
Introduction

I supervised a reading group on Folland’s “Real analysis” the fall of 2023. I

assigned the weekly reading and problem sets. I am an Operator algebraist so I

did focus on functional analytic ideas in the latter half.

This document is just a master document of all the problem sets and readings

I assigned.

Week 1

We read ch 1.1-1.3.

Hw was exercise 7-12 for the first week.

The following was a bonus problem: We saw the Borel sigma algebra is a

natural sigma algebra on a topological space. There is another one, can you

guess what it should be?

Week 2

We read section 2.1-2.3 for this week.

Problem 1

We will learn an important technique here, that you can “approximate” mea-

surable sets by certain nice sets.

a. (Hard) Let (X,M, µ) be a finite measure space, and let A ⊂ M be an

algebra of sets such that A generates M as a σ-algebra. Then A is dense

in the measure algebra (see problem 12 from the last PSET), i.e for every

M ∈ M, and ε > 0 there is a A ∈ A such that µ(M∆A) < ε.

b. How well can you extend this to σ-finite spaces?
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c. Prove proposition 1.20, that for every Lebesgue measurable set of finite

measure E ⊂ R and ε > 0 there is some open set U such that m(E∆U) < ε.

Lets see an application of this idea now:

d. (Problem 30 in the book) Let E ⊂ R be lebesgue measurable with positive

measure. For each α < 1 there is an open interval I such that

m(E ∩ I) > αm(I).

Problem 2

We say a measure space (X,M, µ) is complete if for each measurable set N

with µ(N) = 0, all of its subsets are also measurable.

a. Let µ be a measure induced by an outer measure µ∗ on X. Let M be the

σ-algebra of µ∗ measurable sets. Then (X,M, µ) is complete.

b. Show that (R,B, µ), i.e real numbers with Borel σ-algebra and Lebesgue

measure, is not complete.

c. Show that (R,L,m), Lebesgue measurable sets with measure induced by

Lebesgue outer measure, is actually the smallest complete measure space

containing the space from the previous problem.

This combined tells us that in this sense, if we replace the Borel σ-algebra with

the one of Lebesgue measurable set, it is a compeletion.

Problem 3

a. Let (Xi,Mi, µi) be a finite collection of measure spaces, define

X =
∏
i

Xi , M =
⊗
i

Mi.
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Here M is the sigma algebra generated by sets of the form
∏

Ei, Ei ∈ Mi.

Extend the µi to a measure on (X,M).

b. Write down a version of this when the collection is infinite, where the sigma

algebra will be generated by Cylinder Sets, i.e sets of the form:

∏
i

Ei Ei ∈ Mi and Ei = Xi for all but finitely many i.

What modifications do you have to make to the previous part to make this

work?

Week 3

Finished chapter 2 for this week.

Problem 1

These are the section exercises I want you to do:

1. Prove proposition 2.20, that if f is a positive integrable function on a mea-

sure space, then it is infinite on a null set, and that it is non-zero on a

σ-finite set.

2. Prove the generalized DCT in exercise 20.

3. Do exercise 27.

4. Do the computations in exercise 28.

5. Do exercise 29.
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Problem 2

For the following problem, let (X,M, µ) be measure space.

a. Let fn ∈ L1(X) with fn → f in L1, show that a subsequence of this

converges to f a.e. (Bonus: exhibit a counter example to show the whole

sequence doesnt need to converge a.e to f .)

b. If (fn) is a cauchy sequence in L1, show that it has a subsequence that

converges to some f a.e.

c. Let the setting be as in part b. Show that the subsequence can be chosen

so that f is in L1. (Hint= you will use theorem 2.25)

d. Now finally show that L1(X) is complete.

Problem 3

Let (X,BX , µ) be a measure space, where X is a locally compact Haussdorf

space, BX its Borel algebra, and µ a regular measure that is finite on compact

sets. Let Cc(X) be the compactly supported continuous functions X −→ C, show

that Cc(X) ⊂ L1(X) and that it is infact a dense subset.

Week 4

Did section 3.1-3.3

section exercises

Do 33, 34, 40, 44 and 52.
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Problem 1

Let (X,MX , µ) be a measure space and (Y,MY ) a measurable space. Let

T : X −→ Y be measurable.

a. Show ν which is defined as ν(A) := µ(T−1(A)) is a measure on Y .

b. Show that f ∈ L1(Y, ν) ⇐⇒ f ◦ T ∈ L1(X,µ) and that in this case,

∫
X

f ◦ T dµ =

∫
Y

f dν

Week 5

Problem 1

This was 3 weeks worth of homework. Assigned reading was chapter 5 and 6.

A Banach space is a real (or complex) vector space X, with a norm ||− || such

that the space is complete under the induced metric of the norm. We already

saw that L1 was a Banach space.

a. Show that a linear operator T : X −→ Y is continuous iff there is some c

such that ||Tx||Y ≤ c||x||X. We call these operators bounded also.

b. For a real Banach space X, we call the space of bounded linear functionals

X∗. I.e

X∗ := {L |L : X −→ R, L bounded and linear}.

What is a good definition for the operator norm || − ||op on X∗ based off of

a? Show that it is a Banach space under this norm.
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Problem 2

Let (X,M) be a measurable space. Let M(X) be the space of all complex

measures on X, with the norm || − ||TV , where ||λ|| = |λ|(X) and |λ| is the total

variation of λ.

a. Show that M(X) is a complex Banach space.

b. Fix a positive measure µ on X. Show that L1(µ) −→ M(X) that sends f to

f dµ is a linear isometric embedding. (Isometric means norm is preserved)

Optional problems to do after finishing the course:

c. Let µ and ν be mutually singular, then exhibit an isometric embedding

L1(µ)⊕ℓ1 L1(ν) −→ M(X)

where L1(µ)⊕ℓ1 L1(ν) is the completion of the algebraic direct sum under

the norm ∥(f, g)∥ = ∥f∥1 + ∥g∥1.

d. If (X,Σ, µ) is decomposible, i.e there are finite measurable sets Xi with

X =
∐

Xi, then

L1(µ) ∼= ℓ1 −
⊕
i

L1(µ|Xi).

e. Show that M(X) is actually isometrically isomorphic to some L1(Y ).

Problem 3

Let (X,M, µ) be a measure space. Define ||f ||p :=
(∫

X
|f |p dµ

)1/p
. Then

Lp(X,R) is the Banach space of measurable functions f : X −→ R such that the

p-norm ||f ||p is finite, and we consider 2 functions to be equal if they are equal

a.e. The proof that this is Banach is the same as that of L1.
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Throughout this problem, 1 < p, q < ∞ and
1

p
+

1

q
= 1.

a. Prove Young’s Inequality, that for positive a, b

ab ≤ ap

p
+

bq

q

b. Prove Hölder’s Inequality, that if f ∈ Lp(X,R), g ∈ Lq(X,R), then

∫
X

fg dµ ≤
(∫

X

|f |p dµ
)1/p(∫

X

|g|q dµ
)1/q

.

In other words ||fg||1 ≤ ||f ||p||g||q and that fg ∈ L1(X,R). (Bonus: use

this to prove Minkowsi’s inequality, ||f + g||p ≤ ||f ||p + ||g||p, i.e that the

p-norm is actually a norm)

c. Define

T : Lq(X,R) −→ (Lp(X,R))∗, (T (f))(g) =

∫
X

fg dµ.

Show that this is well defined, and that it is an isometric embedding.

Now we will show the hard part, that the map above is actually also surjective.

This is only true for σ-finite spaces, so we will be assuming this from now on.

d. Let Λ ∈ (Lp(X,R))∗ be positive (i.e sends positive functions to positive

numbers), define

λ(A) := sup{Λ(χE)|E ⊂ A,µ(E) < ∞}.

Show that λ is a measure, Lp(µ) ⊂ L1(λ) and that Λ(f) =
∫
X
f dλ.

e. Show that λ ≪ µ, and hence find a g such that Λ(f) =
∫
X
fg dµ.
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f. Show that the g chosen was in Lq(X,R)

g. Show that you can decompose a Λ ∈ (Lp(X,R))∗ as a positive and negative

part, using the idea of d, and hence that T is surjective.

There is a theorem called the open mapping theorem, that garuntees the inverse

will also be bounded. Hence T is an isometric linear isomorphism.

h. Finally prove this result for Lp(X,C) by extending from the real case.

Week 6

Last week, we read chapter 7 for this.

Problem 1

This problems will need the use of nets extensively, as we are leaving the world

of metric spaces. I would suggest reading up on them somewhere, I recommend

using Pederson’s “analysis now” for it.

a. Let X be an infinite dimensional Banach space. show the unit ball

{x ∈ X : ||x|| ≤ 1} is not compact in the norm topology.

This is obviously not ideal. Fortunately, for dual spaces X∗, there is an alternate

topology.

b. For a set X, and a set of functions F which are f : X −→ Y for topo-

logical spaces Yf , we can define the Weak Topology of (X,F) as the

weakest(= coarsest =least open sets) topology on X making each function

of F continuous. Show that this topology always exists.
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c. Let X∗ be the dual of Banach space X. We define the Weak*-topology

on it as the weak topology generated by the functions

evx : X∗ −→ C, evx(L) = L(x)

for x ∈ X. Show that Lλ → L in the weak*-topology iff Lλ → L pointwise

as functions on X. Hence this can also be called the topology of point-

wise convergence. (Be careful to use nets here, as outside of metric spaces

sequences do not suffice.)

d. Finally prove Banach-Alaoglu theorem, that the unit ball of X∗ is com-

pact in the weak*-topology. (Again use nets, the diagonalization of nets

is not as easy as that of sequences. Partial credit for only considering

sequences.)

Obviously the connection of this to Riesz-Markov is as follows, the space of finite

complex Baire measures M(X) is the dual of C0(X) for LCH X. We saw the

total variation norm on this, which is also the operator norm. But it turns out

to be more natural to work with the weak*-topology here

Problem 2

We will see an application of the weak* topology on the space of measures,

this time in ergodic theory. So for a subset A ⊂ N, we define the upper density

as

d(A) = lim sup
n→∞

card({1, . . . n} ∩A)

n
.

We want to prove

Theorem (Szemerédi). If A has d(A) > 0, then it has arbritarily long arithmetic

progressions.
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We will not actually prove this, but rephrase this in ergodic theoretic terms.

Let W2 = {0, 1}N. In our convention N has 0. This is a compact space because

of Tychonoffs. Identify this with P (N) in the obvious way. Let τ : W2 −→ W2

denote the left shift

τ(x0, x1, x2 . . . ) = (x1, x2 . . . ).

We will work with the subspace K := {τnA : n ∈ N}. Note that τ : K −→ K.

a. Let M := {x ∈ K : x0 = 1}. Show τnA ∈ M ⇐⇒ n ∈ A. Hence show

that

a, a+ n, . . . a+ (k − 1)n ∈ A ⇐⇒ τaA ∈ M ∩ τ−n(M) · · · ∩ τ−(k−1)n(M).

From this deduce that Szemerédi’s will be true if for each k, we can find a

n such that M ∩ τ−n(M) · · · ∩ τ−(k−1)n(M) is non-empty.

The idea is now to make this into a measure theory problem, so we find some

measure under which the set mentioned has positive measure, so it is non-empty.

b. Find a sequence of probability measures such that µi(M) =
card({1, . . . i} ∩A)

i
.

Construct out of this (using the weak*-topology) a probability measure µ

such that µ(M) = d(A). (read below)

It turns out W2 also has a metric on it, which in turn means the unit ball of the

space of measures is actually metrizable! So you can use sequences instead of

nets.

c. Suppose (X,M) is a measurable space and T : X −→ X a measurable

function. Let νn be a sequence of T invariant measure, i.e

νn(T
−1B) = νn(B) for B ∈ M. Let νn → ν weakly, then ν is also T

invariant.
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So with all this, we have a measure preserving system (K,µ; τ) basically. What

we did is called the Furstenberg’s correspondence. It is a theorem due to

him that

Theorem. In an ergodic measure preserving system, if µ(M) > 0 then

µ(M ∩ τ−n(M) · · · ∩ τ−(k−1)n(M)) > 0.

We will not go into how to extract an ergodic measure from the µ we got.

However, the theorem above is intuitive, ergodic systems are systems that “mix

well”, and so you expect that statement to be true.

11


	Introduction
	Week 1
	Week 2
	Problem 1
	Problem 2
	Problem 3

	Week 3
	Problem 1
	Problem 2
	Problem 3

	Week 4
	Problem 1

	Week 5
	Problem 1
	Problem 2
	Problem 3

	Week 6
	Problem 1
	Problem 2


