Model Theory of I_{1} factors

Aareyan Manzoor
a2manzoo@uwaterloo.ca
January 1, 2024

What is Model theory?

- Model theory is the theory of theories.

What is Model theory?

- Model theory is the theory of theories.
- Think about an object by its first-order theory.

What is Model theory?

- Model theory is the theory of theories.
- Think about an object by its first-order theory.
- Classical Model theory is a widely useful tool in a lot of fields of math, including algebraic geometry and combinatorics.

What is Model theory?

- Model theory is the theory of theories.
- Think about an object by its first-order theory.
- Classical Model theory is a widely useful tool in a lot of fields of math, including algebraic geometry and combinatorics.
- Continuous Model theory turns out to be extremely useful

Classic Model Theory I

- start with a language L that consists of constants, functions and relations.

Classic Model Theory I

- start with a language L that consists of constants, functions and relations.
- $L_{\text {Group }}=\left\{e, \cdot,(-)^{-1}\right\}$ is the language of group.

Classic Model Theory I

- start with a language L that consists of constants, functions and relations.
- $L_{\text {Group }}=\left\{e, \cdot,(-)^{-1}\right\}$ is the language of group.
- An L-term is a combination of variables v_{i} and functions/relations from the language.

Classic Model Theory I

- start with a language L that consists of constants, functions and relations.
- $L_{\text {Group }}=\left\{e, \cdot,(-)^{-1}\right\}$ is the language of group.
- An L-term is a combination of variables v_{i} and functions/relations from the language.
- $\left(v_{1} \cdot v_{3}^{-1}\right) \cdot v_{6}$ is a $L_{\text {Group-term }}$.

Classic Model Theory I

- start with a language L that consists of constants, functions and relations.
- $L_{\text {Group }}=\left\{e, \cdot,(-)^{-1}\right\}$ is the language of group.
- An L-term is a combination of variables v_{i} and functions/relations from the language.

$$
\text { - }\left(v_{1} \cdot v_{3}^{-1}\right) \cdot v_{6} \text { is a } L_{\text {Group-term }} \text {. }
$$

- An L formula is a combination of L-terms,equality, \wedge, \neg, \forall.

Classic Model Theory I

- start with a language L that consists of constants, functions and relations.
- $L_{\text {Group }}=\left\{e, \cdot,(-)^{-1}\right\}$ is the language of group.
- An L-term is a combination of variables v_{i} and functions/relations from the language.
- $\left(v_{1} \cdot v_{3}^{-1}\right) \cdot v_{6}$ is a $L_{\text {Group-term }}$.
- An L formula is a combination of L-terms, equality, \wedge, \neg, \forall.
- $\left.\left(\forall x\left(x \cdot x^{-1}=e\right)\right) \wedge \neg(y=e)\right)$ is a $L_{\text {Group }}$-formula.

Classic Model Theory II

- A L structure \mathfrak{A} is a set with interpretations of the constants/functions/relations in L.

Classic Model Theory II

- A L structure \mathfrak{A} is a set with interpretations of the constants/functions/relations in L.
- A tuple $\mathfrak{G}=\left(G, e, \cdot,(-)^{-1}\right)$ is a $L_{\text {Group }}$ structure.

Classic Model Theory II

- A L structure \mathfrak{A} is a set with interpretations of the constants/functions/relations in L.
- A tuple $\mathfrak{G}=\left(G, e, \cdot,(-)^{-1}\right)$ is a $L_{G r o u p}$ structure.
- For a sentence σ in L, we say $\mathfrak{A} \models \sigma$ if the interpretation $\sigma^{\mathfrak{A}}$ is true.

Classic Model Theory II

- A L structure \mathfrak{A} is a set with interpretations of the constants/functions/relations in L.
- A tuple $\mathfrak{G}=\left(G, e, \cdot,(-)^{-1}\right)$ is a $L_{\text {Group }}$ structure.
- For a sentence σ in L, we say $\mathfrak{A} \models \sigma$ if the interpretation $\sigma^{\mathfrak{A}}$ is true.
- A theory T is a collection of sentences. A structure \mathfrak{A} is a model of T if $\mathfrak{A} \models \sigma \quad \forall \sigma \in T$.

Classic Model Theory II

- A L structure \mathfrak{A} is a set with interpretations of the constants/functions/relations in L.
- A tuple $\mathfrak{G}=\left(G, e, \cdot,(-)^{-1}\right)$ is a $L_{\text {Group }}$ structure.
- For a sentence σ in L, we say $\mathfrak{A} \models \sigma$ if the interpretation $\sigma^{\mathfrak{A}}$ is true.
- A theory T is a collection of sentences. A structure \mathfrak{A} is a model of T if $\mathfrak{A} \models \sigma \quad \forall \sigma \in T$.
- All of this can be multi-sorted.
- The language of Vector spaces should involve scalar multiplication, which is some function $F \times V \rightarrow V$. This is a multi-sorted function.

Continous model theory

- Truth values are now real numbers.

Continous model theory

- Truth values are now real numbers.
- Interpret 0 as being "true".

Continous model theory

- Truth values are now real numbers.
- Interpret 0 as being "true".
- Models will be complete bounded metric spaces.

Continous model theory

- Truth values are now real numbers.
- Interpret 0 as being "true".
- Models will be complete bounded metric spaces.
- Instead of \wedge, \neg we will use continuous functions as connectives.

Continous model theory

- Truth values are now real numbers.
- Interpret 0 as being "true".
- Models will be complete bounded metric spaces.
- Instead of \wedge, \neg we will use continuous functions as connectives.
- \forall, \exists replaced by sup, inf.

Language for Tracial von Neumann Algebras

- The language will consist of sorts B_{n}, to be interpreted as the set of elements $\|x\|_{2}^{2} \leq n$.

Language for Tracial von Neumann Algebras

- The language will consist of sorts B_{n}, to be interpreted as the set of elements $\|x\|_{2}^{2} \leq n$.
- function symbols $+_{n}$ and $-_{n}$ from $B_{n}^{2} \rightarrow B_{2 n}$.

Language for Tracial von Neumann Algebras

- The language will consist of sorts B_{n}, to be interpreted as the set of elements $\|x\|_{2}^{2} \leq n$.
- function symbols $+_{n}$ and $-_{n}$ from $B_{n}^{2} \rightarrow B_{2 n}$.
- similarly for multiplication, scalar multiplication and adjoint.

Language for Tracial von Neumann Algebras

- The language will consist of sorts B_{n}, to be interpreted as the set of elements $\|x\|_{2}^{2} \leq n$.
- function symbols $+_{n}$ and $-_{n}$ from $B_{n}^{2} \rightarrow B_{2 n}$.
- similarly for multiplication, scalar multiplication and adjoint.
- A metric d_{n} on each B_{n}, and constants $0_{n}, 1_{n}$.

Language for Tracial von Neumann Algebras

- The language will consist of sorts B_{n}, to be interpreted as the set of elements $\|x\|_{2}^{2} \leq n$.
- function symbols $+_{n}$ and $-_{n}$ from $B_{n}^{2} \rightarrow B_{2 n}$.
- similarly for multiplication, scalar multiplication and adjoint.
- A metric d_{n} on each B_{n}, and constants $0_{n}, 1_{n}$.
- Relation symbol $\Re \operatorname{tr}_{n}$ and $\Im \operatorname{tr}_{n}$ from $B_{n} \rightarrow[-n, n]$.

Language for Tracial von Neumann Algebras

- The language will consist of sorts B_{n}, to be interpreted as the set of elements $\|x\|_{2}^{2} \leq n$.
- function symbols $+_{n}$ and $-_{n}$ from $B_{n}^{2} \rightarrow B_{2 n}$.
- similarly for multiplication, scalar multiplication and adjoint.
- A metric d_{n} on each B_{n}, and constants $0_{n}, 1_{n}$.
- Relation symbol $\Re \operatorname{tr}_{n}$ and $\Im \operatorname{tr}_{n}$ from $B_{n} \rightarrow[-n, n]$.
- finally for $m>n$, an inclusion $i_{m, n}: B_{n} \rightarrow B_{m}$.

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex $*$-algebra.

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex *-algebra.
- Example: $\sup _{x, y \in B_{n}} d_{m n}\left(\lambda_{2 n}\left(x+{ }_{n} y\right), \lambda_{n} x+\lambda_{n} y\right)$ is an axiom.

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex *-algebra.
- Example: $\sup _{x, y \in B_{n}} d_{m n}\left(\lambda_{2 n}\left(x+{ }_{n} y\right), \lambda_{n} x+\lambda_{n} y\right)$ is an axiom.
- τ is a trace.

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex *-algebra.
- Example: $\sup _{x, y \in B_{n}} d_{m n}\left(\lambda_{2 n}\left(x+{ }_{n} y\right), \lambda_{n} x+\lambda_{n} y\right)$ is an axiom.
- τ is a trace.
- That the $i_{m, n}$ preserve addition, multiplication, adjoing and the trace.

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex *-algebra.
- Example: $\sup _{x, y \in B_{n}} d_{m n}\left(\lambda_{2 n}\left(x+_{n} y\right), \lambda_{n} x+\lambda_{n} y\right)$ is an axiom.
- τ is a trace.
- That the $i_{m, n}$ preserve addition, multiplication, adjoing and the trace.
- That the metric is $d_{n}(x, y)=\sqrt{\tau_{2 n}\left((x-y)^{*}(x-y)\right)}$.

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex *-algebra.
- Example: $\sup _{x, y \in B_{n}} d_{m n}\left(\lambda_{2 n}\left(x+_{n} y\right), \lambda_{n} x+\lambda_{n} y\right)$ is an axiom.
- τ is a trace.
- That the $i_{m, n}$ preserve addition, multiplication, adjoing and the trace.
- That the metric is $d_{n}(x, y)=\sqrt{\tau_{2 n}\left((x-y)^{*}(x-y)\right)}$.
- That B_{n} is indeed precisely the elements with $\|x\|_{2}^{2} \leq n$:

$$
\sup _{x \in B_{n}} \sup _{y \in B_{1}}\left(\max \left(0, \tau_{n}\left(y^{*} x^{*} x y\right)-n \tau_{1}\left(y^{*} y\right)\right)\right.
$$

Theory of Tracial von Neumann Algebras.

- Sentences to say the model is a complex *-algebra.
- Example: $\sup _{x, y \in B_{n}} d_{m n}\left(\lambda_{2 n}\left(x+{ }_{n} y\right), \lambda_{n} x+\lambda_{n} y\right)$ is an axiom.
- τ is a trace.
- That the $i_{m, n}$ preserve addition, multiplication, adjoing and the trace.
- That the metric is $d_{n}(x, y)=\sqrt{\tau_{2 n}\left((x-y)^{*}(x-y)\right)}$.
- That B_{n} is indeed precisely the elements with $\|x\|_{2}^{2} \leq n$:

$$
\sup _{x \in B_{n}} \sup _{y \in B_{1}}\left(\max \left(0, \tau_{n}\left(y^{*} x^{*} x y\right)-n \tau_{1}\left(y^{*} y\right)\right)\right.
$$

- For I_{1} factors, consider projections of the same trace.

Ultraproducts

Definition

An ultraproduct of L-structures $\left\{\mathfrak{M}_{i}\right\}$, over ultrafilter \mathcal{U} on I is the metric structure

$$
\int_{I} \mathfrak{M}_{i} \mathrm{~d} \mathcal{U}={\overline{\prod_{I}} \mathfrak{M}_{i} / \sim^{\lim } \mathcal{U}^{d}}^{\text {d }}
$$

where $x \sim y$ if $\lim _{U} d_{i}(x, y)=0$. The functions/constants/relations are interpretated pointwise, and the metric is the ultralimit.

Łós' Theorem

Theorem (Łós)

Let $\mathfrak{M}=\int \mathfrak{M}_{i} \mathrm{~d} \mathcal{U}$ be an ultraproduct of L-structures, then for any sentence σ :

$$
\sigma^{\mathfrak{M}}=\lim _{\mathcal{U}} \sigma^{\mathfrak{M}_{\mathrm{i}}}
$$

Łós' Theorem

Theorem (Łós)

Let $\mathfrak{M}=\int \mathfrak{M}_{i} \mathrm{~d} \mathcal{U}$ be an ultraproduct of L-structures, then for any sentence σ :

$$
\sigma^{\mathfrak{M}}=\lim _{\mathcal{U}} \sigma^{\mathfrak{M}_{\mathfrak{i}}}
$$

Corollary (compactness)

If every finite $T^{\prime} \subset T$ has an approximate model, then T has a model.

Łós' Theorem

Theorem (Łós)

Let $\mathfrak{M}=\int \mathfrak{M}_{i} \mathrm{~d} \mathcal{U}$ be an ultraproduct of L-structures, then for any sentence σ :

$$
\sigma^{\mathfrak{M}}=\lim _{\mathcal{U}} \sigma^{\mathfrak{M}_{\mathfrak{i}}} .
$$

Corollary (compactness)

If every finite $T^{\prime} \subset T$ has an approximate model, then T has a model.

Proof.

Let \mathfrak{M}_{F} be a model corresponding to finite subtheory F so that $\left|\sigma_{F}^{\mathfrak{M}}\right| \leq 1 /|F|$. An appropriate ultraproduct $\int \mathfrak{M}_{F} \mathrm{~d} \mathcal{U}$ will be a model of all of T.

Elementary equivalence

Definition

We say that two L-structures \mathfrak{M} and \mathfrak{M} are elementarily equivalent (denoted $\mathfrak{M} \equiv \mathfrak{N}$) if for each sentence $\sigma, \sigma^{\mathfrak{M}}=\sigma^{\mathfrak{N}}$.

Elementary equivalence

Definition

We say that two L-structures \mathfrak{M} and \mathfrak{M} are elementarily equivalent (denoted $\mathfrak{M} \equiv \mathfrak{N})$ if for each sentence $\sigma, \sigma^{\mathfrak{M}}=\sigma^{\mathfrak{N}}$.

Theorem (Keisler-Shelah, Farah-Hart-Sherman)

$M \equiv N \Longleftrightarrow$ there is an ultrafilter \mathcal{U} so that $\mathfrak{M}^{\mathcal{U}} \cong \mathfrak{N}^{\mathcal{U}}$.

Elementary equivalence

Definition

We say that two L-structures \mathfrak{M} and \mathfrak{M} are elementarily equivalent (denoted $\mathfrak{M} \equiv \mathfrak{N}$) if for each sentence $\sigma, \sigma^{\mathfrak{M}}=\sigma^{\mathfrak{N}}$.

Theorem (Keisler-Shelah, Farah-Hart-Sherman)

$M \equiv N \Longleftrightarrow$ there is an ultrafilter \mathcal{U} so that $\mathfrak{M}^{\mathcal{U}} \cong \mathfrak{N}^{\mathcal{U}}$.

Theorem

A class \mathcal{C} of L-structure is axiomitizable $\Longleftrightarrow \mathcal{C}$ is closed under ultraproducts and elementary equivalence. Elementary equivalence can be replaced by Ultraroots because of Kiesler-Shelah.

Non-elementary equivalent I_{1} factors I

- If A is Connes embeddable, i.e there is an embedding $A \rightarrow \mathcal{R}^{\mathcal{U}}$, then for all universal sentence $\sigma: \sigma^{A}=\sigma^{\mathcal{R}}$.

Non-elementary equivalent I_{1} factors I

- If A is Connes embeddable, i.e there is an embedding $A \rightarrow \mathcal{R}^{\mathcal{U}}$, then for all universal sentence $\sigma: \sigma^{A}=\sigma^{\mathcal{R}}$.
- It makes sense to ask: are there non-elementarily equivalent I_{1} factors?

Non-elementary equivalent I_{1} factors I

- If A is Connes embeddable, i.e there is an embedding $A \rightarrow \mathcal{R}^{\mathcal{U}}$, then for all universal sentence σ : $\sigma^{A}=\sigma^{\mathcal{R}}$.
- It makes sense to ask: are there non-elementarily equivalent I_{1} factors?

Theorem (Murray-von Nuemann)
 $L\left(F_{2}\right) \neq \mathcal{R}$

Proof.

\mathcal{R} has property (Γ) while $L\left(F_{2}\right)$ doesn't.

Non-elementary equivalent I_{1} factors II

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Non-elementary equivalent I_{1} factors II

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Proof.

M does not have property $(\Gamma) \Longleftrightarrow$ there is a constant C and a finite set $F \subset U(M)$, there is a y so that $\|y-\operatorname{tr}(y)\|_{2} \leq C \sum_{x \in F}\|[x, y]\|_{2}$.

Non-elementary equivalent I_{1} factors II

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Proof.

M does not have property $(\Gamma) \Longleftrightarrow$ there is a constant C and a finite set $F \subset U(M)$, there is a y so that $\|y-\operatorname{tr}(y)\|_{2} \leq C \sum_{x \in F}\|[x, y]\|_{2}$.

- The next sensible thing to ask is: is $L\left(F_{n}\right) \equiv L\left(F_{m}\right)$?

Non-elementary equivalent I_{1} factors II

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Proof.

M does not have property $(\Gamma) \Longleftrightarrow$ there is a constant C and a finite set $F \subset U(M)$, there is a y so that $\|y-\operatorname{tr}(y)\|_{2} \leq C \sum_{x \in F}\|[x, y]\|_{2}$.

- The next sensible thing to ask is: is $L\left(F_{n}\right) \equiv L\left(F_{m}\right)$?
- it is known by deep results of Kharlampovich-Miyasnikov and Sela that $F_{n} \equiv F_{m}$ is the language of groups.
- $G \equiv H$ does not imply $L(G) \equiv L(H)$.

Non-elementary equivalent I_{1} factors II

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Proof.

M does not have property $(\Gamma) \Longleftrightarrow$ there is a constant C and a finite set $F \subset U(M)$, there is a y so that $\|y-\operatorname{tr}(y)\|_{2} \leq C \sum_{x \in F}\|[x, y]\|_{2}$.

- The next sensible thing to ask is: is $L\left(F_{n}\right) \equiv L\left(F_{m}\right)$?
- it is known by deep results of Kharlampovich-Miyasnikov and Sela that $F_{n} \equiv F_{m}$ is the language of groups.
- $G \equiv H$ does not imply $L(G) \equiv L(H)$.
- Goldbring showed counterexamples of $\mathrm{SI}_{2}\left(\mathbb{F}_{2}^{\text {alg }}\right)$ and $\mathrm{SI}_{2}\left(\mathbb{F}_{2}(t)^{\text {alg }}\right)$.

First order fundemental group

- An invariant of I_{1} factors is the fundemental group, defined as

$$
\mathcal{F}(M)=\left\{t \in \mathbb{R}^{+}: M^{t} \cong M\right\} .
$$

First order fundemental group

- An invariant of I_{1} factors is the fundemental group, defined as

$$
\mathcal{F}(M)=\left\{t \in \mathbb{R}^{+}: M^{t} \cong M\right\}
$$

- If we ask for elementary equivalence instead of isomorphism, call this $\mathcal{F}^{f o}(M)$.

First order fundemental group

- An invariant of I_{1} factors is the fundemental group, defined as

$$
\mathcal{F}(M)=\left\{t \in \mathbb{R}^{+}: M^{t} \cong M\right\}
$$

- If we ask for elementary equivalence instead of isomorphism, call this $\mathcal{F}^{f o}(M)$.
- Question: are there any factors such that $\mathcal{F}^{f o}(M) \neq \mathbb{R}^{+}$?

Free Factor Isomorphism problem

- There are interpolated Free group factors $L\left(F_{r}\right), r \in[1, \infty]$

Free Factor Isomorphism problem

- There are interpolated Free group factors $L\left(F_{r}\right), r \in[1, \infty]$

Theorem (Râdelescu)

One of the following holds:
(1) $L\left(F_{r}\right) \cong L\left(F_{s}\right)$ for all $1<r \leq s \leq \infty$ and $\mathcal{F}\left(L\left(F_{r}\right)\right)=\mathbb{R}^{+}$.
(2) $L\left(F_{r}\right) \not \equiv L\left(F_{s}\right)$ for all $1<r \neq s \leq \infty$ and $\mathcal{F}\left(L\left(F_{r}\right)\right)=\{1\}$.

Free Factor Elementary Equivalence Problem

Theorem (Goldbring-Pi)

(1) $L\left(F_{r}\right) \equiv L\left(F_{s}\right)$ for all $1<r \leq s \leq \infty$ and $\mathcal{F}^{f o}\left(F_{r}\right)=\mathbb{R}^{+}$.
(2) $L\left(F_{r}\right) \not \equiv L\left(F_{s}\right)$ for all $1<r \neq s \leq \infty$ and $\mathcal{F}^{\text {fo }}\left(F_{r}\right)=\{1\}$.
(0) There is some $\alpha>1$ so that $\mathcal{F}^{\text {fo }}\left(L\left(F_{r}\right)\right)=\alpha^{\mathbb{Z}}$.

Free Factor Elementary Equivalence Problem

Theorem (Goldbring-Pi)

(1) $L\left(F_{r}\right) \equiv L\left(F_{s}\right)$ for all $1<r \leq s \leq \infty$ and $\mathcal{F}^{f o}\left(F_{r}\right)=\mathbb{R}^{+}$.
(c) $L\left(F_{r}\right) \not \equiv L\left(F_{s}\right)$ for all $1<r \neq s \leq \infty$ and $\mathcal{F}^{f o}\left(F_{r}\right)=\{1\}$.
(0) There is some $\alpha>1$ so that $\mathcal{F}^{f o}\left(L\left(F_{r}\right)\right)=\alpha^{\mathbb{Z}}$.

- In addition Goldbring-Pi also proves that if $\mathcal{F}^{f o}\left(F_{r}\right)$ arent trivial, then every $\forall \exists$ sentence takes the same value in all the $L\left(F_{r}\right)$.

Free Factor Elementary Equivalence Problem

Theorem (Goldbring-Pi)

(1) $L\left(F_{r}\right) \equiv L\left(F_{s}\right)$ for all $1<r \leq s \leq \infty$ and $\mathcal{F}^{f o}\left(F_{r}\right)=\mathbb{R}^{+}$.
(3) $L\left(F_{r}\right) \not \equiv L\left(F_{s}\right)$ for all $1<r \neq s \leq \infty$ and $\mathcal{F}^{f o}\left(F_{r}\right)=\{1\}$.
(0) There is some $\alpha>1$ so that $\mathcal{F}^{\text {fo }}\left(L\left(F_{r}\right)\right)=\alpha^{\mathbb{Z}}$.

- In addition Goldbring-Pi also proves that if $\mathcal{F}^{f o}\left(F_{r}\right)$ arent trivial, then every $\forall \exists$ sentence takes the same value in all the $L\left(F_{r}\right)$.
- By Sela, every sentence in F_{n} can be reduced to a conjunction of $\forall \exists$ sentences.

References

- Farah, Hart, Sherman: Model theory of operator algebras III:

Elementary equivalence and I_{1} factors, 2011

- Goldbring, Pi: On the First-Order Free Group Factor Alternative, 2023
- Goldbring: A non-uniformly inner amenable group, 2023
- Goldbring: Model Theory of Operator Algebras, 2023
- Kharlampovich, Miyasnikov: Elementary theory of free non abelian groups, 2006
- Sela:Diophantine geometry over groups and the elementary theory of free and hyperbolic groups, 2003-10

