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1. Introduction. A classical theorem in differential geometry
asserts the existence of a region Cq containing a given point q in a
Riemannian space, such that any point in Gq can be joined to q by
one and only one geodetic segment which does not leave Cg. A similar
theorem holds for the geometry of paths, and is equivalent to the
statement that a normal coordinate-system exists having q as origin.
There does not, however, seem to be a proof of the theorem that
a region exists in which two points are joined by one, and only one,
segment of a j,:*th which does not leave the region. Such a region
will be called simple, because not more than one, and convex, because
at least one path joins any two points. We shall show that any
non-singular point in an affine, or projective, space of paths is con-
tained in a simple, convex region which can be made as small as
we please.

Instead of the usual 'point-direction' or 'initial conditions' exis-
tence theorem for the differential equations to the paths, we use
Picard's 'two-point' or 'boundary value' existence theorem. By this
means the theorem is proved as a generalization of the remark that
the points in a flat affine space, given in cartesian coordinates by

V(y\...,yn) ^ 0,

constitute a convex region, if the quadratic form

is positive definite at each point of the hypersurface

V(y\...,yn) = 0.

Unless otherwise stated, an open region will mean an open region
in the arithmetic or number space of n dimensions. That is, a set
X containing the cell

for some positive 8, where xQ is any point in X. A closed region X
will mean the closure of an open region, X. The word region used
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by itself may mean either an open or a closed region. We deal only
with real variables and real functions.

2. An existence theorem. There is a theorem due to E. Picard,*
which asserts that differential equations of the form

— =f*l8,X,— \ (»=!,...,»),

admit a unique set of solutions

•AĤ o- xv «o> «i»*)>•••> "/""(*(» xv *o. «i> *)»
satisfying the boundary conditions

i{x0,xv80,81,a0) = x\, \

fli(x0,X1,80,81,81) = X\, ) '

provided /*(«, x, | ) satisfy certain continuity conditions, and s0, sv x0,
xt are properly chosen.

We shall have to do with differential equations of the formf

where Y)k are functions of a;1,..., xn. We assume T to be defined in
the region |xf| < 2, (2.2)

to be bounded, continuous, and to satisfy a Lipschitz condition

)-n*(*o)| < A £ \x\-x\\, (2.3)

x0 and xx being any points in (2.2), and A some positive constant.
Equations of the form (2.1) have the property that if

are solutions, so are

where t0 and tx are constants, arbitrary except that t0 ^ tv If Af is
the maximum Si |$#<(«) | as « varies from s0 to sv it follows that

is the maximum of |<£''(J) | as t varies from t0 to <x. This means that
there is a certain homogeneity relation between the upper bound

• Traiti d'analyse, 2nd edition, Paris, 1908, vol. iii, pp. 90-6.
f This note only applies to the restricted geometry of paths as apart from

more general theories in which r j t depend on the direction dx. See J. Douglas,
Annals of Math. 29 (1928), 143-68.
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which must be put on sx—s0, and the upper bound which must be
put on |^'l'|. This relation, and the fact that the functions

rjj^ (2.4)
are defined for all values of £, are the special features of the equations
(2.1), which enable us to prove our theorem.

We first restrict the variables £ in (2.4) by the conditions

m < A, (2.5)
where A is any positive constant. Let M/n2 be an upper bound for
the functions Tjk as x varies in (2.2). Then

IIV** I < M\\
for values of x in (2.2) and for £ in (2.5). Further, let

a = «2A, " (2.61)
0 = 2M/n, (2.62)

where A is the constant in (2.3).
Then for x0 and x1 in (2.2), and f0 and £x in (2.5), we have

By (2.3) and (2.61) applied to the first term on the right-hand side,
and by the first mean-value* theorem and (2.62), applied to the
second term, we have

M { ti-U\. (2.7)

Now let x0 be any point in the closed region

By Picard's existence theorem, there exists one, and only one, set
of solutions to (2.1)

^(x0, xv a0, av s), (s0 < a < s j , (2.8)
such that ji,T „ \ _ Ti ^

V \xo>---'3o) — xo

provided
8 t-K-^ol < !"

M™'-Jo)+\xi-xl\ x _.f ( 2 1 0 )

,)2 , eX(Sl-80)

D2
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where d is any number such that
na <6, nfi < 6.

As 8 varies from a0 to 8V |0*| < 2 and \I/JH\ < A.
Let /t = A(a1-s0). (2.11)
Then (2.10) may be written

W-^K 1. (2.121)
- a$ |< /* , (2.122)

M
2/8+/x/2 < 1/0. (2.123)

Let |*f—*ol < °.
for some positive a less than unity. Then (2.121) and (2.123) are
both satisfied for /* = 0. Therefore they are satisfied for every small
fi, and for every x0, xt such that

|4| < 1, \x\-xi\ < a. (2.13)
Therefore we can find /*0 such that (2.121) and (2.123) are satisfied,
subject to (2.13), for \i < /t0, and such that

Then (2.12) are all satisfied for p < ft0, and
|rr r i | <• OS'
\Xt—Xo\ 5^ ZO ,

for any positive 8' such that
28' < a
28' < yn-

Tn (2.5) let A = /u0. Then there is one, and only one, solution (2.8),
where s0 = 0, 8l = 1, and x0 and â  are in the closed region

Is*| < 8'. ' (2.14)
A set of n functions ^(x^x^s) of 2n+l variables, x0, xv and s, is
thus defined for x0 and x^ in (2.14) and for

0 < s < 1.
The functions tpl(x0, x\, s) are continuous in the 2n-{-1 variables.
On the assumption that bounded, continuous derivatives dV/dx

exist, this is a consequence of a general theorem proved by G. A.
Bliss.* According to this theorem the functions ipi(x0,xv8) are

* Trans. American Math. Soc. 5 (1904), 113-25, in particular pp. 114-16.
Bliss was considering the one-dimensional case, and the extension of his result
from n = 1 to any n involves a modification of the last paragraph on p. 115.

e<L
He proved that a certain derivative —; does not vanish. For n > 1 it is
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differentiable. We shall only need their continuity, and this follows
from the Lipschitz condition, without assuming the existence* of
dV/dx.

This section may be summarized as follows. Any integral curve
of (2.1) given by

x* = ih*(x x s) (s ^ s <C s \ (2 15)
where ifi* satisfy (2.9), is called a path,f and x0 and xx its end-points.
Any parameter referred to which a path satisfies (2.1) is called an
affine parameter, and the class of affine parameters consists of those,
and only those, related to a given one by linear equations

t = as+p (a ^ 0).
On each path we define a function

ix(s) = X(s)(s-s0) (*0 < « < « ! ) . (2.16)
where A(s) is the maximum of

\^(xo,xva)\,...,\4r'-(xo,xva)\,

when a varies from s0 to s. The function fi(s) is continuous and
strictly monotonic in s. Though it is not invariant under transforma-
tions of coordinates x -> y, it is invariant under transformations from
one affine parameter to another. The path (2.15) will be described
as a /xo-path if ,g\ <-

as 8 varies from s0 to sv We have shown that:
One and only one fio-path has as its end-points a given pair of points

in the closed region (2.14), and the path varies continuously with the
end-points.

necessary to show that a corresponding Jacobian —^ does not vanish. This'

can be done by using the same argument as in the one-dimensional case to

show that -~j-f X
1 =£ 0, where A1,..., A" are given constants not all zero. Other-

same arguments apply for n > 1 as for n = 1.
d2x'

* Let if)\x0, xv 8) be solutions.to = /'(«, x,dxjds), which take on the
as2

boundary values x0 and x1 for a = 0 and a = b respectively. On the assump-
tion that/'(«, x, | ) satisfy a Lipschitz condition, the continuity of ip'(x0, xv a),
in x0 and xv follows by an argument similar to that used by Picard (loc. cit.,
p. 93) in proving the convergence of approximations to a solution. We do not
give this argument because it is quite straightforward, and because the
existence of BT/dx is necessary to so many theorems in the geometry of paths,

t We describe as a path what would usually be called a segment of a path,
including the end-points.
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In particular, if x0 = xv the only |io-path both of whose end-
points coincide with x0 is the 'degenerate' path

= **.

Thus a non-degenerate /io-path cannot be closed, nor can it have
a double point.

3. Simple regions. We shall now show that a positive 8 exists,
such that not more than one path joins a given pair of points x0 and
x1 in the region X&, given by

I*11 < 3, (3.1)

without leaving X%. A region having this property will be described
as simple. Any region, open or closed which is contained in a simple
region is obviously simple.

Since not more than one fio-path joins a given pair of points in
(2.14), it will be sufficient to prove the following:

There exists a positive 8 < 8', such that any path y(x0, x±), joininq
a given pair of points in Xs which is not a [io-path contains at least
one point outside X$.

Let xi = ^-(x^x^s) (0<s<l), (3.2)
be any path joining x0 to xv where x0 and xt are in (2.14). From

(2.1) we have | f *(,)| <' M\(a)*, •
and therefore*

\+(xo,xvs)-xo\ ^,x(a)-^Jf^(s)2, (3.3)

* Let J(x) be any function defined for 0 < x < 1, whose derivatives f'(x)
and f"(x) exist and are continuous in this interval. Let

Mx(x) = max|/'(f)|, Mt(x) = max|/*tf)|,

as $ varies from 0 to a;. For a given x between 0 and 1 there is an x0 such that

\f'(xo)\ = Mx(x) (0 < x0 < x),

and by the first mean-value theorem we have

for any £ between 0 and x. That is to say,

and on integrating both sides from 0 to x and simplifying, we have

f(x)-f(0) > J'(xo)x-W^)x\
Therefore |/(as)—/(0)| ^ M^x-lM^x"-,

which is the result used in the text. Of course we strengthen the inequality
if we replace Mt(x) by a greater function.
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where the omission of indices means 'at least one of l^1—x\\,...,
\tfin—x%\ exceeds the expression on the right-hand side'.

Now /t(0) = 0 and t—\MP increases steadily as t increases from
0 to 1/M. Let r be any number less than fi0 and less than l/M. If
(3.2) is not a /io-path,

r < fi{s) < I/if

for some value of a between 0 and 1. For this value of a we have,

from (3.3), \^xo,xva)-xo\ > 28 (3.4)

for any 8 such that 0 < 28 < r—\Mr2.

I t follows that any path which is not a /*0-path has at least one point
outside the closed region Xs, given by

|«*| < 8. (3.7)

As explained above, if we take 8 < 8' the region Xs is simple.

4. Convex regions. A region X open or closed, will be called
convex if any two points in X are joined by at least one path which
dees not leave X. We may express this by saying that any two
points in X are visible* from each other in X.

Let X be any open region and X its closure. Then a path in X
will be described as 'in X' if it is contained in X, with the possible
exception of either end-point, or both. Two points in X will be
described as visible from each other in X if they are joined by a path
in X, and X will be described as completely convex if any two points
in X are visible from eaeh other in X.

Let V(x) = 0
be the equation of a closed hypersurface V which lies entirely in the
closed region X$, given by (3.7). Let V have the properties:

1. The closed region, G, given by

V(x) < 0
is connected.!

* A term suggested by K. Menger, Moth. Annalen, 100 (1928), 81. We may-
think of X as filled with substance which conducts light along paths, all the
space except X being opaque.

t That is to say, any two points in C can be joined by a continuous curve
which does not leave C.
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2. The .quadratic form

is positive definite at each point x on* V.
Since the closed region G, consisting of points in and on V, is con-

tained in the simple region Xg, it is simple, and we shall show that
it is completely convex.

Let x0 be any point on V, and

x1 = *<(«) (4.1)
a path which touches V at x0, that is to say,

j
where x(s0) = x0, £0 = I —I . Since xi(s) satisfy (2.1), it follows that

\ds/0

..., (4.2)
and therefore F{a;(so4-As)} is positive for small values of As. That
is to say, all points on a tangent path to V, which are near the point
of contact, lie outside F.

Let a and b be any two points in C. Either the point pair (a, 6)
is visible,! or else the path joining a to 6 contains at least one point
which is outside V. For if a and 6 are invisible the path ab has at
least one inner point x on V, and if ab contains no point outside
V it touches V at x. But the possibility of tangency from the inside
is excluded by the second condition on V.

I t follows that the totality of visible point pairs in V is a closed
se^ in the 2»-dimensional region

\x<\ < 8, \yi\ < S,

* For a sufficiently small positive r such a hypersurface is given para-
metrically by (a) a? = tf-MT^S?,

(b) 2 dd-r* = 0.

For the equations (a) define a transformation to a coordinate-system x in
which the components, r} t , of the affine connexion vanish at the origin, and
in which the equation to V is (b). In the coordinates x we have

p ( J 4 J.

and for all sufficiently small values of r this quadratic form is positive definite
at points on the hypersurface V.

f A pair of points in O will be described as visible, if one is visible from
the other in the open region C, and invisible otherwise.
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which is the product of Xg with itself. For let (a,b) be any point
pair on the boundary of the visible point pairs, and let

be a sequence of visible point pairs converging to (a, b). Each of the

lies in C, by the definition of visibility. On each of the paths aa, ba.
let the parameter s be chosen so that

Let the parameter on the path ab be similarly chosen. Then for each
value of s between 0 and 1, the sequence of points

ifi(avbv8), i/i(a<,,b2,s),...

converges to i/j(a, b, s),

as follows from the continuity of r̂*(«, v,s) in the variables u and v.
Therefore no point on the path ab lies outside V, and by the pre-
ceding paragraph the point pair (a, b) is visible. Therefore the totality
of visible point pairs is closed.

Further, if (a, b) is any visible pair of points, both of which are
inside V, we have y^a, b, s)} < 0,

for any 5 between 0 and 1. By the uniform continuity of ^{a, b, s)

we have V{<P(a+Aa, b+Ab, s)} < 0,

for all small values of Aa and Ab. Therefore the set of all visible
point pairs (a, b), where a and b are both in the open region C, is
open. That is to say, the set of all visible point pairs in C is both
open and closed relative to the 2%-dimensional region, CxC, con-
sisting of all point pairs in C.

Sine© C is connected, it follows that C X C is connected. Moreover,
the degenerate point pair (a, a) is visible, where a is- any point in C.
Therefore the set of visible point pairs is not empty, and C is convex.*
Since the set of visible point pairs in the closed region C is closed,
it follows that C is completely convex.

Let U be any open region in an affine space of paths, and let P be

* If a non-vacuous sub-set of a connected set X is both open and closed,
relative to A', it is the set X itself. This follows at once from our definition,
and is often taken as the defining property.
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a given point in U. A coordinate-system exists in which a cell con-
tained in U is- represented by the region (2̂ 2) and P by some point
inside V. We have, therefore, the theorem:

If U is any open region in an affine apace of paths, and if P is any
point in U, there is a simple and completely convex closed region con-
taining P and contained in U.

Another statement of this theorem is: an affine space of paths has
a set of convex regions for a fundamental set of neighbourhoods.*

In particular the theorem'applies to the geodesies in a Riemannian
space. A Riemannian space with a positive ds2 has a set of convex
spheres for a fundamental set of neighbourhoods. For any point may
be taken as the origin of normal coordinates in which the locus
given by i /V-r 2 = 0,

for a small enough r, is a sphere and may be taken as V.
The theorem obviously applies to projective as well as to affine

spaces of paths.

* This statement refers to a topological space with an affine connexion
defined at each point. For a set of axioms describing such spaces see O. Veblen
and J. H. C. Whitehead, Proc. National Academy of Sciences, 17 (1931), 551-61,
or Chap. VI of a forthcoming Cambridge Tract by the same authors.


