec(A). The set of the maximal ideals

of Â (resp. the prime ideals of Â containing IÂ) is in a natural 1-1 correspondence

with the set of maximal ideals (resp. prime ideals) of A containing I.

(24.C) Let A be a semi-local ring and m1, . . . ,mr be its maximal ideals. Put

Ai = Ami , m′i = miAi (i = 1, 2, . . . , r), and

m = rad(A) = m1 . . .mr.

Then

mr =
∏

mni =
⋂

mni ,

hence

A/mn = A/mn1 × · · · ×A/mnr

179



Chapter 9: Completion

by (1.C). Moreover, A/mni = Ai/m
′n
i as A/mni is a local ring. Therefore

Â = lim←−A/m
n = Â1 × · · · × Âr.

(24.D) Let (A,m) be a Noetherian local ring and Â its completion. Then

A/mn ≃ Â/mnÂ for all n > 0, hence mn/mn+1 ≃ mnÂ/mn+1Â and

gr(A) ≃ gr(Â). It follows that i) dimA = dim Â, and ii) A is regular iff Â is so.

Next, let A be an arbitrary Noetherian ring, I an ideal of A and Â the I-adic

completion of A. Let p be a prime ideal of A containing I. Since p is open in

A, the ideal pÂ = p̂ is open and prime in Â and A/pn ≃ Â/(p̂)n for all n > 0.

Localizing both sides with respect to p/pn and p̂/(p̂)n respectively, we get

Ap/p
nAp ≃ Âp̂/p̂

nÂp

Therefore Âp = lim←−Ap/p
nAp ≃ (̂Âp̂). Two local rings are said to be ana-

lytically isomorphic if their completions are isomorphic. Thus, if p and p̂ are

corresponding open prime ideals of A and Â, then the local rings Ap and Âp̂ are

analytically isomorphic. Since all maximal ideals of Â are open, it follows that

i’) dim Â = supp⊇I dimAp,

ii’) if Ap is regular for every prime ideal p containing I, then Â is regular.

As a corollary of ii’) we have the following

Proposition 24.1. Let A be a regular Noetherian ring. Then the ring of formal

power series A[[X1, . . . , Xm]] is also regular.

Proof. A[X] = A[[X1, . . . , Xm]] is a regular ring by (17.J), and A[[X]] is the∑
XiA[X]-adic completion of A[X].

(24.E) Proposition 24.2. Let A be a Zariski ring and Â its completion.

Then:
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i) If a is an ideal of A and if aÂ is principal, then a is itself principal.

ii) If Â is normal, then A is also normal.

Proof. i) Suppose aÂ = αÂ (α ∈ Â). Then α =
∑
αiξi with ai ∈ a, ξi ∈ Â.

Put Î = IÂ, where I is an ideal of definition of A. By Artin-Rees we have

αÂ ∩ În ⊆ ÎαÂ for n sufficiently large. Take xi ∈ A such that xi ≡ ξi (În)

and put a =
∑
aixi. Then a ≡ α (În), and a ∈ a ⊆ αÂ. Therefore

α = a+ β with β ∈ αÂ ∩ În ⊆ ÎαÂ, hence αÂ ⊆ aÂ+ ÎαÂ, and by NAK

we get αÂ = aÂ. Then

a = αÂ ∩A = aÂ ∩A = aA.

ii) is a consequence of faithful flatness was already proved in (21.E) (iii).

We shall see in Part II that Noetherian local (or semi-local) rings have many

good properties.
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10. Derivations

25 Extension of Ring by a Module

(25.A) Let C be a ring and N an ideal of C with N2 = (0); put C ′ = C/N .

Then the C-module N can be viewed as a C ′-module. Conversely, suppose that

we are given a ring C ′ and a C ′-module N . By an extension of C ′ by N we

mean a triple (C, ε, i) of a ring C, a surjective ring homomorphism ε : C −→ C ′

and a map i : N −→ C, such that:

(i) Ker(ε) is an ideal whose square is zero (hence a structure of C ′-module on

Ker(ε)).

(ii) The map i is an isomorphism from N onto Ker(ε) as C ′-modules.

Therefore, identifying N with i(N), we get C ′ ∼= C/N , N2 = (0). An extension

is often represented by the exact sequence

0 −→ N
i−→ C

ε−→ C ′ −→ 0.

Two extensions (C, ε, i) and (C1, ε1, i1) are said to be isomorphic if there exists

a ring homomorphism f : C −→ C1 such that ε1f = ε and fi = i1. Such f is

necessarily unique.
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(25.B) Given C ′ and N , we can always construct an expression as follows: take

the additive group C ′⊕N , and define a multiplication in this set by the formula

(a, x)(b, y) = (ab, ay + bx) (a, b ∈ C ′, x, y ∈ N)

This is bilinear and associative, and has (1, 0) as the unit element. Hence we

get a ring structure on C ′ ⊕N . We denote this ring by C ′ ∗N . By the obvious

definitions ε(a, x) = a and i(x) = (0, x) the ring C ′ ∗N becomes an extensions of

C ′ by N , which is called the trivial extension.

An extension (C, ε, i) of C ′ by N is isomorphic to C ′ ∗ N iff there exists a

section, i.e., a ring homomorphism s : C ′ −→ C satisfying εs = idC′ . In this

case, the extension (C, ε, i) is also said to be trivial, or to be split.

(25.C) Let us briefly mention the Hochschild extensions. An extension (C, ε, i)

is called a Hochschild extension if the exact sequence of additive groups

0 −→ N
i−→ C

ε−→ C ′ −→ 0

splits, i.e. if there exists an additive map s : C ′ −→ C such that εs = idC′ . Then

C is isomorphic to C ′ ⊕ N as additive groups, while the multiplication is given

by

(a, x)(b, y) = (ab, ay + bx+ f(a, b)) (a, b ∈ C ′, x, y ∈ N)

where the map f : C ′×C ′ −→ N is symmetric, bilinear, and satisfies the cocycle

condition (corresponding to the associativity in C)

af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c = 0.
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Conversely, any such function f(a, b) gives rise to a Hochschild extension. More-

over, the extension is trivial iff there exists a function g : C ′ −→ N satisfying

f(a, b) = ag(b)− g(ab) + g(a)b

(25.D) Let A be a ring, and let

0 −→ N
i−→ C

ε−→ C ′ −→ 0

be an extension of a ring C ′ by a C ′-module N such that C and C ′ are A-algebras

and ε is a homomorphism of A-algebras. Then C is called an extension of the

A-algebra C ′ by N . The extension is said to be A-trivial, or to split over A, if

there exists a homomorphism of A-algebras s : C ′ −→ C with εs = idC′ .

(25.E) Let

E : 0 −→M
i−→ C

ε−→ C ′ −→ 0

be an extension and let g : M −→ N be a homomorphism of C ′-modules. Then

there exists an extension

g∗(E) : 0 −→ N −→ D −→ C ′ −→ 0

of C ′ by N and a ring homomorphism f : C −→ D such that

0 M C C ′ 0

0 N D C ′ 0

g f id

is commutative. Such an extension g∗(E) is unique up to isomorphisms. The

ring D is obtained as follows: we view the C ′-module N as a C-module and form
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the trivial extension C ∗N . Then

M ′ = {(x,−g(x)) : x ∈M}

is an ideal of C ∗N , and we put D = (C ∗N)/M ′. Thus, as an additive group,

D is the amalgamated sum of C and N with respect to M . The uniqueness of

g∗(E) follows from this construction.

Similarly, if h : C ′′ −→ C ′ is a ring homomorphism, then there exists an

extension

h∗(E) : 0 −→M −→ E −→ C ′′ −→ 0

of C ′′ by M and a ring homomorphism f : E −→ C such that the diagram

0 M E C ′′ 0

0 M D C ′ 0

id f h

is commutative. Moreover, such h∗(E) is unique up to isomorphisms.

26 Derivations and Differentials

(26.A) Let A be a ring and M an A-module. A derivation D of A into M is

defined as usual: it is an additive map from A to M satisfying

D(ab) = aDb + bDa. The set of all derivations of A into M is denoted by

Der(A,M); it is an A-module in the natural way.

For any derivation D, D−1(0) is a subring of A (in particular, D(1) = 0: this

follows from 12 = 1.) If A is a field, then D−1(0) is a subfield.

Let k be a ring and A a k-algebra. Then derivations A −→ M which vanish

on k · 1A are called derivations over k. The set of such derivations is denoted

by Derk(A,M). We write Derk(A) for Derk(A,A).
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Suppose that A is a ring whose characteristic is a prime number p, and let Ap

denote the subring {ap | a ∈ A}. Then any derivation D : A −→ M vanishes on

Ap, for D(ap) = pap−1D(a) = 0.

(26.B) Let A and C be rings and N an ideal of C with N2 = 0. Let

j : C −→ C/N be the natural map, Let u, u′ : A −→ C be two homomorphisms

(of rings) satisfying ju = ju′, and put D = u′ − u. Then u and u′ induce the

same A-module structure on N , and D : A −→ N is a derivation. In fact, we

have
u′(ab) = u′(a)u′(b) = (u(a) +D(a))(u(b) +D(b))

= u(ab) + aD(b) + bD(a)

Conversely, if u: A −→ C is a homomorphism and D : A −→ N is a derivation

(with respect to the A-module structure on N induced by u), then u′ = u+D is

a homomorphism.

(26.C) Let k be a ring, A a k-algebra and B = A ⊗k A. Consider the homo-

morphisms of k-algebras

ε :B −→ A λ1 :A −→ B λ2 :A −→ B

(a⊗ a′) 7→ aa′ a 7→ a⊗ 1 a 7→ 1⊗ a

Once and for all, we make B = A⊗A an A-algebra via λ1. We denote the kernel

of ε by IA/k or simply by I, and we put I/I2 = ΩA/k. The B-modules I, I2 and

ΩA/k are also viewed as A-modules via λ1 : A −→ B. Then the A-module ΩA/k

is called the module of differentials (or of Kähler differentials) of A over

k.

We have ελ1 = ελ2 = idA. Therefore, if we denote. the natural homomor-

phism B −→ B/I2 by ν and if we put d∗ = λ2 − λ1 and d = νd∗, then we
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get a derivation d : A −→ ΩA/k. Note that we have B = λ1(A) ⊕ I, hence

B/I2 = νλ1(A)⊕ ΩA/k (as A module). Identifying νλ1(A) with A, we get

B/I2 = A⊕ ΩA/k.

In other words, B/I2 is a trivial extension of A by ΩA/k

Proposition 26.1. The pair (Ω′A/k,d) has the following universal property: if

D is a derivation of A over k into an A-module M , then there is a unique A-linear

map f : ΩA/k −→M such that D = fd

Proof. In B = A⊗A we have

x⊗ y = xy ⊗ 1 + x(1⊗ y − y ⊗ 1) = ε(x⊗ y) + xd∗y.

Therefore, if
∑
xi ⊗ y1 ∈ I = Ker(ε) then

∑
xi ⊗ yi =

∑
xid
∗yi. Since d∗y

mod I2 = dy, any element of Ω = I/I2 has the form
∑
xidyi (xi, yi ∈ A).

In other words, Ω is generated by {dy | y ∈ A} as A-module. This proves the

uniqueness of f . As for the existence of f , take the trivial extension A ∗M and

define a homomorphism of A-algebras

ϕ : B = A⊗k A −→ A ∗M

by ϕ(x ⊗ y) = (xy, xD(y)). Since ϕ(I) ⊆ M and M2 = 0, we have ϕ(I2) = 0 so

that ϕ induces a homomorphism ϕ of A-algebras B/I2 = A ∗Ω −→ A ∗M which

maps dy ∈ Ω to

ϕ(d∗y) = ϕ(1⊗ y − y ⊗ 1) = (0, Dy).

Thus the restriction of ϕ to Ω gives an A-linear map

f : Ω −→M with f ◦ d = D.
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As a consequence of the proposition we get a canonical isomorphism of A-

modules

Derk(A,M) ≃ HomA(ΩA/k,M).

In the categorical language, the pair (ΩA/k,d) represents the covariant functor

M 7→ Derk(A,M) from the category of A-modules into itself. The map

d : A −→ ΩA/k is called the canonical derivation and is denoted by dA/k if

necessary.

(26.D) Any ring A is a Z-algebra in a unique way. The module ΩA/Z is simply

written ΩA. If A contains a field k and if F is the prime field in k, then ΩA/F = ΩA

because A⊗Z A = A⊗F A.

The r-th exterior product
∧r

ΩA/k is denoted by ΩrA/k and is called the

module of differentials of degree r. In this notation we have ΩA/k = Ω1
A/k.

(26.E) Example 26.1. Let k be a ring, and let A be a k-algebra which is

generated by a set of elements {xλ} over k. Then ΩA/k is generated by {dxλ} as

A-module. This is clear since d is a derivation.

In particular, if A is a polynomial ring over the ring k in an arbitrary number

of indeterminates {xλ} : A = k[. . . , xλ, . . . ], then ΩA/k is a free A-module with

{dXλ} as a basis. In fact, suppose
∑
PλdXλ = 0 (Pλ ∈ A) and let

∂

∂Xλ
denote

the partial derivations. Then
∂

∂Xλ
∈ Derk(A), hence there exists a linear map

f : ΩA/k −→ A such that

f(dXµ) =
∂Xµ

∂Xλ
= δλµ.

Applying f to
∑
PµdXµ = 0 we find Pλ = 0. As λ is arbitrary we see that the

dx′λs are linearly independent over A. □
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Note that

Derk(A) = HomA(ΩA/k, A) ≃
∏
λ

Aλ where Aλ ≃ A.

(26.F) Example 26.2. Let k be a field of characteristic p > 0, and let k′ be

a subfield such that k = k′(t), tp = a ∈ k′, t ̸= k′. Then k = k′[X]/(Xp − a),

and since
∂Xp − a
∂X

= 0 the derivation
∂

∂X
of k′[X] maps the ideal (Xp−a)k′[X]

into itself. It thus induces a derivation D of k over k′ such that D(t) = 1.

Next, let k′ be an arbitrary subfield such that kp ⊆ k′ ⊆ k. A family of

elements (xλ) of k is said to be p-independent over k′ if, for any finite subset

{xλ1
, . . . , xλn

}, we have

[k′(xλ1 , . . . , xλn) : k
′] = pn.

A family (xλ) is called a p-basis of k over k′ if it is p-independent over k′ and if

k′(. . . , xλ, . . . ) = k. The existence of a p-basis of k over k′ can be easily proved

by Zorn’s lemma. Moreover, any p-independent family over k′ can be extended

to a p-basis. Suppose that we are given a p-basis (xλ). Then Ωk/k′ is a free

k-module with (dxλ) as a basis. In fact, putting k′λ = k′({xµ | µ ̸= λ}) we have

k′λ(xλ) = k, xpλ ∈ k′λ and xλ /∈ k′λ, so there exists a derivation Dλ of k over k′λ
such that Dλ(xλ) = 1. Therefore Dλ ∈ Derk′(k) and Dλ(xµ) = δλµ. From this

we conclude the linear independence of the dx′λs as in Example 26.1.

If kp ⊆ k′ ⊆ k and [k : k′] = pm < ∞, then Ωk/k′ and Derk′(k) are vector

spaces of rank m, dual to each other.

In general, if k′ is an arbitrary subfield of k and x1, . . . , xn ∈ k, then the

differentials dx1, . . . ,dxn in Ωk/k′ are linearly independent over k iff the family

(xi) is p-independent over k′(kP ). Proof is left to the reader.

(26.G) Example 26.3. Let k be a field andK a separable algebraic extension
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field of k. Then ΩK/k = 0. In fact, for any α ∈ K there is a polynomial

f(X) ∈ k[X] such that f(α) = 0 and f ′(α) ̸= 0. Since d : k −→ ΩK/k is a

derivation we have

0 = d(f(α)) = f ′(α)dα,

whence dα = 0. As ΩK/k is generated by the dα’s we get ΩK/k = 0

Exercise 26.1. 1) If
A A′

k k′

is a commutative diagram of rings and homomorphisms, then there is a nat-

ural homomorphism of A-modules ΩA/k −→ ΩA1/k1 , hence also a natural

homomorphism of A′-modules ΩA/k ⊗A A′ −→ ΩA′/k1

2) If A′ = A⊗k B′ in 1), then the last homomorphism is an isomorphism:

ΩA′/k′ = ΩA/k ⊗k k′ = ΩA/k ⊗A A′.

3) If S is a multiplicative set in a k-algebra A and if A′ = S−1A, then

ΩA′/k = ΩA/k ⊗A A′ = S−1ΩA/k.

(26.H) Theorem 57 (The first fundamental exact sequence). Let k,A and

B be rings and let k ϕ−→ A
ψ−→ B be homomorphisms. Then

(i) there is an exact sequence of natural homomorphisms of B-modules

ΩA/k ⊗A B
v−→ ΩB/k

u−→ ΩB/A −→ 0;

(ii) the map v has a left inverse (or what amounts to the same, v is injective

193



Chapter 10: Derivations

and Im(v) is a direct summand of ΩB/A as B-module) iff any derivation of

A over k into any B-module T can be extended to a derivation B −→ T .

Proof. (i) The map v is defined by v(dA/k(a)⊗ b) = b ·dB/kψ(a), and the map

u by

u(b · dB/k(b′)) = b · dB/A(b′) (a ∈ A; b, b′ ∈ B).

It is clear that u is surjective. Since dB/Aψ(a) = 0 we have uv = 0. It

remains to prove that Ker(u) = Im(v). To do this, it is enough to show

that

HomB(ΩA/k ⊗A B, T )←− HomB(ΩB/k, T )←− HomB(ΩB/A, T )

is exact for any B module T (take T = Coker(v)). But we have canonical

isomorphisms

HomB(ΩA/k ⊗A B, T ) ≃ HomA(ΩA/k, T ) ≃ Derk(A, T )

etc., so we can identify the last sequence with

Derk(A, T )←− Derk(B, T )←− DerA(B, T )

where the first arrow is the map D 7→ D ◦ψ. This sequence is exact by the

definitions.

(ii) A homomorphism of B-modules M ′ −→M has a left inverse iff the induced

map HomB(M
′, T ) ←− HomB(M,T ) is surjective for any B-module T .

Thus, v has a left inverse iff the natural map Derk(A, T )←− Derk(B, T ) is

surjective for any B-module T .
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Corollary 26.1. The map v : ΩA/k ⊗A B −→ ΩB/k is an isomorphism iff

any derivation of A over k into any B-module T can be extended uniquely to a

derivation B −→ T .

(26.I) Let k be a ring, A a k-algebra, m an ideal of A and B = A/m. Define

a map m −→ ΩA/k ⊗A B by x 7→ dA/kx ⊗ 1 (x ∈ M). It sends m2 to 0, hence

induces a B-linear map δ : m/m2 −→ ΩA/k ⊗A B.

Theorem 58 (The second fundamental exact sequence). Let the notation be

as above.

(i) The sequence of B-module

m/m2 δ−→ ΩA/k ⊗A B
v−→ ΩB/k −→ 0 (*)

is exact.

(ii) Put A1 = A/m2. Then ΩA/k ⊗A B ≃ ΩA1/k ⊗A1
B.

(iii) The homomorphism δ has a left inverse iff the extension

0 −→ m/m2 −→ A1 −→ B −→ 0

of the k-algebra B by m/m2 is trivial over k.

Proof. (i) The surjectivity of v follows from that of A −→ B. Obviously the

composite vδ = 0, So, as in the proof of the preceding theorem, it is enough

to prove the exactness of

HomB(m/m
2, T )←− HomB(ΩA/k ⊗A B, T )←− HomB(ΩB/A, T )
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for any B-module T . But we can rewrite it as follows:

HomA(m, T )←− Derk(A, T )←− Derk(A/m, T )

where the first arrow is the map D 7→ D | m (D ∈ Derk(A, T )). Then the

exactness is obvious.

(ii) A homomorphism of B-modulesN ′ −→ N is an isomorphism iff the induced

map HomB(N
′, T )←− HomB(N,T ) is an isomorphism for every B-module

T . Applying this to the present situation we are led to prove that the

natural map Derk(A, T ) ←− Derk(A/m
2, T ), is an isomorphism for every

A/m-module T , which is obvious.

(iii) By (ii) we may replace A by A1 in (*), so we assume m2 = 0. Suppose that

δ has a left inverse w : ΩA/k⊗AB −→ m. Putting Da = w(da⊗1) for a ∈ A

we obtain a derivation D : A −→ m over k such that Dx = x for x ∈ m.

Then the map f : A −→ A given by f(a) = a−Da is a homomorphism of

k-algebras and satisfies f(m) = 0, hence induces a homomorphism f : B =

A/m −→ A. Since f(a) ≡ a mod m, the homomorphism f is a section of

the ring extension

0 −→ m −→ A −→ B −→ 0.

The converse is proved by reversing the argument.

(26.J) Example 26.4. Let k be a ring, A a k-algebra and

B = A[X1., . . . . , Xn]. Let T be an arbitrary B-module and let D ∈ Derk(A, T ).

Then we can extend it to a derivation B −→ T by putting D(P (X)) = PD(X),

where PD is obtained from P (X) by applying D to the coefficients. Thus the

natural map
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ΩA/k ⊗A B −→ ΩB/k has a left inverse, and we have

ΩB/k ≃ (ΩA/k ⊗A B)⊕BdX1 ⊕ · · · ⊕BdXn

Let m be an ideal of B = A[X1, . . . , Xn], and put C = B/m, xi = Xi mod M .

Then we have the second fundamental exact sequence

m/m2 δ−→ ΩB/k ⊗B C = (ΩA/k ⊗A C)⊕
∑

Cdxi −→ ΩC/k −→ 0

with

δ(P (X)) = (dP )(x) +

n∑
i=1

∂P

∂Xi
(x)dXi (P (X) ∈ m),

where (dP )(x) is obtained by applying dA/k to the coefficients of P (X) and then

reducing the result modulo m.

Exercise 26.2. Let B = k[X,Y ]/(Y 2 −X3) = k[x, y] (= the affine ring of the

plane curve y2 = x3, which has a cusp at the origin). Calculate ΩB/k, and show

that it is a B-module torsion.

27 Separability

(27.A) Let k be a field and K an extension∗ of k. A transcendency basis

{xλ}λ∈Λ of K over k is called a separating transcendency basis if K is

separably algebraic over the field k(. . . , xλ, . . . ). We say that K is separately

generated over k if it has a separating transcendency basis.

Put r(K) = rankK ΩK/k. Let L be a finitely generated extension of K. We

want to compare r(L) and r(K). Suppose first that L = K(t). There are four

typical cases.

∗By an extension of a field we mean an extension field; by a finite extension, a finite algebraic
extension.
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Case 1. t is transcendental over K. Then

ΩK[t]/k = (ΩK/k ⊗K K[t])⊕K[t]dt

by (26.J), so by localization we get

ΩL/k = (ΩK/k ⊗K L)⊕ Ldt,

hence r(L) = r(K) + 1.

Case 2. t is separately algebraic over K. Let f(X) be the irreducible equation

of t over K. Then

L = K[t] = K[X]/(f),

f(t) = 0 and f ′(t) ̸= 0. By (26.J) we have

ΩL/k = (ΩK/k ⊗K L+ LdX)/Lδf,

where δf = (df)(t)+f ′(t)dX in the notation of (26.J). As f ′(t) is invertible

in L we have ΩK/k ⊗K L ≃ ΩL/k. Whence r(L) = r(K). From this, or

by direct computation, one sees that any derivation of K into L can be

extended uniquely to a derivation of L.

Case 3.

ch(k) = p, tp = a ∈ K, t ̸∈ K, dK/k(a) = 0.

Then L = K[t] = K[X]/(Xp − a). We have δ(Xp − a) = 0, therefore

ΩL/k ≃ ΩK[X]/k ⊗ L ≃ (ΩK/k ⊗K L)⊕ Ldt

and r(L) = r(K) + 1.
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Case 4. Same as in case 3 with the exception that dK/ka ̸= 0. Then

δ(Xp − a) ̸= 0, and so r(L) = r(K).

(27.B) Theorem 59. i) Let k be a field, K an extension of k and L a

finitely generated extension of K. Then

rankL ΩL/k ⩾ rankK ΩK/k + tr.degK L.

ii) The equality holds in i) if L is separately generated over K.

iii) Let L be a finitely generated extension of a field k. Then

rankL ΩL/k ⩾ tr.degk L, where the equality holds iff L is separately gen-

erated over k. In particular, ΩL/k = 0 iff L is separably algebraic over

k.

Proof. Since any finitely generated extension of K is obtained by repeating ex-

tensions of the four types just discussed, the assertions i) and ii) are now obvious.

As for iii), the inequality is a special case of i). Suppose that ΩL/k = 0, i.e. that

r(L) = 0. Then r(K) = 0 for any k ⊆ K ⊆ L. Therefore the cases 1, 3 and 4 of

(27.A) cannot happen for L and K. This means that L is separately algebraic

over k. Suppose next, that r(L) = tr.degK L = r. Let x1, . . . , xr ∈ L be such

that {dx1, . . . ,dxr} is a basis of ΩL/k over L. Then we have ΩL/k(x1,...,xr) = 0

by Th.57, so L is separately algebraic over k(x1, . . . , xr). Since r = tr.degk L the

elements xi must form a transcendency basis of L over k.

Remark 27.1. Let L = k(x1, . . . , xn) and tr.degk L = r, and put

p = {f(X) ∈ k[X1, . . . , Xn] | f(x1, . . . , xn) = 0}.

Let f1, . . . , fs generate the idea p. Then L is separately generated over k iff the

Jacobian matrix ∂(f1, . . . , fs)/∂(x1, . . . , xn) has rank n − r, as one can easily
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check. If this is the case, and if the minor determinant

∂(f1, . . . , fn−r)/∂(xr+1, . . . , xn) ̸= 0, then dx1, . . . ,dxr form a basis of ΩL/k, and

the above proof shows that {x1, . . . , xr} is a separating transcendency basis of

L/k.

(27.C) Lemma 27.1. Let k be a field and K an algebraic extension of k.

Then the following are equivalent:

(1) K is separably algebraic over k;

(2) the ring K ⊗k k′ is reduced for any extension k′ of k;

(3) ditto for any algebraic extension k′ of k;

(4) ditto for any finite extension k′ of k.

Proof. Each of these properties holds iff it holds for any finite extension K ′ of k

contained in K. So we may assume that [K : k] <∞.

(1) =⇒ (2) If K is finite and separable over k then K = k(t) with some t ∈ K.

Let f(X) be the irreducible equation of t over k. Then K ≃ k[X]/(f),

hence K ⊗ k′ ≃ k′[X]/(f), and since f(X) has no multiple factors in k′[X]

(because it decomposes into distinct linear factors k[X], where k is the

algebraic closure of k), K ⊗ k′ is reduced. (More precisely, it is a direct

product of finite separable extensions of k′.)

(2) =⇒ (3) =⇒ (4) is trivial.

(4) =⇒ (1) Suppose that ch(k) = p and that K contains an inseparable ele-

ment t over k. Then the irreducible equation f(X) of t over k is of the

form f(X) = g(Xp) with some g ∈ k[X]. Let a0, . . . , an be the coefficients

of g(X) and put k′ = k(a
1/p
0 , . . . , a

1/p
n ). Then f(X) = g(Xp) = h(X)p with

h(X) ∈ k′[X] and k(t)⊗k k′ = k′[X]/(h(X)p) has nilpotent elements. Since
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k is a field we can view k(t)⊗k k′ as a subring of K ⊗k k′, so the condition

(4) does not hold.

(27.D) Definition. Let k be a field and A a k-algebra. We say that A is

separable (over k) if, for any algebraic extension k′ of k, the ring A ⊗k k′ is

reduced.

The following properties are immediate consequences of the definition.

1) If A is separable, then any subalgebra of A is also separable.

2) If all finitely generated subalgebras of A are separable, then A is separable.

3) If, for any finite extension k′ of k, the ring A ⊗k k′ is reduced, then A is

separable.

(27.E) Lemma 27.2. If k′ is a separately generated extension of a field k,

and if A is a reduced k-algebra, then A⊗k k′ is reduced.

Proof. Enough to consider the case of a separably algebraic extension and the

case of a purely transcendental extension. We may also assume that A is finitely

generated over k. Then A is Noetherian and reduced, so the total quotient ring

ΦA of A is a direct product of a finite number of fields, and A⊗k k′ ⊆ ΦA⊗k k′.

Thus we may assume that A is a field. Then A⊗k k′ is reduced by Lemma 27.1

in the separately algebraic case, and is a subring of a rational function field over

A in the purely transcendental sense.

Corollary 27.1. If k is a perfect field, then a k-algebra A is separable iff it is

reduced. In particular, any extension field K of k is separable over k.

Lemma 27.3. Let k be a field of characteristic p, and K be a finitely generated

extension of k. Then the following are equivalent:
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(1) K is separable over k;

(2) the ring K ⊗k k1/p is reduced;

(3) K is separably generated over k.

Proof.

(3) =⇒ (1) If K is separably generated over k, then k′⊗kK is reduced for any

extension k′ of k by Lemma 27.2.

(1) =⇒ (2) Trivial.

(2) =⇒ (3) Let K = k(x1, . . . , xn). We may suppose that {x1, . . . , xr} is a

transcendency basis of K/k. Suppose that xr+1, . . . , xq are separable over

k(x1, . . . , xr) while xq+1 is not. Put y = xq+1 and let f(Y p) be the irre-

ducible equation of y over k(x1, . . . , xr). Clearing the denominators of the

coefficients of f we obtain a polynomial F (X1, . . . , Xr, Y
p) is irreducible

in k[X1, . . . , Xr, Y ], such that F (x1, . . . , xr, yp) = 0. Then there must

be at least one Xi such that ∂F/∂Xi ̸= 0, for otherwise we would have

F (X,Y p) = G(X,Y )p with G ∈ k1/p[X1, . . . , Xr, Y ], so that

k(x1, . . . , xr, y)⊗k k1/p ≃ k1/p(x1, . . . , xr)[Y ]/(G[X,Y ]p)

would have nilpotent elements. Therefore we may suppose that

∂F/∂X1 ̸= 0. Then x1 is separately algebraic over k(x2, . . . , xr, y), hence

the same holds for xr+1, . . . , xq also. Exchanging x1 with y = xq+1 we have

that xr+1, . . . , xq+1 are separable over k(x1, . . . , xr). By induction on q we

see that we can choose a separating transcendency basis of K/k from the

set {x1, . . . , xn}.
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(27.F) Proposition 27.1. Let k be a field and A a separable k-algebra.

Then, for any extension k′ of k (algebraic or not), the ring A ⊗k k′ is reduced

and is a separable k′-algebra.

Proof. Enough to prove that A⊗k k′ is reduced. We may assume that k′ contains

the algebraic closure k of k. Since A⊗k is reduced by assumption, and since any

finitely generated extension of k is separately generated by Lemma 27.3, the ring

A⊗k k′ = (A⊗k k)⊗k k′ is reduced by Lemma 27.2.

Exercises 27.1. 1. (MacLane) Let k be a field of characteristic p and K an

extension of k. Then K is separable over k iff K and k1/p are linearly

disjoint over k, that is, iff the canonical homomorphism K ⊗k k1/p onto

the subfield K(k1/p) of K1/p is an isomorphism.

2. Let k and K be as above, and suppose that K is finitely generated over k.

Then there exists a finite extension k′ of k, contained in kp
−∞

, such that

K(k′) is separable over k′.

203



Chapter 10: Derivations

204



11. Formal Smoothness

28 Formal Smoothness I

(28.A) The notion of formal smoothness is due to Grothendieck [Gro64].It is

closely connected with the differentials, and it throws new light to the theory of

regular local rings. It can also be used in proving the Cohen structure theorems

of complete local rings.

As a motivation for the definition of formal smoothness, we begin by a brief

discussion of a typical theorem of Cohen.

Definition. Let (A,m,K) be a local ring. A coefficient field K ′ of A is a

subfield of A which is mapped isomorphically onto K = A/m by the natural map

A −→ A/m.

I. S. Cohen proved that any Noetherian complete local ring which contains a

field contains at least one coefficient field. To find a coefficient field is equivalent

to finding a homomorphism u : K −→ A such that ru = idK , where r : A −→ K

is the natural map. Since A is complete, we have A = lim←−A/m
i. Therefore it

is enough to find a system of homomorphisms ui : K −→ A/mi (i = 1, 2, . . . )

such that riui+1 = ui for all i, where ri : A/mi+1 −→ A/mi is the natural

map. Thus, the natural approach will be to try to “lift” a given homomorphism

ui : K −→ A/mi to ui+1 : K −→ A/mi+1. If this is always possible then one can
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start with u1 = idK : K −→ A/m = K and construct ui step by step.

(28.B) Convention 1. Throughout the remainder of the book, we shall use

the phrase topological ring to mean a topological ring whose topology is defined

by the powers of an ideal, and such ideal will be called an ideal of definition. When

A is a topological ring, by a discrete A-module M we shall mean an A-module

such that IM = (0) for some open ideal I of A. When A is a local or semi-local

ring and M = rad(A), the topology of A will be the M -adic topology unless the

contrary is explicitly stated.

(28.C) Definition. Let k and A be topological rings and g : k −→ A be a

continuous homomorphism. We say that A is formally smooth (f.s. for short)

over k, or that A is a f.s. k-algebra, if the following condition is satisfied:

(FS) For any discrete ring C, for any ideal N of C with N2 = (0) and for any

continuous homomorphisms u : k −→ C and v : A −→ C/N (C/N being viewed

as a discrete ring) such that the diagram

A C/N

k C

v

g

u

q (28.*)

(where q is the natural map) is commutative, there exists a homomorphism

v′ : A −→ C such that v = qv′ and u = v′g.

A C/N

k C

v

v′g

u

q

Remark 28.1. If v′ exists, then we say that v can be lifted to A −→ C over k,

and v′ is called a lifting of v over k. A lifting v′ is automatically continuous, for the

continuity of v implies the existence of an ideal of definition I of A with v(I) = 0.
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Thus v′(I) ⊆ N and v′(I2) = 0. But I2 is also an ideal of definition of A, so v′ is

continuous. (Similarly, the continuity of u in (28.*) follows from that of vg.) It

follows that, if (FS) holds, then it remains true when we replace “N2 = 0” by “N

is nflpotent”. In fact, if Nm = 0, then we can lift v : A −→ C/N successively to

A −→ C/N2, to A −→ C/N3, and so on, and finally to A −→ C/Nm = C.

Let now C be a complete and separated topological ring and N an ideal of

definition of C. Consider a commutative diagram (28.*) with u and v continuous.

Then, if A is f.s. over k, one can lift v to v′ : A −→ C. In fact one can

lift v successively to A −→ C/N2, to A −→ C/N3 and so on, and then to

A −→ C = lim←−C/N
i

(28.D) Definition. When A is f.s. over k for the discrete topologies on k and

A, we say that A is smooth over k. Thus smoothness implies formal smoothness

for any adic topologies on A and k such that g : k −→ A is continuous.

Example 28.1. 1. Let k be a ring and A = k[. . . , Xλ, . . . ] be a polynomial

ring over k. Then A is smooth over k. This is clear from the definition.

2. Let A be a Noetherian k-algebra with I-adic topology (I = an ideal of A)

and let Â denote the completion of A. Suppose A is f.s. over k. Then

the IÂ-adic ring Â is f.s., over k. In fact, a continuous homomorphism v

from Â to a discrete C/N factors through Â/InÂ = A/In for some n, and

A −→ A/In −→ C/N can be lifted to A −→ A/Im −→ C for some m ≡ n.

Using A/Im = Â/ImÂ we get a homomorphism Â −→ Â/ImÂ −→ C,

which lifts the given Â −→ C/N .

3. In particular, if k is a Noetherian ring with discrete topology and if B =

k[[X1, . . . , Xn]] is the formal power series ring with
∑n

1 B-adic topology,

then B is f.s. over k, because it is the completion of A = k[X1, . . . , Xn]

with respect to the
∑
XiA-adic topology and A is smooth over k.
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(28.E) Formal smoothness is transitive: if B is a f.s. A-algebra and A is

a f.s. k-algebra, then B is f.s. over k.

Proof.
B C/N

A C

k

g

g′

v

u

w

v′

In the diagram one first lifts vg′ to w : A −→ C, and then lifts v to

v′ : B −→ C

(28.F) Localization. Let A be a ring and S a multiplicative set in A. Then

S−1 A is smooth over A.

Proof. Consider a commutative diagram

S−1A C/N

A C

v

g

u

q

where g and q are the natural maps and N2 = 0. Then v can be lifted to

v′ : s−1A −→ C ′ iff u(s) is invertible in C for every s ∈ S. But, since N ⊆ rad(C),

an element x of C is a unit iff q(x) is a unit in C/N . And qu(s) = vg(s) is certainly

invertible in C/N as g(s) is so in S−1A.

(28.G) Change of base. Let k,A and k′ be topological rings, and k −→ A

and k −→ k′ be continuous homomorphisms. Let A′ denote the ring A⊗k k′ with

the topology of tensor product (cf. (23.F)). If A is f.s, over k, then A′ is f, s, over

k′.
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Proof. Look at the commutative diagram

A A′ C/N

k k′ C

p

u

v

q

One lifts the continuous homomorphism vp to w : A −→ C, and puts

v′ = w ⊗ u : A⊗k k′ = A′ −→ C

to obtain a lifting of v.

(28.H) Let k be a field and A be a k-algebra. Consider a commutative diagram

of rings
A C/N

k C

v

with N2 = 0, and put E = {(a, c) ∈ A × C | v(a) = q(c)}. Then E is a

k-subalgebra of A× C, and is an extension of the k-algebra A by N :

0 −→ N −→ E
p−→ A −→ 0

with p(a, c) = a. The homomorphism v : A −→ C/N lifts to v′ : A −→ C iff the

extension

0 −→ N −→ E −→ A −→ 0

splits over k (cf. (25.D)). Since k is a field, the extension algebra E is isomorphic

to A ⊕N as k−module, so it is a Hochschild extension (cf. (25.C)) and defines

a symmetric cocycle f : A× A −→ N . We define a complex of A−modules (the
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“modified Hochschild complex”)

P ′• = P ′•(A/k) : P
′
3

d3−→ P ′2
d2−→ P ′1

as follows:

P ′3 = (A⊗k A⊗k A⊗k A)⊕ (A⊗k A⊗k A), P ′2 = A⊗k A⊗k A, P ′1 = A⊗k A

(the A-module structure on P ′1 being defined by the first factor),

d3(1⊗ a⊗ b⊗ c+ 1⊗ y ⊗ z) = a⊗ b⊗ c− 1⊗ ab⊗ c+ 1⊗ a⊗ b

− c⊗ a⊗ b+ 1⊗ y ⊗ z − 1⊗ z ⊗ y.

and

d2(1⊗ a⊗ b) = a⊗ b− 1⊗ ab+ b⊗ a

For any A-module N we define the cochain complex

HomA(P
′
•, N) : HomA(P

′
3, N)←− HomA(P

′
2, N)←− HomA(P

′
1, N)

and we denote its cohomology (at the middle term) by H2
k(A,N)s, the letter s

indicating the cohomology with respect to symmetric cocycles, This cohomology

vanishes iff any symmetric cocycle f : A×A −→ N is a coboundary, i.e.

f(a, b) = ah(b)− h(ab) + bh(a)

for some function h : A −→ N . Therefore, A is smooth over k iff H2
k(A,N)s = 0

for all A-modules N .

Suppose now that A is a field K. Then every extension of K-modules splits,
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so we have P ′2 ≃ Im(d3)⊕H2(P
′
•)⊕ Im(d2) as K-module.

•

• •

• • •

• • Im d2

d3

d2

H2

Im d2

It follows that H2
k(K,N)s ≃ HomK(H2(P

′
•), N). If these are zero for all N

then H2(P
′
•) = 0, and conversely.

(28.I) Proposition 28.1. Let k be a field and K an exterision field of k. If

k is separable over k then it is smooth over k. (The converse is also true and will

be proved in Th.62.)

Proof. Suppose first that k is finitely generated over k. Then it is separably

generated over k by (27.F). If K is purely transcendental over k then it is smooth

over k by (28.D) Example 1, by (28.F) and by (28.E). If K is separably algebraic

over k then K = k(t) = k[X]/(f(X)) with f(t) = 0, f ′(t) ̸= 0. If C is a k-algebra,

if N is an ideal of C with N2 = 0 and if v : k −→ C/N is a homomorphism of

k-algebras, then v can be lifted to k −→ C iff there exists x ∈ C satisfying

f(x) = 0 and x mod N = v(t).

Take a pre-image y of v(t) in C, and let n be an element of N . Then

f(y + n) = f(y) + f ′(y)n, f(y) ∈ N,

and f ′(y) is a unit in C because f ′(v(t)) = v(f ′(t)) is a unit in C/N . Thus, if

we put x = y + n with n = −f(y)/f ′(y), then we get f(x) = 0. So k is smooth

211



Chapter 11: Formal Smoothness

over k in this case also. By the transitivity any separably generated extension is

smooth.

In the general case, we have

K/k is separable ⇐⇒ L/k is separably generated for any finitely

generated subsextension L/k of K/k

=⇒ L/k is smooth for any such L/k

⇐⇒ H2(P
′
•(L/k)) = 0 for any such L/k.

But, since tensor product and homology commute with inductive limits, and since

K = lim−→L, we have

H2(P
′
•(K/k)) = lim−→H2(P

′
•(L/k)) = 0.

Therefore K is smooth over k by (28.H)

Remark 28.2. It is also possible to give a non-homological proof of the propo-

sition. The above proof is due to Grothendieck and has the merit of treating the

cases of ch(k) = 0 and of ch(k) = p in a unified manner.

(28.J) Theorem 60 (I.S Cohen). Let (A,m,K) be a complete and separated

local ring containing a field k. Then A has a coefficient field. If k is separable

over k then A has a coefficient field which contains k.

Proof. If k is separable over k(e.g. if ch(K) = 0) then it is smooth over k.

Therefore one can lift idK : K −→ A/m to a homomorphism of k-algebras

K −→ A = limA/mi (cf. (28.A)). In the general case let k0 be the prime field

in k0 Then K is separable over k0 as the latter is perfect ((27.E) Cor.). Hence A

has a coefficient field.
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Corollary 28.1. Let (A,m,K) be a complete and separated local ring contain-

ing a field, and suppose that m is finitely generated over A. Then A is Noetherian.

Proof. If m = (x1, . . . , xn) and if K ′ is a coefficient field of A, then any element

of A can be developed into a formal power series in x1, . . . , xn with coefficients

in K ′. So A is a homomorphic image of K[[X1, . . . , Xn]], hence Noetherian.

Corollary 28.2. Let (A,m,K) be a complete regular local ring of dimension d

containing a field. Then A ≃ K[[X1, . . . , Xd]].

Proof. By the preceding proof we have A ≃ K[[X1, . . . , Xd]]/P with some prime

ideal P . Comparing the dimensions we get P = (0).

(28.K) Theorem 61. Let (A,m,K) be a Noetherian local ring containing a

field k, and suppose that A is formally smooth over k. Then A is regular.

Proof. Let k0 be the prime field in k. Then k is f.s. over k0, hence A is f.s. over

k0 also. Thus we may assume that k is perfect. Let K ′ be a coefficient field, con-

taining k, of the complete local ring A/m2; let {x1, . . . , xd} be a minimal basis of

M . Then there is an isomorphism of k-algebras v1 : A/m2 ≃ K ′[X1, . . . , Xd]/J
2

where J = (X1, . . . , Xd). Let v : A −→ K ′[X]/J2 be the composition of v1 with

the natural map A −→ A/m2. By the formal smoothness one can lift v to a

homomorphism of k-algebras

v′n : A −→ K ′[X]/Jn+1 for n = 2, 3, . . . .

Since v(xi) (1 ⩽ i ⩽ d) generate J/J2 = J/J
2

(where J = J/Jn+1), the
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elements v′n(xi) generate J by NAK. Then

K ′[X]/Jn+1 = v′n(A) + J
2

= v′n(A) +
∑
i

v′n(xi)(v
′
n(A) + J⃗2)

= v′n(A) + J
3

= . . .

= v′n(A) + J
n+1

= v′n(A),

i.e. v′n is surjective. Hence we obtain

ℓ(A/mn+1) ⩾ ℓ(K ′[x1, . . . , xd]/J
n+1) =

(
d+ n

d

)

proving dimA ⩾ d. As m is generated by d elements the local ring A is regular.

(28.L) Theorem 62. Let k be a field and k a subfield. Then K is smooth

over k iff it is separable over k.

Proof. The “if” part was already proved in (28.I). To prove the “only if”, let K

be smooth over k and let k′ be a finite algebraic extension of k. Then K ⊗k k′

is a k-algebra of finite rank, hence it is a direct product of Artinian local rings:

K⊗k k′ = A1×· · ·×Ar. Moreover, K⊗k′ is smooth over k′ by base change, and

it follows easily that each Ai is smooth over k′. Then each Ai is regular (hence

is a field) by Th. 61, whence K ⊗ k′ is reduced.

(28.M) Proposition 28.2. Let (A,m,K) be a Noetherian local ring contain-

ing a field k, and let Â denote the completion of A. Suppose K is separable over

k. Then the following are equivalent:
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(1) A is regular;

(2) Â ≃ K[[X1, . . . , Xd]] as k-algebras, (d = dimA);

(3) A is formally smooth over k.

Proof.

(1) =⇒ (2) The complete local ring Â is regular and contains a coefficient field

containing k, so (2) follows from the proofs of 28.1 and 28.2.

(2) =⇒ (3) It follows from the definition that A is f.s. over k iff Â is so. On

the other hand k[[X1, . . . , Xd]] is f.s. over k (cf. (28.D)), hence also over k

by the transitivity.

(3) =⇒ (1) has been proved already.

(28.N) Let (A,m) be a local ring containing a field k. If B is a finite A-algebra

then B/mB is a finite A/m-algebra, hence Artinian. Hence B is a semi-local ring.

In particular if k′ is any finite extension of k, then A′ = A ⊗k k′ is a semi-local

ring.

We say that A is geometrically regular over k if the semi-local ring A′ =

A ⊗k k′ is regular for every finite extension k′ of k. If the residue field of A is

separable over k, the preceding proposition shows that

A is regular ⇐⇒ A is f.s. over k ⇐⇒ A′ is f.s. over k′ ⇐⇒ A′ is regular.

Thus geometrical regularity is equivalent to regularity for such A. But in

general these two are not equal.

Proposition 28.3. Let (A,m,K) be a Noetherian local ring containing a field

k. If A is f.s, over k, then A is geometrically regular over k. The converse is also

true if L is finitely generated over k.
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(Remark: actually the converse is always true, so that geometrical regularity

and formal smoothness are the same thing; cf. [Gro64, p. 22.5.8])

Proof. The first assertion is immediate from Th.61. As for the second, take a

finite radical extension∗ k′ of k such that K(k′) is separable over kp (cf. exercise

27.02). The ring A′ = A⊗k k′ is a Noetherian local ring with residue field K(k′),

and is regular by assumption. Thus A′ is f.s. over k′ by the preceding proposition.

Thus our proposition is proved by the following lemma.

(28.O) Lemma 28.1. Let A be a topological ring containing a field k, and

let k′ be a k-algebra (with discrete topology). Put A′ = A⊗k k′. Then A is f.s.,

over k if (and only if) A′ is f.s. over k′.

Proof. Let C be a discrete k-algebra, N an ideal of C with N2 = 0 and v : A −→

C/N a continuous homomorphism of k−algebras. Then

v′ = v ⊗ idk : A′ −→ C/N ⊗k k′ = (C ⊗ k′)/(N ⊗ k′)

is a continuous homomorphism of k′-algebras, so there is a lifting

w : A′ −→ C ′ = C ⊗ k′ of v′ over k′. Choose a k−submodule V of k′ such that

k′ = k ⊕ v. Then C ′ = C ⊕ (C ⊗ V ) and C ⊗ V is a C-submodule of C ′. Write

w(a) = u(a) + r(a) (u(a) ∈ C, r(a) ∈ C ⊗ V ) for a ∈ A, since

w(a) mod N ⊗ k′ = v(a) ∈ C/N

we have r(a) ∈ N⊗V . Thus r(a)r(b) = 0 for a, b ∈ A. It follows that u : A −→ C

is a k-algebra homomorphism which lifts v.

∗By a radical extension of a field k we mean a purely inseparable extension of K if ch(k) = p,
and k itself if ch(k) = 0.
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(28.P) (Structure of complete local rings: unequal characteristic case) Let

(A,m, k) be a local ring. There are four possibilities:

I) ch(A) = 0, ch(k) = 0;

II) ch(A) = p, ch(k) = p;

III) ch(A) = 0, ch(k) = p;

IV) ch(A) = pn > p, ch(k) = p.

(If A is an integral domain then the last possibility is excluded.) If I) or II) occurs

(so-called equal characteristic case) then A contains a field, and conversely, A

subring R of A is called a coefficient ring if it satisfies the following conditions:

1) R is a Noetherian complete local ring with maximal ideal m ∩R;

2) we have R/m ∩R ≃ A/m = k by the canonical map (i.e. A = R+m)

3) R ∩m = pR, where p = ch(k).

Therefore, R is nothing but a coefficient field in the equal characteristic case.

In case III, rad(R) = pR is not nilpotent, hence R must be a regular local ring of

dimension 1 , i.e, a principal valuation ring. In case IV the ring R is an Artinian

ring

Theorem (I.S.Cohen). Let A be a complete, separated local ring. Then A has

a coefficient ring R. In case IV, R is of the form R = W/pnW , where W is a

complete principal valuation ring with maximal ideal pW .

In the equal characteristic case it was proved in Th.60. By lack of space we

omit the proof of the unequal characteristic case. A concise proof can be found

in [Sam53, pp. 45-48]. Grothendieck’s proof (which depends on the theory of

formal smoothness) is in [Gro64].

The above theorem has two important corollaries:
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Corollary 28.3. Let (A,m) be a complete, separated local ring such that m is

finitely generated. Then A is a homomorphic image of a complete regular local

ring. Consequently, A is not only Noetherian but also universally catenarian.

(cf. theorem 33 and theorem 36)

Corollary 28.4. Let (A,m) be a Noetherian complete local domain. Then A

contains a complete regular local ring A0 over which A is finite,

Proof of 1.4. Let R be a coefficient ring of A. Since A is an integral domain, R

is either a field or a principal valuation ring with maximal ideal pR. Choose a

system of parameters x1, . . . , xr of A which is arbitrary in the first case and is

such that x1 = p in the second case. Put A0 = R[[x1, . . . , xr]] ⊆ A0 (We have

A0 = R[[x2, . . . , xr]] if x1 = p ∈ R0) Then A0 is a Noetherian complete local

ring with maximal ideal m0 =
∑r

1 xiA0. Since A = R + m and since mν ⊆ m0A

for large V, A/m0A is finite over A0/m0.Then A is finite over A0 by the lemma

below. Hence dimA = dimA0 = r by (13.C) Th.20, and as M0 is generated by

r elements, A0 is regular.

Lemma 28.2. Let A be a ring, I an ideal of A and M an A-module. Suppose

that

(a) A is complete and separated in the I-adic topology,

(b) M is separated in the I-adic topology and

(c) M/IM is finite over A (or what is the same thing, over A/I).

Then M is finite over A.

Proof is easy and left to the reader.
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29 Jacobian Criteria

(29.A) Let k be a field, and I be an ideal of k[X1, . . . , Xn]. Let P be a prime

ideal containing I, and put A = k[X1, . . . , Xn], B = A/I and p = P/I. Then

Bp = AP /IAP ; let κ denote the common residue field of A and Bp. Put dimAP =

m and ht(IAP ) = r. Since A is catenarian we have dimBp = m − r. We know

that AP is a regular local ring, and that Bp is regular iff IAP is a prime ideal

generated by a subset of a regular system of paramters of AP (cf.(17.F) Th.36).

We have rankK(P/P 2 ⊗A κ) = m, and

rankK(p/p2 ⊗B κ) = m− rankK((P 2 + I)/P 2 ⊗A κ) ⩾ dimBp = m− r.

Therefore

rankK((P 2 + I)/P 2 ⊗A κ) ⩽ r,

and the equality holds iff Bp is regular. The left hand side is the rank of the

image of the natural map ν : I/I2 ⊗A κ −→ P/P 2 ⊗A K.

To each polynomial f(X) ∈ P we assign the vector in κn (∂f/∂X1, . . . , ∂f/∂Xn)

mod P . Then we get a κ-linear map P/P 2 ⊗A κ −→ κn. If we identify κn with

ΩA/k ⊗A κ = ΩAP /k ⊗AP
κ =

n∑
1

κdXi,

the map just defined is nothing but the map δ of the second fundamental exact

sequence (cf.(26.I))

P/P 2 ⊗ κ = PAP /P
2AP

δ−→ ΩAP /k ⊗ κ −→ Ωκ/k −→ 0.

If I = (f1(X), . . . , fs(X)), then the image of δν : I/I2 ⊗ κ −→ ΩA/k ⊗ κ is
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generated by the vectors (∂fi/∂X1, . . . , ∂fi/∂Xn) mod p (1 ⩽ i ⩽ s), so that

rankK(Im(δν)) = rank

(
∂(f1, . . . , fs)

∂(X1, . . . , Xn)

)
mod P,

where the right hand side is the rank of the Jacobian matrix evaluated at the

point P ; we write the matrix (∂(f)/∂(X))(P ) for short. Thus, if we have

rank

(
∂(f1, . . . , fs)

∂(X1, . . . , Xn)

)
(P ) = r, (29.*)

then we must have rank Im(ν) = r also, and hence Bp is regular. When the

residue field κ is separable over k we have

rankκ Ωκ/k = tr.degk κ = n− ht(P ) = n−m

by (27.B) Th.59, while rank P/P 2⊗κ = m. So the map δ : P/P 2⊗κ −→ ΩA/k⊗κ

is injective. In this case the condition (29.*) is equivalent to the regularity of Bp.

The condition (29.*) is nothing but the classical definition of a simple point.

The above consideration shows that, when k is perfect, the point p is simple

on Spec(B) iff its local ring Bp is regular. In the general case note that (29.*)

is invariant under any extension of the ground field k. Thus, if k′ denotes the

algebraic closure of k and if P ′ is a prime ideal of A′ = k′[X1, . . . , Xn] lying over

P , then p is simple on Spec(B) iff the local ring B′p′ = (A′/IA′)P ′/IA′ is regular.

Since κ is finitely generated over k, it is also easy to see that (29.*) is equivalent

to the geometrical regularity of Bp over k.

(29.B) The results of the preceding paragraph can be more fully described by

the notion of formal smoothness. We begin by proving lemmas.

Lemma 29.1. Let k −→ B be a continuous homomorphism of topological rings

and suppose B is formally smooth over k. Then, for any open ideal J of B,
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ΩB/k ⊗ (B/J) is a projective B/J-module.

(In this case we say that the B-module ΩB/k is formally projective.)

Proof. Let u : L −→ M be an epimorphism of B/J-modules. We have to prove

that HomB(ΩB/k, L) −→ HomB(ΩB/k,M) is surjective, i.e. that DerK(B,L) −→

Derk(B,M) is surjective. Let D ∈ Derk(B,M), and consider the commutative

diagram

B (B/J) ∗M

k (B/J) ∗ L

v

j

where j(x, y) = (x, uy) and v(b) = (b mod J,D(b)). Let v : B −→ (B/J) ∗ L

be a lifting of v. Then we have v′(b) = (b mod J,D′(b)) with a derivation

D′ ∈ Derk(B,L) and uD′ = D.

Lemma 29.2. Let B be a ring, J an ideal of B and u : L −→ M a homomor-

phism of B-modules. Suppose M is projective. Furthermore, assume either (α)

J is nilpotent, or that (β) L is a finite B-module and J ⊆ rad(B). Then u is

left-invertible iff u : L/JL −→M/JM is also.

Proof. “Only if” is trivial, so suppose u has a left-inverse v : M/JM −→ L/JL.

Since M is projective we can lift v to v : M −→ L; put w = vu. Then L =

w(L)+JL, hence L = w(L) by NAK. Then w is an automorphism. [In fact, it is

generally true that a surjective endomomorphism f of a finite B-module

L is an automorphism. Here is an elegant proof due to Vasconcelos: Let

B[T ] operate on L by Tξ = f(ξ). Then L = TL, hence by NAK there exists

ϕ(T ) ∈ B[T ] such that (1 + Tϕ(T ))L = 0; then Tξ = 0 implies ξ = 0.] Therefore

w−1v is a left-inverse of u.
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(29.C) Theorem 63. Let k and A be topological rings (cf. (28.B)) and

g : k −→ A a continuous homomorphism. Let Q be an ideal of definition of A,

let I be an ideal of A and put

B = A/I, q = (Q+ I)/I.

Suppose that A is Noetherian and formally smooth over k. Then the following

are equivalent:

(1) B (with the q-adic topology) is f.s. over k;

(2) the canonical maps

δn : (I/I2)⊗B (B/qn) −→ ΩA/k ⊗A (B/qn) (n = 1, 2, . . . )

derived from the map δ : I/I2 −→ ΩA/k ⊗B of Th.58 are left-invertible;

(3) the map

δ1 : (I/I2)⊗ (B/q) −→ ΩK/k ⊗ (B/q)

is left-invertible. (When q is a maximal ideal, this condition says simply

that δ1 is injective.)

Proof. (2) =⇒ (3) is trivial, while (3) =⇒ (2) follows from the preceding

lemmas. (2) =⇒ (1) is easy and left to the reader.

We prove (1) =⇒ (2). Put Bn = B/qn. The map δn is left-invertible iff, for

any Bn-module N , the induced map

Hom(I/I2, N)←− Derk(A,N)

is surjective. So fix a Bn-module N and a homomorphism g ∈ HomB(I/I
2, N).

Since A is Noetherian there exists, by Artin-Rees, an integer ν > n such that
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I ∩Qν ⊆ QnI. Then g induces a map

gν : (I +Qν)/(I2 +Qν) −→ I/(I2 + (Qν ∩ I)) −→ I/(I2 +QnI) −→ N,

which is a homomorphism of Bν-modules. Let E denote the extension

0 −→ (I +Qν)/(I2 +Qν) −→ A/(I2 +Qν) −→ Bν −→ 0

of the discrete k-algebra Bν , and let

0 −→ N −→ C −→ Bν −→ 0

be the extension gν∗(E) (cf. (25.E)). The ring C is a discrete k-algebra. Since B

is f.s. over k, there exists a continuous homomorphism v : B −→ C such that

B Bν

k C

v

is commutative. On the other hand, by the definition of gν∗(E) we have a

canonical homomorphism of k-algebras u : A −→ A/(I2 +Qν) −→ C such that

B Bν

A Cu

commutes. Denoting the natural map A −→ B = A/I by r, we get a deriva-

tion D = u− vr ∈ Derk(A,N). It is easy to check that

D(x) = u(x) = g(x mod I2) for x ∈ I.
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Corollary 29.1. If, in the notation of Th.63, B is also f.s. over k, then the

B-module I/I2 is formally projective.

(29.D) Lemma 29.3 (EGA IV 19.1.12 [Gro64]). Let B be a ring, L a finite

B-module, M a projective B-module and u : L −→M a B-linear map. Then the

following conditions on p ∈ Spec(B) are equivalent, and the set of the points p

satisfying the conditions is open in Spec(B).

(1) up : Lp = L⊗Bp −→M ⊗Bp is left-invertible.

(2) there exists x1, . . . , xm ∈ L and v1, . . . , vm ∈ HomB(M,B) such that

Lp =
∑
xiBp and det(vi(u(xj))) ̸∈ p.

(3) there exists f ∈ B − p such that

uf : Lf = L⊗Bf −→Mf =M ⊗Bf

is left-invertible.

Proof. The module M is a direct summand of a free B-module F . Since L is

finitely generated u(L) is contained in a free submodule F ′ of F of finite rank

which is a direct summand of F . Now the conditions (1), (2), (3) are not affected

if we replace M by F , and then F by F ′. Therefore we may assume that M is

free of finite rank.

(1) =⇒ (2) The assumption (1) implies that Lp is Bp-projective, hence Bp-

free. Let xi ∈ L (1 ⩽ i ⩽ m) be such that their images in Lp (which are

denoted by the same letters xi) form a basis. Then {up(x1), . . . , up(xm)}

is a part of a basis of Mp, so there exists linear forms v′i :Mp −→ Bp such

that v′i(up(xj)) = δij . Since M is free of finite rank we can write v′i = s−1i vi,

si ∈ B − p, vi ∈ HomB(M,B). Then det(vi(u(xj)) ̸∈ p.
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(2) =⇒ (3) Since L is finite over B and since Lp =
m∑
1
xiBp it is easy to find

g ∈ B−p such that Lg =
∑
xiBg. Put d = det(vi(u(xj))) and f = gd. Then

Lf =
∑
xiBf , and d is a unit in Bf . It follows that Mf = uf (Lf )+V with

V =
⋂
Ker(vi). Moreover, u(xi) (1 ⩽ i ⩽ m) are linearly independent

over Bf , so that uf is injective. Thus uf is left-invertible.

(3) =⇒ (1) Trivial. Lastly, the set of the points p which satisfy (3) is obviously

open in Spec(B).

(29.E) Theorem 64. Let k be a ring, and A be a Noetherian, smooth k-

algebra. Let I be an ideal of A, B = A/I, p ∈ Spec(B), P = the inverse image of

p in A, q = P ∩ k and κ(p) = the residue field of Bp and AP . Then the following

are equivalent:

(1) Bp is smooth over k (or what amounts to the same, over kq);

(2) the local ring Bp (with the topology as a local ring) is formally smooth over

the discrete ring k or kq;

(2′) the local ring Bp is f.s. over the local ring kq;

(3) (I/I2)⊗B κ(p) −→ ΩA/k ⊗A κ(p) is injective;

(4) (I/I2)⊗B Bp −→ ΩA/k ⊗A Bp is left-invertible;

(5) there exists F1, . . . , Fr ∈ I and D1, . . . , Dr ∈ Derk(A,B) such that∑r
1 FiAP = IAP and Det(DiFj) ̸∈ p;

(6) there exists f ∈ B − p such that Bf is smooth over k.

Consequently, the set {p ∈ Spec(B) | Bp is smooth over k} is open in Spec(B).
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Proof.

(1) =⇒ (2) trivial.

(2) =⇒ (2′) is also trivial (cf. (28.C)).

(2) =⇒ (3) we know that the local ring AP is (smooth, hence a fortiori) f.s.

over k, and we have Bp = AP /IAP and ΩAP /k = ΩA/k ⊗A AP . So apply

Th.63.

(3) =⇒ (4) since ΩA/k is A-projective by Lemma 29.1, ΩA/k ⊗ Bp is Bp-

projective. Apply Lemma 29.2.

(4) =⇒ (5) apply Lemma 29.3 to the B-linear map I/I2 −→ ΩA/k ⊗A B.

(5) =⇒ (6) by Lemma 29.3 and Th.63.

(6) =⇒ (1) trivial.

Remark 29.1. The theorem has two important consequences. First, if, in the

theorem, k is a field, then A is smooth over the prime field k0 in k also, and Bp

is smooth over k0 iff it is regular. Therefore the set {p | Bp is regular} is open in

Spec(B).

Secondly, let k be a Noetherian ring and B a k-algebra of finite type. Then

Bp (p ∈ Spec(B)) is smooth over k iff it is f.s. over k. In fact B is of the form

A/I, A = k[X1, . . . , Xn], so we can apply the theorem.

Remark 29.2. When the conditions of Th.64 hold, the number r of (5) is equal

to the height of IAP .
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(29.F) Nagata gave a similar Jacobian criterion for rings of the form B =

k[[X1, . . . , Xn]]/I where k is a field Cf. [Nag57]. By lack of space we just quote

the main result in the form found in EGA:

Theorem (cf. EGA IV 22.7.3 [Gro64]). Let k be a field, and let (A,m,K) be

a Noetherian complete local ring. Let I be an ideal of A, B = A/I, P a prime

ideal containing I and p = P/I. Suppose that:

(1) [k : kp] <∞ if ch(k) = p > 0,

(2) K is a finite extension of a separable extension K0 of k, and

(3) A has a structure of a formally smooth K0-algebra. Then the local ring Bp

is f.s. over k iff there exist F1, . . . , Fm ∈ I and D1, . . . , Dm ∈ Derk(A) such

that IAP =
∑
FiAP and such that Det(Di(Fj)) ̸= 0.

Corollary 29.2 (EGA IV 22.7.6 [Gro64]). Let B be a Noetherian complete

local ring containing a field. Then the set {p ∈ Spec(B) | Bp is regular} is open

in Spec(B).

30 Formal Smoothness II

(30.A) Definition. Let Λ
g−→ k

f−→ A be continuous homomorphisms of

topological rings. (cf. (28.B)) We say that A is formally smooth over k

relative to Λ (f.s. over k rel.Λ, for short) if, given any commutative diagram

A C/N

Λ k C

v

g

f

i

j

where C and C/N are discrete rings, N an ideal of C with N2 = 0 and the homo-

morphisms are continuous, the map v can be lifted to a k-algebra homomorphism

A −→ C whenever it can be lifted to a Λ-algebra homomorphism A −→ C.
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Theorem 65. Let Λ
g−→ k

f−→ A be as above. Then the following are equiva-

lent:

(1) A is f.s. over k rel. Λ;

(2) for any A-module N such that IN = 0 for some open ideal I of A, the map

DerΛ(A,N) −→ DerΛ(k,N) induced by f is surjective;

(3) Ωk/Λ ⊗k (A/I) −→ ΩA/Λ ⊗A (A/I) is left-invertible for any open ideal I of

A.

Proof. (1) =⇒ (2): Put C = (A/I) ∗ N , take D ∈ DerΛ(k,N) and define

i : k −→ C by i(α) = (vf(α), Df(α)) (α ∈ k) where v : A −→ A/I is the

natural map. Then v can be lifted to the Λ-homomorphism a 7→ (v(a), 0) ∈ C,

hence it can also be lifted to a k-homomorphism a 7→ (v(a), D′(a)), and then

D′ : A −→ N is a derivation satisfying D = D′f . (2) =⇒ (1) is also easy, and

(2) ⇐⇒ (3) is obvious.

(30.B) Theorem 66. Let Λ −→ k −→ A be as above, let J be the ideal of

definition of A and suppose A is formally smooth over Λ. Then A is f.s. over k

iff

Ωk/Λ ⊗k (A/J) −→ ΩA/Λ ⊗A (A/J)

is left-invertible.

Proof. By assumption, A is f.s. over k iff it is f.s. over k rel. Λ. On the other

hand, for any open ideal I of A the A/I-module ΩA/Λ ⊗ (A/I) is projective by

(29.B) Lemma 29.1. Thus the condition (3) of the preceding theorem is equivalent

to the present condition by (29.B) Lemma 29.2.

Corollary 30.1. Let (A,m,K) be a regular local ring containing a field k. Then

A is f.s. over k iff

Ωk ⊗k K −→ ΩA ⊗A K
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is injective.

Proof. Since A is f.s. over the prime field in k, the assertion follows from the

theorem.

(30.C) Lemma 30.1. Let k be a field of characteristic p. Let F = {kα} be

a family of subfields of k, directed downwards (i.e. for any two members of F

there exists a third which is contained in both of them), such that kp ⊆ kα ⊆ k,⋂
α kα = kp. Let uα : Ωk −→ Ωk/kα be the canonical homomorphisms. Then⋂
αKer(uα) = (0).

Proof. Let (xi) be a p-basis over k. Then Ωk is a free k-module with (dxi)

as a basis. Suppose that 0 ̸=
∑n

1 cidxi ∈
⋂
αKer(uα). Then the monomials

{xν11 . . . xνnn | 0 ⩽ νi < p} must be linearly dependent over kα for all α. But since

they are linearly independent over kp and since
⋂
kα = kp, it is easily seen that

they are linearly indep. over some kα.

Theorem 67. Let (A,m,K) be a regular local ring containing a field k of

characteristic p. Let F = {kα} be as in the above lemma. Then A is f.s. over k

iff A is f.s. over k rel. kα for all α.

Proof. “Only-if” is trivial. Conversely, suppose the condition holds, and look at

the commutative diagram

Ωk ⊗k K ΩA ⊗K

Ωk/kα ⊗K ΩA/kα ⊗K

w

u′
α

wα

Here wα is injective by Th.65 and u′α = uα ⊗ 1K . Thus

Ker(w) ⊆
⋂

Ker(u′α) =
(⋂

Ker(uα)
)
⊗K = (0).
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(30.D) Theorem 68 (Grothendieck). Let A be a Noetherian complete local

ring and p be a prime ideal of A; put B = Ap and let B̂ denote the completion

of B. Let q′ ∈ Spec(B) and let L = κ(q′) = Bq′/q′Bq′ . Then for any prime ideal

Q of B̂ lying over q′, the ‘local ring of Q on the fibre’ B̂Q ⊗B L = B̂Q/q
′B̂Q (cf.

(21.A)) is formally smooth (hence geometrically regular) over L.

Proof.

Step I. Put

• q = q′ ∩A,

• A = A/q,

• B = B/qB = B/q′,

• B̂ = (the completion of the local ring B) = B̂/q′B̂

• and Q = Q/q′B̂.

Then the ‘local ring of Q on the fibre’ remains the same when we replace

A, B, B̂, Q by A, B, B̂, Q respectively. Thus we may assume that A is an

integral domain and Q ∩B = q′ = (0).

Step II. (Reduction to the case that B is regular). Let:

• R be a complete regular local ring R ⊆ A over which A is finite.

• p0 = p ∩R,

• S = Rp0
and

• B′ = Ap0

Then B′ is finite over S, and B = Ap is a localization of the semi-local ring

B′ by a maximal ideal. Hence B̂ is a localization (and a direct factor) of

B̂′ = B′ ⊗S Ŝ. Let L (resp. K) be the quotient field of A, B′ and B (resp.

R and S).
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B̂′ B′ ⊗S Ŝ B̂

A Ap0
B′ Ap B L

R Rp0
S K

We are givenQ ∈ Spec(B̂) such thatQ∩B = (0). Then p̂BQ is a localization

of

L⊗B′ B̂′ = L⊗S Ŝ = L⊗K (K ⊗S Ŝ),

and L is a finite extension of the field K. In general if T is a K-algebra, if

M ∈ Spec(L⊗K T ) and m =M∩T , and if Tm is f.s. over K, then (L⊗T )M
is a localization of L⊗KTm and hence is f.s. over L. Thus it suffices to show

that ŜQ∩Ŝ is f.s. over K. Thus the problem is reduced to proving that, if

R is a complete regular local ring with quotient field K, if p ∈ Spec(R) and

S = Rp, and if Q is a prime ideal of Ŝ such that Q ∩ S = (0), then ŜQ is

f.s. over K.

Step III. The local ring ŜQ is regular, so if ch(K) = 0 we are done. If ch(K) = p

we apply the preceding theorem. In this case R is an equicharacteristic

complete regular local ring, hence R = k[[X1, . . . , Xn]] for some subfield k

of R. Let {kα} be the family of all subfields kα of k such that [k : kα] <∞

and kp ⊆ kα ⊆ k. Put

• Rα = kα[[X
p
1 , . . . , X

p
n]],

• pα = Rα ∩ p,

• Sα = (Rα)pα
and

• Kα = ΦRα = kα((X
p
1 , . . . , X

p
n)).
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Then
⋂
α kα = kp, hence it is elementary to see that

⋂
αKα = Kp (see

below). By the preceding theorem we have only to show that, for each α,

ŜQ is f.s. over K rel. KQ.

Since Rp ⊆ Rα ⊆ R, p is the only prime ideal of R lying over pα. Hence

S = Rp = Rpα
= R⊗Rα

Sα,

and so S is finite over Sα. Therefore Ŝ = S ⊗Sα
Ŝα. Suppose we are given

diagram

Ŝα Ŝ C/N

Sα S C

v

u

where N2 = (0) and u and v are homomorphisms, and a lifting v′ : Ŝ −→ C

of v over Sα. Put v∗ = v′ | Ŝα and v′′ = u ⊗ v∗∗: Ŝ = S ⊗Sα
Ŝα −→ C.

Then v′′ is a lifting of v over S. Thus Ŝ is formally smooth over S rel. Sα

with respect to the discrete topology. Then it follows immediately from the

definition that ŜQ is f.s. over K rel. Kα as a discrete ring, hence a fortiori

as a local ring.

(30.E) A digression. Let A be a ring and M an A-module. We say that M is

injectively free if, for any non-zero element x of M , there exists a linear form

f ∈ HomA(M,A) with f(x) ̸= 0 (in other words, if the canonical map from M

to its double dual is injective).

Lemma 30.2. Let B be an A-algebra which is injectively free as an A-module.

Then B[X1, . . . , Xn] (resp. B[[X1, . . . , Xn]]) is injectively free over A[X1, . . . , Xn]

(resp. A[[X1, . . . , Xn]]).
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Proof. Just extend a suitable A-linear map ℓ : B −→ A to B[X1, . . . , Xn] (resp.

B[[X1, . . . , Xn]]) by letting it operate on the coefficients.

Lemma 30.3. Let A ⊂ B be integral domains, and suppose B is injectively

free over A. Let K and L be the quotient fields of A and B respectively, and X

be an indeterminate. Then

Φ(B[[X]]) ∩K((X)) = Φ(A[[X]])

Proof. ⊇ is trivial. To see ⊆, let ξ ∈ Φ(B[[X]]) ∩ K((X)). As an element of

K((X)) we can write (the Laurent expansion)

ξ = Xm(r0 + r1X + r2X
2 + . . . ) (m ∈ Z, ri ∈ K)

We may assume m = 0. Since ξ ∈ Φ(B[[X]]), there exists 0 ̸= ϕ ∈ B[[X]] such

that ϕξ = ψ ∈ B[[X]]. Write

ϕ =

∞∑
0

αiX
i, ψ =

∞∑
0

βkX
k (αi, βj ∈ B).

Then
∑
i+j=k αirj = βk. Take a linear map ℓ : B −→ A with ℓ(αi) ̸= 0 for some

i. Then
∑
i+j=k ℓ(αi)rj = βk. Writing ℓ(ϕ) =

∑
ℓ(αj)X

i and ℓ(ψ) =
∑
ℓ(βk)X

k

we therefore get ℓ(ϕ) ̸= 0 and ξ = ℓ(ψ)/ℓ(ϕ) ∈ Φ(A[[X]]).

Proposition 30.1. Let k be a field and {kα} a family of subfields of k. Put

k0 =
⋂
α kα. Then we have

⋂
α

kα((X1, . . . , Xn)) = k0((X1, . . . , Xn))

Proof. When n = 1, the uniqueness of the Laurent expansion proves the assertion.

Induction on n. Put
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• A = k0[[X1, . . . , Xn−1]],

• Bα = kα[[X1, . . . , Xn−1]]

• K = ΦA = k0((X1, . . . , Xn−1))

• Lα = ΦBα = kα((X1, . . . , Xn−1)).

Then we have

⋂
α

kα((X1, . . . , Xn)) ⊆
⋂
α

Lα((Xn)) =
(⋂

α

Lα

)
((Xn)) = K((Xn))

by the induction hypothesis, whence

⋂
α

kα((X1, . . . , Xn)) ⊆ kα((X1, . . . , Xn)) ∩K((Xn))

= Φ(Bα[[Xn]]) ∩K([[Xn]])

= Φ(A[[Xn]])

= k0((X1, . . . , Xn)).
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31 Nagata Rings

(31.A) Definition. Let A be an integral domain and K its quotient field.

We say that A is N-1 if the integral closure of A in K is a finite A-module; and

that A is N-2 if, for any finite extension L of K, the integral closure AL of A in

L is a finite A-module. If A is N-1 (resp. N-2), so is any localization of A. The

first example of a Noetherian domain that is not N-1 was given by [Aki35].

We say that a ring B is a Nagata ring∗ if it is Noetherian and if B/p is N-2

for every p ∈ Spec(B). If B is a Nagata ring then any localization of B and any

finite B algebra are again Nagata.

(31.B) Proposition 31.1. Let A be a Noetherian normal domain with quo-

tient field K, let L be a finite separable extension of K and let AL denote the

integral closure of A in L. Then AL is finite over A.

Proof. Enlarging L if necessary, we may assume L is a finite Galois extension of

K. Let G = {σ1, . . . , σn} be its group, and choose a basis ω1, . . . , wn of L from

AL. Take α ∈ AL and write α =
∑
ujωj (uj ∈ K). Then σi(α) =

∑
ujσi(ωj)

for 1 ⩽ i ⩽ n, and the determinant D = det(σi(ωj)) is not zero. The element

∗pseudo-geometric ring in Nagata’s terminology, and (Noetherian) universally Japanese ring
in EGA (cf. EGA IV. 7.7.2 [Gro64]).
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c = D2 is G-invariant, hence belongs to K. Solving the linear equations

σi(α) =
∑
ujσi(ωj), we get u1 = Df/D = ci/c, where Di ∈ AL and ci = DD1 ∈

AL∩K = A. Thus AL is contained in the finite A-module
∑
A(ωi/c). Therefore

AL itself is finite over A.

Corollary 31.1. Let A be a Noetherian domain of characteristic zero. Then A

is N-2 iff it is N-1.

Corollary 31.2. Let A be a Noetherian domain with quotient field K. Then

A is N-2 if, for any finite radical extension E of K, the integral closure of A in

E is finite over A. Proof.

Proof. If L is a finite extension of K, the smallest normal extension L′ of K

containing L is also finite over K, and if E is the subfield of Aut(L′/K)-invariants

then L′/E is separable and E/K is radical. Thus the assertion follows from the

Proposition 31.1.

(31.C) Theorem 69 (Tate). Let A be a Noetherian normal domain and let

x ̸= 0 be an element of A such that xA is a prime ideal. Suppose further that A

is xA-adically complete and separated, and that A/xA is N-2. Then A itself is

N-2.

Proof. We may assume that ch(A) = p > 0. Let L be a finite radical extension of

the quotient field K of A, and let B be the integral closure of A in L. Then there

exists a power q = pf of p such that Lq ⊆ K, and we have B = {b ∈ L | bq ∈ A}

by the normality of A. By enlarging L if necessary, we may assume that there

exists y ∈ B with yq = x. Put p = xA, and let P be a prime ideal of B lying over

p. Then we have P = {b ∈ B | bq ∈ p} = yB. Thus Ap and BP are local domains

whose maximal ideals are principal and ̸= (0). Hence they are principal valuation

rings. Then it is well known (and easy to see) that [κ(P ) : κ(p)] ⩽ [L : K], where

κ(P ) and κ(p) are the residue fields of BP and Ap respectively. Since B/P is
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contained in the integral closure of A/p in k(P ), and since A/p = A/xA is N-2,

the ring B/P is finite over A/xA. Since P = yB, we have P i/P i+1 ≃ B/P for

each i, hence B/xB = B/P q is also a finite module over A/xA. Moreover, B is

separated in the xB-adic topology. In fact, the xB-adic topology is equal to the

yB-adic topology, and since y is not a zero-divisor in B one immediately verifies

that ymBP ∩B = ymB (m = 1, 2, . . . ). Therefore

∞⋂
ymB ⊆

∞⋂
ymBP = (0).

Now the theorem follows from the lemma of (28.P).

Corollary 31.3. If A is a Noetherian normal domain which is N-2, then the

formal power series ring A[[X1, . . . , Xn]] is N-2 also.

Corollary 31.4 (Nagata). A Noetherian complete local ring A is a Nagata ring.

Proof. If p ∈ Spec(A) then A/p is also a complete local ring. Thus we have only

to prove that a Noetherian complete local domain A is N-2. But then A is a

finite module over a complete regular local ring A0 by (28.P), and A0 is N-2 by

the theorem (use induction on dimA0). Hence A is N-2.

(31.D) Let A be a Noetherian semi-local ring and Â its completion. If Â is

reduced then A is said to be analytically unramified. A prime ideal p of A is

said to be analytically unramified if Â/p̂A = (̂A/p) is reduced.

Lemma 31.1. Let A be a Noetherian semi-local domain and P ∈ Spec(A).

Suppose that

(1) Ap is a principal valuation ring,

(2) p is analytically unramified.

Then, for any p̂ ∈ AssÂ(Â/pÂ), the ring Âp̂ is a principal valuation ring.
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Proof. By (1) there exists π ∈ A such that pAp = πAp, and by (2) we get

p̂Âp̂ = pÂp̂ = (pAp̂)Âp̂ = πÂp̂

Since π is Â-regular by the flatness of Â over A, the local ring Âp̂ is regular of

dimension 1.

Lemma 31.2. Let A be a Noetherian semi-local domain and let 0 ̸= x ∈ rad(A).

Suppose

(i) A/xA has no embedded primes,

(ii) for each p ∈ AssA(A/xA), Ap is regular and p is analytically unramified.

Then A is analytically unramified.

Proof. Let AssA(A/x) = {p1, . . . , pr} and AssÂ(Â/piÂ) = {Pi1, . . . , Pini}. Then

PiÂ =
⋂
j Pij by (2). Let Qij be the kernel of the canonical map

Â −→ ÂPij
. Since ÂPij

is regular by Lemma 31.1,Qij is a prime ideal of Â.

Therefore, Â is reduced if
⋂
i,j Qij = (0). Put N =

⋂
Qij . The formula

AssÂ(Â/xÂ) =
⋃

p∈Ass(A/xA)

AssÂ(Â/pÂ) = {Pij}

shows that xÂ =
⋂
i,j P

′
ij where P ′ij is Pij-primary. We have Qij ⊆ P ′ij by the

definition of Qij . Hence N ⊆ xÂ. But x is Â-regular, so that x /∈ Qij . Hence we

get N = xN , and since x ∈ rad(Â) we conclude N = (0).

Theorem 70. Let A be a Noetherian semi-local domain. If A is a Nagata ring

then it is analytically unramified.

Proof. We use induction on dimA. Let B be the integral closure of A in its

quotient field. Then B is finite over A, hence for any P ∈ Spec(B) the domain
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B/P is finite over A/P ∩A which is assumed to be N-2. Thus B is a Nagata ring.

Moreover, if m = rad(A) then the (rad(B)-adic) topology of B is equal to the m-

adic topology, hence A is a subspace of B by Artin-Rees so that Â ⊆ B̂. Therefore

we may assume that A is a normal domain. Let 0 ̸= x ∈ rad(A). Since A is normal

the A-module A/xA has no embedded primes. If p ∈ AssA(A/xA), then A/p is

a Nagata domain and dimA/p < dimA, hence p is analytically unramified by

the induction hypothesis. Moreover, Ap is regular because ht(p) = 1. Thus the

conditions of Lemma 31.2 are satisfied, and A is analytically unramified.

(31.E) For any ring R, we shall denote by R′ the integral closure of R in its

total quotient ring ΦR. Let A be a Noetherian local ring, and suppose A is

analytically unramified. Then (0) = P1 ∩ · · · ∩ Pr in Â, where the Pi are the

minimal prime ideals of Â. Hence ΦÂ = K1 × · · · ×Kr with Ki = Φ(Â/Pi), and

Â′ = (Â/P1)
′ · × · · · × (Â/Pr)

′. Since Â/P1 is a complete local domain, it is a

Nagata ring and (Â/Pi)
′ is finite over Â/Pi, or what amounts to the same, over

Â. Therefore Â′ is finite over Â. This property implies, in turn, that A′ is finite

over A. Indeed, since Â is faithfully flat over A we have

A′ ⊗A Â ⊆ (ΦA)⊗A Â ⊆ ΦÂ,

and hence A′ ⊗A Â ⊆ Â. Thus A′ ⊗ Â is finite over Â, and we can find elements

a′i (1 ⩽ i ⩽ m) of A′ such that A′ ⊗ Â =
∑
a′iÂ. Then (A′/

∑
a′iA)⊗A Â = 0,

so that A′ =
∑
a′1A by the faithful flatness of Â. Summing up, we have the

following implications for a Noetherian local ring A.

A is complete =⇒ A is a Nagata ring

A is a Nagata domain =⇒ A is analytically unramified

=⇒ Â′ is finite over Â =⇒ A′ is finite over A, i.e. A is N-1
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(31.F) Theorem 71. Let A be a semi-local Nagata domain. Let P1, . . . , Pr

be the minimal prime ideals of the completion Â of A and let K (resp. L1) denote

the quotient field of A (resp, of Â/Pi). Then each L1 is separable over K.

Proof. Take any finite extension I of K. Since Â is reduced by Th.70 we have

ΦÂ = L1 × · · · × Lr, and it suffices to show that

ΦÂ⊗K L = (L1 ⊗ L)× · · · × (Lr ⊗ L)

is reduced. Since L is flat over A we have

Â⊗A L ⊆ ΦÂ⊗A L = ΦÂ⊗K L ⊆ Φ(Â⊗A L),

so it is enough to see that Â⊗A L is reduced. Let B denote the integral closure

of A in L. Then B is finite over A, hence B̂ = Â⊗A B and so

ΦB̂ ⊇ Â⊗A ΦB = Â⊗A L.

But B is a semi-local Nagata domain, so that B̂ is reduced by Th.70. Hence ΦB̂

and Â⊗A L are reduced.

(31.G) For any scheme X, let Nor(X) denote the set of points x of X such

that the local ring at x is normal.

Lemma 31.3. Let A be a Noetherian domain, and put X = Spec(A). Suppose

there exists 0 ̸= f ∈ A such that Af = A[1/f ] is normal. Then Nor(X) is open

in X.

Proof. If f /∈ p ∈ X then Ap is a localization of Af , hence p ∈ Nor(X). Put

E = {p ∈ AssA(A/fA) | either ht(p) = 1 and Ap is not regular, or ht(p) > 1}.
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Then E is of course a finite set, and by the criterion of normality (Th.39) it is

not difficult to see that

Nor(X) = X −
⋃
p∈E

V (p).

Therefore Nor(X) is open.

Lemma 31.4. Let B be a Noetherian domain with quotient field k, such that

there exists 0 ̸= f ∈ B such that Bf = B[1/f ] is normal. Suppose that Bp is N-1

for each maximal ideal p of B. Then B is N-1.

Proof. We denote the integral closure in K by ′. Let p be a maximal ideal of B

and write (Bp)
′ =

∑n
1 Bpωi with ωi ∈ B′. This is possible because

(Bp)
′ = B′p = Bp[B

′].

Put C(p) = B[ω1, . . . , ωn]. Then C(p) is finite over B, hence is Noetherian. Let

P be any prime of C(p) lying over p. Then

(C(p))P ⊇ (C(p))p ⊇ C(p),

and (C(p))p = (Bp)
′ is normal. Thus (C(p))P is a localization of the normal ring

(Bp)
′, hence is itself normal. Put Xp = Spec(C(p)), Fp = Xp − Nor(Xp), and

X = Spec(B); let πp : Xp −→ X be the morphism corresponding to the inclusion

map B −→ C(p). Since C(p)[1/f ] = Bf , the set Fp is closed inXp by Lemma 31.3.

Since C(p) is finite over B, the map πp is a closed map. Thus πp(Fp) is a closed

set in X, and p /∈ πp(Fp) by what we have just seen. Therefore the intersection⋂
all max p πp(Fp) contains no closed point (= maximal ideal of B), so that we

have
⋂

p(Fp) = ∅. As affine schemes are quasi-compact, there exist p1, . . . , pr

such that
⋂
i=1 πpi(Fpi) ̸= ∅. Put C(i) = C(pi) and C = B[C(1), . . . , C(r)]. Then
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C is finite over B. We claim that CQ is normal for any Q ∈ Spec(C). In fact we

have Q∩B /∈ πpi
(Fpi

) for some i, hence Q∩C(i) ∈ Nor(xp). Putting C(i)∩Q = q

we have CQ ⊇ C(i)
q , and since C(i)

q is normal we have C(i) ⊇ C, hence CQ = C
(i)
q ,

Thus our claim is proved and C is normal. Therefore B′ = C, so B′ is finite over

B.

(31.H) Theorem 72 (Nagata). Let A be a Nagata ring and B an A-algebra

of finite type. Then B is also a Nagata ring.

Proof. The canonical Image of A in B is also a Nagata ring, so we may assume

that A ⊆ B. Then B = A[x1, . . . , xn] with some xi ∈ B, and by induction on n

it is enough to consider the case B = A[x].

Let P ∈ Spec(B). Then B/P = (A/A ∩ P )[x] where A/A ∩ P is a Nagata

domain, and we have to prove that B/P is N-2. Thus the problem is reduced to

proving the following:

(31.*) If A is a Nagata domain, and if B = A[x] is an integral domain generated

by a single element x over A, then B is N-2.

Let K be the quotient field of A. It is easy to see that we may replace A by

its integral closure in K. So we can assume in (31.G) that A is normal.

Case 1. x is transcedental over A.

Then B is normal. Therefore if ch(B) = 0 we are done. Suppose ch(B) = P ,

and take a finite radical extension L = K(x, α1, . . . , αr) of ΦB = K(x). Let

q = pe be such that αqi ∈ K(x) for all i. Then there exists a finite radical

extension K ′ of K such that αi ∈ K ′(x1/q). If Ã (resp. B̃) is the integral

closure of A in K ′ (resp. of B in L), then Ã[x1/q] is normal and we have

B = A[x] ⊆ B̃ ⊆ Ã[x1/q]. Since Ã[x1/q] is finite over B, B̃ is also finite over

B.
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Case 2. x is algebraic over A.

Let L be a finite extension of ΦB. Then [L : K] <∞, and if Ã (resp, B̃) is

the integral closure of A (resp. B) in L then Ã is finite over A, hence Ã[x]

is finite over A[x] = B, and B = A[x] ⊆ Ã[x] ⊆ B̃. Therefore we have only

to prove:

(†) Let A be a normal Nagata domain with quotient field K, and let

B = A[x] (x ∈ K). Then B is N-1.

Write x = b/a with a, b ∈ A. Then Ba = B[1/a] = A[1/a] is normal because

it is a localization of the normal ring A. Thus by Lemma 31.4 it is enough

to prove that BP is N-1 for any maximal ideal P of B. Put P ′ = P ∩ A.

Then B/P = (A/P ′)[x] is a field, so the image x of x in B/P is algebraic

over A/P ′. Hence there exists a monic polynomial f(X) ∈ A[X] such that

f(x) ∈ P · Let K ′′ be the field obtained by adjoining all roots of f(X) to

K, let A′′ denote the integral closure of A in K and put B′′ = A′′[x]. Then

A′′ is Nagata and B′′ is finite over B. Let P ′′ denote any prime of B′′ lying

over P . If B′′P ′′ is N-1 for all such P ′′ then B′′P is N-1 by Lemma 31.4 and

it follows easily that BP is N-1. Thus replacing A,B and P by A′′, B′′ and

P ′′ respectively we may assume that f(X) =
∏
(X−ai) with ai ∈ A. Then

x = ai for some i, and as we can replace x by x − ai we may assume that

x ∈ P .

Let Q be the kernel of the homomorphism A[X] −→ A[x] = B which maps

X to x. Then Q is generated by the linear forms aX− b such that x = b/a,

(For, if F (X) = a0X
n+a1X

n−1+ . . . +an ∈ Q, then a0x is integral over A,

hence a0x = b ∈ A by the normality of A. Then F (X)−(a0X−b)Xn−1 ∈ Q,

and our assertion is proved by induction on n = degF (X).) Let I be the
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ideal of A generated by such b, in other words I = xA ∩A. We have

B/xB ≃ A[X]/(XA[X] +Q) = A[X]/(XA[X] + I) ≃ A/I.

We want to apply Lemma 31.2 to the local ring BP and to x ∈ PBP . If

this is possible then BP is analytically unramified, so by (31.E) BP is N-1,

as wanted. Now the conditions of Lemma 31.2 are:

(1) BP /xBP has no embedded primes,

(2) if p ∈ Spec(Bp) is any associated prime of BP /xBP

then (BP )p is regular and p is analytically unramified. Let us check these

conditions.

Since A is a Noetherian normal ring we have A =
⋂

ht(q)=1Aq. Therefore,

if q1, . . . , qs are the prime ideals of height 1 such that x ∈ qiAqi
, then

I = xA ∩A =

s⋂
i=1

(xAqi ∩A).

Hence A/I = B/xB has no embedded primes, proving (1).

Let p be an associated prime of BP /xBP . Then ht(p) = 1, and p ∩ A is

an associated prime of A/(xBP ∩ A) = A/I. Thus A(p∩A) is a principle

valuation ring and so (BP )p = A(p∩A). Lastly, BP /p is a localization of

B/(p∩B) and B/(p∩B) ≃ A/(p∩A) since x ∈ p. Thus BP /p is a Nagata

local domain, hence is analytically unramified. Thus the condition (2) is

verified and our proof is complete.
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32 Closeness of Singular Locus

(32.A) Let A be a Noetherian ring; put X = Spec(A), Reg(X) = {p ∈ X |

Ap is regular} and Sing(X) = X − Reg(X). We ask whether Reg(X) is open in

X.

Lemma 32.1. In order that Reg(X) is open in X, (i) it is necessary and

sufficient that for each p ∈ Reg(X), the set V (p)∩Reg(X) contains a non-empty

open set of V (p); and (ii) it is sufficient that, if p ∈ Reg(X) and Y = Spec(A/p),

then Reg(Y ) contains a non-empty open set of Y .

Proof. (i) This follows from (22.B) Lemma 22.2.

(ii) We derive the condition of (i) from (ii). Let p ∈ Reg(X), and choose

a1, . . . , ar ∈ p which form a regular system of parameters of Ap; put I =∑
aiA. As IAp = pAp, there exists f ∈ A such that IAf = pAf . Then

D(f) = X − V (f) ≃ Spec(Af )

is an open neighborhood of p in X. So, replacing A by Af we may assume

that I = p. Now put Y = Spec(A/p), and identify it with the closed subset

V (p) of X. By assumption, there exists a non-empty open set Y0 of Y
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contained in Reg(Y ). If q ∈ Y0, then Aq/pAq is regular and pAq =
r∑
1
aiAq

is generated by a Aq-regular sequence. Thus dimAq = dimAq/pAq + r, so

that Aq is regular. Therefore Y0 ⊆ Y ∩ Reg(X), and the condition (i) is

proved.

(32.B) Let A be a Noetherian ring. We say that A is J-0 if Reg(Spec(A))

contains a non-empty open set of Spec(A), and that A is J-1 if Reg(Spec(A)) is

open in Spec(A). Thus J-1 implies J-0 if A is domain, but not in general. We

say that A is J-2 if the conditions of the following theorem are satisfied.

Theorem 73. For a Noetherian ring A, the following conditions are equivalent:

(1) any finitely generated A-algebra B is J-1;

(2) any finite A-algebra B is J-1;

(3) for any p ∈ Spec(A), and for any finite radical extension K ′ of κ(p), there

exists a finite A-algebra A′ satisfying A/p ⊆ A′ ⊆ K ′ which is J-0 and

whose quotient field is K ′.

Proof. (1) =⇒ (2) =⇒ (3) trivial

(3) =⇒ (1)Step I. Let p and A′ be as in (3), and let ω1, . . . , ωn ∈ A′ be a linear

basis of K ′ over κ(p). Then there exists 0 ̸= f ∈ A/p such that

A′f =
n∑
1
(A/p)fωi. From this and from Th.51 (i) it follows easily that

A/p is J-0. Therefore A/p (and A itself) is J-1 by Lemma 32.1.

Step II. In view of Lemma 32.1, the condition (1) is equivalent to (1′): Let B

be a domain which is finitely generated over A/p for some p ∈ Spec(A).

Then B is J-0.
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We will prove (1′). Replacing A by A/p we may assume A ⊆ B. Since A

is J-0 by Step I we may also assume that A is regular. Let K and K ′ be the

quotient fields of A and B respectively.

Case 1. K ′ is separable over K. In this case we use only the assumption that A is

regular. Let t1, . . . , tn ∈ B be a separating transcendency basis of K ′ over

K, and put A1 = A[t1, . . . , tn], K1 = K(t1, . . . , tn). Then A1 is a regular

ring. There exists a basis ω1, . . . , ωr of K ′ over K1 such that each ωi ∈ B.

Replacing A by some (A1)f (f ∈ A1) and B by Bf , we may assume B

is finite and free over A: B =
r∑
1
ωiA. Put d = det(trK′/K(ωiωj)). Then

d ̸= 0 as K ′ is separately algebraic over K. We claim that Bd is a regular

ring. Indeed, if d ̸∈ p′ ∈ Spec(B) and p = p′ ∩ A, then Bp =
r∑
1
ωiAp, and

putting

B = B ⊗ κ(p) =
r∑
1

ωiκ(p)

we get

det(trB/κ(p)(ωiωj)) = d ̸= 0 in κ(p).

Therefore B = B⊗κ(p) is a product of fields, and so Bp′⊗κ(p) = Bp′/pBp′

is a field. Since Ap is regular and dimAp = dimBp′ , it follows that Bp is

regular.

Case 2. General case. We may suppose ch(K) = p. There exists a finite purely

inseparable extension K1 of K such that K ′1 = K ′(K1) is separable over

K1. Choose A1 ⊆ K1 as in (3). Then A1 is J-0, and so A1[B] is J-0 by

Case 1. Since A1[B] is finite over B, B is itself J-0 as in Step I.

Remark 32.1. The condition (3) is satisfied if A is a Nagata ring of dimension

1. Indeed, A/p is either a field – in which case (3) is trivial – or a Nagata domain
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of dimension 1, and then the integral closure A′ of A in K ′ is finite over A and

is a regular ring.

(32.C) Theorem 74. Let A be a Noetherian complete local ring. Then A is

J-2.

Proof. Any finite A-algebra B is a finite product of complete local rings:

B = B1 × · · · × Bs and B is J-1 iff each Bi is so. Therefore, by Th.73 and

Lemma 32.1, it suffices to prove that a Noetherian complete local domain A is

J-0.

Case I. ch(A) = 0. The ring A is finite over a suitable subring B which is a regular

local ring, and by the case 1 of Step II of the preceding proof we see that

A is J-0.

Case II. ch(A) = p. Then A contains the prime field, hence also a coefficient field

K, so that A is of the form K[[X1, . . . , Xn]]/I. Therefore A is J-1 by the

Jacobian criterion of Nagata (29.F).

33 Formal Fibres and G-Rings

(33.A) In this section all rings are tacitly assumed to be Noetherian

Definition. Let A be a ring containing a field k. We say that A is geometrically

regular over k if, for any finite extension k′ of k, the ring A⊗kk′ is regular. This is

equivalent to saying that “Am is geometrically regular over k for each m ∈ Ω(A)”,

because if m′ ∈ Ω(A ⊗ k′) and m = m′ ∩ A then (A ⊗ k′)m, is a localization of

Am ⊗k k′.

We say that a homomorphism ϕ : A −→ B is regular (or that B is regular
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over A) if it is flat and if for each p ∈ Spec(A) the fibre B⊗Aκ(p) is geometrically

regular over κ(p). This is equivalent to saying that

B is flat, and for any finite extension L of κ(p), the ring

B ⊗A L = (B ⊗A κ(p))⊗κ(p) L is a regular ring.

A Noetherian ring A is called a G-ring if for any p ∈ Spec(A), the canonical

map Ap −→ (̂Ap) of the local ring Ap into its completion is regular. (The fibres

of Ap −→ (̂Ap) are called the formal fibres of Âp ) It is clear that, if A is a G-ring,

then any localization S−1A and any homomorphic image A/I of A are G-rings.

Th.68 implies that a Noetherian complete local ring is a G-ring.

(33.B) Lemma 33.1. Let A ϕ−→ B
ψ−→ C be homomorphisms of rings.

(i) If ϕ and ψ are regular, so is ψϕ.

(ii) If ψϕ is regular and if ψ is faithfully flat, then ϕ is regular.

Proof. (i) Clearly ψϕ is flat. Let p ∈ Spec(A),K = κ(p) and L = a finite

extension of K. Put B(L) = B ⊗A L and C(L) = C ⊗A L0 It is easy to see

that

ψL = ψ ⊗ idL : B(L) −→ C(L)

is regular, Moreover, if P ′ ∈ Spec(C(L)) and P = P ′ ∩ B(L), then B(L)P

is a regular local ring (as ϕ is regular). Then C(L)P ′ is regular by (21.D)

Th.51(ii) as it is flat over B′(L)P .

(ii) Again the flatness of ϕ is obvious. Using the same notation as above, for

any P ∈ Spec(B(L)) there exists P ′ ∈ Spec (C(L)) lying over P (because ψL

is f.f. ), and the local ring C(L)P ′ is regular and flat over B(L)P . Therefore

the local ring B(L)P is regular by (21.D) Th.51(i).
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Lemma 33.2. Let ϕ : A −→ B be a faithfully flat, regular homomorphism,

Then:

(i) A is regular (resp. normal, resp. C.M., resp. reduced) iff B has the same

property.

(ii) If B is a G-ring, so is A.

Proof. (1)

(i) follows from (21.D) and (21.E).

(ii) Suppose B is a G-ring, and let p ∈ Spec(A). Take a prime ideal P of B

lying over p, and consider the commutative diagram

(̂Ap) (̂BP )

Ap BP

f∗

α

f

β

where f is the local homomorphism derived from ϕ, and α and β are the

natural maps, Since f and β are flat, f̂α = βf is flat also. Then, by the

local criterion of flatness Th.49(5), f̂ is flat (hence faithfully flat). On the

other hand f̂α = βf is regular as f and β are so, hence by Lemma 33.1 we

see that α is regular, which was to be proved.

(33.C) Theorem 75. Let A be a Noetherian ring. If, for every maximal

ideal m of A, the natural map Am −→ (̂Am) is regular, then A is a G-ring.

Proof. We can assume that A is a local ring with A −→ Â regular. Then Â is a

G-ring by Th.68, Hence A is a G-ring by Lemma 33.2

(33.D) Theorem 76. ∗

∗We may replace J-1 by J-2 in the theorem in view of Lemma 33.4 below.
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(i) Let A,B be Noetherian rings and f : A −→ B be a faithfully flat and

regular homomorphism. If B is J-1 (i.e. Reg(B) is open in Spec(B)), so is

A.

(ii) A semi-local G-ring is J-1.

Proof. (i) Put X = Spec(B) and Y = Spec(A). Then the canonical map

f : X −→ Y is submersive by Th.7. On the other hand we have

f−1(Reg(A)) = Reg(B) by Lemma 33.2 (i). Since Reg(B) is open in

Y, Reg(A) must be open in X.

(ii) Apply the above to A −→ Â and use Th.74.

(33.E) Lemma 33.3. A Noetherian semi-local ring A is a G-ring iff, for any

local domain C which is a localization of a finite A-algebra B with respect to a

maximal ideal, and for any prime ideal Q of C∗ with Q ∩C = (0), the local ring

ĈQ is regular.

Proof.

“Only if”. Let A be a G-ring. Then the image of A in B is also a G-ring, hence

we may assume that A ⊆ B. We may also assume that B is a domain. Let

L = ΦB and K = ΦA. Since B̂ = B ⊗A Â and since Ĉ is a component of

B̂, we have

ĈQ = (L⊗B B̂)Q′ = (L⊗K (K ⊗A Â))Q′ = (L⊗K Âq)Q′

with Q′ = QĈQ∩ (L⊗ B̂) and q = Q∩ Â. Since Âq is geometrically regular

over K we see that ĈQ is regular.

“If”. Let p ∈ Spec(A) and let L be a finite extension of κ(p). Then it is clear

that we can find a finite A-algebra B such that A/p ⊆ B ⊆ L and ΦB = L.
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We have

L⊗A Â = L⊗B (B ⊗A Â) = L⊗B B̂,

and the local rings of this ring are of the form B̂Q with Q∩B = (0), hence

regular.

Lemma 33.4. Let A −→ B be a regular homomorphism and let A′ be an

A-algebra of finite type. Put B′ = A′ ⊗AB . Then A′ −→ B′ is regular,

Proof. Let

• P ′ ∈ Spec(A′),

• P = P ′ ∩A,

• k = κ(P )

• K = κ(P ′)

• L be a finite extension of K

Then

L⊗A′ B′ = L⊗A B = L⊗k (k ⊗A B).

Since K is finitely generated over k, L is also finitely generated over k. Thus there

exists a finite radical extension k′ of k such that L(k′) is separably generated over

k′. Put M = L(k′), T = k′ ⊗A B. By assumption T is a regular ring. We have

M ⊗A′ B′ =M ⊗A B =M ⊗k′ (k′ ⊗A B) =M ⊗k′ T,

and M is finitely generated and separable over k′. Then it is easy to see that

the homomorphism T −→ M ⊗k′ T is regular, and since T is regular the ring
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M⊗A′B′ =M⊗k′T is regular by Lemma 33.2. SinceM⊗A′B′ =M⊗L(L⊗A′B′)

is flat over L⊗A B′, the ring L⊗A′ B′ is regular by Th.51.

(33.F) Lemma 33.5. Let A be a Noetherian ring and put X = Spec(A). Let

Z be a non-empty, locally closed set in X. Then Z contains a point p such that

dim(A/p) ⩽ 1. (Geometrically speaking, Z contains either a ‘point’ or a ‘curve’.)

Proof. Shrinking Z if necessary, we may suppose that Z is of the form

D(f)∩ V (P ) with f ∈ A and P ∈ X such that f /∈ P . Then Z is homeomorphic

to Spec((A/P )f ) where f is the image of f ∈ A/P . Let m be a maximal ideal of

the ring (A/P )f , and let p be the inverse image of m in A. Then

Af/pAf = (A/P )f/m = a field,

hence if g is the image of f in A/p then Af/pAf = (A/p)[g−1] is a field. This

means that all non-zero prime ideals of the Noetherian domain A/p contain g,

which is impossible if dimA/p > 1 because a Noetherian domain of dimension

> 1 has infinitely many prime ideals of height 1 (cf. (1.B) and (12.I))

(33.G) Theorem 77 (Grothendieck.). Let A be a G-ring and B a finitely

generated A-algebra. Then B is a G-ring.

Proof.

Step I. We may assume that B = A[t]. Let P be a maximal ideal of B and

put p = P ∩ A. We are to prove that BP −→ (̂BP ) is regular. Since

BP is a localization of Ap[t]. we may assume that A is a local ring and

P ∩A = rad(A). Put m = rad(A).

Step II. The map B −→ B′ = B ⊗A Â induced by A −→ Â is regular by Lemma

33.4 and f.f., and if P ′ is a maximal ideal of B′ lying over P , the proof of

Lemma 33.2(ii) shows that BP −→ (̂BP ) is regular if B′P ′ −→ (̂B′P ′) is
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regular. The ring B′ = A[t] ⊗A Â is of the form Â[t]. So we may assume

that (A,m) is a complete local ring, B = A[t] and P is a maximal ideal of

B lying over m. Putting C = BP , we want to show that C −→ Ĉ is regular,

in other words (Th.75) that C is a G-ring. By Lemma 33.3 it suffices to

show the following: if D is a finite C-algebra which is a domain, and if Q

is a prime ideal of D̂ with Q ∩D = (0), then the local ring D̂Q is regular.

The various rings considered are related as follows.

A = Â −→ B = A[t] −→ C = BP
finite−−−→ D −→ D̂ −→ D̂Q

Denote the kernel of C −→ D by I. Since D is a domain, I is a prime ideal.

Replacing A by A/(A ∩ I), B by B(B ∩ I) and P by P/I, we may further

assume that A is a complete local domain.

Step III. Put X = Spec(D) and X ′ = Spec(D̂), and let f : X ′ −→ X be the

canonical map. It suffices to prove f−1(Reg(X)) = Reg(X ′). Indeed, since

D is a domain we have f(Q) = Q ∩D = (0) ∈ Reg(X), and our goal was

Q ∈ Reg(X ′).

Step IV. Proof of f−1(Reg(X)) = Reg(X ′).

Suppose that they are not equal. Since the complete local ring A is J-2 by

Th.74 B = A[t] and C = BP are also J-2. Hence D is J-1, i.e., Reg(X)

is open in X. On the other hand Reg(X ′) is open in X ′ by Th.74. So

f−1(Reg(X)) ∩ Sing(X ′) is locally closed, and we have assumed that the

intersection is not empty. We want to derive a contradiction from this.

By Lemma 5 there exists p′ ∈ f−1(Reg(X)) ∩ Sing(X ′) such that

dim(D̂/p′) ⩽ 1. The prime p′ of D̂ is not a maximal ideal, because otherwise

f(p′) = D ∩ p′ would be a maximal ideal of D and

f(p′) ∈ Reg(X) would imply that Df (p
′) is regular. Then D̂p′ = D̂f(p′)
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must be regular, contrary to the assumption that p′ ∈ Sing(X). Therefore

we have dim(D̂/p′) = 1.

Put p = p′∩D. Then Dp is regular and D̂p′ is not regular, and Dp −→ D̂p′

is faithfully flat. Hence, by Th.51, D̂p′ ⊗D (D/p) is not regular. Replacing

D̂ by D̂/pD̂, D by D/p, C by C/C ∩ p etc., we may assume that p = (0).

Thus we have finite

A = Â ↪→ B = A[t] −→ C = BP
finite
↪−−−→ D −→ D̂/p′.

We distinguish two cases.

Case 1. D̂/p′ is finite over A. Then D is also finite over A, hence D is complete.

Thus D̂ = D, hence p′ = (0) and D̂p′ is a field, contrary to the assumption

p′ ∈ Sing(X ′).

Case 2. D̂/p′ is not finite over A. Put E = D̂/p′,mA = rad(A),mE = rad(E) etc..

Since P is a maximal ideal of B = A[t], lying over mA the residue field

C/mC is finite over A/mA. Moreover, E/mE is a homomorphic image of

D̂/mD̂ = D/mD and D/mD is finite over C/mC . Hence E/mE is finite over

A/mA. Therefore, if mAE contains a power of mE then E/mAE is also finite

over A/mA, and E itself must be finite over A by the Lemma at the end of

§28. Thus mAE does not contain any power of mE . But E is a Noetherian

local domain of dimension 1, so we must have mAE = (0). Hence also

mA = (0),i.e. A is a field. Then we get dimD ⩽ 1 by construction.

Therefore dim D̂ = 1 and P ′ (not being maximal) must be a minimal prime

of D̂. Now D is a Nagata ring by Th.72, hence D̂ is reduced. Therefore

D̂p′ is a field and we get a contradiction again.
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(33.H) Theorem 78. Let A be a G-ring which is J-2. Then A is a Nagata

ring.

Proof. Let p ∈ Spec(A), and let K be the quotient field of A/p, L a finite exten-

sion of K and B the integral closure of A in L. We have to prove that B is finite

over A. Let A′ be a finite A−algebra such that A/p ⊆ A′ ⊆ B and ϕA′ × L.

Then A′ is a G-ring by Th.76 and is J-2. Thus, replacing A by A′, the problem

is reduced to proving that a Noetherian J-2 domain which is a G-ring is N-1 (i.e.

the integral closure B of A in K = ΦA is finite over A). Put X = Spec(A). Then

Reg(X) is non-empty and open in X, and is of course contained in Nor(X). So,

by Lemma 31.4 we have only to show that Am is N − 1 for each maximal ideal

m of A. But Am is reduced and Am −→ (̂Am) is regular, so by Lemma 33.2 the

ring (̂Am is reduced. Therefore Am is N-1 by (31.E)

(33.I) Theorem 79 (Analytic normality of normal G-rings.). Let A be a

G-ring and I an ideal of A. Let B denote the I-adic completion of A. Then the

canonical map A −→ B is regular. Consequently, B is normal (resp. regular,

resp. C.M., resp. reduced) if A is so.

Proof. It is clear from the definition that A −→ B is regular iff, for any maximal

ideal m′ of B, the map Am −→ Bm′ (m = m′ ∩ A is regular. Now, since m′ is

maximal, m is a maximal ideal of A containing I by (24.A). Furthermore the local

rings Am and Bm′ have the same completion (cf. (24.D)). Thus in the diagram

Am
h−→ Bm′

g−→ (̂Bm) = (̂Am)

gh is regular and g is f.f., so that h is regular by Lemma 33.1. Thus A −→ B is

regular. The second assertion follows from this by Lemma 33.2.
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34 Excellent Rings

(34.A) Definition. We say that A is excellent (resp. quasi-excellent) if

the following conditions (resp. (1), (3), (4)) are satisfied:

(1) A is Noetherian;

(2) A is universally catenary (cf. (14.B));

(3) A is a G-ring (cf. (33.B));

(4) A is J-2 (cf. (32.B) Th.73).

Each of these conditions is stable under the two important operations on rings:

the localization and the passage to a finitely generated algebra. (Stability of J-2

under localization follows from criterion (3) of Th.73.) Thus the class of (quasi-

)excellent rings is stable under these operations. Note also that (2), (3), (4) are

conditions on A/P , P ∈ Spec(A). Thus a Noetherian ring A is (quasi-)excellent

iff Ared is so.

A quasi-excellent ring is a Nagata ring (Th.78).

If A is a local ring and if it satisfies (1) and (3) then it is quasi-excellent

(Th.76, Th.77, Th.73). In the general case, note that the conditions (2) and (3)

are of local nature (in the sense that if they hold for Ap for all p ∈ Spec(A), then

they hold for A), while (4) is not.

(34.B) Noetherian complete semi-local rings are excellent ((28.P), Th.68, Th.74).

In particular, formal power series rings over a field are excellent. Convergent

power series rings over R or C are excellent (cf. Th.102 and the remark after

that). It is easy to see that a Dedekind domain (i.e. Noetherian normal do-

main of dimension one) of characteristic zero is excellent. On the other hand,

there exists a regular local ring of dimension one and of characteristic p which
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is not excellent. [Take a field k of char. p with [k : kp] = ∞, put R = k[[x]]

and let A be the subring of R consisting of the power series
∑
aix

i such that

[kp(a0, a1, . . . ) : kp] < ∞. Then A is regular and Â = R. Since Rp ⊆ A the

quotient field ΦR is purely inseparable over ΦA. Thus A is not a G-ring, not

even a Nagata ring by Th.71.]

Let K be a field, ch(K) ̸= 2. Then there exists a regular local ring R of

dimension 2 containing K and a prime element z of R such that S = R[z1/2] is a

normal local ring whose completion Ŝ has zero-divisors. ([Nag75, p.210, (E7.1)])

Thus R is not Nagata.

C. Rotthaus (cf. [Rot77]) constructed a regular local ring R of dimension

three which contains a field and which is Nagata but not quasi-excellent.

The ring A of (14.E) is a G-ring which is not u.c.

(34.C) One can ask the following questions:

(A) If A is quasi-excellent, is A[[X]] quasi-excellent?

(A’) If A is as above and I is an ideal, is the I-adic completion Â of A quasi-

excellent?

(B) If (A, I) is a complete Zariski ring with A/I quasi-excellent, is A also quasi-

excellent?

Of course (A) and (A’) are equivalent, and (B) is stronger. These questions

are still open in the general case, cf. §43.

258



Appendix

35 Eakin’s Theorem

A module is said to be Noetherian (resp. Artinian) if the ascending (resp.

descending) chain condition for submodules holds. It is easy to see that if

0 −→M ′ −→M −→M ′′ −→ 0

is exact and if M ′ and M ′′ are Noetherian (resp. Artinian), so is M . A module

is Noetherian iff all submodules are finitely generated.

A module is called faithful if Ann(M) = (0).

Lemma 35.1. Let A be a ring and M an A-module. If M is faithful and

Noetherian, then A is a Noetherian ring.

Proof. Let M = Aω1 + · · ·+ Aωn. Then A is embedded in Mn as an A-module

by the map a 7→ (aω1 + · · ·+ aωn). Since Mn is Noetherian, so is A.

Theorem 80 (E. Formaneck [For73]). Let A be a ring and B be a faithful and

finite A-module. If the ascending chain condition holds for the submodules of the

form IB, where I is an ideal of A, then A is Noetherian.

Proof. It suffices to prove that B is Noetherian A-module. Assume the contrary.
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Then the set

{IB | I is an ideal of A and B/IB is a non-Noetherian A-module}

is not empty, hence it has a maximal element I0B. Replacing B and A by

B/I0B and A/Ann(B/I0B), we assume that B is not Noetherian but B/IB is

Noetherian for every non-zero ideal I of A. Put

Γ = {N | N is a submodule of B and B/N is faithful}.

If B = Aω1 + · · ·+Aωn then a submodule N of B belongs to Γ iff

{aω1, . . . , aωn} ̸⊂ N for every 0 ̸= a ∈ A. Therefore we can use Zorn to conclude

that Γ has a maximal element N0. Replacing B for B/N0 we get the situation

where

(1) B is not Noetherian (for, otherwise A and our original B would be Noethe-

rian),

(2) B/IB is Noetherian for every non-zero ideal I of A, and

(3) B/N is not faithful for every non-zero module N of B.

But this is absurd. In fact, there exists (1) a submodule N of B which is not

finite over A. Then there exists 0 ̸= a ∈ A such that aB ⊂ N by (3). Since

B/aB is Noetherian, the A-module N/aB must be finitely generated. Therefore

N itself is finite over A, contradiction.

Corollary 35.1 (Eakin). If B is a Noetherian ring and A is a subring of B such

that B is finite over A, then A is Noetherian.
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36 A Flatness Theorem

(36.A) Lemma 36.1. Let A be a ring and M be a A-module. Let x be an

element of A which is M -regular and A-regular, and N be an A-module with

xN = 0. Put A′ = A/xA and M =M/xM . Then:

(1) TorA
′

n (M,N) ≃ TorA
′

n (M ′, N) for all n ⩾ 0,

(2) ExtnA(M,N) ≃ ExtnA′(M ′, N) for all n ⩾ 0,

(3) Extn+1
A (N,M) ≃ Extn+1

A′ (N,M ′) for all n ⩾ 0, and HomA(N,M) = 0.

Proof.

(1) and (2) The exact sequence

0 −→ A
X−→ A −→ A −→ A′ −→ 0

is a free resolution of A′. Since

0 −→M
X−→M −→M ⊗A A′ −→ 0

is also exact, we have TorAi (M,A′) = 0 for all i > 0. Let L• −→ M −→ 0

be a free resolution of M . Since

Hi(L• ⊗A A′) = TorAi (M,A′) = 0 (i > 0),

L• ⊗A A′ is a free resolution of the A′-module M ′. Now (1) and (2) are

immediate.

(3) HomA(N,M) is obvious. For n ⩾ 0, put Tn(N) = Extn+1
A (N,M) and view
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them as functors on A′-modules. From

0 −→M
X−→M −→M ′ −→ 0

we get T 0(N) = HomA′(N,M ′). Since proj.dimAA
′ = 1 we have Tn(A′) =

0 for n > 0, hence Tn(N) = 0 for n > 0 if N is projective over A′. If

0 −→ N ′ −→ N −→ N ′′ −→ 0

is an exact sequence of A′-modules, then we have the long exact sequence

0 −→ T 0(N ′′) −→ T 0(N) −→ T 0(N ′) −→ T 1(N ′′)

−→ T 1(N) −→ T 1(N ′) −→ T 2(N ′′) −→ · · · .

Thus T i(−) are the derived functors of HomA′(−,M ′), i.e.

T i(−) = ExtiA′(−,M ′).

(36.B) Let (A,m) and (B, n) be Noetherian local rings and ϕ : A −→ B be a

local homomorphism. Put F = B/mB. If B is flat over A, we have

dimB = dimA+ dimF by Th. 19. The converse is also true in some cases. (Cf.

Th. 46.)

Theorem 81. Let the notation be as above. Assume that A is regular, B is

Cohen-Macaulay and dimB = dimA+ dimF . Then B is flat over A.

Proof. Induction on dimA. If dimA = 0 then A is a field. Suppose dimA > 0
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and take x ∈ m \m2. Put A′ = A/xA, B′ = B/xB. Then

dimB′ ⩽ dimA′ + dimF = dimA− 1 + dimF = dimB − 1

by Th. 19, but dimB′ ⩾ dimB − 1 (by (12.F), or consider system of parameters

over B′). Therefore dimB′ = dimB− 1, x is B-regular, and B′ is CM. Hence B′

is flat over A′ by induction hypothesis, and so TorA
′

1 (A/m, B) = 0. Since x is A-

regular and B-regular, we have TorA1 (A/m, B) = TorA
′

1 (A/m, B′) = 0. Therefore

B is flat over A by Th. 49. (Cf. [Gro64] (6.1.5).)

37 Coefficient Rings

In this section we will prove the Cohen structure theorem (p.217) in the

unequal characteristic case by the method of Grothendieck.

Theorem 82. Let (A,m, k) be a local ring and let B be a flat A-algebra. Put

B0 = B/mB = B ⊗A k. If B0 is smooth over k then B is formally smooth over

A with respect to the mB-adic topology.

Proof. By the definition of formal smoothness we have only to show that B/miB

is smooth over A/mi for every i. Thus we can assume that m is nilpotent. Then

B is free over A by (3.G), and so any A-algebra extension of B by a B-module is a

Hochschild extension, cf. (25.C). Therefore the proof of smoothness of B reduces,

as in (28.H), to showing that every symmetric 2-cocycle f : B × B −→ N with

values in a B-module N is a coboundary. Suppose first that N satisfies mN = 0.

In this case f is essentially a cocycle on B0; namely, there exists a symmetric 2-

cocycle f0 : B0×B0 −→ N such that f(x, y) = f0(x, y). Since B0 is smooth over

k we have f0 = δg0 for some k-linear map g0 : B0 −→ N . Putting g(x) = g0(x)

we have f = δg. In the general case let ϕ : N −→ N/mN denote the natural
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map. Then

ϕ ◦ f : B ×B −→ N/mN

splits, i.e., there exists an A-linear map g : B −→ N/mN such that ϕ◦f = δg. As

B is projective over A the map g can be lifted to an A-linear map g : B −→ N ,

and f − δg is a 2-cocycle with values in mN . Repeating the same argument, we

can find h : B −→ mN such that f − δ(g + h) has values in m2N , and so on.

Since m is nilpotent, we see that f is a coboundary.

Theorem 83. Let (A, tA, k) be a principal valuation ring andK be an extension

field of k. Then there exists a principal valuation ring B containing A with

maximal ideal generated by t and with residue field k-isomorphic to K.

Proof. Let {xλ}λ∈Λ be a transcendency basis of K over k and put k1 = k({xλ}).

Let {Xλ}λ∈Λ be a set of independent indeterminates and put A [{Xλ}] = A′,

A1 = A′tA′ . Then A′ is a free A-module, so that A′ and A1 are separated in the

t-adic topology. Therefore A1 is a principal valuation ring with residue field k1.

So we can assume that K is algebraic over k. Let L be the algebraic closure of

the quotient field of A. Let F denote the set of the pairs (B,ϕ) of a subring B of

L containing A and an A-algebra homomorphism ϕ : B −→ K such that B is a

principal valuation ring with rad(B) = Ker(ϕ) = tB, and define an order in F by

(B,ϕ) < (C,ψ) ⇐⇒ B ⊂ C and ϕ = ψ | B.

One can easily check that F satisfy the condition of Zorn’s lemma, therefore

there exists a maximal element (B,ϕ) in F. If ϕ(B) ̸= K, take an element

a ∈ K \ ϕ(B), let f(X) be the irreducible equation of a over ϕ(B) and lift it

to a monic polynomial f(X) ∈ B [X]. Since B is normal, f is irreducible over

the quotient field of B. Let χ be a root of f in L and put B′ = B [α]; then
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B′ = B [X] /(f), so that we have

B′/tB′ = B [X] /(t, f) = ϕ(B)(a).

Since B′ is integral over B all maximal ideals of B′ must contain tB′, therefore B′

is a local ring with tB′ as maximal ideal. Clearly B′ is a Noetherian domain, so

B′ must be a principal valuation ring. This contradicts the maximality of (B,ϕ)

in F. Thus ϕ(B) = K.

Remark 37.1. If (A, tA) is a principal valuation ring and M is an A-module,

then M is flat over A iff t is M -regular. This is an immediate consequence of

(3.A) Th. 1 (3). In particular the ring B of the above theorem is flat over A.

Remark 37.2. In [Gro63] (10.3.1) the following more general theorem is proved:

if (A,m, k) is a Noetherian local ring and K is an extension field of k, then

one can find a Noetherian local ring B containing A and flat over A such that

rad(B) = mB, B/mB ≃ K.

Theorem 84. Let (A,m,K) be a complete, separated local ring, (R, pR, k) be

a principal valuation ring and ϕ0 : k −→ K be a homomorphism of fields. Then

there exists a local homomorphism ϕ : R −→ A which induces ϕ0.

Proof. Put S = ZpZ and let k0 be the prime field in k. Since ch(K) = ch(k) = p,

the canonical homomorphism Z −→ A can be extended to a local homomorphism

S −→ A. Similarly R is an S-algebra, which is flat by Remark 37.1. Since

R/pR = k is separable (hence smooth) over k0, R is formally smooth over S in

the pR-adic topology by Th. 82. Therefore we can lift the map R −→ k −→ K

to ϕ : R −→ A.
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R k K

A/m2

...

S A

ϕ

ϕ0

Theorem 85. A complete separated local ring has a coefficient ring. (Cf.(28.P))

Proof. This follows from Th.83 and Th.84.

38 p-Basis

(38.A) Let R be a ring of characteristic p > 0, and let Rp denote the subring

{xp | x ∈ R}. Let S be a subring of R. A subset B ∈ R is said to be p-independent

(in R) over S if the monomials be11 , . . . , b
en
n where b1, . . . , bn are distinct elements

of B and 0 ⩽ ei < p, are linearly independent over Rp [S]. When A is a ring of

characteristic p, a polynomial (or a monomial) f ∈ A [X1, . . . , Xn] is said to be

reduced if it is of degree < p in each variable Xi. B is called a p-basis of R

over S if it is p-independent over S and Rp [S,B] = R, i.e. if every element a of

R can be written uniquely as a reduced polynomial a = f(b1, . . . , bn) in distinct

elements bi of B with coefficients in Rp [S].

If B is a p-basis and M is an R-module, then any map ϕ : B −→ M is

uniquely extended to a derivation D : R −→M over S by

D(a) = D(f(b)) =
∑
i

∂f

∂bi
ϕ(bi)
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where a = f(b) is the unique representation of a ∈ R as a reduced polynomial in

elements of B with coefficients in Rp [S]. It follows that ΩR/S is a free R-module

with basis {db | b ∈ B}.

(38.B) If k, k′ are subfields of a field K, the subfield generated by them will

be denoted by kk′; thus kk′ = k(k′) = k′(k). Let K be a field of characteristic

p and K ′ be a subfield containing Kp. If [K : Kp] is finite it is a power pn of p;

its exponent n is called the p-degree of K/K ′ and will be denoted by (K : K ′)p.

This is equal to the smallest number of generators of K over K ′, and also equal

to the rank of the K-module ΩK/K′ .

Let K be a field of characteristic p and k be a subfield. Since

Kp [k] = K(k) = Kpk, a subset B of K is p-independent over k iff, for every

finite subset B′ of B, we have

(Kpk(B′) : Kpk)p = Card(B′).

Also B is a p-basis of K/k iff it is p-independent over k and Kpk(B) = K. By

Zorn’s lemma any p-independent subset is contained in a p-basis.

Theorem 86. Let K and k be as above, B be a subset of K and let dB denote

the subset {db | b ∈ B} in ΩK/k. Then:

(i) B is p-independent over k ⇐⇒ dB is linearly indep./K,

(ii) B is a p-basis of K/K ⇐⇒ dB is a basis of ΩK/k over K.

Proof. If B is a p-basis, we have already seen that ΩK/k is a free K-module

with basis dB. If B is a p-independent, then there exists a p-basis containing

B, hence dB is linearly independent over K. On the other hand if B is not

p-independent then there exist b, b1, . . . , bn ∈ B such that b ∈ Kpk(b1, . . . , bn),
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and then db ∈
∑

dbi. Therefore if dB is linearly independent then B is p-

independent, and there exists a p-basis B′ containing B. If dB is a basis of ΩK/k

then B = B′.

(38.C) Let K be an arbitrary field and k be a subfield. The K-module ΩK/k

is generated over K by dK, therefore there exists a subset B such that

dB = {db | b ∈ B} is a basis of ΩK/k. Such a subset B is called a differential

basis of K/k. The concept of differential basis coincides with that of p-basis in

the case of characteristic p as we have just seen. In case ch(K) = 0 it coincides

with that of transcendency basis by the following theorem.

Theorem 87. Let K ⊃ k be fields of characteristic 0. Then:

(i) B ⊂ K is algebraically dependent over k iff dB is linearly independent over

K in ΩK/k,

(ii) B ⊂ K is a transcendency basis of K/k iff dB is a linear basis of ΩK/k over

K.

Proof. Similar to the proof of the preceding theorem.

(38.D) Theorem 88. Let K/k be a field extension. Then the following are

equivalent:

(1) K is separable over k,

(2) for any subfield k′ of k, the canonical map Ωk/k′⊗kK −→ Ωk/k′ is injective,

(3) the canonical map Ωk ⊗k K −→ ΩK is injective,

(4) any derivation D from k to a K-module M can be extended to a derivation

K −→M .
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Proof. It is clear that (2) and (4) are equivalent. But (4) is also equivalent to

(3). If ch(K) = 0 then (3) holds by the preceding theorem, so (1), (2), (3) and

(4) are all true. If ch(K) = p, (1) is equivalent to

K ⊗k kp
−1

≃ Kkp
−1

by MacLane’s theorem (p.203), or what is the same, to linear disjointness of Kp

and k over kp. Therefore, K is separable over k ⇐⇒ the reduced monomials in

the elements of a p-basis B of k/kp are linearly independent over Kp ⇐⇒ dB

is linearly independent over K in ΩK ⇐⇒ Ωk ⊗K −→ ΩK is injective.

Theorem 89. Let K be a separable extension of a field k of characteristic p,

and let B be a p-basis of K/k. Then B is algebraically independent over k.

Proof. Assume the contrary and suppose b1, . . . , bn ∈ B are algebraically depen-

dent over k. Take an algebraic relation

f(b1, . . . , bn) = 0, f ∈ k [X1, . . . , Xn]

of lowest possible degree. Put deg f = d. Write

f(x) =
∑

0⩽ν1,...,νn<p

gν1,...,νn (Xp)Xν1
1 . . . Xνn

n ,

where g(ν) are polynomials with coefficients in k. Since b1, . . . , bn are p-independent

over k, we must have g(ν)(bp) = 0 for all (ν). By the choice of f this happens

only if

f (X1, . . . , Xn) = g0,...,0 (X
p
1 , . . . , X

p
n) .

But then we would have f(X) = h(X)p with h ∈ kp−1

[X1, . . . , Xn]. Hence

h(b) = 0. By MacLane’s theorem (p.203), however, K and kp
−1

are linearly
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disjoint over k. The monomials of degree < d in b1, . . . , bn are linearly indepen-

dent over k, hence they must be linearly independent over kp
−1

also. This is a

contradiction.

(38.E) We defined formal smoothness (p.206) by the condition of liftability

(FS). If we further require that the lifting ν′ of ν is unique, then we say that A

is formally etale over k. Here we are mainly concerned with field extensions,

so that we consider only discrete topologies.

Let K/k be an extension of fields. If ch(K) = 0, then “formally smooth” and

“separably algebraic” are the same thing. If ch(K) = p, however, “formally etale”

is weaker than “separably algebraic”. (Consider the case where both K and k are

perfect. Then K is formally etale over k.) In any case, the following are easily

seen to be equivalent:

(1) K is formally etale over k,

(2) K is smooth over k and ΩK/k = 0,

(3) Ωk ⊗k K ≃ ΩK ,

(4) for any subfield k′ of k, Ωk/k′ ⊗K ≃ ΩK/k′ ,

(5) any derivation from k into a K-module M can be uniquely extended to a

derivation K −→M .

Theorem 90. Let K be a separable extension field of a field k, and let B be

a differential basis of K/k. Then k(B) is purely transcendental over k and K is

formally etale over k(B).

Proof. Immediate from Th. 87 and Th. 89.
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(38.F) Let (A,m, k) be a local ring and k be a subfield of A such that K/k is

formally etale. In this case we call k a quasi-coefficient field of A.

Theorem 91. Every local ring containing a field contains quasi-coefficient

fields. If k is a quasi-coefficient field of a local ring A, then the completion A∗ of

A contains a unique coefficient field K containing k.

Proof. If (A,m, k) is a local ring and k0 is a perfect field (e.g. the prime field)

contained in A, then let B be a differential basis of K over k0 and choose a

representative xi in A for each bi ∈ B. Since B is algebraically independent over

k0 by Th. 89, A contains the quotient field k′ of k0 [{xi}], and k′ ≃ k0(B). Then

K is formally etale over k′. By the definition of formal etaleness, the identity map

K −→ A/m can be uniquely lifted to a homomorphism K −→ lim
←−

A/mν = A∗

over k′, which proves the second half of the theorem.

One can define “quasi-coefficient rings” in the unequal characteristic case as

follows: a subring I of a local ring (A,m,K) with ch(K) = p is a quasi-coefficient

ring of A if

(1) I is a Noetherian local ring with rad(I) = pI, and

(2) K is formally etale over I/pI. One can prove that any local ring of unequal

characteristic has quasi-coefficient rings. Cf. [Mat77a].

(38.G) Not much is known about p-bases for rings. If k is a field of charac-

teristic p and A is a reduced local ring containing k, and if A has a p-basis over

Ap, then A must be regular by a theorem of Kunz which will be discussed later.

If A is a regular local ring essentially of finite type over k, then A has a p-basis

over Ap (cf. [KN80]). The following interesting conjecture of Kunz (1975) is still

open in the general case.
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Conjecture. Let R be a regular local ring of characteristic p and S be a regular

subring of R over which R is finite. Does R have a p-basis over S?†

The answer is yes if p = 2 or 3 (proof is easy). If dimR = 2 there is a

geometric proof by Rudakov-Shafarevich [RS76].

The following proposition is a converse of (38.A) in the case of Noetherian

local rings.

Proposition 38.1. Let (R,mR) be a Noetherian local ring of characteristic

p, and S be a subring of R containing Rp such that R is finite over S. Put

mS = mR ∩ S, K = R/mR, and K ′ = S/mS . If ΩR/S is a free R-module with

dx1, . . . ,dxr (xi ∈ R) as a basis, then x1, . . . , xr form a p-basis of R over S.

Proof. First we consider the case ΩR/S = 0. Suppose

K ̸= K ′. Then, since K ′ ⊇ Kp, there would exist 0 ̸= D ∈ DerK′(K), and com-

posing it with the natural homomorphism R −→ K we would have a derivation

0 ̸= D ∈ DerK′(R,K). Therefore K = K ′, i.e., R = S +mR. Then

R/
(
mSR+m2

R

)
= K +mR/

(
mSR+m2

R

)
and the right-hand side is a direct sum. Let p2 denote the projection onto the

second summand. Then the composition

R −→ R/
(
mSR+m2

R

) p2−→ mR/
(
mSR+m2

R

)
is a derivation of R over S, which must be zero. Therefore mR = mSR+m2

R and

by NAK we have mR = mSR. Therefore R = S +mSR, hence R = S by NAK.

In the general case put T = S [x1, . . . , xr]. If x1, . . . , xr are not p-independent

over S, take a reduced polynomial f (X1, . . . , Xr) ∈ S[X] of lowest degree such
†Editor’s note: Matsumura has omitted the assumption that S ⊂ Rp by mistake. Fur-

thermore, this conjecture was resolved in the affirmative by Kimura and Niitsuma in [KN82].
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that f (x1, . . . , xr) = 0. Then
∑

(∂f/∂xi) dxi = 0 in ΩR/S , contradiction. Thus

x1, . . . , xr is a p-basis of T over S and ΩR/S is a free T -module with dxi as basis,

so that ΩT/S ⊗T R ≃ ΩR/S . Then ΩR/T = 0, and so R = T by what we have

already seen.

Remark. In connection with the above proof, it is worthwhile to note the

following more general result of Berger and Kunz. Let (R,m,K) be a local ring,

S a subring of R, n = m ∩ S, k = S/m. If K/k is separable then the following

sequence is exact:

0 −→ m/
(
nR+m2

)
−→ ΩK/k −→ 0.

If ch(R) = p then put n′ = m ∩Rp [S]. Then the following sequence is exact:

0 −→ m/
(
n′R+m2

)
−→ ΩR/S ⊗K −→ ΩK/k −→ 0.

For the proof, cf. [BK61].

39 Cartier’s Equality and Geometric Regularity

(39.A) Let k ⊆ K ⊆ L be fields. The kernel of the natural map

ΩK/k ⊗ L −→ ΩL/k is denoted by ΓL/K/k and is called the module of imper-

fection for L/K/k. Thus we have the following exact sequence:

0 −→ ΓL/K/k −→ ΩK/k ⊗ L −→ ΩL/k −→ ΩL/K −→ 0

Lemma 39.1. If k ⊆ K ⊆ L′ ⊆ L are fields, we have the following exact

sequence.

0 −→ ΓL′/K/k⊗L′L −→ ΓL/K/k −→ ΓL/L′/k −→ ΩL′/K⊗L′L −→ ΩL/K −→ ΩL/L′ −→ 0
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Proof. Consider the following commutative diagram with exact rows:

0 ΓL′/K/k ⊗L′ L ΩK/k ⊗ L ΩL′/k ⊗ L ΩL′/K ⊗ L 0

0 ΓL/K/k ΩK/k ⊗ L ΩL/k ΩL/K 0

For simplicity we write

0 X Z A B 0

0 Y Z A′ B′ 0

f g

Applying the ‘snake lemma’ (cf. e.g. [Bou98, Ch. 1]) to the induced diagram

0 Z/X A B 0

0 Z/Y A′ B′ 0

we get the exact sequence

0 −→ Y/X −→ Ker f −→ Ker g −→ 0,

which shows the exactness of

0 −→ X −→ Y −→ Ker f −→ B −→ B′ −→ Coker g −→ 0.

This is what we wanted.

(39.B) Theorem 92 (Cartier’s equality). Let L be a finitely generated ex-

tension of a field K. Then

rankL ΩL/K = tr.degK L+ rankL ΓL/K .
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Proof. If L ⊇ L′ ⊇ K and if the theorem holds for L/L′ and for L′/K, then the

validity of the theorem for L/K is an immediate consequence of the lemma. On

the other hand any finitely generated extension is composed of simple extensions

of the following types:

(1) L = K(α) with α transcendental over K,

(2) L = K(α) with α separably algebraic over K,

(3) L = K(α), ch(K) = p, αp = a ∈ K, α ̸∈ K.

Therefore it suffices to prove the theorem in each of these cases. Cases (1) and

(2) are easy; cf. (27.A). In case (3) we have L = K[X]/(Xp − a) and then

ΩL = (ΩK[X] ⊗ L)/Lda = (ΩK/Kda)⊗ L+ Ldα, dα ̸= 0.

Since dα ̸= 0 in ΩK , we have rank ΓL/K = rank ΩL/K = 1 and the theorem

holds in this case also.

(39.C) Theorem 93. Let (A,m,K) be a Noetherian local ring containing

a field k. Then A is formally smooth over k in the m-adic topology iff A is

geometrically regular over k.

Proof. The ‘only if’ part is known (28.N). In order to prove the ‘if’ part we

may assume, by (28.N), that ch(k) = p. According to Cor. of Th.66 it suffices to

show that Ωk⊗K −→ ΩA⊗K is injective. Therefore x1, . . . , xr be p-independent

elements in k. We will show that dx1, . . . ,dxr are linearly independent in ΩA⊗K

over K. Put αi = x
1/p
i , k′ = k(α1, . . . , αr). Then

B = A⊗k k′ = A[T1, . . . , Tr]/(T
p
1 − x1, . . . , T pr − xr)

is a Noetherian local ring. Let n and L denote its maximal ideal and its residue

275



Chapter 13: Excellent Rings

field respectively. Since L is smooth over the prime field the sequence

0 −→ n/n2 −→ ΩB ⊗ L −→ ΩL −→ 0

is exact by Th.58. Similarly the sequence

0 −→ m/m2 −→ ΩA ⊗K −→ ΩL −→ 0

is exact. Consider the following commutative diagram:

0 n/n2 ΩB ⊗ L ΩL 0

0 (m/m2)⊗K L ΩA ⊗ L ΩK ⊗ L 0

ψ1 ψ2 ψ3

By the snake lemma we get an exact sequence of L-modules

0 −→ Ker ψ1 −→ Ker ψ2 −→ Ker ψ3 −→ Coker ψ1 −→ Coker ψ2 −→ Coker ψ3 −→ 0

Since A and B are regular by hypothesis and have the same dimension, we

have

rank n/n2 = dimA = rank m/m2,

so that rank Ker ψ1 = rank Coker ψ1 < ∞. Since L is finite algebraic over K

we also have rank Ker ψ3 = rank Coker ψ3 <∞ by Cartier’s equality. It follows

from these and from the above exact sequence that rank Ker ψ2 = rank Coker ψ2 <

∞.

On the other hand, we have Coker ψ2 = ΩB/A ⊗ L and

ΩB/A = BdT1 + · · ·+BdTr = Br
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by Th.58, hence rank Ker ψ2 = r. Putting J = (T p1 − x1, . . . , T pr − xr) we have

the exact sequence

J/J2 −→ ΩA[T1,...,Tr] ⊗B = ΩA ⊗B +
∑

BdTi −→ ΩB −→ 0.

It remains exact after tensoring with L overB, so Ker ψ2 is generated by dx1, . . . ,dxr.

Therefore dx1, . . . ,dxr are linearly independent in ΩA ⊗ L over L and a fortiori

so in ΩA ⊗K over K.

(This proof is due to [Fal78])

40 Jacobian Criteria and Excellent Rings

(40.A) Let A be a ring and let x1, . . . , xr ∈ A, D1, . . . , Ds ∈ Der(A). We shall

denote the Jacobian matrix (Dixj) by J(x1, . . . , xr;D1, . . . , Ds). If P is an ideal

of A, we shall write J(x1, . . . , xr;D1, . . . , Ds)(P ) for (Dixj mod P ). When P

is a prime ideal containing the x’s, the rank of the above matrix depends on

the ideal I =
∑
Axi rather than the elements xi themselves, so we denote it by

J(I;D1, . . . , Ds)(P ). If ∆ is the set of derivations of A we define rank J(I; ∆)(P )

to be the supremum of rank J(I;D1, . . . , Ds)(P ) when {D1, . . . , Ds} runs over

the set of all finite subsets of ∆.

When A is an integral domain with quotient field K and M is an A-module,

by rankM we understand rankKM ⊗A K.

Theorem 94. Let (R,m) be a regular local ring, P be a prime ideal of height

r and ∆ be a subset of Der(R). Then:

i) rank J(P ; ∆)(m) ⩽ rank J(P ; ∆)(P ) ⩽ r,

ii) if rank J(f1, . . . , fr;D1, . . . , Dr)(m) = r and f1, . . . , fr ∈ P , then P =

(f1, . . . , fr) and R/P is regular.
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Proof. i) The first inequality is trivial, and the second is a consequence of the

fact that PRP is generated by r elements.

ii) The condition implies that the images of fi’s are linearly independent over

R/m in m/m2, hence the fi’s generate a prime ideal of height r. Our

assertion follows.

Theorem 95. Let R, P and ∆ be as in the preceding theorem. Then the

following two conditions are equivalent:

(1) rank J(P ; ∆)(P ) = htP ,

(2) let Q be a prime ideal contained in P , then RP /QRP is regular iff

rank J(Q; ∆)(P ) = htQ.

Proof. (1) is a special case Q = P of (2). Conversely, suppose (1) holds. If

rank J(Q; ∆)(P ) = htQ then RP /QRP is regular by the preceding theorem. If

RP /QRP is regular then there exists f1, . . . , fr ∈ P such that

• (f1, . . . , fr)RP = PRP ,

• (f1, . . . , fs)RP = QRP ,

• r = htP ,

• s = htQ.

Then rank J(f1, . . . , fr; ∆)(P ) = r, and so rank J(f1, . . . , fs; ∆)(P ) = s.

(40.B) We shall say that a subfield k′ of a field k is cofinite if [k : k′] <∞.

Lemma 40.1. Let k ⊆ K be fields of characteristic p and let F = {kα}α∈I be

a downwards-directed family of cofinite subfields of K containing k. Then the

following are equivalent:
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(1)
⋂
α
kαK

p = kKp.

(2) The natural map ΩK/k −→ lim←−ΩK/kα is injective.

(3) For every finite subset {u1, . . . , un} of K which is p-independent over k,

there exists kα ∈ F over which this set is p-independent.

(4) There exists a p-basis B of K over k such that for each finite subset F of

B there exists kα ∈ F over which F is p-independent.

Proof.

(2) ⇐⇒ (3) easy.

(3) =⇒ (4) trivial.

(1) =⇒ (3) The proof of (30.C) Lemma 30.1 applies mutatis mutandis.

(4) =⇒ (2) Let 0 ̸= ω ∈ ΩK/k. Then ω = c1db1 + · · · + cndbn (bi ∈ B, 0 ̸=

ci ∈ K), and if b1, . . . , bn are p-independent over kα then the image of ω in

ΩK/kα is not 0.

(3) =⇒ (1) Suppose a ̸∈ kKp. Then a is p-independent over k, therefore it is

so over some kα, i.e. a ̸∈ kαKp.

Lemma 40.2. Let k, K and F be as in lemma 40.1 and let L be a finitely

generated extension over K. If
⋂
α
kαK

p = kKp holds, then
⋂
α
kαL

p = kLp holds

also.

Proof. It suffices to check the 4 cases of (27.A).

i) If L = K(t) with t transcendental, then

⋂
kαL

p =
⋂
kαK

p(tp) = kKp(tp) = kLp

279



Chapter 13: Excellent Rings

is obvious.

ii) If L is separately algebraic over K then a p-basis of K over k is also a

p-basis of L over k, and we can use the criterion (4) of Lemma 40.1.

iii) L = K(t), tp = a ∈ K, dK/ka = 0. Then

ΩL/k = ΩK/k ⊗ L+ Ldt, and ΩL/kα = ΩK/kα ⊗ L+ Ldt.

Therefore ΩL/k −→ lim←−ΩL/kα is injective.

iv) L = K(t), tp = a ∈ K, dK/ka ̸= 0. Then

ΩL/k = (ΩK/k ⊗ L)/LdK/ka+ Ldt;

if B′ ⊂ K is such that {a}∪B′ is a p-basis of K/k and a ̸∈ B′, then {t}∪B′

is a p-basis of L/k. So if b1, . . . , bm ∈ B′ and {a, b1, . . . , bm} are p-indep.

in K over kα, then {t, b1, . . . , bm} is p-indep. in L over kα.

(40.C) Let k be a field of characteristic p, R = k[[X1, . . . , Xn]], P ∈ Spec(R)

and A = R/P . Let y1, . . . , yr (r = dimA) be a system of paramters of A and

put B = k[[y1, . . . , yr]]. Then A is finite over B. Let k′ be a cofinite subfield of

k and put C ′ = k′[[yp1 , . . . , y
p
r ]]. Since every derivation D ∈ Der(A) is continuous

(in any ideal-adic topology), we have Derk′(A) = DerC′(A), and A is finite over

C ′. Let L, K, K ′ denote the quotient fields of A, B, C ′. Then it is easy to see

that

rankDerk′(A) = (L : K ′)p = rankΩL/K′ ,

and similarly

rankDerk′(B) = (K : K ′)p = rankΩK/K′ .
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If E is a p-basis of k over k′ then E ∪ {y1, . . . , yr} is a p-basis of B over C ′.

Therefore rankΩK/K′ = dimA+ (k : k′)p, and in general we have by Th.59

rankDerk′(A) = rankΩL/K′ ⩾ rankΩK/K′ = dimA+ (k : k′)p.

Theorem 96. Let k, R and A be as above, and let F = {kα}α∈I be a family

of cofinite subfields of k, directed downwards, such that
⋂
kα = kp. Then there

exists kα ∈ F such that, for every cofinite subfield k′ of kα, we have

rankDerk′(A) = dimA+ (k : k′)p.

Proof. If L = K then the theorem is obvious, so we will prove the existence of α

such that (L : K ′)p = (K : K ′)p for k′ ⊆ kα by induction on (L : K). Suppose

that our claim is proved for every proper subfield L′ of L containing K, and let

L′ be maximal among such subfields. If L is separable over L′ then

ΩL/K′ = ΩL′/K′⊗L and we are done. So we can suppose L = L′(t), tp = a ∈ L′.

Then a ̸∈ L′p. Put Kα = kα((y
p
1 , . . . , y

p
r )). Then

⋂
Kα = kp((yp1 , . . . , y

p
r )) = Kp

by 30.1, hence
⋂
KαL

′p = L′
p by Lemma 40.2. Therefore there exists α such

that a ̸∈ KαL
′p and such that (L′ : K ′)p = (K : K ′)p for k′ ⊆ kα. Then for

k′ ⊆ kα we have a ̸∈ K ′L′p, i.e. dL′/K′a ̸= 0, hence

ΩL/K′ = (ΩL′/K′ ⊗ L)/LdL′/K′a+ Ldt,

and so

rankΩL/K′ = rankΩL′/K′ = rankΩK/K′ .
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Theorem 97 (Nagata). Let k be a field, R = k[[X1, . . . , Xn]] and P ∈ Spec(R).

Then rank J(P ; Der(R))(P ) = htP .

Proof. Here we consider only the case ch(k) = p. The case ch(k) = 0 is easier,

and we will prove a much more general result soon.

Put A = R/P and r = dimA. By the preceding theorem there exists a cofinite

subfield k′ of k such that

rankDerk′(A) = r + (k : k′)p.

Put s = (k : k′)p. If {u1, . . . , us} is a p-basis of k/k′ then {u1, . . . , us, X1, . . . , Xn}

is a p-basis of R over k′[[Xp
1 , . . . , X

p
n]]. Let ϕ : R −→ A denote the natural map

and put Xi = us+i, Di = ϕ ◦ ∂/∂ui (1 ⩽ i ⩽ n + s). Then Derk(R,A) is a

free A-module of rank n + s with D1, . . . , Dn+s as a basis. Let now D be an

arbitrary element of Derk′(A), and put D(ϕui) = ci ∈ A. Then D is induced

by D =
∑
ciDi ∈ Derk(R,A) in the sense that D ◦ ϕ. The derivation D is

determined by ci (1 ⩽ i ⩽ n+ s), and these must satisfy

n+s∑
i=1

ciDi(f) = 0 for each f ∈ P.

Conversely, if ci satisfy these linear equations then D =
∑
ciDi induces a deriva-

tion of A over k′. Therefore

r + s = rankDerk′(A) = n+ s− rank J(P ; Derk′(R))(P ),

whence we get

rank J(P ; Derk′(R))(P ) = n− r = htP.
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Since rank J(P ; Der(R))(P ) ⩽ htP by Th.94, we are done.

(40.D) Let (A,m) be a Noetherian complete local ring containing a field. Let k

be a coefficient field of A and let m = (x1, . . . , xn). Putting R = k[[X1, . . . , Xn]]

we then have A = R/I with some ideal I of R. Let p = P/I ∈ Spec(A). If

Ap = RP /IRP is regular, then IRP = QRP for some Q ∈ Spec(R), Q ⊆ P , and

we have

rank J(I; Der(R))(P ) = htQ = ht IRP

by Th.95 and Th.97. Put r = ht IRP and let f1, . . . , fr ∈ I and

Di, . . . , Dr ∈ Der(A) be such that Det(Difj) ̸∈ P . Then

IRP = QRP =
∑

fiRP ,

hence there exists g ∈ R − P such that IRg =
∑r

1 fiRg. Put h = Det(Difj).

If P ′/I = p′ ∈ Spec(A) is such that hg ̸∈ P ′, then RP ′/IRP ′ = Ap′ is regular

by Th.94 (note that IRP ′ is generated by r elements). Thus Reg(A) is open in

Spec(A), and we proved Cor. 29.2.

(40.E) Theorem 98. Let (A,m) be a Noetherian local domain containing

Q. Let k be a quasi-coefficient field of A, i.e. a subfield of A such that A/m is

algebraic over k. Then:

rankDerk(A) ⩽ dimA.

Proof. We will prove that Derk(A) is isomorphic to a submodule of An, where

n = dimA. Take a system of parameters x1, . . . , xn of A. We claim that the map

ϕ : Derk(A) −→ An defined by ϕ(D) = (Dx1, . . . , Dxn) is injective. Suppose that

D ∈ Derk(A) and Dx1 = · · · = Dxn = 0. By continuity D is uniquely extended

to the completion Â. Now Â is finite over the subring k[[x1, . . . , xn]], on which

D vanishes. Let a ∈ A. As an element of Â it satisfies a polynomial relation
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f(a) = 0 with coefficients in k[[x1, . . . , xn]]. Choose such a polynomial f(T ) of

lowest degree. Then 0 = D(f(a)) = f ′(a)Da and f ′(a) ̸= 0. Since Da ∈ A and

since the non-zero elements of A are not zero divisors in Â, we must have Da = 0.

Thus D = 0.

Theorem 99. Let (R,m) be a regular local ring of dimension n containing a

field. Let R̂ be the completion of R and k be a coefficient field of R̂ containing a

quasi-coefficient field k0 of R. Let x1, . . . , xn be a regular system of parameters

of R. Then R̂ = k[[x1, . . . , xn]], a formal power series ring over k, and Derk(R̂) is

a free R̂-module with the partial derivations ∂/∂x1, . . . , ∂/∂xn as a basis. Then

the following conditions are all equivalent:

(1) ∂/∂xi (1 ⩽ i ⩽ n) map R into R, i.e. ∂/∂xi ∈ Derk0(R);

(2) there existD1, . . . , Dn ∈ Derk0(R) and a1, . . . , an ∈ R such thatDiaj = δij ;

(3) there existD1, . . . , Dn ∈ Derk0(R) and a1, . . . , an ∈ R such that Det(Diaj) ̸∈

m;

(4) Derk0(R) is a free R-module of rank n;

(5) rankDerk0(R) = n.

Remark 40.1. Since Derk0(R) = 0 we have Derk0(R) = Derk(R̂) ∩ Der(R).

If we define Derk(R) by Derk(R̂) ∩ Der(R) then Th.98 and Th.99 hold for any

coefficient field k of R̂ and the mention quasi-coefficient field is superfluous.

Proof. Let K and L denote the quotient fields of R and R̂. The implications

(1) =⇒ (2) =⇒ (3) and (4) =⇒ (5) are trivial.

(3) =⇒ (4) Clearly D1, . . . , Dn are linearly independent over R as well as over

R̂. So every D ∈ Derk0(R) can be written as D =
∑
ciDi with ci ∈ L.

Solving the equations Daj =
∑
ciDiaj , we get ci ∈ R.
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(5) =⇒ (1) Let D1, . . . , Dn be linearly independent over R. This means that

there exists a1, . . . , an ∈ R with Det(Diaj) ̸= 0. Therefore D1, . . . , Dn are

linearly independent over R̂ also. Hence ∂/∂xi =
∑
j cijDj with cij in L.

Then δik =
∑
j cijDjxk, therefore the matrix (cij) is the inverse (Djxk)

and so cij ∈ K. Therefore

(∂/∂xi)(R) ⊆ K ∩ R̂ = R.

(40.F) We will say that (WJ) (= weak Jacobian condition) holds in a regular

ring R if rank J(P ; Der(R))(P ) = htP for every P ∈ Spec(R). The reasoning of

(40.D) and Th.95 show that, if A is a homomorphic image of a regular ring R in

which (WJ) holds, then Reg(A) is open in Spec(A). For the definition and the

theory of the strong Jacobian condition (SJ), we refer to our article [Mat77b].

Theorem 100. Let (R,m,K) be a regular local ring of dimension n containing

a field k of characteristic 0. Assume that (1) K is algebraic over k, and (2)

rankDerk(R) = n. Then:

i) (WJ) holds in R,

ii) if P ∈ Spec(R) then every element of Derk(R/P ) is induced by an element

of Derk(R),

iii) rankDerk(R/P ) = dimR/P .

Proof. The argument is essentially the same as in Th.97. We use the notation

of Th.99. Then there exists D1, . . . , Dn ∈ Derk(R) and x1, . . . , xn ∈ m such that

Dixj = δij , and Derk(R) is a free R-module with D1, . . . , Dn as a basis. Put

A = R/P and let ϕ : R −→ A denote the natural map. Then Derk(R,A) is a
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free A-module with ϕ ◦Di (1 ⩽ i ⩽ n) as a basis. If D ∈ Derk(R), let ci ∈ R be

such that ϕ(ci) = Dϕ(xi). Then D =
∑
ciDi ∈ Derk(R) induces D in the sense

that ϕ ◦D = D ◦ϕ. Let (u1, . . . , un) ∈ An. Then
∑
uiϕ ◦Di induces a derivation

D ∈ Derk(A) iff
∑
uiϕ(Dif) = 0 for all f ∈ P . Thus

rankDerk(A) = n− rank J(P ; Derk(A))(P ).

The left hand-side is ⩽ dimA = n − htP by Th.98, and the right-hand side is

⩾ n− htP by Th.94. Therefore we have i) and iii).

Theorem 101. Let R be a regular ring containing Q. If (WJ) holds in R, then

R is excellent.

Proof. Since R is Cohen-Macaulay it is universally catenary. We have already

remarked that (WJ) implies the openness of Reg(R/P ) in Spec(P/R) for every

P ∈ Spec(R), and as R contains Q this proves that R is J-2 by 73(3). To prove

that R is a G-ring we can assume that R is a regular local ring, and we have

to show that the formal fibres of R are regular. Let P be a prime ideal of the

completion R̂ and put p = P ∩ R. Let r = ht p. Then there exist D1, . . . , Dr ∈

Der(R) such that rank J(p, D1, . . . , Dr)(p) = r. We can extend the derivations

Di to R̂ and view the matrix J(p;D1, . . . , Dr)(p) as J(pR;D1, . . . , Dr)(P ). On

the other hand, we have ht pR̂ = ht p = r by (13.B). Therefore R̂P /pR̂P is

regular.

Theorem 102. Let k be a field of characteristic 0, and R be a regular ring

containing k. Suppose that

(1) for any maximal ideal m of R, the residue field R/m is algebraic over k and

htm = n, and

(2) there exist D1, . . . , Dn ∈ Derk(R) and x1, . . . , xn ∈ R such that Dixj = δij .
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Then R is excellent.

Proof. By Th.100 it is clear that (WJ) holds in R.

Remark. Convergent power series rings over R or C, formal power series rings

over a field k of characteristic 0, and more generally the rings of type

k[X1, . . . , Xn][[Y1, . . . , Ym]] where k is a field of char.0, are examples of regular

rings to which the theorem applies. Formal power series rings over a convergent

power series ring also belong to the class. On the other hand there are excellent

regular rings containing a coefficient field k of char.0, such that Derk(R) = 0.

Example 40.1. Let k be a field of char.0 and let f(X) be a formal power series

such that f(X), f ′(X) and X are algebraically independent over k (e.g.

f = exp(exp(X)) will do). Let f =
∑
aiX

i, ai ∈ k, and put

yi =

∞∑
j=i

ajx
j−i (i = 0, 1, 2, . . . ).

Then y0 = f(X) and yi = ai +Xyi+1. Put R = k[X, y0, y1, . . . ]. Then R/XR =

k, so that XR is a prime ideal. Put A = RXR. Since A is a subring of k[[X]] it is

X-adically separated, so it is a regular local ring of dimension 1 and ch(A) = 0,

hence A is excellent. Its completion Â is k[[X]] and d/dX maps f to f ′ which is

not in k(X, y0), hence not in A. By Th.99 we see that Derk(A) = 0.

Theorem 103. Let R be a regular ring. If (WJ) holds in R[X1, . . . , Xn] for

every n ⩾ 0, then R is excellent.

Proof. The condition implies that Reg(B) is open in Spec(B) for every finitely

generated R-algebra B, i.e. that R is J-2. To prove that R is a G-ring we

may assume that R is local, and we have to prove that the formal fibres are

geometrically regular. By (33.E) Lemma 33.3, it suffices to prove that, if C is

a localization of a finite R-algebra which is a domain, and if Q is a prime ideal of
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C∗ such that Q ∩ C = (0), then C∗Q is regular. Now C is a homomorphic image

of a localization of some R[X1, . . . , Xn], and our assertion is proved by the same

argument as in the proof of Th.101.

Remark. It is easy to see that, if R contains Q, then (WJ) in R implies (WJ)

in R[X]. But this is not so in the case of characteristic p. In fact, the ring A of

(34.B) is a counterexample.

41 Krull Rings and Marot’s Theorem

(41.A) Let A be an integral domain and put P = {p ∈ Spec(A) | ht p = 1}.

We call A a Krull ring if

(1) Ap is a principal valuation ring for all p ∈ P , and

(2) every non-zero principal ideal aA is the intersection of a finite number of

primary ideals of height 1.

A normal Noetherian domain is a Krull ring by Th.37 and Th.38 We will give

a sufficient condition for the converse to hold. First we list a few elementary

properties of Krull rings. Let A be a Krull ring with quotient field K.

I) Let a, b ∈ A, a ̸= 0, x = b/a. By (2) we have aA = q1 ∩ · · · ∩ qr,

qi = api
∩ A1, pi ∈ p. Therefore x ∈ A ⇐⇒ b ∈ qi for all i ⇐⇒ b ∈ Ap

for all p ∈ P . Hence A =
⋂

pAp. Moreover, if 0 ̸= x ∈ K, then x is a unit

in Ap for all but a finite number of p ∈ P .

II) By (1) each primary ideal q of height 1 is a symbolic power of its radical.

Therefore every principal ideal aA ̸= 0 is of the form

aA = p
(n1)
1 ∩ · · · ∩ p(nr)

r (pi ∈ P ).
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III) If p ∈ P , let vp( · ) denote the normalized valuation associated to Ap (i.e. if

pAp = tpAp then vp(x) = n means xAp = tnpAp). Then for each 0 ̸= x ∈ K

there exists at most a finite number of p ∈ P with vp(x) ̸= 0. If a ∈ A we

can write aA =
⋂
p(vp(a)).

IV) If dimA = 1 then A is Noetherian. Indeed, let I be an ideal. If I ̸= (0)

pick a ∈ I, a ̸= 0. It suffices to prove that I/aA is a finite module. Writing

aA as in II), we can embed A/a in A/p
(n1)
1 ⊕ · · · ⊕ A/p(nr)

r . But if p ∈ P

then p is maximal and A/p(n) is a module of finite length. This proves

our assertion. An integral domain in which every non-zero ideal is uniquely

represented as the product of a finite number of prime ideals is called a

Dedekind domain. It is well known that an integral domain is Dedekind

iff it is normal, Noetherian and of dimension ⩽ 1. Therefore Krull domains

of dimension ⩽ 1 are nothing but Dedekind domains.

V) Suppose we are given p1, . . . , pr ∈ P and e1, . . . , er ∈ Z. Then there exists

x ∈ K satisfying

vp1
(x) = ei (1 ⩽ i ⩽ r), vp(x) ⩾ 0 for all other p ∈ P.

Proof. Take y1 ∈ p1 − (p
(2)
1 ∪ p2 ∪ · · · ∪ pr). Then vi(y1) = δi1 (1 ⩽ i ⩽ r).

Similarly, take yj ∈ A such that vi(yj) = δij (1 ⩽ i ⩽ r) and put y =
∏
yeii .

Put P ′ = P − {p1, . . . , pr}. There exists at most a finite number of p ∈ P ′ such

that vp(y) < 0; denote them by p′1, . . . , p
′
s. Take tj ∈ p′j − (p1 ∪ · · · ∪ pr) for

1 ⩽ j ⩽ s, and put x = y(t1 . . . ts)
n with n sufficiently large. Then x satisfies our

requirement.

(41.B) Theorem 104 (Y.Mort - J.Nishimura). Let A be a Krull ring and P

be as before. If A/p is Noetherian for every p ∈ P , then A is Noetherian.
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Proof. We will prove that A/p(n) is Noetherian (as a ring, or what is the same,

as an A-module) for every p ∈ P and for every n > 0. Since a finite sum of

Noetherian modules is again Noetherian, and since any submodule of a Noethe-

rian module is Noetherian by definition, it then follows that A is Noetherian as

in the proof of IV).

Using V) for e1 = −1 we can find x ∈ ΦA such that vp(x) = 1, vq(x) ⩽ 0

for all q ∈ P − {p}. Put B = A[x]. If y ∈ p then y/x ∈ A, hence p ⊆ xB ∩ A.

Conversely, since B ⊆ Ap and xB ⊆ pAp we have p ⊇ xB ∩ A. Therefore

p = xB ∩A, and B = A+ xB, hence B/xB ∼= A/p. Since xnB/xn+1B ∼= B/xB

for all n, it is clear that B/xnB is Noetherian for all n. But

xnB ∩A ⊆ xnAp ∩A = p(n)

and B/xnB is generated by the images of 1, x, . . . , xn−1 over A/(xnB ∩ A) By

Eakin’s theorem if A/(xnB ∩A) is a Noetherian ring, of which A/p(n) is a homo-

morphic image. Therefore A/p(n) is Noetherian, as wanted.

Theorem (Mort-Nagata Integral Closure Theorem). Let A be a Noetherian

domain with quotient field k, and L be a finite algebraic extension of K. Then

the integral closure A′ of A in L is Krull ring. If P ′ ∈ SpecA′ and P = P ′ ∩ A,

then [κ(P ′) : κ(P )] < ∞. If P ∈ SpecA, there exists only a finite number of

prime ideals of A′ lying over P .

For the proof we refer to [Nag75] or to [Fos12]. (In fact they consider the case

L = K, but the general case is easily reduced to this case by enlarging A a little.)

They use the structure theorem of complete local rings. Recently, J. Nishimura

([Nis76]) and J. Querré ([Que77]) gave different proofs of the first assertion which

do not use the structure theorem.

(41.C) Theorem (Krull-Akizuki). If dimA = 1 in the preceding theorem,
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every ring between L and A is Noetherian.

For the proof see [Bou98, ch.7] or [Mat76].

Theorem 105. If dimA = 2 in the Mori-Nagata theorem, then A′ is Noethe-

rian.

Proof. Let P ′ be a prime ideal of height 1 in A′. Then A′/P ′ is integral over

A/P , where P = P ′ ∩ A, [κ(P ′) : κ(P )] is finite and dimA/P = 1. Therefore

A′/P ′ is Noetherian by the Krull-Akizuki theorem, hence A′ is Noetherian by

Th.104.

(41.D) Theorem 106 (J. Marot). Let A be a Noetherian ring and I an ideal

of A. Suppose that A is complete and separated in the I-adic topology and that

A/I is a Nagata ring. Then A is a Nagata ring.

Proof. We have to prove that A/p is N-2 for all p ∈ Spec(A). Assume the con-

trary. Then there exists a maximal element p0 ∈ {p | A/p is not N-2}. The

hypotheses on A are inherited by all homomorphic images of A (note that

I ⊆ rad(A)). Replacing A by A/p0, we may therefore assume that A is a Noethe-

rian domain, that A/p is N-2 if (0) ̸= p ∈ Spec(A) and that A is not N-2 (hence

I ̸= (0)). Let K be the quotient field of A, L be a finite algebraic extension of K

and B be the integral closure of A in L. If (0) ̸= P ∈ Spec(B) and P ∩ A = p,

then p ̸= (0) and [κ(P ) : κ(p)] < ∞. Therefore B/P is finite over A/p by the

N-2 property of A/p, and so B/P is Noetherian. Therefore B is Noetherian by

Th.104. Let R be the radical of IB and let R = P1 ∩ · · · ∩ Pr be its prime

decomposition. Put pi = Pi∩A. Then pi ⊇ I ̸= (0), hence A/pi is N-2 and B/Pi

is finite over A/pi for all i. Since B/R can be embedded in B/P1 ⊕ · · · ⊕ B/Pr
and since A is Noetherian, B/R is a finite A-module. Since B is Noetherian,

Rn/Rn+1 is a finite module over B/R, hence also over A, for all n. Using the
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exact sequence

0 −→ Rn/Rn+1 −→ B/Rn+1 −→ B/Rn −→ 0

we see inductively that B/Rn is finite over A for all n. Since Rn ⊆ IB for n

sufficiently large, B/IB is also finite over A. Since B is Noetherian and

IB ⊆ rad(B), B is separated in the I-adic topology. Therefore B is finite over A

by Lemma 28.1. This proves that A is N-2, contrary to our assumption.

42 Kunz’ Theorems

(42.A) Let A be a ring, x1, . . . , xn ∈ A and I =
∑
xiA. The elements xi are

said to be independent if
∑
aixi = 0 implies all ai ∈ I, or equivalently, if I/I2

is a free A/I-module of rank n

This definition is due to C.Lech, [Lec64]. If x1, . . . , xn form an A-regular

sequence then they are independent. When A is a regular local ring the converse

is also true. More precisely, we have the following theorem of Vasconcelos:

Let R be a Noetherian local ring and I be a proper ideal

with finite projective dimension. If I/I2 is free over R/I,

then I is generated by an R-sequence.

For the proof, see [Vas67] or [Kap70, Th. 199].

The following two lemmas are due to Lech.

Lemma 42.1. If yz, x2, . . . , xn are independent, then y, x2, . . . , xn are also

independent.

Proof. Let

a1y + a2x2 + · · ·+ anxn = 0, ai ∈ A.
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Then

a1yz + a2yx2 + · · ·+ anyxn = 0,

therefore a1 ∈ (yz, x2, . . . , xn). Write

a1 = byz + c2x2 + · · ·+ cnxn.

Then

by2z + (c2y + a2)x2 + · · ·+ (cny + an)xn = 0,

hence ciy + ai ∈ (yz, x2, . . . , xn) and so ai ∈ (y, x2, . . . , xn).

Lemma 42.2. If f1, . . . , fn are independent, if ℓ(A/(f1, . . . , fn)) is finite and if

f1 = gh, then

ℓ(A/(f1, . . . , fn)) = ℓ(A/(g, f2, . . . , fn)) + ℓ(A/(h, f2, . . . , fn)).

Proof. If ag = b1f1 + · · ·+ bnfn, then a− b1h ∈ (f1, . . . , fn) and so

a ∈ (h, f2, . . . , fn). Hence

(g, f2, . . . , fn)/(f1, f2, . . . , fn) ∼= A/(h, f2, . . . , fn).

Lemma 42.3. Let (A,m, k) be a local ring and νi > 0 be integers. If m =

(x1, . . . , xn) and if xν11 , . . . , x
νn
n are independent, then

ℓ(A/(xν11 , . . . , x
νn
n )) = ν1 . . . νn.

Proof. This is a corollary of the preceding lemmas.
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(42.B) Let p be a prime number and q = ps, s > 0. If A is a ring of characteris-

tic p, then the map F : A −→ A defined by F (x) = xq is a homomorphism called

the (q-th) Frobenius map. Its image F (A) is written Aq. (Do not confuse it

with the free module of rank q, which will not appear in this section.) If A is

reduced then A −→ Aq, and F can be identified with the inclusion map Aq ↪→ A.

Theorem 107 (E. Kunz). Let A be a Noetherian local ring of characteristic p.

Then the following are equivalent:

(1) A is regular,

(2) A is reduced, and A is flat over Aq for q = ps for every s > 0,

(3) A is reduced, and A is flat over Aq for q = p for at least one s > 0.

Proof.

(1) =⇒ (2) Let Â be the completion of A. Then

Â Â

A AF

F

is commutative, where F is x 7→ xq. The map F : A −→ A is flat if its

completion F : Â −→ Â is flat. So we may assume that A is complete. Then

A has a coefficient field k and we may assume that A = k[[x1, . . . , xn]]. In

general if k′ ⊂ k is a field extension then the natural map

k[Y1, . . . , Yn] −→ k[Y1, . . . , Yn] is flat, and by localization and completion

(Th.49 guarantees that flatness of a local homomorphism of Noetherian

local rings is preserved by completion) we see that
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k′[[Y1, . . . , Yn]] −→ k[[Y1, . . . , Yn]] is flat. Therefore

Ap = kp[[Xp
1 , . . . , X

p
n]] −→ k[[Xp

1 , . . . , X
p
n]]

is flat, and A is free over k[[Xp
1 , . . . , X

p
n]]. Hence A is flat over Ap.

(3) =⇒ (1) Put Aq = B and let m, n denote the maximal ideals of A,B. Let

{x1, . . . , xr} be a minimal basis of m. Since A ∼= B by F , {xq1, . . . , xqr} is a

minimal basis of n. Put nA = I. Since A is flat over B we have

(n/n2)⊗B A = (n⊗B)/(n2 ⊗B A) = nA/n2A = I/I2,

and (n/n2)⊗B A is a free module of rank r over A/I. Therefore xq1, . . . , x
q
r

are independent in A in the sense of Lech. By Lemma 42.3 we have

ℓA(A/(x1, . . . , x
q
r)) = ℓÂ(Â/(x

q
1, . . . , x

q
r)) = qr.

The completion Â has a coefficient field k, and we can write

Â = k[[x1, . . . , xr]] = k[[X1, . . . , Xr]]/a.

Putting R = k[[X1, . . . , Xr]] we have ℓR(R/(X
q
1 , . . . , X

q
r )) = qr, which

means a ⊆ (Xq
1 , . . . , X

q
r ). Since F : Aq −→ A is flat, and

Aq A

Aq
2

Aq

F∼

F

F F

is commutative, Aq
2 −→ Aq is also flat and F 2 : Aq

2 −→ A is flat. Similarly,
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F ν : Aq
ν −→ A is flat for all ν > 0. Then a ⊆

⋂
ν(X

qν

1 , . . . , Xqν

r ) = (0),

hence Â is regular and so A is regular.

Theorem 108 (E. Kunz). Let A be a Noetherian ring of characteristic p. If A

is finite over Ap then A is excellent.

Proof. First we note that the finiteness of A over Ap is preserved by localization,

by taking homomorphic image and by ring extension of finite type.

To prove that A is J-2, it therefore suffices to show that Reg(A) is open

in Spec(A) under the additional assumption that A is an integral domain. Let

B = A, P ∈ Spec(A). Then P ∈ Reg(A) iff AP = A⊗B Bp is flat over

(AP )
p = Bp, where p = P ∩B. Since A is finite over B, P ∈ Reg(A) is equivalent

to

P ∩B ∈ {p ∈ Spec(B) | Ap = A⊗B Bp is free over Bp}.

Since the latter set is open in Spec(B) and since the map P −→ P ∩ B is a

homeomorphism from Spec(A) onto Spec(B), Reg(A) is open in Spec(A)

To prove that A is a G-ring we use the criterion of (33.E). We may assume

that A is a local domain, and we have to show that if Q is a prime ideal of the

completion Â such that Q∩A = (0), then (Â)Q is regular. Let K be the quotient

field of A, B = Ap and q = Q ∩B. Then Â = A⊗B B̂, and (Â)Q is a local ring

of

K ⊗A Â = K ⊗B B̂ = K ⊗Kp B̂.

Since Kp is a field it is easy to see that (Â)Q is free over its p-th power (B̂)q

Hence (Â)Q is regular.

Lastly we will show that A is universally catenary. Again it is enough to show

that A is catenary under the additional assumption that A is a local domain.

This will be done in a series of lemmas.
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Lemma 42.4. Let A be a Noetherian local ring of characteristic p such that

A is finite over Ap, and let Â denote its completion. Then Â is finite over (Â)p,

and we have (Â)p = (̂Ap). Moreover, ΩÂ = ΩA ⊗A Â.

Proof. Put B = Ap. Since A is finite over B, B is a subspace of A and B̂ is a

subring of Â. The topology of A is equal to the topology as a B-module, hence

Â = A ⊗B B̂ and so Â is finite over B̂. The Frobenius map F : A −→ B is a

surjective homomorphism, hence its completion F̂ : Â −→ B̂ is also surjective.

It coincides with the p-th power map on A, hence on the whole Â by continuity.

Thus (Â)p = B̂. Since ΩA = ΩA/B , we have

ΩA/B ⊗A Â = ΩA/B ⊗B B̂ = ΩA⊗BB̂/B̂
= ΩÂ/B̂ = ΩÂ.

Lemma 42.5. Let A be as above and assume that A is an integral domain.

Then Â is reduced.

Proof. Let F : A −→ A be the Frobenius map. Since A is reduced, F is injective.

The completion map F̂ : Â −→ Â is also injective, but F is the Frobenius map of

Â. Hence Â is reduced.

Lemma 42.6. Let A be as in Lemma 42.5, and let K, k denote the quotient

field and the residue field of A, respectively. Then rankΩK = rankΩk + dimA.

Proof. Let P be a minimal prime of Â, and put L = (Â)P . Then L is a field by

the preceding lemma. We have

ΩL = ΩÂ ⊗Â L = ΩA ⊗A L = (ΩA ⊗A K)⊗K L,

hence rankΩL = rankΩK . Therefore we may replace A by Â/P and assume

that A is a complete local domain. Then A contains a coefficient field k. Let
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x1, . . . , xn (n = dimA) be a system of parameters ofA, and putA′ = k[[x1, . . . , xn]].

Then A is finite over A′ and if K ′ is the quotient field of A′ we have

rankΩK = rankΩK′ by Cartier’s equality (or directly:

[K : K ′p] = [K : Kp][Kp : K ′p] = [K : K ′][K ′ : K ′p],

and [K : K ′] = [Kp : K ′p] by the Frobenius isomorphism, hence

[K : Kp] = [K ′ : K ′p].) Therefore we may replace A by the formal power series

ringA′ = k[[x1, . . . , xn]]. If {a1, . . . , as} is a p-basis of k then {a1, . . . , as, x1, . . . , xn}

is a p-basis of A′. Hence

rankΩK = s+ n = rankΩk + dimA.

Lemma 42.7. Let A be as in Lemma 42.4, and let P,Q ∈ Spec(A), P ⊇ Q. Put

rankΩκ(P ) = δ(P ). Then ht(P/Q) = δ(P )− δ(Q). Consequently, A is catenary.

Proof. Put R = AP /QP . Then δ(Q) and δ(P ) are the quotient field and the

residue field of R, respectively, and dimR = ht(P/Q). Thus the desired equality

is nothing but the preceding lemma (applied to R). If P ⊃ P ′ ⊃ Q, P ′ ∈ Spec(A)

then the result just obtained shows

ht(P ′/P ′) + ht(P ′/Q) = ht(P/Q).

Hence A is catenary.
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43 Complement

Grothendieck (EGA IV 19.7.1 [Gro64]) proved the following important theo-

rem:

(43.∗) Let (A,m, k) and (B,n, k′) be Noetherian local rings and ϕ : A −→ B be a

local homomorphism. Then

ϕ is formally smooth ⇐⇒ B ⊗ k is formally smooth over k,

and ϕ is flat.

The most difficult part is the proof of flatness from formal smoothness. His

proof is quite interesting but too long to include in this book.

Let A be a ring, B an A-algebra and L a B-module. The set of isomorphism

classes of extensions of B by L (§25) has a natural structure of A-module, which

was denoted by ExalcomA(B,L) in EGA. The algebra B is smooth over A iff

this module is zero for all B-modules L. When A and B are topological rings

Grothendieck defined a variant of the above module, called Exalcomtop(B,L); B

is formally smooth over A iff this last module vanishes for all L.

The functor ExalcomA(B,L) has certain formal properties, which make it

a 1-dimensional cohomology functor in some sense. So several people tried to

construct the higher cohomologies that should follow it. After the partial success

of Gerstenhaber, Harrison and others, Michel André succeeded in constructing

a satisfactory theory ([And67]; [And74a]). Let A, B and L be as above. He

defines homology modules Hn(A,B,L) and cohomology modules Hn(A,B,L)

for all n ⩾ 0. We have H0(A,B,L) = ΩB/A ⊗B L, H0(A,B,L) = DerA(B,L)

and H1(A,B,L) = ExalcomA(B,L). When A −→ B −→ C is a sequence of

ring homomorphisms and M is a C-module, we have the following long exact
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sequences called Jacobi-Zariski sequences:

· · · −→ Hn(A,B,M) −→ Hn(A,C,M) −→ Hn(B,C,M)

−→ Hn−1(A,B,M) −→ · · · · · · · · · · · · −→ H0(B,C,M) −→ 0,

and

0 −→ H0(B,C,M) −→ · · · · · · · · · · · · −→ Hn−1(A,B,M)

−→ Hn(B,C,M) −→ Hn(A,C,M) −→ Hn(A,B,M) −→ · · · .

Let J be an ideal of B. The A-module B with J-adic topology is formally smooth

iffH1(A,B,W ) = 0 for all B/J-moduleW . A Noetherian local ring A is excellent

iff Hn(A, Â,W ) = 0 for all n > 0 and for every Â-module W .

André’s homology and cohomology are connected with formal smoothness at

n = 1, with regularity at n = 2 and with complete intersection at n = 3 (and up).

The theorem (43.∗) cited above is proved rather naturally in André’s theory.

A Noetherian local ring A is called a complete intersection (CI for short)

if its completion Â is of the form R/I, where R is a regular local ring and I is

an ideal generated by an R-sequence. This is characterized by H3(A,K,K) = 0,

where K is the residue field. Using this criterion it is easy to see that if A is

CI and P ∈ Spec(A), then AP is CI also. L.L.Avramov ([Avr75]) proved the

following theorem using Andre’s theory: Let (A,m) and B be Noetherian local

rings and f : A −→ B be a flat local homomorphism. Then

(†) B is CI =⇒ A is CI, A and B/B are CI =⇒ B is CI.

André ([And74b]) proved the following useful theorem:

(∗∗) Let f : A −→ B be a local homomorphism of Noetherian local rings. If f

is formally smooth and A is excellent, then f is regular.

The question (B) of (34.C) was recently solved by C. Rotthaus in the case A is
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semi-local ([Rot79]). André’s theorem (∗∗) plays an important role in her proof.

In the general case even the problem (A) is open, but when A is an algebra of

finite type over a field Problem (A’) was solved by P. Valabrega ([Val75]). Later

he generalized his result to the case where k is a 1-dimensional excellent domain

of characteristic 0. ([Val76]).

L.J.Ratliff ([Rat72]) proved the following beautiful theorem: A Noetherian

local domain A is catenary iff htP + dimR/P = dimR holds for every P ∈

Spec(R). He has also characterized universally catenary rings in many different

ways. (CF. [Rat78] for references and for the definitions of his terminology.)

For excellent rings and Nagata rings, see also [Gre76], and many articles by

K. Langmann (in German Journals) and by H. Seydl (mostly in C.R. Acad. Sci.

Paris)‡. We also note that R.Y. Sharp defined acceptable rings by replacing

“regular” by “Gorenstein” throughout the definition of excellent rings. ([Sha77]).

Finally, in connection with our Ch.6 we list a few important recent works:

[Nor14], [PS75] [HM75].

‡The archives of C.R. Acad. Sci. Paris can be found in the archives of the France National
Library.
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This book, based on the author’s lectures at Brandeis University
in 1967 and 1968, is designed for use as a textbook on
commutative algebra by students of modern algebraic geometry
or abstract algebra.
Part I is devoted to basic concepts such as dimension, depth,
normal rings, and regular local rings; Part II deals with the finer
structure theory of noetherian rings initiated by Zariski and
developed by Nagata and Grothendieck.
In this second edition, the chapter on Depth has been completely
rewritten. There is also a new Appendix consisting of several
sections, which are almost independent of each other. The
Appendix has two purposes: to prove the theorems used but not
proved in the text; to record same of the recent achievements in
the areas connected with Part II.
For specialists in commutative algebra, this book will serve as an
introduction to the more difficult and detailed books of Nagata
and Grothendieck. To geometers, it will be a convenient
handbook of algebra.
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