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THE FIRST AND SECOND VARIATIONS OF THE
LENGTH-INTEGRAL IN RIEMANNIAN SPACE
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Synopsis: 1. Introduction. 2. Notation. 3. First form of the first
variation. 4. Second form of the first variation. 5. First form of the
second variation. 6. Second form of the second variation. 7. Intro-
duction of the Riemannian curvature. 8. Second variation when the curve
is geodesic and the end-points are fixed. 9. Expression for the second
variation using the unit normal variation vector. 10. Conjugate points.

1. Introduction.

The problem of the variations of the length-integral in Riemannian
space is a special case of the general Lagrangiah problem*. The present
paper is, however, developed independently of the existing general theory,
the methods being based essentially on the theory of tensors. Extensive
use is made of the contravariant form associated with the parallel pro-
pagation of Levi-Civitat.

We consider a manifold VN in which there exist a coordinate system
Or1, x2, ..., xN) and a line-element ds defined by

(1.1) ds2 = gmndxmdxn,

where the right-hand side is a positive definite form and gmn{
:= gnnd are

functions of the coordinates only, possessing continuous partial deriva-

* 0. Bolza, Vorlesungen ilber Variationsrechnuvg (1909), 6, and ch. 11 and 12.
f See L. Biancbi, Lezioni di Geometria Differenziale, 2a (1924), 790.
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tives of the second order with respect to the coordinates at all points of
a region S of Vy.

Let C be a curve joining the points Pi and P2 and lying wholly in S.
Let C be defined by the equations

(1.2) xl - x\u),

where u = Ui at Pa and u = w2 at P2, w2 being greater than u\. The length
of this curve is by definition

I"1 i

We shall consider only those curves for which cPx^du2 are continuous
(ui ^ u ^ u2) and for which dx*/du do not all vanish simultaneously for
any value of u in this range.

The equations

(1.4) xi = xi(u, v)

define a two-space V^. Let

(1 . 5) X1(U, 0) = X!(U) (ttj < U < Mg),

so that the curve © = 0 of F2 coincides with C. We shall call the por-
tions of the parametric lines of u intercepted between the curves u = Ui
and u = w2 the u-curves or varied positions of C, and the parametric
lines of v the v-curves or curves of variation. The curves of variation of
Pi and P2 have the equations u = ux and w = w2 respectively. We shall
assume the functions in (1 . 4) to be such that

d2xl d2xl d2xl &x* SV
dui7 cucv' dv1 ' dii2dv' duvv2

are continuous functions of u and v for Wi ^ w ^ w2 and for a small range
of values of v on either side of zero. We shall further assume that
(dxijdv)v=o do not all vanish simultaneously for more than a finite number
of values of u between Ui and u2. The length of a w-curve is a function of
v only, since we are not considering variations of ux and w2; we shall write
this length L(v). The parameter u on C will be chosen equal to the length
of the arc of C measured from some definite point, so that du/ds = 1 on G.
This choice of parameter is important, since it produces considerable
simplification in the formulae.
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2. Notation.

We shall indicate the partial derivative with respect to u of any func-
tion of u and v by a superposed point,

(2.01) B = X,

and the partial derivative with respect to v by a dash,

(2 .02) ^ = X'.

vv

We shall write £* = x\ t]1 = x1', so that

(2.10) f" = r,\

We shall call tjl the variation vector and rfSv the infinitesimal variation
vector. The magnitude of a vector X* will be denoted by X, so that

(2.11) X* = gMX"X* (X>0).

A unit vector being one whose magnitude is unity, we shall call /JL1 the
unit variation vector where

(2.12) ^ = W,

/xi being therefore codirectional with rf. The angle between two vectors
X4 and Y* will be denoted by 6(X, Y), so that

<2.125) XY cos 0(X, Y) = gmnX
m Yn.

The length of any w-curve is

or, writing

(2.15)
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We note that F = 1 along any w-curve for which du/ds = 1. We shall
denote the partial derivatives of F with respect to xl and £* in the follow-
ing manner :—

(2.16)

It is to be noted that only those expressions which have all their sub-
scripts to the right of the vertical bar are tensors*. We shall now write
the explicit expressions for the partial derivatives in the case where F = 1
on the w-curve in question. We find

(2.17) JL
2F ~ 2 dx*

(2.18) """ 2F

1 aiF2)3(F2)
4F3

- JL 11-
~ ax* \2F

* Cf. "A generalization of the Biemannian line element", Trans. 47;ier. Afai/i. Soc.
27 (1925), 61. What was denoted hy F in that paper is here denoted by F-.
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If X1 be a contravariant vector given along a curve as* = «'(<), then,
as is well known*,

(2-22) Ihi n" *
is also a contravariant vector : it may conveniently be termed the con-
travariant derivative of X1 with respect to the given curve. We shall
denote the contravariant derivative of a vector with respect to a w-curve
by a superposed bar,

(2 . 28) X1 = Xl+ -{
mn)- Xmt,

and with respect to a u-curve by a superposed circumflex accent,

(2.24) x>=x»+{m*\xrf.

When two of these operational symbols occur together, the order is to be
read from the top downwards. By (2 .10) it is easily seen that

(2 . 25) f ' = V.

The equations for parallel propagation of X* along the w-curves and the
_ A

w-curves are respectively X1 = 0 and X* = 0.

3. First form of the first variation.

The first variation of the length of a w-curve for the displacement
arising from an infinitesimal increment hv is by definition 8L = L'(v)8v.
We have from (2 .15)

(3.1) L'(v) =

Now F' = Fu t

(3.11)

where

(3.12)

* Cf. Bianchi, loc. cit., 790.
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Inspection of (3 .11) shows that ¥< is a covariant vector. But if we
introduce a system of Biemannian coordinates* at the point in question,
so that dgjk/cx1 all vanish at the point, we see that all the components
of "¥"* vanish. Therefore, from the covariant character, they must also
vanish for any coordinate system. Thus we have

(3.2)

Hence, for any value of v,

(3.8) L'

To evaluate this expression for the curve C, we may apply (2 . 18) and
obtain the equivalent forms for the first variation,

(8.4) SL =

(• " - •

n cos 0(f, rj) du.
«i

We shall call either of these expressions the first form of the first
variation.

T h e fo l lowing t h e o r e m s r e su l t d i rec t ly f rom ( 3 . 5 ) :

THEOREM I.—The first variation of the lengtli of a curve C is zero
when the variation vector is propagated parallelly along C.

In this case C and the varied curve cannot have a common point, for
in parallel propagation the magnitude of a vector remains constant. Thus
if the magnitude of the variation vector vanishes at one. point of C, it
vanishes at all points, and there is no infinitesimal displacement.

THEOREM II.—The first variation of the length of a curve C is zero
if the contravariant derivative of the variation vector until respect to C
is normal to C at every point.

THEOREM III.—The first variation of the length of a curve C has the
same sign as (the opposite sign to) Sv, if the contravariant derivative of
the variation vector with respect to C makes an acute (obtuse) angle with
C at every point.

• Cf. Laue, Relativitcitstheorie, 2 (1921), 75.
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4. Second form of the first variation.

Since

(4.1) ^ iga il rft = (Ju i! n}-\-9v ? V.

we find at once from (3 . 4) for the curve C

(4.2) SL = 8v (fry ? **]"!-j"' 9v ?' ** du),

or

0(f, T^T'; - f *(4 . 3) SL - Sv ([n cos 0(f, T^T'; - f & cos

We shall call either of these expressions the second form of the first
variation.

Noting" that the vector f' defines the principal normal of C and that
f is the principal curvature*, and also that £ vanishes if C is geodesic, the
following theorems result directly, Theorem IV being well known :

THEOREM IV.—The first variation of the length of a curve C is zero
if C is geodesic arid the variation vector either vanishes or is normal to C
at the end points.

THEOREM V.—The first variation of the length of a curve C is zero
if the variation vector is perpendicular to the principal normal of C at
every point and either vanishes or is normal to C at the end points.

THEOREM VI.—The first variation of the length of a curve C has the
same sign as {the opposite sign to) 8v if the variation vector is perpen-
dicular to the principal normal of C at every point and makes with the
direction of C at the end points angles tchich are obtuse and acute (acute
and obtuse) in order.

The principal normal of a curve has an intrinsic positive sense defined
by f\ since a reversal of the sense of the curve in which u increases does

* Cf. Bianchi, loc. cit., 456.
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not reverse ?'. We may state as a direct deduction from (4 . 2) the
following theorem :

THEOREM VII.—The first variation of the length of a curve C is nega-
tive for an infinitesimal variation in the positive direction of the principal
normal of G at every point.

5. First form of the second variation.

The second variation of the length of a it-curve for the displacement
arising from an infinitesimal increment 80 is by definition

To find L"(v) we differentiate (3 .1) with respect to v, obtaining

(5.10) L'»

where, by (3.2),

(5.11) F" = ^ (Fu7)

Hence, since

vie find

(5 .18) F" = F,i

where

(5.14) $ij=-Flik\

Inspection of (5 .13) shows that $;_, is a covariant tensor. But if we
introduce a system of Eiemannian coordinates at the point in question,
it is easy to see that all the components of $ y vanish. Therefore from
the covariant character they must also vanish for every coordinate system,
and we have

(5 .15) F" =
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Substitution in (5 .10) gives

(5 .16) L"(v) =

For the curve C we find, using (2 .18) and (2 . 21),

(5-17) =giJi

(5.18) = ^cos0(f,

Substitution in (5 .16) gives the equivalent forms

(5 .19) S2L = W j " 2 [cjij il n>+OiJ ? TjJ-^j £> JjJf] die,

(5 . 20) S2L = Uv2 [* [£ cos 0(£ % + ^ sin2 0(£ «)] d«.

Either of these forms we shall call the first form of the second varia-
tion. They exist whether the first variation vanishes or not.

There are evidently some critical conditions governing the sign of the
second variation. These we proceed to write down.

A

CONDITION (a).—^ = 0 at every point of C.

If the vector Tj1 is propagated parallelly along the ©-curves, this con-
dition is satisfied.

i) \ I acute
CONDITION -IC/̂ )!"-—6(£, rj) is \a rig Jit angle • at every point of C.

((/33)) [obtuse

CONDITION (y).—^ = 0 at every point of C.

This is a necessary and sufficient condition that the variation vector
should be propagated parallelly along C.
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CONDITION (8).—The vector rjl is codirectional with C wherever it does
not vanish.

The following theorems result directly from (5 . 20):

THEOREM VIII.—The second variation is positive if (a) is not true
and (ft) is true.

THEOREM IX.—The second variation is positive if one of the three
conditions (a), (£1), (#») is true and neither (y) nor (8) is true.

THEOREM X.—The second variation is zero if either (a) or (/?2) is true
and either (y) or (8) is true.

THEOREM XI.—The second variation is negative if (£3) and either
(7) or (8) are true and (a) is not true.

6. Second form of the second variation.

We shall now obtain a second form of the second variation by applica-
tion of the method of integration by parts and by use of the following fact.
If X{ be any contravariant vector given as a function of u and v, it is easily
seen by direct computation that

(6.10) !*-£* = -G

where

the curvature tensor of Kv*. Thus

(6.12) £_*,< = - (

and therefore

(6 .18) 'Furfdu = I Viii)' du— \ ~Fu G\u r^^ rj du
i t i i i i jn>f •*

• Cf. J. A. Schouten, Der Ricci-KalkUl (1924), 83, where the differential notation is
employed. Schouten's arrangement of indices is, however, different. The present notation
follows Einstein, Die Grundlage der allgenieinen RelativiUitstlieorie (1916), 89, and Weyl,
Raum, Zeit, Materie (1921), 107.



1925.] THE LENGTH INTEGRAL IN KIEMANNIAN SPACE 257

Substituting in (5 . 16) and using (2 .18), we obtain for the curve C

(6.14) L"(0) = [^ij^V du+[* [gij7jiy--(giji
!ni)*-Gijkl£

inie *f]dn.

where

(6-15)

Now

(6.16)

and therefore

(6.17) p 9ij f V du = [gu f J^; - P" ^ f £ di*.

Substituting in (6.14), we see that the second variation may be
written

(6,.18)

where

(6,

(6.

(6.

.19)

.20)

,21) sin

We shall call (6 .18) the second form of the second variation. It exists
whether the first variation vanishes or not.

7. Introduction of the Riemannian Curvature.

We shall now modify the expression for 72 by the introduction of the
Biemannian curvature.

If, at any point of VK, WM ( ^ ^ N) is formed from all the geodesies
of Vy emanating from the point in directions lying in an assigned

8EB. 2. VOL. 25. NO. 1551. S
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M-element. and if the equations of W.u are expressed parametrically as

<7.1) xi = xi{x\x2

then

i = xi{x\x2 xM)t
0 o n

dxm dx1" dxs cxf

(7 . 2) G^ = 6 ^ ^ ^ ^ ^ T (M, V, <r, r = 1 it/),

where the left-hand side is the curvature tensor of WM for the coordinate
system (as1, ..., xM). This result is known* and admits of a very simple

0 0

proof by the use of Riemannian coordinates. Now if, at any point P of
€, a two-space W3 is constructed from all the geodesies of Vy tangential
to F3 at P, and if there is taken in W2 a coordinate system (x\ x'2) such
that at P ° "
,_ qv ei _ dx' __ ax1 . _ dx1 3**

0 o

thent

<7.4) Gaa = GmK*£mtrt'f-

If /C denotes the Gaussian curvature of W$ at P (or, in other words,
the Riemannian curvature of Fy for the directions £', >?*), then

(7 .5) ify = Gm2,

where

(7 .6 ) g = gru ^12
0 . o o

and

<7.7) g^f+Zgnid
(i 0 o

is the square of the line-element of W2 at PI. By virtue of (7 . 3) it is
evident that

(7 .8) gn du2+2gn du dv -f g22 dv*

* Schouten, loc. dt., 198.
t Of. Bianchi, loc. dt., 480.
t Ibid., 428.



1925.] THE LENGTH INTEGRAL IN KIEMANNIAN SPACE. 259

is the square of the line-element at F2 at P. Therefore we may write

(7 .9) J2 = p [? sin2 0(f, y)-Kg] du,
Jl'

where K is the Eiemannian curvature of VN for the directions £*, i/ and </
0

is the determinant formed from the fundamental tensor of F2 for the
coordinate system (u, e).

8. Second variation when the curve is geodesic and the end points
arc fixed.

Turning to the second form for the second variation given in (6 .18),
we see that Ix is zero if C is geodesic, since then f is zero. If the end
points are fixed, rj vanishes at u = u\ and u = w2 for all values of v under
consideration, and therefore ^ vanishes at these points. Thus T is zero.
Under these circumstances the second variation is

(8.1) PL = W P P sina 6(1 *)-Kg] du,
Jill 0

using the form of /2 given in (7 . 9). Thus the second variation depends
only on the direction and magnitude of the variation vector along C and
in no other way on the nature of V2.

We shall now assume that the variation vector is normal to C at every
point, so that on C

(8.2) 9iJi
i*iJ = 0.

This condition implies no restriction on the variations, the end points
being fixed. It implies, however, a restricted choice of surface coordinates
in F2. Being given F2 and an aox family of varied positions of C in F2,
defined as the parametric lines of n, it is only necessary to take new
coordinates («*, v*) such that the parametric lines of n* coincide with
the parametric lines of u and the parametric lines of v* are the orthogonal
trajectories of the parametric lines of u, together with the condition that
it* = u on G. Then, dropping the asterisks, we know that (8.2) is
true, and all results previously established are equally true for the new
(u,v) coordinate system now adopted.

s2
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Differentiating (8 . 2) with respect to u, we obtain

(8.3) gii?il+g«itvl = o,

and hence, since C is geodesic, we have on C

(8.4) vo

Thus

(8.5) iPsi

Furthermore, on C we have gn equal to unity, while gn vanishes. Thus
we have °

(8.6) g = g ^ = gij tf1 n3 = *?•
r> o

Substitution from (8 . 5) and (8 . 6) in (8 .1) gives

(8. 7) PL = Ito* P tf-Ktf]du.
J«i

The following theorem results directly :

THEOREM XII.—A curve G being geodesic, the second variation of
its length is positive for all variations with fixed end points included in
the type given in § 1 (and its length is therefore a relative minimum
with respect to variations of that type), if the Riemannian curvature
corresponding to every two-dimensional plane element containing the
direction of C is zero or negative*. The equivalent sufficient analytical
condition is that G^ii1 vj €k vl should be zero or negative at every point
of C for arbitrary values of the components of rf\

9. Expression for the second variation using the unit normal
variation vector.

Let us now further transform the expression for the second varia-
tion in the case where C is geodesic, the end points are fixed, and the
tJ-curves cut C orthogonally, by the use of the unit normal variation vector
fx1 defined by

(9 .10) if* = W.

• For the case N = 2, see Bolza, loc. cit., 228.
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We have then

and

Differentiation of these two equations with respect to u gives respec-
tively

<9.13) 0 0 / ^ = 0,

and, since C is geodesic,

(9.14) giji
i7ij = 0.

Differentiation of (9 . 10) with respect to u gives

<9.15) 7 = ^ ' ^

and therefore, by (9 . 11) and (9 .13),

(9.16) ? = 0u**V =

Introducing this expression into (8. 7), we obtain the equation

<9 . 1 7 ) S2L = I8v~ f"2 [h2+fr2-K) >/2] du.
J

An interesting geometrical result can easily be deduced from this
equation. Let us at present consider only variations in some definite
T72, so that fx' has definite values along C. We may treat V2 as the funda-
mental manifold. Taking any coordinate system (a;1, a;2) in F3, all our
previous arguments apply, and (9 .17) is the expression for the second
variation with fixed end points, C being geodesic in V2 if it is geodesic

in Fv*.
In calculating (9 . 17) when \\ is the fundamental manifold, >? ;m<l }J

have the same values as in the case where ]'\ is fundamental; but Ji' is
the contravariant derivative calculated for the coordinate system in F2,
and K is the Gaussian curvature of \\ itself (say ]'). But, by (9 .13)
and (9 . 14), the vector Jx' is perpendicular to two mutually perpendicular

* Cf. Bianchi, loc. cit., 422.
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vectors, namely n' and {-1. This is impossible in a space of two dimen-
sions, and therefore jil taken with respect to F2 vanishes. Thus we have

(9.18) <S2L = W ["' [>/2-iy] dn.

Comparison with (9 .17) gives

(9.19) r = K-F,

•where jl is to be calculated with respect to V#, and K is the Eiemannian
curvature of Fxv corresponding to F2, If Ji is zero,

(9.20) T = K.

We may express these results in the following form :—

THEOREM XIII.—At any point of a geodesic C of V^ the Gaussian
curvature of any two-space F2 containing C is equal to the excess of the
Eiemannian curvature of V\ corresponding to the element of F2 over
the square Of the magnitude of the contravariant derivative with respect
to C of the unit vector lying in F2 and normal to C, calculated for the
manifold Vy. The Gaussian curvature of F2 is equal to the correspond-
ing Riemannian curvature if, and only if, the unit normal vector is
propagated parallelly along C.

The following restricted theorem is of interest :—

THEOREM XIV.—In a space Vy of constant and isotropic Riemannian
curvature K there exists no two-space containing a geodesic of Vy and
having a Gaussian curvature greater than K.

We have already seen in Theorem XII that the second variation of the
length-integral is positive if the Riemannian curvature corresponding
to every element containing the direction of C is zero or negative. We
shall now show that, if i V > 2 , it is always possible to construct a V2

containing C, such that for variations in this F2 the second variation is
positive, on the sole assumption that K has a finite upper bound on C.
The satisfaction of this condition is, in fact, a consequence of our
postulates in § 1 concerning the fundamental tensor of VN. From (9 . 17)
we see that a sufficient condition for the second variation to be positive is

(9 . 21) M- > K
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at all points of C. Let <j>\ yf/ be two mutually perpendicular unit
vectors, normal to C and propagated parallelly along C, and let a, /? be
two scalar functions of u. Write

(9 . 22)

Differentiation gives

(9 . 28)

The vector /*' denned by (9 . 22).is normal to C and is a unit vector if

(9.24)

The value of M2 is

(9.25) j?

Now if we choose a = cos AM, (3 = sin AM, where A is any constant
greater than the upper bound of \/K, (9.24) is satisfied, and (9.25)
gives

(9.26) ,12 = A3.

Thus (9 . 21) is satisfied, and we have the following result :—

THEOREM XV.—Being given a geodesic C it is possible to find
infinitely many two-spaces 1'2 containing C. such that the second varia-
tion of the length of C is positive for all variations in F2 betwee?i fixed
end points.

By (9 . 19) the equivalent geometrical statement is that it is always
possible to draw infinitely many two-spaces through a geodesic having
negative Gaussian curvature at every point of the geodesic. We can, in
fact, draw such two-spaces with negative curvature exceeding in
absolute value any preassigned positive number, however large.

Equation (9 . 17) expresses the second variation of the length-
integral when C is geodesic and the curves of variation cut C orthogon-
ally, the end points being fixed. In this equation »/|8u| is the magni-
tude of the infinitesimal variation vector, that is, the distance through
which a point of C is displaced, and >j \8v\ is the rate of change of the
magnitude of this displacement as we move along C. The magnitude
of the displacement is arbitrary, except for the condition that it. should
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vanish at the end points. If we take two two-spaces, V2 and V*,
through C, we obtain an expression (9.17) for each of them. If rj is
the same function of u for F3 and V*, we shall say that the variations
are similar. When this is the case, (9 .17) enables us to compare the
lengths of such varied curves adjacent to C lying in F2 and V* respec-
tively. We may state the following theorem as a direct deduction from
(9 .17) :—

THEOREM XVI.—//, at each point of a geodesic C, V# has the same
Riemannian curvature for all elements containing the direction of C,
then, considering similar variations with fixed end points in all the two-
spaces F2 containing C, the second variation has a common value for all
the \\ formed by parallel propagation of a unit normal vector along C,
and tins common value is less than the second variation for any F3 not.
generated in this manner. Or, for an infinitesimal normal variation of
assigned magnitude at every point, the length of the varied curve is
less when the unit normal vector is propagated parallelly than when it
is not.

10. Conjugate points.

From (9.17) we see that the Jacobian differential equation* for
determination of the conjugate points for variations in any definite F3

containing the geodesic C is

(10.1) j $ y

the conjugate points being consecutive zeros of any solution of this
equation. Making use of Sturm's theorem!, the following theorem
results :—

THEOREM XVII.—// the Riemannian curvature corresponding to
every element containing the direction of a geodesic C is less than a
positive number A, the distance between a pair of conjugate points on
C cannot be less than -K\S/A. ; while, if tlie Riemannian curvature is
always greater than a positive number B, the distance between a pair
of conjugate points for variations in a F2 generated by jx^Tallel propaga-
tion of a unit normal vector is less than irj

* Cf. Bolza, loc. cit., 60.
t Darboux, Leqons sur hi thiorie g6n&rale des surfaces, 3 (1894), 100.


