Model Theory of II_1 factors

Aareyan Manzoor

a2manzoo@uwaterloo.ca

January 1, 2024

Aareyan Manzoor (UWaterloo)

Model Theory of II_1 factors

• Model theory is the theory of theories.

- Model theory is the theory of theories.
- Think about an object by its first-order theory.

- Model theory is the theory of theories.
- Think about an object by its first-order theory.
- Classical Model theory is a widely useful tool in a lot of fields of math, including algebraic geometry and combinatorics.

- Model theory is the theory of theories.
- Think about an object by its first-order theory.
- Classical Model theory is a widely useful tool in a lot of fields of math, including algebraic geometry and combinatorics.
- Continuous Model theory turns out to be extremely useful

- start with a language *L* that consists of constants, functions and relations.
 - $L_{\text{Group}} = \{e, \cdot, (-)^{-1}\}$ is the language of group.

- start with a language *L* that consists of constants, functions and relations.
 - $L_{\text{Group}} = \{e, \cdot, (-)^{-1}\}$ is the language of group.
- An *L*-term is a combination of variables *v_i* and functions/relations from the language.

• $L_{\text{Group}} = \{e, \cdot, (-)^{-1}\}$ is the language of group.

• An *L*-term is a combination of variables *v_i* and functions/relations from the language.

•
$$(v_1 \cdot v_3^{-1}) \cdot v_6$$
 is a L_{Group} -term.

• $L_{\text{Group}} = \{e, \cdot, (-)^{-1}\}$ is the language of group.

• An *L*-term is a combination of variables *v_i* and functions/relations from the language.

•
$$(v_1 \cdot v_3^{-1}) \cdot v_6$$
 is a L_{Group} -term.

• An *L* formula is a combination of *L*-terms, equality, \land, \neg, \forall .

• $L_{\text{Group}} = \{e, \cdot, (-)^{-1}\}$ is the language of group.

• An *L*-term is a combination of variables *v_i* and functions/relations from the language.

•
$$(v_1 \cdot v_3^{-1}) \cdot v_6$$
 is a L_{Group} -term.

• An *L* formula is a combination of *L*-terms, equality, \land, \neg, \forall .

•
$$(\forall x(x \cdot x^{-1} = e)) \land \neg(y = e))$$
 is a L_{Group} -formula.

- A *L* structure \mathfrak{A} is a set with interpretations of the constants/functions/relations in *L*.
 - A tuple $\mathfrak{G} = (G, e, \cdot, (-)^{-1})$ is a L_{Group} structure.

• A tuple $\mathfrak{G} = (G, e, \cdot, (-)^{-1})$ is a L_{Group} structure.

• For a sentence σ in L, we say $\mathfrak{A} \models \sigma$ if the interpretation $\sigma^{\mathfrak{A}}$ is true.

• A tuple $\mathfrak{G} = (G, e, \cdot, (-)^{-1})$ is a L_{Group} structure.

- For a sentence σ in L, we say $\mathfrak{A} \models \sigma$ if the interpretation $\sigma^{\mathfrak{A}}$ is true.
- A theory T is a collection of sentences. A structure 𝔅 is a model of T if 𝔅 ⊨ σ ∀σ ∈ T.

• A tuple $\mathfrak{G} = (G, e, \cdot, (-)^{-1})$ is a L_{Group} structure.

- For a sentence σ in L, we say $\mathfrak{A} \models \sigma$ if the interpretation $\sigma^{\mathfrak{A}}$ is true.
- A theory T is a collection of sentences. A structure 𝔅 is a model of T if 𝔅 ⊨ σ ∀σ ∈ T.
- All of this can be multi-sorted.
 - The language of Vector spaces should involve scalar multiplication, which is some function *F* × *V* → *V*. This is a multi-sorted function.

• Truth values are now real numbers.

- Truth values are now real numbers.
- Interpret 0 as being "true".

- Truth values are now real numbers.
- Interpret 0 as being "true".
- Models will be complete bounded metric spaces.

Aareyan Manzoor (UWaterloo)

Model Theory of II_1 factors

- Truth values are now real numbers.
- Interpret 0 as being "true".
- Models will be complete bounded metric spaces.
- Instead of \wedge, \neg we will use continuous functions as connectives.

- Truth values are now real numbers.
- Interpret 0 as being "true".
- Models will be complete bounded metric spaces.
- $\bullet\,$ Instead of \wedge,\neg we will use continuous functions as connectives.
- \forall, \exists replaced by sup, inf.

 The language will consist of sorts B_n, to be interpreted as the set of elements ||x||²₂ ≤ n.

- The language will consist of sorts B_n, to be interpreted as the set of elements ||x||²₂ ≤ n.
- function symbols $+_n$ and $-_n$ from $B_n^2 \to B_{2n}$.

- The language will consist of sorts B_n, to be interpreted as the set of elements ||x||²₂ ≤ n.
- function symbols $+_n$ and $-_n$ from $B_n^2 \to B_{2n}$.
- similarly for multiplication, scalar multiplication and adjoint.

- The language will consist of sorts B_n, to be interpreted as the set of elements ||x||²₂ ≤ n.
- function symbols $+_n$ and $-_n$ from $B_n^2 \to B_{2n}$.
- similarly for multiplication, scalar multiplication and adjoint.
- A metric d_n on each B_n , and constants $0_n, 1_n$.

- The language will consist of sorts B_n, to be interpreted as the set of elements ||x||²₂ ≤ n.
- function symbols $+_n$ and $-_n$ from $B_n^2 \to B_{2n}$.
- similarly for multiplication, scalar multiplication and adjoint.
- A metric d_n on each B_n , and constants $0_n, 1_n$.
- Relation symbol $\Re \operatorname{tr}_n$ and $\Im \operatorname{tr}_n$ from $B_n \to [-n, n]$.

- The language will consist of sorts B_n, to be interpreted as the set of elements ||x||²₂ ≤ n.
- function symbols $+_n$ and $-_n$ from $B_n^2 \to B_{2n}$.
- similarly for multiplication, scalar multiplication and adjoint.
- A metric d_n on each B_n , and constants $0_n, 1_n$.
- Relation symbol $\Re \operatorname{tr}_n$ and $\Im \operatorname{tr}_n$ from $B_n \to [-n, n]$.
- finally for m > n, an inclusion $i_{m,n} : B_n \to B_m$.

• Sentences to say the model is a complex *-algebra.

- Sentences to say the model is a complex *-algebra.
 - Example: $\sup_{x,y\in B_n} d_{mn}(\lambda_{2n}(x+_n y), \lambda_n x + \lambda_n y)$ is an axiom.

- Sentences to say the model is a complex *-algebra.
 - Example: $\sup_{x,y\in B_n} d_{mn}(\lambda_{2n}(x+_n y), \lambda_n x + \lambda_n y)$ is an axiom.
- τ is a trace.

- Sentences to say the model is a complex *-algebra.
 - Example: $\sup_{x,y\in B_n} d_{mn}(\lambda_{2n}(x+_n y), \lambda_n x + \lambda_n y)$ is an axiom.
- τ is a trace.
- That the $i_{m,n}$ preserve addition, multiplication, adjoing and the trace.

- Sentences to say the model is a complex *-algebra.
 - Example: $\sup_{x,y\in B_n} d_{mn}(\lambda_{2n}(x+_n y), \lambda_n x + \lambda_n y)$ is an axiom.
- τ is a trace.
- That the $i_{m,n}$ preserve addition, multiplication, adjoing and the trace.
- That the metric is $d_n(x,y) = \sqrt{\tau_{2n}((x-y)^*(x-y))}$.

- Sentences to say the model is a complex *-algebra.
 - Example: $\sup_{x,y\in B_n} d_{mn}(\lambda_{2n}(x+ny), \lambda_n x + \lambda_n y)$ is an axiom.
- τ is a trace.
- That the $i_{m,n}$ preserve addition, multiplication, adjoing and the trace.
- That the metric is $d_n(x,y) = \sqrt{\tau_{2n}((x-y)^*(x-y))}$.
- That B_n is indeed precisely the elements with $||x||_2^2 \le n$:

$$\sup_{x \in B_n} \sup_{y \in B_1} (\max(0, \tau_n(y^*x^*xy) - n\tau_1(y^*y)))$$

- Sentences to say the model is a complex *-algebra.
 - Example: $\sup_{x,y\in B_n} d_{mn}(\lambda_{2n}(x+_n y), \lambda_n x + \lambda_n y)$ is an axiom.
- τ is a trace.
- That the $i_{m,n}$ preserve addition, multiplication, adjoing and the trace.
- That the metric is $d_n(x,y) = \sqrt{\tau_{2n}((x-y)^*(x-y))}$.
- That B_n is indeed precisely the elements with $||x||_2^2 \le n$:

$$\sup_{x \in B_n} \sup_{y \in B_1} (\max(0, \tau_n(y^*x^*xy) - n\tau_1(y^*y)))$$

• For II_1 factors, consider projections of the same trace.

Model Theory of II₁ factors

Definition

An ultraproduct of L-structures $\{\mathfrak{M}_i\}_I$ over ultrafilter \mathcal{U} on I is the metric

structure

$$\int_{I}\mathfrak{M}_{i}\mathrm{d}\mathcal{U}=\overline{\prod_{I}\mathfrak{M}_{i}/\sim}^{\lim_{\mathcal{U}}d}$$

where $x \sim y$ if $\lim_{U} d_i(x, y) = 0$. The functions/constants/relations are interpretated pointwise, and the metric is the ultralimit.

Łós' Theorem

Theorem (Łós)

Let $\mathfrak{M} = \int \mathfrak{M}_i d\mathcal{U}$ be an ultraproduct of L-structures, then for any

sentence σ :

$$\sigma^{\mathfrak{M}} = \lim_{\mathcal{U}} \sigma^{\mathfrak{M}_{i}}.$$

Łós' Theorem

Theorem (Łós)

Let $\mathfrak{M} = \int \mathfrak{M}_i d\mathcal{U}$ be an ultraproduct of L-structures, then for any

sentence σ :

$$\sigma^{\mathfrak{M}} = \lim_{\mathcal{U}} \sigma^{\mathfrak{M}_{\mathfrak{i}}}.$$

Corollary (compactness)

If every finite $T' \subset T$ has an approximate model, then T has a model.

Łós' Theorem

Theorem (Łós)

Let $\mathfrak{M} = \int \mathfrak{M}_i \mathrm{d}\mathcal{U}$ be an ultraproduct of L-structures, then for any

sentence σ :

$$\sigma^{\mathfrak{M}} = \lim_{\mathcal{U}} \sigma^{\mathfrak{M}_{\mathfrak{i}}}.$$

Corollary (compactness)

If every finite $T' \subset T$ has an approximate model, then T has a model.

Proof.

Let \mathfrak{M}_F be a model corresponding to finite subtheory F so that

 $|\sigma_F^{\mathfrak{M}}| \leq 1/|F|$. An appropriate ultraproduct $\int \mathfrak{M}_F \mathrm{d}\mathcal{U}$ will be a model of all

of T.

Elementary equivalence

Definition

We say that two L-structures ${\mathfrak M}$ and ${\mathfrak M}$ are elementarily equivalent

(denoted $\mathfrak{M} \equiv \mathfrak{N}$) if for each sentence σ , $\sigma^{\mathfrak{M}} = \sigma^{\mathfrak{N}}$.

Definition

We say that two L-structures ${\mathfrak M}$ and ${\mathfrak M}$ are elementarily equivalent

(denoted $\mathfrak{M} \equiv \mathfrak{N}$) if for each sentence σ , $\sigma^{\mathfrak{M}} = \sigma^{\mathfrak{N}}$.

Theorem (Keisler-Shelah, Farah-Hart-Sherman)

 $M \equiv N \iff$ there is an ultrafilter \mathcal{U} so that $\mathfrak{M}^{\mathcal{U}} \cong \mathfrak{N}^{\mathcal{U}}$.

Definition

We say that two L-structures ${\mathfrak M}$ and ${\mathfrak M}$ are elementarily equivalent

(denoted $\mathfrak{M} \equiv \mathfrak{N}$) if for each sentence σ , $\sigma^{\mathfrak{M}} = \sigma^{\mathfrak{N}}$.

Theorem (Keisler-Shelah, Farah-Hart-Sherman)

 $M \equiv N \iff$ there is an ultrafilter \mathcal{U} so that $\mathfrak{M}^{\mathcal{U}} \cong \mathfrak{N}^{\mathcal{U}}$.

Theorem

A class C of L-structure is axiomitizable $\iff C$ is closed under

ultraproducts and elementary equivalence. Elementary equivalence can be

replaced by Ultraroots because of Kiesler-Shelah.

 If A is Connes embeddable, i.e there is an embedding A → R^U, then for all universal sentence σ: σ^A = σ^R.

- If A is Connes embeddable, i.e there is an embedding A → R^U, then for all universal sentence σ: σ^A = σ^R.
- It makes sense to ask: are there non-elementarily equivalent *II*₁ factors?

- If A is Connes embeddable, i.e there is an embedding A → R^U, then for all universal sentence σ: σ^A = σ^R.
- It makes sense to ask: are there non-elementarily equivalent *II*₁ factors?

Theorem (Murray-von Nuemann) $L(F_2) \ncong \mathcal{R}$

Proof.

 \mathcal{R} has property (Γ) while $L(F_2)$ doesn't.

January 1, 2024

11/16

Theorem

If M has property (Γ), and N \equiv M, then N also has property (Γ).

Theorem

If M has property (Γ), and N \equiv M, then N also has property (Γ).

Proof.

M does not have property (Γ) \iff there is a constant C and a finite set

 $F \subset U(M)$, there is a y so that $||y - \operatorname{tr}(y)||_2 \leq C \sum_{x \in F} ||[x, y]||_2$.

Theorem

If M has property (Γ), and N \equiv M, then N also has property (Γ).

Proof.

M does not have property (Γ) \iff there is a constant C and a finite set

 $F \subset U(M)$, there is a y so that $||y - \operatorname{tr}(y)||_2 \leq C \sum_{x \in F} ||[x, y]||_2$.

• The next sensible thing to ask is: is $L(F_n) \equiv L(F_m)$?

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Proof.

M does not have property (Γ) \iff there is a constant C and a finite set $F \subset U(M)$, there is a y so that $||y - tr(y)||_2 \leq C \sum_{x \in F} ||[x, y]||_2$. \Box

- The next sensible thing to ask is: is $L(F_n) \equiv L(F_m)$?
- it is known by deep results of Kharlampovich-Miyasnikov and Sela that $F_n \equiv F_m$ is the language of groups.
- $G \equiv H$ does not imply $L(G) \equiv L(H)$.

Theorem

If M has property (Γ), and $N \equiv M$, then N also has property (Γ).

Proof.

M does not have property (Γ) \iff there is a constant C and a finite set $F \subset U(M)$, there is a y so that $||y - tr(y)||_2 \leq C \sum_{x \in F} ||[x, y]||_2$. \Box

- The next sensible thing to ask is: is $L(F_n) \equiv L(F_m)$?
- it is known by deep results of Kharlampovich-Miyasnikov and Sela that $F_n \equiv F_m$ is the language of groups.
- $G \equiv H$ does not imply $L(G) \equiv L(H)$.
 - Goldbring showed counterexamples of $Sl_2(\mathbb{F}_2^{alg})$ and $Sl_2(\mathbb{F}_2(t)^{alg})$.

• An invariant of II_1 factors is the fundemental group, defined as

$$\mathcal{F}(M) = \{t \in \mathbb{R}^+ : M^t \cong M\}.$$

• An invariant of II_1 factors is the fundemental group, defined as

$$\mathcal{F}(M) = \{t \in \mathbb{R}^+ : M^t \cong M\}.$$

 If we ask for elementary equivalence instead of isomorphism, call this *F^{fo}(M)*.

January 1, 2024

13/16

• An invariant of II_1 factors is the fundemental group, defined as

$$\mathcal{F}(M) = \{t \in \mathbb{R}^+ : M^t \cong M\}.$$

- If we ask for elementary equivalence instead of isomorphism, call this *F^{fo}(M)*.
- Question: are there any factors such that $\mathcal{F}^{fo}(M) \neq \mathbb{R}^+$?

• There are interpolated Free group factors $L(F_r), r \in [1, \infty]$

• There are interpolated Free group factors $L(F_r), r \in [1,\infty]$

Theorem (Râdelescu)

One of the following holds:

•
$$L(F_r) \cong L(F_s)$$
 for all $1 < r \le s \le \infty$ and $\mathcal{F}(L(F_r)) = \mathbb{R}^+$.

 $I(F_r) \ncong L(F_s) \text{ for all } 1 < r \neq s \leq \infty \text{ and } \mathcal{F}(L(F_r)) = \{1\}.$

Theorem (Goldbring-Pi)

•
$$L(F_r) \equiv L(F_s)$$
 for all $1 < r \le s \le \infty$ and $\mathcal{F}^{fo}(F_r) = \mathbb{R}^+$.

) There is some
$$\alpha > 1$$
 so that $\mathcal{F}^{\mathsf{fo}}(\mathcal{L}(\mathcal{F}_r)) = \alpha^{\mathbb{Z}}$.

Theorem (Goldbring-Pi)

- $L(F_r) \equiv L(F_s)$ for all $1 < r \le s \le \infty$ and $\mathcal{F}^{fo}(F_r) = \mathbb{R}^+$.
- $\ \, {\it O} \ \, L(F_r) \not\equiv L(F_s) \ \, {\it for all} \ \, 1 < r \neq s \leq \infty \ \, {\it and} \ \, {\cal F}^{\it fo}(F_r) = \{1\}.$
- There is some $\alpha > 1$ so that $\mathcal{F}^{\mathsf{fo}}(\mathcal{L}(\mathcal{F}_r)) = \alpha^{\mathbb{Z}}$.
 - In addition Goldbring-Pi also proves that if *F^{fo}(F_r)* arent trivial, then every ∀∃ sentence takes the same value in all the *L(F_r)*.

Theorem (Goldbring-Pi)

- $L(F_r) \equiv L(F_s)$ for all $1 < r \le s \le \infty$ and $\mathcal{F}^{fo}(F_r) = \mathbb{R}^+$.
- $\ \, {\it O} \ \, L(F_r) \not\equiv L(F_s) \ \, {\it for all} \ \, 1 < r \neq s \leq \infty \ \, {\it and} \ \, {\cal F}^{\it fo}(F_r) = \{1\}.$
- There is some $\alpha > 1$ so that $\mathcal{F}^{\mathsf{fo}}(\mathcal{L}(\mathcal{F}_r)) = \alpha^{\mathbb{Z}}$.
 - In addition Goldbring-Pi also proves that if *F^{fo}(F_r)* arent trivial, then every ∀∃ sentence takes the same value in all the *L(F_r)*.
 - By Sela, every sentence in *F_n* can be reduced to a conjunction of ∀∃ sentences.

Aareyan Manzoor (UWaterloo)

Model Theory of II_1 factors

January 1, 2024

15/16

References

- Farah, Hart, Sherman: *Model theory of operator algebras III: Elementary equivalence and II*₁*factors*, 2011
- Goldbring, Pi: On the First-Order Free Group Factor Alternative, 2023
- Goldbring: A non-uniformly inner amenable group, 2023
- Goldbring: Model Theory of Operator Algebras, 2023
- Kharlampovich, Miyasnikov: *Elementary theory of free non abelian* groups , 2006
- Sela: *Diophantine geometry over groups and the elementary theory of free and hyperbolic groups*, 2003-10

Aareyan Manzoor (UWaterloo)

Model Theory of II_1 factors

January 1, 2024

16/16